

Waves and sea ice interactions : coupling of the wave model WW3 with NEMO-LIM3

LIM3 DAY 07/11/2017

Guillaume Boutin

PhD student

Laboratoire d'Océanographie Physique et Spatiale, CNRS/Ifremer/UBO/IRD, Brest, France

<u>Supervisors</u> : Fabrice Ardhuin Fanny Girard-Ardhuin

Ifremer

Starting point

What do we know ?

- Waves are attenuated when travelling in ice covered seas.
- The attenuation rate depends on the wave frequency and ice properties.
- Waves are responsible for ice floes breaking in the Marginal Ice Zone (MIZ)

Does it significantly impact the ice dynamic at large scale ?

Introduction

Dealing with waves

A spectral wave model : WAVEWATCH III

$$\frac{\partial N}{\partial t} + \nabla_x \cdot \dot{\mathbf{x}} N + \frac{\partial}{\partial k} \dot{k} N + \frac{\partial}{\partial \theta} \dot{\theta} N = \underbrace{\left\{ \frac{S}{\sigma} \right\}}_{\sigma} \text{ Sources and sinks}$$

Action advection

Ardhuin et al. 2010 Resolution :0,5° Validation with JASON-1, ENVISAT, GFO data Introduction

Talk plan:

#1 Introduction (done)

#2 Sea ice in WW3

- Representation
- Focus on break-up and Floe size Distribution
- Wave attenuation processes

#3 WW3 / NEMO LIM3 coupling (Work in progress)

- Principle
- Simplified geometry tests with SAS
- Runs on CREG025

#4 Conclusion

#2 Sea ice in WW3

- Representation
- Focus on break-up and Floe size Distribution
- Wave attenuation processes

Floe size effect on wave-ice interactions : possible effects, implementation in wave model and evaluation

G. Boutin, F. Ardhuin, D. Dumont, C. Sévigny, F. Girard-Ardhuin, M. Accensi **JGR 2018**

Adding ice in Wavewatch III

Motivations

- Sea ice melt increases the available fetch for waves in the Arctic. (Thomson and Rogers, 2014)
- Waves influence sea ice variability (Asplin et al., 2012 ; Stopa et al., 2016)
- Increasing number of human activities in the Arctic

Summary of sea ice in WW3

Sea ice implementation in WAVEWATCH III

Ice properties

The MIZ in WW3

A simplified rheology (Williams et al, 2013):

Hypothesis :

- Ice floes are elastic
- They break due to flexural failure

Requirement

- A Young modulus, Y
- A flexural strength , σ_c

Limits

- No fatigue
- Doesn't take into account ice variability (Temperature...)
- Not in agreement with some processes of wave attenuation...

To summarize, our ice is always the same. Thickness is given as a forcing, and only the floe size is affected by the waves

The Marginal Ice Zone (MIZ)

MIZ properties :

- Ice concentration
- Ice thickness
- Ice rheology
- Floe size distribution

The Marginal Ice Zone (MIZ)

MIZ properties :

- Ice concentration
- Ice thickness
- Ice rheology
- Floe size distribution

Forcings (satellites, sea ice models...)

The Marginal Ice Zone (MIZ)

MIZ properties :

- Ice concentration
- Ice thickness
- Ice rheology
- Floe size distribution

Forcings (satellites, sea ice models...)

Constants parameters

The Marginal Ice Zone (MIZ)

MIZ properties :

- Ice concentration
- Ice thickness
- Ice rheology
- Floe size distribution

Forcings (satellites, sea ice models...)

Constants parameters

Depends on the sea state

Sea ice break-up

Ice breaking and Floe size distribution (Totoya et al., 2011; Dumont et al., 2011):

 ε_{c} : critical strain for a thin elastic plate.

 $h^{2}/(4R_{1}^{2}) < \varepsilon_{c} < h^{2}/(4R_{2}^{2})$

But with statistics, of course (local variance)

Sea ice break-up

Ice breaking and Floe size distribution (Totoya et al., 2011; Dumont et al., 2011):

 $\lambda/2$ for which the condition is fulfilled gives the new max. floe size D_{max}

The MIZ in WW3 (Sea ice break-up #3)

Floe Size Distribution (Totoya et al, 2011):

The FSD follows a power law : $N(D) \approx D^{-\gamma}$ 1000 D_{\min} $D_{\rm max} = 30 {\rm m}$ cumulative Number / km2 800 $D_{\rm max} = 60 {\rm m}$ 600 400 200 $0 \\ 10^{1}$ 10^{2} Ice floe diameter (m)

 D_{max} is used by flexure induced dissipation

if $0.3\lambda \geq D_{\max}$ then :

Floes act as **rigid bodies**

Flexure dissipation vanishes

 $\langle D
angle$ is used by scattering

$$N_{\rm floes} = cx/\langle D \rangle$$

Sea ice implementation in WAVEWATCH III

Sea ice implementation in WAVEWATCH III

Scattering

Conservative

Quite well referenced...

Kohout & Meylan (2008) Williams et al. (2013ab)

Scattering

Conservative

Quite well referenced...

Kohout & Meylan (2008) Williams et al. (2013ab)

Basal friction

Dissipative

Viscous + Turbulent part

Liu et Mollo-Christensen (1988) Stopa et al. (2016)

Scattering

Conservative	Dissipative
Quite well referenced	Viscous + Turbulent part
Kohout & Meylan (2008) Williams et al. (2013ab)	Liu et Mollo-Christensen (1988) Stopa et al. (2016)
Inelastic attenuation	
Dissipative	
Not really expected	
Wadhams (1973)	

Basal friction

Scattering

Conservative

Quite well referenced...

Kohout & Meylan (2008) Williams et al. (2013ab)

Inelastic attenuation

Dissipative

Not really expected...

Wadhams (1973)

Basal friction

Dissipative

Viscous + Turbulent part

Liu et Mollo-Christensen (1988) Stopa et al. (2016)

Anelastic attenuation

Dissipative

First attempt to model it for wave attenuation

Tests with a simplified geometry

Waves with Hs =3m radiate from the western border

Ice concentration roughly represents a realistic MIZ

Ice thickness is constant

Floes are initially unbroken (Dmax=1000m)

Tests with simplified geometry but realistic forcing Collins et al. (2015)

Ship

@AGUPUBLICATIONS

Geophysical Research Letters

RESEARCH LETTER 10.1002/2015GL063063 In situ measurements of an energetic wave event in the Arctic marginal ice zone

Key Points: • Largest waves measured under ice cover in the Arctic • High-resolution, coupled wave-ice models are required for accurate Clarence O. Collins III¹, W. Erick Rogers², Aleksey Marchenko³, and Alexander V. Babanin⁴ ¹/SEE Postdoctoral Fellow, Naval Research Laboratory, Stemis Space Center, Hancock County, Missispipu, USA, ¹/Coreanography Division, Naval Research Laboratory, Stemis Space Center, Hancock County, Missispipu, USA, ¹/

2010-05-02 12:00:00

Rotated spectra : eastward propagation

Ice thickness : 50-60cm

Main results

Collins et al. (2015)

Inelastic attenuation reproduce the observed sudden shift

10100

Arctic configuration

How to define the MIZ ?

- Breaking criterion (Dmax < D init)
- Concentration criterion (C>0.15)

To note: Inelastic att. cannot be used « alone » !

Values are in agreement with orders of magnitude expected

Limits

Ice types :

This model is not suitable for pancake ice / frazil ice / grease ice

Broken floes :

What do they become after being broken ?

Validation :

SAR, buoys...

ONR campaign on Sikuliak

Sentinel 1-A, SAR, http://swarp.oceandatalab.com/

Sea ice in WW3 in 30s (1)

up to 3 (or 4) attenuation processes

sea ice break-up

*Actually, feedbacks concern only flexure and scattering

Sea ice in WW3 in 30s (2)

Sea ice is broken if the wave curvature exceeds a certain threshold

The maximum size for a floe is the half the wavelenght of the shortest wave that exceeds this threshold

The floe size distribution obeys a power-law

Conclusion of « Sea ice in WW3 »

 We included a sea ice representation in WW3 in which we tried to put some physics

- Inelastic attenuation could be interesting in some cases for which we observe very non linear attenuation
- Sea ice is still very simplified. It's a first step in modelling waves and sea ice interactions.

Av the set of the set

Conclusion of « Sea ice in WW3 »

Floe size effect on wave-ice interactions : possible effects, implementation in wave model and evaluation

and and and and the second sec

G. Boutin, F. Ardhuin, D. Dumont, C. Sévigny, F. Girard-Ardhuin, M. Accensi JGR 2018

Introduction

Talk plan:

Introduction (done)

#2 Sea ice in WW3

- Representation
- Focus on break-up
- Wave attenuation processes

#3 WW3 / NEMO LIM3 coupling (Work in progress

- Principle
- Simplified geometry tests with SAS
- Runs on CREG025

#4 Conclusion

Talk plan:

With contributions and help from Clément Rousset, Verena Haid, Claude Talandier, Camille Lique, Xavier Couvelard, Martin Van Coppenole...

#3 WW3 / NEMO LIM3 coupling (Work in progress)

- Principle
- Simplified geometry tests with SAS
- Runs on CREG025

For WAVEWATCH III :

MIZ properties :

- Ice concentration
- Ice thickness
- Ice rheology
- Floe size distribution

Forcings (satellites, sea ice models...)

Constants parameters

Depends on the sea state

For WAVEWATCH III :

Simplified geometry with SAS

Wave radiative stress illustration :

Wave height decreases

Loss of wave momentum in the wave direction of prop.

Stress from waves to the ice, in the wave direction of propagation

Simplified geometry with SAS

Wave radiative stress illustration :

Strong impact of the attenuation processes included.

Current work : coupling with LIM3 (in short)

Floes advection

• Not that easy... You don't take some floe size from one point to give it to another point

Current work : coupling with LIM3 (in short)

Floes advection

• Not that easy... You don't take some floe size from one point to give it to another point

• Zhang et al. 2015, Horvat et al. 2016 \rightarrow Floes cat.

Current work : coupling with LIM3 (in short)

Floes Size Distribution

Floes Area Distribution

For WAVEWATCH III :

Coupling WW3 with LIM3 (lag)

Coupling WW3 with LIM3 (lag)

Coupling WW3 with LIM3 (lag)

The difference remains quite limited...

Better keep a synchronous coupling

Lateral melt

New FSD explicitly known (as it is assumed that it follows a power law)

Computation of D average for each categories of floes

Different pattern from Lupkes et al. (2012)

CREG025 :

Impact on rheology ?

Assumption : If the ice is broken, the resistance to shear and divergence is removed.

Blue points are points where the ice is broken

A work in progress...

Technically : clean the code, put parameters in namelists... Understand why UM adv. scheme fails ?

Test **sensitivity** to parameters (lat melt), floe size redistribution...

Analyze the results (find a proper study case)

Thank you for your attention

This not sea ice but it's my picture

(Thank you Camille)

Questions ?

Waves attenuation processes

SUMMARY

Scattering

#1 Depends strongly on frequency and thickness

#2 Increase of the spread

#3 Increase of the wave height at the ice edge

#4 Very efficient to attenuate short waves

#5 Requires to be combined with dissip. proc.

Waves attenuation processes

SUMMARY

Total friction term

#1 Depends on **frequency** (but less than other processes) and **not much on thickness**

#2 Exponential attenuation (just like scattering)

Turbulent part

Most of the contribution

Efficient provided that wave height is still large

Viscous part

Very weak

Waves attenuation processes

SUMMARY

Flexure

- #1 Depends very much on **frequency**, **ice thickness** (but also energy of activation)
- #2 **Strongest attenuation** for short waves, and for long waves in thick ice

Inelastic dissipation

- # Non linear with strong attenuation at the ice edge (if the ice is not broken)
- # Efficient provided that wave height is still large

Anelastic attenuation

Linear, shows a max. floe size that increases regularly

Wave propagation in ice covered sea

The relation of dispersion (deep water)

 $\sigma = (gk + Eh^3k^5 12(1 - \nu^2)\rho_w) / (1 + \frac{\rho_{ice}hk}{\rho_w})$

#1 The waves are faster/longer

#2 The thicker the ice, the stronger the effect

#3 The **shorter** the **waves**, the **stronger** the effect

Wadhams (1973)

How do we use it in WW3?

Only in S_{ice} (attenuation & breaking) $\frac{\partial N}{\partial t} + \nabla_x \cdot \mathbf{\dot{x}} N + \frac{\partial}{\partial k} \dot{k} N + \frac{\partial}{\partial \theta} \dot{\theta} N =$

Flexure (Wadhams, 1973)

Hypothesis : Ice is visco-elastic

Physically : during loading, micro-craks appear an propagate in sea ice, internal friction.

ANELASTIC	INELASTIC
Delayed elasticity	Creep
LINEAR	NON LINEAR
Expected	Not expected but
100E)	

(Cole, 1995)

Once ice is broken, floes act as rigid bodies

We take the same parameters than in Cole (1995), for ice at -5°C

Current work : coupling with LIM3 (in short)

LIM 3 is an ice model, part of NEMO

- Ice is divided into different categories depending on thickness.
- advection due to winds and ocean currents
- Ice rheology with internal stress, but without tensile stress
- Various thermodynamic effects

Flexure (Wadhams, 1973)

Hypothesis : Ice is visco-elastic

Dependency on ice temperature, activation energy, ice thickness...

We take the same parameters than in Cole (1995), for ice at -5°C

More about friction

Waves attenuation in ice

Viscous and turbulent dissipation

Liu and Mollo-Cristensen (1989)

Adding molecular viscosity in a linearised Navier-Stockes equation :

 $f_e(a_{orb}/z_0)$ is a dissipation factor used for bottom friction

 $\alpha = (1 - w)c_v\alpha_v + wc_t\alpha_t$ w = w(Re) c_v, c_t

Depends on Reynolds number