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Outline

 Covered in this lecture:

 Compiling the code.
 Running the code.
 Optimizing parallel model implementations.

 Parallel implementation of individual grids (ww3_shel).
 Additional options in ww3_multi.

 Hybrid parallelization.
 Profiling.
 Memory use (+IO).

 Considerations and pitfalls.
 Future ….
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compiling

 Parallel implementation of WAVEWATCH III

 Using MPI, but code allow for other type of parallel 
architecture.

 IntelMPI (mpiifort) was the standard before, now is even 
more so.

 Exists also MPT (ifort –lmpi) and OpenMP (ifort –openmp)
 Future use of MPI-OpenMP hybrid ?

 Using MPT (ifort –openmp –lmpi)
 Using IntelMPI (mpicc –openmp)

 Not all codes use / can benefit from parallel implementation:
 Actual wave model codes ww3_shel, ww3_multi, 

ww3_prnc will run much more efficient.
 Thinking about parallelize ww3_ounp and ww3_ounf
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compiling

 Compile in several steps:
 Set switches for serial code (SHRD switch)
 Compile serial codes from scratch:

 Call w3_new to force complete compile of all routines 
(not strictly necessary).

 Call w3_make without program names to get base set of 
serial codes.

 Set switches for parallel code (DIST and MPI switch).
 Compile parallel codes:

 Compile selected codes only 
 w3_make ww3_shel ww3_multi ww3_prnc

 This will automatically recompile all used subroutines.

 All this is done automatically in make_MPI.
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Running parallel

 Running code in parallel depends largely on 
hardware and software on your computer.

 Generally there is a parallel operations environment:
 “poe” on IBM systems
 “mpirun” on Linux systems.
 Sometimes, environment needs to be started separately.

 mpdboot combined to mpiexec.

 There are some examples in the test scripts, particularly the 
ww3_multi and real-world test cases mww3_test_NN and 
mww3_case_NN.

 Pitfall: many duplicate output lines: you are running a serial 
code in a parallel environment …..
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Optimization 

 Three things to consider while
 optimizing the implementation.

 General code optimization (no further discussion):
 Compiler options.
 Switches (2nd order versus 3rd order propagation, etc.)
 Spectral resolution.
 Time stepping.

 MPI optimization (no further discussion).
 Often overlooked, but can be very important on Linux 

systems.
 Application optimization (see below):

 Cannot do too much with ww3_shel, but will show 
techniques used here.

 Many additional options in ww3_multi.

Tolman, H. L., 2002: Parallel Computing,  28, 35-52.
Tolman, H. L., 2003: MMAB Tech. Note 228, 27 pp.
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ww3_shel

Physical space
Spectral space
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The prognostic variable is the 
spectral wave energy density 
as a function of spatial and 
spectral coordinates and of 

time.
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ww3_shel

 Propagation :

 By definition linear, nonlinear corrections possible.
 Covers all dimensions.

 Physics :

 Wave growth and decay due to external factors :
 wind-wave interactions,
 wave-wave interactions,
 dissipation.

 Local in physical space.
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ww3_shel

 Time splitting / Fractional steps. 
 Separate treatment of : 

 physics (local),
 local propagation effects (change of direction or frequency),
 spatial propagation.

 Each step consecutively operates on small subsets 
of data.

 Entire model in core, memory requirements less than 
twice that of storing single state.
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ww3_shel

Physics involved suggest that grid points are 
distributed over processors rather than spectral 

components, particularly for the time splitting and 
source term integration techniques used in 

WAVEWATCH III.

"blocking" "Scattering"
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WAVEWATCH

ww3_shel

 Blocking :
Only data at block 

bound. needed.
Total amount of data 

comm.  is a function 
of  # of processes.

Algorithm depends 
on actual prop. 
scheme.

 Scattering :
Full data transpose 

needed.
Total amount of data 

comm. nearly 
constant.

Algorithm inde- 
pendent of prop.  
scheme.

Load balancing 
easier.
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ww3_shel

 For WAVEWATCH III (ww3_shel)
 the scattering method is used because :

 Compatibility with previous versions.
 Maximum flexibility and transparency of code (future 

physics and numerics developments).
 Feasibility based on estimates of amount of communication 

needed.
 MPI used for portability.
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ww3_shel

 Standard optimization techniques :
 Non-blocking communication

 overlaps communication and computation operations
 Use of a buffer and “wait” routine

 Persistent communication
 transparency of code
 Security of object manipulations (communicator, group)
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ww3_multi

 For mosaic approach, there are 
 other optimization options:

 Splitting grid in overlapping domains:
 Better local CFL time steps.
 Hybrid domain decomposition.

 Running grids with same rank side-by-side on parts of 
communicator:

 Localizing communications.
 Amdahl's law generally favors running grids 
    side-by-side on smaller number of processors  
    over running
    in sequence over larger number of processors.
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ww3_multi

 Splitting the communicator:
 Example from mww3_test_03, running three overlapping 

low resolution  grids, with overlay of three overlapping high 
resolution grids.

 Example runs low1-3 serially on entire communicator.
 Example runs hgh1-3 side-by-side on fractions of 

communicator.
 Output can also go to dedicated processors.

from mww3_test_03 ww3_multi input file .....
$
  ’low1'  'no' 'no' ’no' 'no' 'no' 'no' 'no'   1  1  0.00 1.00  F
  ’low2'  'no' 'no' ’no' 'no' 'no' 'no' 'no'   1  1  0.00 1.00  F
  ’low3'  'no' 'no' ’no' 'no' 'no' 'no' 'no'   1  1  0.00 1.00  F
$
  ’hgh1'  'no' 'no' ’no' 'no' 'no' 'no' 'no'   2  1  0.00 0.33  F
  ’hgh2'  'no' 'no' ’no' 'no' 'no' 'no' 'no'   2  1  0.33 0.67  F
  ’hgh3'  'no' 'no' ’no' 'no' 'no' 'no' 'no'   2  1  0.67 1.00  F
$

Note: identical fractions = non-overlapping communicators
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ww3_multi

 WAVEWATCH III log file                                 version 4.08
 =====================================================================
 multi­grid model driver                          date : 2013/01/04
                                                  time :  11:01:35
. . . . . 

  Group information :
  nr   grids (part of comm.)
 ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
   1    1 (0.00­1.00)
   2    2 (0.00­0.33)  3 (0.33­0.66)  4 (0.66­1.00)
 ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

  Resource assignement (processes) :
  grid         comp.   grd  pnt  trk  rst  bpt  prt
 ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
  low0        001­012  011  ­­­  ­­­  ­­­  ­­­  ­­­
  hgh1        001­004  003  ­­­  ­­­  ­­­  ­­­  ­­­
  hgh2        005­008  007  ­­­  ­­­  ­­­  ­­­  ­­­
  hgh3        009­012  011  ­­­  ­­­  ­­­  ­­­  ­­­
 ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Running with or without output processor

 WAVEWATCH III log file                                 version 4.08
 =====================================================================
 multi­grid model driver                          date : 2013/01/04
                                                  time :  11:05:27
. . . . . 

  Group information :
  nr   grids (part of comm.)
 ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
   1    1 (0.00­1.00)
   2    2 (0.00­0.33)  3 (0.33­0.66)  4 (0.66­1.00)
 ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

  Resource assignment (processes) :
  grid         comp.   grd  pnt  trk  rst  bpt  prt
 ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
  low0        001­011  012  ­­­  ­­­  ­­­  ­­­  ­­­
  hgh1        001­004  012  ­­­  ­­­  ­­­  ­­­  ­­­
  hgh2        005­007  012  ­­­  ­­­  ­­­  ­­­  ­­­
  hgh3        008­011  012  ­­­  ­­­  ­­­  ­­­  ­­­
 ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
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ww3_multi

 Grid-level profiling:
 Compile under MPI with MPRF switch on.
 Run short piece of model, generating profiling data sets.
 Run GrADS script profile.gs to visualize:

 Example of NCEP’s original multi-grid wave model on next 
slide.

 8 grids.
 360 processors.
 Dedicated I/O processors.
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ww3_multi

regional coastalcoupling
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NCEP “multi_1” global model on IBM ca. 2008
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Memory use + IO

 When running a grid on NAPROC processors, 
 each processor stores:

 NSEA/NAPROC spectra. (scaling)
 Output fields:

 Sparse output fields (NSEA/NAPROC). (scaling)
 Full output fields (NSEA) in 1 processor only, only fields 

for selected output. (not sc.)
 Other outputs:

 Gathered in one processor, with some buffering to limit 
local memory use.            (“scaling”)

 Work arrays, interpolation tables, … (not sc.)
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Memory use + IO

 IO considerations: IO server type  IOSTYP in 
ww3_shel and ww3_multi.

 In ww3_multi, all point output can go to dedicated processor
 In ww3_shel, 

 0: No IO server process, parallel direct write to output files
 1: No IO server process, assigned process for each output 

file.
 2: Single dedicated IO process for all output files.
 3: Multiple dedicated IO process for each output file.

IO 
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fields
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Memory use + IO

 IO considerations:

 Use IO server to manage memory use as well as faster IO.
 Combine with smart placement on nodes (e.g., less processes 

on node that does IO) leaves much flexibility for efficient loading 
of large grids.

 Use overlapping grids:
 Each grid has much smaller full field arrays.
 Stitch together later with ww3_gint.
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ww3_multi

 Considerations and pitfalls:
 Intra-node and across-node communications are very 

different.
 Keeping grid on node may be important.

 Scaling on different systems is very different:
 IBM-SP versus Linux.
 Impact of file system.
 Optimization of MPI.

 Data transpose is many small messages, MPI 
needs to be tuned for this …

 For operational models, dimension for worst case:
 Profile without ice.
 Consider smallest grids with largest storms in 

consideration of load balancing.
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ww3_multi

 Debugging and optimization tools:

 Debugging
 valgrind : to find memory leak
 ddt : to run the compiled code step by step

 Optimization
 time : to check that system time is small
 strace -c : to show the time spent by function
 gprof : combined to gprof2dot.py to have a nice 

visualization
 MPIinside (mpi), Vtune (mpt) or bandela : for process 

performance distribution
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Optimization future

 Working on the following:

 Hybrid domain decomposition (under development).

 Provide some assessment of optimization for both climate 
(low-res, high-speed), and deterministic (high-res, high-
speed) implementations.

 Stay tuned !
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The end

End of lecture
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