
Parallel implementation 1/25Waves short course, Fall 2014

Parallel implementation
Hendrik Tolman & Mickael Accensi

The friends of WAVEWATCH III Team
Marine Modeling and Analysis Branch
NOAA / NWS / NCEP / EMC

Mickael.Accensi@ifremer.fr
NCEP.list.waves@NOAA.gov

Parallel implementation 2/25Waves short course, Fall 2014

Outline

 Covered in this lecture:

 Compiling the code.
 Running the code.
 Optimizing parallel model implementations.

 Parallel implementation of individual grids (ww3_shel).
 Additional options in ww3_multi.

 Hybrid parallelization.
 Profiling.
 Memory use (+IO).

 Considerations and pitfalls.
 Future ….

Parallel implementation 3/25Waves short course, Fall 2014

compiling

 Parallel implementation of WAVEWATCH III

 Using MPI, but code allow for other type of parallel
architecture.

 IntelMPI (mpiifort) was the standard before, now is even
more so.

 Exists also MPT (ifort –lmpi) and OpenMP (ifort –openmp)
 Future use of MPI-OpenMP hybrid ?

 Using MPT (ifort –openmp –lmpi)
 Using IntelMPI (mpicc –openmp)

 Not all codes use / can benefit from parallel implementation:
 Actual wave model codes ww3_shel, ww3_multi,

ww3_prnc will run much more efficient.
 Thinking about parallelize ww3_ounp and ww3_ounf

Parallel implementation 4/25Waves short course, Fall 2014

compiling

 Compile in several steps:
 Set switches for serial code (SHRD switch)
 Compile serial codes from scratch:

 Call w3_new to force complete compile of all routines
(not strictly necessary).

 Call w3_make without program names to get base set of
serial codes.

 Set switches for parallel code (DIST and MPI switch).
 Compile parallel codes:

 Compile selected codes only
 w3_make ww3_shel ww3_multi ww3_prnc

 This will automatically recompile all used subroutines.

 All this is done automatically in make_MPI.

Parallel implementation 5/25Waves short course, Fall 2014

Running parallel

 Running code in parallel depends largely on
hardware and software on your computer.

 Generally there is a parallel operations environment:
 “poe” on IBM systems
 “mpirun” on Linux systems.
 Sometimes, environment needs to be started separately.

 mpdboot combined to mpiexec.

 There are some examples in the test scripts, particularly the
ww3_multi and real-world test cases mww3_test_NN and
mww3_case_NN.

 Pitfall: many duplicate output lines: you are running a serial
code in a parallel environment …..

Parallel implementation 6/25Waves short course, Fall 2014

Optimization

 Three things to consider while
 optimizing the implementation.

 General code optimization (no further discussion):
 Compiler options.
 Switches (2nd order versus 3rd order propagation, etc.)
 Spectral resolution.
 Time stepping.

 MPI optimization (no further discussion).
 Often overlooked, but can be very important on Linux

systems.
 Application optimization (see below):

 Cannot do too much with ww3_shel, but will show
techniques used here.

 Many additional options in ww3_multi.

Tolman, H. L., 2002: Parallel Computing, 28, 35-52.
Tolman, H. L., 2003: MMAB Tech. Note 228, 27 pp.

Parallel implementation 7/25Waves short course, Fall 2014

ww3_shel

Physical space
Spectral space

d
ir

e
ct

io
n
s

frequencies

The prognostic variable is the
spectral wave energy density
as a function of spatial and
spectral coordinates and of

time.

Parallel implementation 8/25Waves short course, Fall 2014

ww3_shel

 Propagation :

 By definition linear, nonlinear corrections possible.
 Covers all dimensions.

 Physics :

 Wave growth and decay due to external factors :
 wind-wave interactions,
 wave-wave interactions,
 dissipation.

 Local in physical space.

Parallel implementation 9/25Waves short course, Fall 2014

ww3_shel

 Time splitting / Fractional steps.
 Separate treatment of :

 physics (local),
 local propagation effects (change of direction or frequency),
 spatial propagation.

 Each step consecutively operates on small subsets
of data.

 Entire model in core, memory requirements less than
twice that of storing single state.

Parallel implementation 10/25Waves short course, Fall 2014

ww3_shel

Physics involved suggest that grid points are
distributed over processors rather than spectral

components, particularly for the time splitting and
source term integration techniques used in

WAVEWATCH III.

"blocking" "Scattering"

Parallel implementation 11/25Waves short course, Fall 2014

WAVEWATCH

ww3_shel

 Blocking :
Only data at block

bound. needed.
Total amount of data

comm. is a function
of # of processes.

Algorithm depends
on actual prop.
scheme.

 Scattering :
Full data transpose

needed.
Total amount of data

comm. nearly
constant.

Algorithm inde-
pendent of prop.
scheme.

Load balancing
easier.

Parallel implementation 12/25Waves short course, Fall 2014

ww3_shel

 For WAVEWATCH III (ww3_shel)
 the scattering method is used because :

 Compatibility with previous versions.
 Maximum flexibility and transparency of code (future

physics and numerics developments).
 Feasibility based on estimates of amount of communication

needed.
 MPI used for portability.

Parallel implementation 13/25Waves short course, Fall 2014

ww3_shel

 Standard optimization techniques :
 Non-blocking communication

 overlaps communication and computation operations
 Use of a buffer and “wait” routine

 Persistent communication
 transparency of code
 Security of object manipulations (communicator, group)

processor
s with
native
data

 2

 1

 0

 3 scatter

gather
buffer

buffer

buffer
active

at target
processor

convert

convert

calculate
propagation

1-D array with given
spectral component

for all sea points

Correspondin
g 2-D spatial

wave field

Parallel implementation 14/25Waves short course, Fall 2014

ww3_multi

 For mosaic approach, there are
 other optimization options:

 Splitting grid in overlapping domains:
 Better local CFL time steps.
 Hybrid domain decomposition.

 Running grids with same rank side-by-side on parts of
communicator:

 Localizing communications.
 Amdahl's law generally favors running grids
 side-by-side on smaller number of processors
 over running
 in sequence over larger number of processors.

Parallel implementation 15/25Waves short course, Fall 2014

ww3_multi

 Splitting the communicator:
 Example from mww3_test_03, running three overlapping

low resolution grids, with overlay of three overlapping high
resolution grids.

 Example runs low1-3 serially on entire communicator.
 Example runs hgh1-3 side-by-side on fractions of

communicator.
 Output can also go to dedicated processors.

from mww3_test_03 ww3_multi input file
$
 ’low1' 'no' 'no' ’no' 'no' 'no' 'no' 'no' 1 1 0.00 1.00 F
 ’low2' 'no' 'no' ’no' 'no' 'no' 'no' 'no' 1 1 0.00 1.00 F
 ’low3' 'no' 'no' ’no' 'no' 'no' 'no' 'no' 1 1 0.00 1.00 F
$
 ’hgh1' 'no' 'no' ’no' 'no' 'no' 'no' 'no' 2 1 0.00 0.33 F
 ’hgh2' 'no' 'no' ’no' 'no' 'no' 'no' 'no' 2 1 0.33 0.67 F
 ’hgh3' 'no' 'no' ’no' 'no' 'no' 'no' 'no' 2 1 0.67 1.00 F
$

Note: identical fractions = non-overlapping communicators

Parallel implementation 16/25Waves short course, Fall 2014

ww3_multi

 WAVEWATCH III log file version 4.08
 ===
 multi­grid model driver date : 2013/01/04
 time : 11:01:35
.

 Group information :
 nr grids (part of comm.)
 ­­
 1 1 (0.00­1.00)
 2 2 (0.00­0.33) 3 (0.33­0.66) 4 (0.66­1.00)
 ­­

 Resource assignement (processes) :
 grid comp. grd pnt trk rst bpt prt
 ­­­
 low0 001­012 011 ­­­ ­­­ ­­­ ­­­ ­­­
 hgh1 001­004 003 ­­­ ­­­ ­­­ ­­­ ­­­
 hgh2 005­008 007 ­­­ ­­­ ­­­ ­­­ ­­­
 hgh3 009­012 011 ­­­ ­­­ ­­­ ­­­ ­­­
 ­­­

Running with or without output processor

 WAVEWATCH III log file version 4.08
 ===
 multi­grid model driver date : 2013/01/04
 time : 11:05:27
.

 Group information :
 nr grids (part of comm.)
 ­­
 1 1 (0.00­1.00)
 2 2 (0.00­0.33) 3 (0.33­0.66) 4 (0.66­1.00)
 ­­

 Resource assignment (processes) :
 grid comp. grd pnt trk rst bpt prt
 ­­­
 low0 001­011 012 ­­­ ­­­ ­­­ ­­­ ­­­
 hgh1 001­004 012 ­­­ ­­­ ­­­ ­­­ ­­­
 hgh2 005­007 012 ­­­ ­­­ ­­­ ­­­ ­­­
 hgh3 008­011 012 ­­­ ­­­ ­­­ ­­­ ­­­
 ­­­

Parallel implementation 17/25Waves short course, Fall 2014

ww3_multi

 Grid-level profiling:
 Compile under MPI with MPRF switch on.
 Run short piece of model, generating profiling data sets.
 Run GrADS script profile.gs to visualize:

 Example of NCEP’s original multi-grid wave model on next
slide.

 8 grids.
 360 processors.
 Dedicated I/O processors.

Parallel implementation 18/25Waves short course, Fall 2014

ww3_multi

regional coastalcoupling

ou
tp

ut

gl
ob

al

NCEP “multi_1” global model on IBM ca. 2008

Parallel implementation 19/25Waves short course, Fall 2014

Memory use + IO

 When running a grid on NAPROC processors,
 each processor stores:

 NSEA/NAPROC spectra. (scaling)
 Output fields:

 Sparse output fields (NSEA/NAPROC). (scaling)
 Full output fields (NSEA) in 1 processor only, only fields

for selected output. (not sc.)
 Other outputs:

 Gathered in one processor, with some buffering to limit
local memory use. (“scaling”)

 Work arrays, interpolation tables, … (not sc.)

Parallel implementation 20/25Waves short course, Fall 2014

Memory use + IO

 IO considerations: IO server type IOSTYP in
ww3_shel and ww3_multi.

 In ww3_multi, all point output can go to dedicated processor
 In ww3_shel,

 0: No IO server process, parallel direct write to output files
 1: No IO server process, assigned process for each output

file.
 2: Single dedicated IO process for all output files.
 3: Multiple dedicated IO process for each output file.

IO
proc

full
fields

1

sparse
spectr

a sparse
fields

……

sparse
spectr

a sparse
fields

naproc

sparse
spectr

a sparse
fields

1

sparse
spectr

a sparse
fields

2

sparse
spectr

a sparse
fields

naproc

sparse
spectr

a sparse
fields

……

sparse
spectr

a sparse
fields
full

fields

Parallel implementation 21/25Waves short course, Fall 2014

Memory use + IO

 IO considerations:

 Use IO server to manage memory use as well as faster IO.
 Combine with smart placement on nodes (e.g., less processes

on node that does IO) leaves much flexibility for efficient loading
of large grids.

 Use overlapping grids:
 Each grid has much smaller full field arrays.
 Stitch together later with ww3_gint.

Parallel implementation 22/25Waves short course, Fall 2014

ww3_multi

 Considerations and pitfalls:
 Intra-node and across-node communications are very

different.
 Keeping grid on node may be important.

 Scaling on different systems is very different:
 IBM-SP versus Linux.
 Impact of file system.
 Optimization of MPI.

 Data transpose is many small messages, MPI
needs to be tuned for this …

 For operational models, dimension for worst case:
 Profile without ice.
 Consider smallest grids with largest storms in

consideration of load balancing.

Parallel implementation 23/25Waves short course, Fall 2014

ww3_multi

 Debugging and optimization tools:

 Debugging
 valgrind : to find memory leak
 ddt : to run the compiled code step by step

 Optimization
 time : to check that system time is small
 strace -c : to show the time spent by function
 gprof : combined to gprof2dot.py to have a nice

visualization
 MPIinside (mpi), Vtune (mpt) or bandela : for process

performance distribution

Parallel implementation 24/25Waves short course, Fall 2014

Optimization future

 Working on the following:

 Hybrid domain decomposition (under development).

 Provide some assessment of optimization for both climate
(low-res, high-speed), and deterministic (high-res, high-
speed) implementations.

 Stay tuned !

Parallel implementation 25/25Waves short course, Fall 2014

The end

End of lecture

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25

