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24.2.2 Moyenne Lagrangienne généralisée . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
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Foreword

The number of scholarly articles and books about ocean waves is staggering, with many different points of
view, going from mathematical treatises to naval architecture. Among these we can single out the excel-
lent textbooks by Kinsman (1965), Dean and Dalrymple (1991), and Holthuijsen (2007), the engineering
manual from the U. S. Army Corps of Engineers (2002), and many excellent scientific monographs by
Phillips (1977), Dingemans (1997), Young (1999), Lavrenov (2003), Janssen (2004), Lannes (2013) ...

So why another one?
First of all, scientific developments never stop, making these previous works not obsolete but less up

to date and complete. This will happen with the present book, even if we are updating it on a regular
basis. Second, and more important, all these books, except possibly the jewel by Phillips (1977) have
a rather narrow scope, and do not cover aspects for which no monograph exist. We particularly think
about microseisms or infragravity waves. Our collaborations with coastal engineers, geomorphologists
and seismologists, has motivated us to bring to the forefront those results that are often obscure or very
hard to follow. Our point of view is that the study of ocean waves lies at the heart of the investigation
of the Earth System and that much insight and cross-fertilization can result from the integration of
many geoscientifc fields, from microseisms to remote sensing, as well as applied disciplines such as
marine meteorology or coastal and ocean engineering. At the very least, these different disciplines are
providing new data and different points of view that complement each other in constraining our physical
understanding of wave processes, and the parameterizations used in numerical models.

On these topics, we have tried to be clear without compromising the accuracy of the results, but this
is a very difficult balance. If you find it unclear, do not hesitate to contact us and we will try again to
clarify in the next revision.

We shall finish with a final warning: our selection of topics is clearly biased to our own tastes and
interests, which are clearly favouring geosciences versus engineering. It does not mean that the topics
ignored here are not important. For example, a good discussion of extreme waves and sea state analysis
would be much more useful for all engineers than our development on three-dimensional wave-current
interactions. For this you may go to section 4.3 of Holthuijsen (2007). This choice is ours, and we hope
that the present book will be a good combination of useful and interesting topics.

The document is organized in three parts, one relevant to waves in deep water, another providing
additional information on coastal and shallow water aspects, and a third part that goes into some details
that are probably not relevant for most readers. This book is designed to make it easier to read in
electronic form, including hypertext links within the document and towards outside sources, such as the
cited references.

This document, or part of it, is designed as a teaching material for the wave-related Master courses at
University of Brest and ENSTA-Paris Tech. Because the present document is trying to follow the latest
advances in research – and my imperfect understanding of these – it is in permanent evolution, which
unfortunately leads to the presence of errors. I already thank Nicolas Rascle, Nadine Paugam, Clément
Gandon, and Nobuhiro Suzuki for many corrections, Jean-François Filipot for contributions and helping
translate chapter 3, and Philippe Bonneton for discussions and help on the structure of chapter 13. This
version It is still not finished and some (old) parts in chapter 15-24 and following are still in French
and will be translated in the coming months. I thank you in advance for finding any dubious or strange
contents, or broken links.
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Waves in deep water
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Chapter 1

Introduction

1.1 Waves in geosciences

From the ripples on a water puddle to large breaking waves on the beach, we have all seen waves. They
can be familiar or threatening, possibly deadly for seasoned fishermen or well known yachtsmen (e. g.
Pierson, 1972; Greenslade, 2001). Waves can exert huge forces: just try to stand up in the surf, in front
of a two-meter tall wave that breaks. And two meters is a far cry from the maximum recorded wave
height at sea, towering 32 m above the following crest (Liu et al., 2008), whereas the most severe sea
state estimated from satellite data had a significant wave height of 20.1 m (Hanafin et al., 2012), which,
as we shall see in this chapter, means that some wave heights probably exceeded 35 m.

Knowing and predicting the properties of waves is necessary for sea-going operations, the design of any
marine structure such as a jetty, an offshore platform or a ship. Waves modify the fluxes of momentum
between the ocean and atmosphere and thus influence more or less directly the oceanic and atmospheric
circulation. Waves are also an important agent in the pick-up and transport of sediments, and the main
source of background seismic motions.

32

STORMS
SUN & MOON

SUN
&

MOON

0.1 1 10 10 10 10 10
54

0.1 sec 1 sec 30 sec 5 min 12 hr 24 hr

WIND WIND &
ORDINARY
GRAVITY
WAVES

STORMS &
EARTHQUAKES

Wave period

Wave period in seconds

CAPILLARY
WAVES

ULTRA
GRAVITY
WAVES

ORDINARY
GRAVITY
WAVES

INFRA
GRAVITY
WAVES

LONG PERIOD
WAVES

ORDINARY
TIDE

WAVES

TRANS-
TIDAL
WAVES

-3-2
10 1 0.1 10 10 10 10

-5-4 Frequency in Hertz

Figure 1.1: Classification of the spectrum of ocean waves according to wave periods.
Adapted from Munk (1950).

To be more precise, we need now to introduce some classification of the different wave motions. A
simple classification, as proposed by Munk (1950) and shown in figure 1.1, is based on the typical time
scales of between the passing of two crests, which we shall call the period T , even though the motion does
not repeat itself exactly and is not mathematically speaking periodic. As a result our periods T can be
random numbers. This period classification is closely related to a physical classification that distinguishes
between the different generation processes for these wave. Indeed, like any wave phenomenon, our waves
can be defined by their

5
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• generation,

• propagation

• and dissipation.

The goal of the present book is to describe and make understandable these three aspects, both quali-
tatively and quantitatively. This quantitative understanding allows an accurate forecast of local wave
statistical properties, which we will call the sea state, as well as fluxes of energy and momentum between
the atmosphere, ocean and solid Earth.

In this book, we will restrict ourselves to waves which are more or less directly generated by the
wind, leaving out tsunamis. But before leaving them out, let’s say a few words about tsunamis. Tsunami
propagation and dissipation properties are the same as the wind-waves described here, but whats sets
them apart from wind-waves is their very large wavelength, which cannot be generated by wind in the
same way as the usual wind-waves. Hence their generation mechanisms are specific, namely earthquakes,
landslides, and meteorite impacts, which are all important but rare events, leading to very different
statistical properties compared to the waves continuously generated by the wind. Another slightly more
common source of meteo-tsunamis are abrupt changes in wind properties. All these generation events
are transient, and typically cause a depression or bump of the sea surface that appears very fast but on a
very large scale. This depression or bump then radiates a train of waves, with a period of the order of 10
minutes that is given by the size of the initial surface perturbation. These waves are strongly amplified
in shallow water. The first perturbation to arrive on land can be a trough. If you see the sea retreating
rapidly, this is it ... do not rush out to pick up crabs, but instead run to high ground, as a big crest will
likely follow and flood what was the dry land.

Instead of these transient wave trains, wind-generated waves are incessant and irregular. The time
between the passing of two crests, which we define as the period T , is typically less than 30 s. This limit
is related to wind speeds, as explained in chapter 5. These wind-waves also give rise to infra-gravity
waves of periods 10 s to 10 minutes. For all these motions the average distance between two crests, which
we shall call the mean wavelength Lm, increases with the mean period Tm. This wavelength goes from
a few centimeters to about a kilometer. For wave shorter than a few centimeters, the effect of surface
tension must be taken into account, and these short waves are called gravity-capillary waves.

Indeed, the propagation properties of waves is related to which of gravity or surface tension is the
main restoring force that keep the water oscillating after an initial disturbance by a generating force.
Gravity fights against surface slopes, setting up a pressure gradient that tends to reduce the sea level slope
and is the main force for large wavelengths. Surface tension, instead, fights against surface curvature: it
arises from the difference in thermodynamic properties of the interface between the two fluids, that are
air and water. This difference gives an energy to their interface, which is proportional to the area of the
interface: the more curved the surface the larger the energy, which is the equivalent of the gravitational
potential energy. This force explains why water droplets are spherical, it is simply the geometry that
minimizes the area (hence the energy) for a given volume. This surface tension also explains why short
breaking waves are not energetic enough to generate bubbles and foam at the sea surface. The presence
of a continuous layer of ice can also act like an elastic layer with an effect similar to surface tension. In
this case even long waves can be influenced by the elasticity of the ice layer, this influence depends on
the ice thickness (e.g. Squire et al., 1995).

Whether gravity or surface tension is the main restoring force, the work of these forces produces a
motion with an associated kinetic energy. The oscillations of the air-sea interface are thus maintained by
an exchange between potential and kinetic energy, until this energy is dissipated. Our waves are thus
surface gravity waves, gravity-capillary or capillary waves for the shortest.

In the family of gravity waves, at the other extreme towards the large scales, the slow oscillations
on time scales of several hours to several days are also influenced by the Coriolis force, caused by the
rotation of the Earth, and the waves become inertial-gravity waves, also known as Kelvin and Poincaré
waves. The main generation forces for these are the wind and the difference in the gravitational pull
exerted by the Moon and Sun on the center and the surface of the Earth. Kelvin waves share many
properties of gravity waves.

In practice, all these waves co-exist. Fortunately, it is often easy to sort them out and study them
separately. Wind-waves and tides have very different periods and wavelengths, as illustrated by figure 1.2.
There is no such clear separation between capillary and gravity waves, except at low wind speeds when
there is clear gap in the wave spectrum around the wavelength of 1.7 cm. For waves longer than 20 cm, we
will ignore the effect of the surface tension which will greatly simplify our calculations. However, surface
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Figure 1.2: Example of the evolution of the bottom pressure in about 20 m of water in Bertheaume bay,
France, on January 31, 2004.
The pressure in Pascals was converted here to an equivalent water height in meters by dividing the
absolute pressure recorded by a Seabird 26 instrument, by the product ρwg of water density ρw '
1026kg/m3, and gravity g ' 9.81m/s2, after subtracting the atmospheric pressure recorded nearby,
pa ' 105Pa. The fast oscillation caused by a swell of significant wave height Hs = 2.85 m is superimposed
on the tide that is gently falling, about 20 cm in 20 minutes, as shown by the red line.

tension should not be ignored in general, in particular when considering wave dissipation by breaking
and the effects of small scale surface roughness, both important for radar and radiometric measurements
of the ocean surface.

The propagation of waves is well known thanks to the works of Laplace, Poisson, Stokes, Airy,
Rayleigh and Boussinesq in the 18th and 19th centuries, with later refinements. For a historical perspec-
tive, see Darrigol (2003) and Craik (2004). The questions of generation and dissipation are still very
active research topics, with a fundamental problem posed by the multi-scale nature of real ocean waves:
how short waves influence long waves and vice versa is very difficult to treat and measure. Because of the
strong demand for results, successful forecasting methods have been developed on more or less empirical
grounds. Modern wave forecasting started with swell forecasts for Morocco, in the 1920s (Gain, 1918;
Montagne, 1922). This approach was generalized by Sverdrup and Munk (1947) who considered the full
life cycle of waves, from generation by the wind to dissipation in the middle of the ocean and on beaches.
This latter work was motivated by the planning of the allied amphibious operation Torch in Morocco
in 1942, which led to a method later applied to Normandy and many Pacific islands. Their British
colleagues, forming the W group at the admiralty, included Deacon, Darbyshire, Barber et Ursell who
developed similar methods and introduced the spectral analysis of waves in 1945 (Ursell, 1999), paving
the way for today’s numerical wave models. The first numerical spectral wave model was developed by
Gelci et al. (1957), the group that continued the Morocco wave forecasting effort in Casablanca.

Today, we can forecast with good confidence the main properties of the sea state and its consequences,
including forces on a structure at sea, ship motions, working range of a radar... although the details of
the generation and dissipation processes are not well known. This is a tribute to the flair of those who
invented rules and equations to represent the complex and poorly known reality. However, given this
empirical part, it is not surprising that the same models may not be accurate for secondary properties
of the sea state, such as the distribution of the energy radiated in different directions or the statistics of
short breaking waves.

Going against the long-term specialization and separation of geosciencies in many sub-disciplines,
there has been a strong interest since the late 1990s in the interaction of waves with the atmosphere,
ocean currents, turbulence, sediment motion, from the scale of the global ocean to the small scale of any
particular beach. This is motivated by integrated approaches for climate projections or the understanding
of sediment transport from sources to sinks. These efforts should be continued to properly understand
the interactions of waves and turbulence, and the multi-scale properties of the ocean surface. We hope
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that after reading the present book, that gives a broad view of what is known and tries to highlight
what is still unclear, the reader will gather the courage to continue the exploration of ocean waves after
Stokes, Boussinesq, Munk, Longuet-Higgins, Hasselmann, Zakharov, Phillips and many other less famous
scientists who made today’s knowledge possible.

Courage, though, may not be enough, and some tools will be needed to start for this journey, including
a working knowledge of calculus and fluid mechanics.

The following books should be consulted for complements on different topics,

• Kinsman (1965) on general principles and wave measurements, in particular with arrays of sensors.
Although a bit old, this book is very well written and easy to get into.

• Phillips (1977) for a comprehensive view, although not up to date, of upper ocean processes (waves,
internal waves, turbulence ...)

• Mei (1989) for wave propagation, mass transport and wave-structure interactions

• Dean and Dalrymple (1991) gave a real textbook oriented towards engineering applications

• Komen et al. (1994) gives the fundamental – but not basic – concepts of numerical wave prediction
in the open ocean, this is not an easy read

• Komar (1998) wrote a nice textbook for coastal geomorphology, an excellent starting point for
those who do not have a strong physics background

• Young (1999) combined deep and shallow water waves, including also global wave climatology.

• the Coastal Engineering Manual (U. S. Army Corps of Engineers, 2002), replaced the Shore Pro-
tection Manual. This book is edited by the U.S. Army Corps of Engineers, the body in charge of
shoreline defenses and management of ports and waterways. This combines general principles with
empirical formulas for coastal engineering. This is freely available on the web.

• Janssen (2004) give the ECMWF perspective on wind and wave forecasting, with many theoretical
details on wind-wave generation and nonlinear wave evolution.

• Holthuijsen (2007) A very well illustrated textbook centered on numerical wave modelling, specifi-
cally for coastal environments, although a bit weak on physical processes, such as bottom friction.

A lot of interesting material and teaching aids can be found on the web, from Tony Dalrymple’s Java
applets, to the UCAR Meted program targeted at meteorologists. A list of useful links will be proposed
separately for each chapter.

Let us now beg the tides and currents to stop their flow, so that we may study waves quietly. We
will see later, in chapters 7 and 16 how waves interact with other oceanic motions.

1.2 Wave motion: some observations

The random nature of ocean waves has long puzzled observers and made difficult all scientific investi-
gations. Figure 1.2 gives a good example of a random sequence of high and low waves. Initially the
forecasting of waves was formulated in terms of the highest wave. The notion of wave height distribution
was only introduced after 1945, thanks to the development of wave recording devices, and the availability
of computing power. Two types of methods have been developed to represent the random nature of the
wave field. One of these is the spectral analysis, which will be heavily used in the following chapters. The
other, is the wave-by-wave analysis, which we briefly describe here. More recent time-frequency analyses
are a kind of hybrid of these two methods.

Both methods are very useful and have their own limitations. Spectral analyses is well suited for the
wave forecasting, in particular at large scales, because it explicitly represents the dispersion of waves
that have different periods. Spectral analysis decomposes the sea surface in elementary sinusoidal waves,
it is thus very important to know the properties of these sinusoidal waves. This is the topic of chapter
2. However, some sort of wave-by-wave analysis must be use to investigate localized events associated to
the finite amplitude of the waves, such as breaking, as discussed in section 5.3 and chapter 23.
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Figure 1.3: Principle of wave by wave analysis: a series of elevation records is broken in individual
waves of duration T . The separation from one wave to the next is the zero down-crossing of the vertical
displacement. This example was obtained from a Datawell Waverider buoy deployed offshore of Crozon,
France, in May 2004.

1.3 Wave-by-wave analysis

1.3.1 Time series

Time series are the most common type of measurement these days, let us see what we can learn about
waves from time series. We shall work with series of sea surface elevation, but we could have used any
other physical quantity such as the velocity or pressure in the water or in the air.

We first define a single wave in time series by the time interval between two consecutive crossings of
the mean sea level as the surface goes down. The choice of ’down’ instead of ’up’ is fairly arbitrary but
it keeps the forward face of the wave, which is usually more interesting, within a single wave, whereas
the rear face is split between two consecutive waves. For each wave we define a period T , which is the
length of the time interval, and a height H, which is the difference between the maximum elevation (the
crest) and the minimum elevation (the trough) during the perid.

From a sequence of heights, we can define a probability density function (PDF) dP as the limit,
when dH goes to zero, of the probability P that a wave height is between H and H + dH, divided by
dH. For a statistically stationary sea state, the surface elevation is well approximated by the sum of a
large number of sine waves which are independent from one another. Applying the central limit theorem
to this approximate model, we find that the surface elevation is a Gaussian process, with negative and
positive anomalies around the mean sea level with statistics defined uniquely by the standard deviation
of the sea surface elevation. As a result, and this was proven in the narrow frequency band limit by Rice
(1944) and Cartwright and Longuet-Higgins (1956), the heights follow a Rayleigh distribution, as shown
on figure 1.4,

dP (H) =
2H

H2
rms

exp−H
2/H2

rms . (1.1)

This PDF is normalized to give
∫∞

0
dPdH = 1. The Rayleigh distribution is generally a good approxima-

tion for 98% of the distribution, sometimes even more. For extreme values, a better approximation was
given by Tayfun (1980), taking into account the correlations among wave components due to second-order
nonlinearities.

One useful result is that the probability that the height exceeds a given threshold Ĥ is given by

P (H > Ĥ) = e−(Ĥ/Hrms)
2

. (1.2)

This expression can be used to compute the height threshold Ĥ associated to a fixed fraction of the wave
population. For example Ĥ1/3 is the height beyond which there are the highest 1/3 of the waves, and it

is Ĥ1/3 = (ln(3))
1/2

Hrms which is nearly 1.05×Hrms.
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Figure 1.4: Rayleigh distribution of wave heights
dp×dH(Hv) is a probability for a single wave to have a height between Hv and Hv+dH. In red: the 1/3
of the highest waves in the distribution. The average height in this red part is H1/3, which is one way to
define the significant wave height Hs. In the following chapters we will rather define Hs as Hm0, equal
to four times the standard deviation of the sea surface elevation. That other definition is recommended
by the World Meteorological Organization and it gives a number very close to H1/3.

A more widespread scale for the wave heights is given by integrating (1.2) to get the average height of
the 1/3 highest waves. This is one definition of the significant wave height, denoted hautes H1/3 or Hs.
This scale roughly corresponds to the visual impression of wave heights, which was the most common
source of measurements until the 1940s. More generally but still for a Rayleigh distribution, the average
height of the 1/x fraction of the highest waves is,[

(− ln(1/x))
1/2

+
√
π × erfc

[
(ln(x))

1/2
]
/2
]
Hrms (1.3)

where erfc is the complementary error function. For x = 1/3, this gives H1/3 = 1.4157×Hrms.
From the definition, the full Rayleigh PDF p(H) is determined by Hrms. In practice the average H1/3

is more commonly used, and there is also a lot of interest in the maximum height Hmax, but that one
depends on the length of the record. When recording more waves, Hmax is likely to be higher. Waves
that have a height H larger than 2.1H1/3 are called freak waves or rogue waves. If we follow the Rayleigh
statistics, this correspond to 1 in 5700 waves. In practice, they are a bit more frequent for conditions
with large average steepnesses, as predicted by Tayfun (1980). Also, for real waves the spectrum is not
always narrow and on average H1/3 ' 3.8m0 instead of H1/3 ' 4.004m0, where m0 is the standard
deviation of the surface elevation (Goda, 1985).

In the context of the design of coastal or oceanic structures, there is a great interest in defining the
maximum wave conditions that will occur over the expected lifetime of a structure, typically 50 to 100
years, or with a very low probability of occurrence to ensure maximum safety. For example, some sections
of the Dutch dyke system are required by law to resist waves that occur only once in 10,000 years. The
material and size of the structure is then designed to withstand these extreme conditions. If the extreme
wave height and period is overestimated, the cost of construction is higher than it could have been. If the
conditions are underestimated, the structure is likely to fail in a time shorter than the expected lifetime.
This early failure happened for the first oil platforms built in the North Sea, in an age when there were
no routine wave measurements.

For these extremes, the Rayleigh distribution does not hold, because the Hs is itself a random variable
on the scale of days to centuries. The extreme wave statistics on these long time scales are determined by
the distribution of extreme meteorological event, or, in shallow water, the joint distribution of water levels
(including the astronomical tide) with weather events. These long term statistics are clearly different
from the short term statistics. For short term, the sea state was a superposition of many independent
wave trains, and we could use the central limit theorem. For long terms, we first need to determine
the distribution of the significant wave heights Hs, and the probability that the height of a single wave
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exceeds H0 is then the conditional probability p(H > H0|Hs = Hs0). The distribution of Hs follows a
generalized Pareto distribution, and the probability p(H > H0) is given by integrating the conditional
probability over Hs0.

Obviously, this requires stationary statistics. In some regions these statistics fluctuate with climatic
patterns like the North Atlantic Oscillation, which particularly impacts the wave heights on the European
Atlantic coast, or the El Nino-Southern Oscillation (ENSO) which has a strong impact on waves in the
central Eastern Pacific or on the U.S. West coast (Bromirski et al., 2005). As an example, Edward
Thornton, a renown specialist of nearshore dynamics, was asked in 1996 to provide some consulting
advice for the construction of a wastewater pipeline in Monterey Bay, Central California. Construction
started in 1997 in the middle of a very strong El Nino, the hundred-year wave height, which had been
properly evaluated by Ed Thornton, was exceeded and the half-ton rocks protecting the pipe were too
small to stay in place and were dispersed by the waves. For such a strong El Nino event, the storm
waves that caused the damage on the U.S. West Coast were normal. One should thus use statistics
with caution. Defining extreme wave heights is also very challenging in tropical areas where they are
associated with hurricanes that have random tracks: a 20-year record of hurricane tracks generally does
not contain all possible tracks, in particular the one of the next hurricane that will destroy this or that
facility. Finally, there are also long-term trends associated with global change (e.g. Wang and Swail,
2004; Charles et al., 2012), especially in the Arctic where the trend in sea ice extent is leading to higher
wave heights and periods (Stopa et al., 2016b).

1.3.2 Maps

Wave statistics from time series cannot represent all wave properties. Some of these, such as the length
of crests, are defined from the spatial patterns in the wave field. This parameter, although secondary
to the wave height, gives information on the spatial coherence of wave-induced motions and is thus very
important when navigating a seaway or designing a structure that may be wider than the crest length.

Just like we have defined heights and periods, heights and lengths L can be defined in the case of
waves propagating all in the same direction, say x. In that case, the crests are infinitely long in the other
direction y. One important parameter is then the wave slope, defined from the ratio H/L. For sinusoidal
waves, the maximum slope is πH/L.

Things get more complex when considering real waves that propagate in all directions. One can use
the theory of random fields, developed by Adler (1981). In that theory, the crests are defined as subsets
of the horizontal plane that are simply connected and that are above the mean sea level. Using this
definition requires a bit of topology. In this context it becomes more difficult to associate a crest with
a trough. There is a strong development of spatial statistics for ocean engineering and oceanography,
thanks to the development of video measurement techniques (Fedele et al., 2009).



12 CHAPTER 1. INTRODUCTION



Chapter 2

Main properties of linear waves

This chapter explains how and why water moves in waves, once the waves have been generated. A more
logical sequence might have been to study the generation process of the waves first, but it is much more
complex and can only be understood once one knows how the waves move. The properties exposed in
this chapter are thus common to all surface gravity waves, including tsunamis and wind waves.

In order to make things simple, we consider a flat, non-deformable bottom located at z = −h, and
periodic waves in both space and time. This may sound very restrictive, but waves at sea generally
behave as if the bottom were locally flat, and the periodicity allows us to study elementary waves that
are later superimposed thanks to the quasi-linear wave motion, with some possible non-linear corrections
to better fit the equations of motion. We will thus start with the linear wave theory of unidirectional
and monochromatic waves that was first developed by Airy (1841), and which is a good approximation
for waves of small height in not-too-shallow water. These are the typical conditions found in swells for
depths larger than 50 m or so. Swells are the waves generated by winds in remote storms. It is also
instructive for the oceanographer to play the game of differences, and find the common traits and main
differences between these swells, and the tidal waves in shallow water that take the form of Kelvin waves.
In fact, most of the wave properties derived here also apply to Kelvin waves. The main difference is
the geostrophic balance along the crest of Kelvin waves that does not exist for shorter gravity waves for
which the Coriolis force can be neglected for most properties.

We will try here not to get carried away by mathematics, which are necessary to arrive at quantitative
predictions. Instead we will use the equations only as tools to help us reveal the wave motion in terms of
forces, pressure and flow, which should help us navigate the many simplifying assumptions ot understand
the role term.

2.1 Waves: a question of gravity, pressure, mass and vorticity

Before jumping into equations, we should make a few mechanical remarks. There is a motion in and
above waves because the crests and troughs of the sea surface, located at z = ζ(x, y, t), correspond to
different weights of water, which creates a pressure difference. We can already note that these pressure
variations are of the order of ρwgζ, with ρw the water density and g the vertical apparent1 acceleration
of gravity. With a 1 m difference in height from crest to trough, we get a pressure difference of 10 kPa.
What is important for the motion is the pressure gradient. With a wavelength of 200 m, this gives a
crest-to-trough pressure gradient of the order of 100 Pa/m at the same level z, which drives a horizontal
acceleration of 0.1 m/s2.

The water set in motion must flow in an orderly way, following several principles. First, the mass of
water is conserved, and for the slow velocities considered in this chapter, the flow is incompressible, hence
non-divergent. We will also consider that the bottom does not deform under the waves. As a result,
the horizontal convergence between a crest and the next trough must give rise to a vertical divergence.
Besides, because the waves are generated by pressure forces, and propagated by pressure forces, the
motion is, in a first approximation, irrotational. The vertical and horizontal velocities are thus strongly
constrained by these two properties.

In summary, the free surface position ζ and gravity determine the near-surface pressure p, which gives
the horizontal velocity u. The vertical velocity w is determined from the horizontal velocity using the

1Apparent means that this is not just Newton’s general gravitation but it also includes the centrifuge acceleration due
to the Earth rotation, giving g ' 9.81m s−2.

13
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z=0

z=-h

Figure 2.1: Definition of vertical levels: ζ is the sea level, −h is the bottom, both defined relative to an
arbitrary vertical datum z = 0. As a result the mean water depth is D = h+ ζ.

zero divergence and vorticity conditions, and w also modifies the pressure field. We thus can express the
problem of wave mechanics as a set of four equations for the four unknowns that are ζ, p, u and w.

2.2 Wave mathematics

We shall see that two important quantities, the wavelength L and period T are closely related for waves
of small amplitude a. Here small, means that the slope ka and non-dimensional depth a/D are small,
where k = 2π/L is the wavenumber, and D = h + ζ, is the mean water depth. We remind the reader
that z = −h is the vertical position of the bottom, and ζ is the mean sea surface elevation, both relative
to an arbitrary datum z = 0.

These small parameters ka and a/D will appear repeatedly in this book. Their ratio gives a third
parameter, which is independent of the wave amplitude, and that will be very important for the wave
kinematics, this is the non-dimensional depth kD.

We will now go into the details of the linear wave theory, first laid out by Airy in the 19th century. It
has the great advantages of being linear, hence any combination of the linear solution is also a solution
of the equations of motion. More importantly, this linear model explains many of the waves properties,
and is very accurate for swells in not-too-shallow water, and is not too far off for most wave properties,
even for waves breaking in the surf zone.

Let us make two final remarks before we get into the equations. First, the linear waves exist only on
paper, as all monochromatic waves are unstable, with a development of this instability that is faster for
higher waves. This aspect is discussed in more details in chapters 5 and 18. Monochromatic waves are
an acceptable solution for short evolution times, at least a few periods, possibly much more. Second, the
choice of the Eulerian framework for the equations of motion is not a very good choice for the accuracy, as
the linear Lagrangian theory is much more accurate than the Eulerian theory of Airy, because of the very
simple balance, at least is deep water between the pressure gradient and the fluid parcel acceleration.
von Gerstner (1809) did find an exact theory that exactly satisfies the condition p = pa at the free
surface, but it has an non-zero vorticity, which must be compensated by a sheared current. The use
of Lagrangian equations is unfortunately more complex, and this is the main reason why we do not
use it here. It is interesting to note, that mass conservation is linear in an Eulerian framework, while
momentum conservation is non-linear, but the opposite is true for a Lagrangian framework.

2.3 Eulerian equations for wave motion

Our starting point is the conservation of mass and momentum applied to the ocean, with the former
reduced to a zero divergence as we consider a constant density, which is true for the ocean within a few
parts per thousand, and incompressible flow. The horizontal position is defined by the two-component
vector x = (x, y) and the vertical is z. The corresponding velocities are u = (u, v) and w. Considering
sea water as a perfect fluid, we apply the Navier-Stokes equations,

∂u

∂t
+ u · ∇u + w

∂u

∂z
= − 1

ρw
∇p+ ν

(
∇2u +

∂2u

∂z2

)
, (2.1)

∂w

∂t
+ u · ∇w + w

∂w

∂z
= −g − 1

ρw

∂p

∂z
+ ν

(
∇2w +

∂2w

∂z2

)
, (2.2)

∇ · u +
∂w

∂z
= 0, (2.3)
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where ∇ is the horizontal gradient operator. We thus have four scalar equations (2.1 has two horizontal
components) for the four unknown that are u, v, w and p. Our problem will be well posed as soon as
we define the boundary conditions, from the continuity of velocity and or stresses (pressure and shear
stresses) and initial conditions. At the bottom, we only impose a free slip

w = −u · ∇h sur z = −h (x) (2.4)

which simplifies to w = 0 because we chose h to be constant
At the surface, we make the further hypothesis that for any horizontal position x there is only one

value z = ζ of the free surface position (this excludes an overturning of the surface, as found in plunging
breakers). The free surface is a material surface, which means that water parcels on the surface must
stay on the surface. This can be expressed by the condition

d

dt
(z − ζ) = w − u · ∇ζ − ∂ζ

∂t
= 0 at z = ζ. (2.5)

An interpretation of this surface kinematic boundary condition is that the vertical motion ∂ζ/∂t is the
combination of the vertical velocity w and the horizontal advection of the water parcels sliding along the
surface u · ∇ζ.

To that kinematic boundary condition we add the dynamic boundary condition that express the
continuity of stresses at the air-sea interface. Neglecting the wind stress and surface tension, these
reduce to a continuity of the pressure. In this chapter we will assume that the atmospheric pressure is
takes the constant value pa,

p = pa at z = ζ. (2.6)

We now assume irrotational motion, so that the velocity field is given by the gradient of a velocity
potential φ. Namely, u = ∇φ and w = ∂φ/∂z. In this and all our notations, the classical operators
(gradient ∇, Laplacian ∆ ...) are restricted to the the horizontal plane, in order to simplify notations.
This assumption of irrotational wave motion is generally consistent with observations of real waves. Still,
the vorticity can be very strong locally, for example in in the bottom and surface boundary layers or just
after a wave has broken. Also, in the presence of sheared currents, the wave motion always has some
vorticity, and a weak vorticity also arises from the Earth rotation. We finally start off by neglecting
the viscous terms in the Navier-Stokes equations. This is justified by the fact that any significant wave-
induced motion has scales of velocity U and length L that are large enough to make the Reynolds number
UL/ν of the order of 104 or more.

All the assumptions made above remove some real features in the wave motion. Real waves always
have some vorticity, which is also linked to the viscosity effects in the boundary layers. A rigorous
treatment of these effects is possible and will be discussed in other chapters. We are here looking for the
most simple solution that will capture most of the important properties of real waves.

Replacing velocities by gradients of φ in (2.1)–(2.2) one arrives at

∇
[
∂φ

∂t
+

1

2

(
|∇φ|2 +

(
∂φ

∂z

)2
)

+
p

ρw
+ gz

]
= 0, (2.7)

and

∂

∂z

[
∂φ

∂t
+

1

2

(
|∇φ|2 +

(
∂φ

∂z

)2
)

+
p

ρw
+ gz

]
= 0. (2.8)

These two equations establish that the term in brackets is not a function of position and can only be a
function of time γ(t).

2.4 Small slope waves over a flat bottom: the Airy solution

So far, we had only assumed an incompressible flow (assumption A1), zero viscosity (A2), irrotational
motion (A3), a flat bottom (A4).

We shall now linearize the equations, assuming that the wave amplitude is small enough to neglect
the non-linear terms. This is verified in chapter 18, provided that a is much less than the wavelength L
and a is much less than the mean water depth D.
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This gives the linearized Bernoulli equation

∂φ

∂t
= − p

ρw
− gz + γ(t), . (2.9)

Assuming that waves are propagating 2 at a speed C, the motion is periodic as a function of x − C(t)
and thus γ(t) = 0. This gives the pressure as a function of the velocity potential,

p = −ρwgz − ρw
∂φ

∂t
. (2.10)

The Bernoulli equation states that the pressure is the hydrostatic pressure plus some correction due to
the non-stationary motion. The static pressure term has been removed by the linearization.

The linearized kinematic boundary condition, which expresses the continuity of velocities, reads

w
∂φ

∂z
' ∂ζ

∂t
at z = ζ, (2.11)

which corresponds to a flat sea surface approximation. We can further approximate that the actual sea
level is not too far from the mean sea level z = ζ.

The mass conservation equation was already linear,

∇ · u +
∂w

∂z
= 0 (2.12)

and is equivalent to the Laplace equation for φ

∇ · u +
∂w

∂z
=∇2φ+

∂2φ

∂z2
= 0, at − h ≤ z ≤ ζ. (2.13)

Finally, the bottom kinematic boundary condition becomes,

w =
∂φ

∂z
= 0 sur z = −h. (2.14)

Taking ∂(2.9 at z=ζ)/∂t +g×(2.11) we eliminate the unknown ζ, and obtain our wave equation

∂2φ

∂t2
+ g

∂φ

∂z
= 0, at z = ζ. (2.15)

Equations (2.14)–(2.15) are the bottom and top boundary conditions for Laplace’s equation. The set
of equation (2.13)–(2.15) is usually called the Euler equation. Its full non-linear form is given by (18.3).

2.4.1 Solution: Laplace equation and vertical profiles

Since we have a linear wave equation, it is natural to solve it using the Fourier transform that gives us
a full basis of solutions. Without loss of generality, we thus look for solutions of the form,

φ = R
(
φ̃ (z) eik·x−σt

)
, (2.16)

where R(a) is the real part of a. Replacing in Laplace’s equation gives the Helmolz equation

− k2φ̃+
∂2φ̃

∂z2
= 0. (2.17)

Any solution is thus of the form

φ̃(z) = A cosh (kz) +B sinh (kz) . (2.18)

The bottom boundary condition imposes that B = 0, and we thus only keep the first term,

φ̃ (z) = Φ0
cosh (kz + kh)

cosh (kD)
. (2.19)

Considering that the vertical velocity at the surface, where z + h = D, oscillates with a radian
frequency σ to give a surface displacement amplitude a, we have

|Φ0|k sinh(kD)/ cosh(kD) = σa. (2.20)

Hence, from Laplace’s equation alone we get the orbital velocities. In particular, the amplitude of the
horizontal velocity is, at the surface, σa/ tanh(kD).

2In the presence of standing waves, γ(t) is an oscillating function of the order of ga2/L, where a is the wave amplitude,
first derived by Miche (1944a) and further considered by Longuet-Higgins (1950).
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2.4.2 Solution: Momementum balance and dispersion relation

Replacing φ by (2.19) in the wave equation (2.15) gives the dispersion relation

− σ2Φ0 + gk tanh (kD) Φ0 = 0, (2.21)

as given by de Laplace (1776),
σ2 = gk tanh (kD) . (2.22)

This equation expresses the balance of forces between the horizontal pressure gradient which, just
below the surface is is hydrostatic, with an amplitude ρwgak, and the horizontal acceleration, which has
an amplitude σ2a/ tanh(kD).

Hence waves have a lower phase speed C = σ/k where D is reduced, for example near the shoreline.
Contrary to a widespread misconception, this reduction of the phase speed has nothing to do with
bottom friction. in fact the wave orbital velocity increases, and in the Airy theory there is no dissipation
of energy.

2.4.3 Solution: polarization relations

Defining the phase of the free surface elevation,

Θ = k · x− σt+ Θ0, (2.23)

with Θ0 a constant between 0 et 2π, and the amplitude

a = i
σ

g
Φk, (2.24)

the elevation, velocities and pressure of the Airy (1841)3 solution are given by the polarization relations

ζ − ζ = a cos Θ, (2.25)

u = a
k

k
σ

cosh (kz + kh)

sinh (kD)
cos Θ, (2.26)

w = aσ
sinh (kz + kh)

sinh (kD)
sin Θ, (2.27)

p = pH + ρwga
cosh (kz + kh)

cosh (kD)
cos Θ, (2.28)

where the hydrostatic pressure is pH = −ρwg(z−ζ)+pa with pa the atmospheric pressure. We also have

φ =
a

k
σ

cosh (kz + kh)

sinh (kD)
sin Θ. (2.29)

We obtain the displacements of water particles by integrating the velocity field in time. To a first
order of approximation (at first order in ε = ka), we have the vertical displacement

ξ̃h = −ak

k

cosh (kz + kh)

sinh (kD)
sin Θ, (2.30)

and the vertical displacement

ξ̃3 = a
sinh (kz + kh)

sinh (kD)
cos Θ. (2.31)

Because of the wave propagation, the water parcels spend more time under the crest, where the horizontal
velocity is larger, than under the trough, where the velocity is weaker. As a result there is a net, order
ε2 drift in the direction of propagation, even for linear waves. This is a Stokes drift - it is also called the
wave (pseudo)-momentum. Like the energy and the wave action, the Stokes drift is an intrinsic quadratic
property of the wave field. This aspect is discussed in more details in chapter 6.

3Although Laplace, Cauchy and Poisson gave all elements of this theory many years before Airy, the latter was the
first to address the problem of a single propagating monochromatic wave train. Poisson solved several problems of greater
complexity, including stationary waves and circular waves (Craik, 2004).
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Figure 2.2: Pressure and velocity fields for a monochromatic wave of period T = 2 s in a mean water
depth of D = 3 m.

Eq. (2.22)–(2.29) are all approximate solutions corresponding to the Airy waves. Stokes (1849)
extended this Airy solution to take into account the non-linear terms of eq. (18.3), which improves
the agreement with observations. In the deep ocean, all measurements confirm that waves are very
nearly irrotational and well described by the theories of Airy and Stokes (see for example Thornton
and Kraphol, 1974; Herbers et al., 1992). The general solution can be expressed as a series in powers of
ε1 = ka, which was shown to converge by Levi-Civita (1925). Many methods have been developed to
obtain various numerical approximations of the exact solution (see §18.2).

2.4.4 Physical interpretation

The wave motion is maintained by the restoring force of gravity, which acts in quadrature to the velocity
field, and thus always overshoots the equilibrium and creates crests where there were troughs. The
acceleration induced by the pressure field feeds back into the pressure, and the motion is not hydrostatic.
Near the surface, the pressure is nearly hydrostatic (figure 2.2). If the depth is large enough, at some
level the vertical acceleration eventually cancels the pressure oscillations so that there is no significant
motion at a depth much larger than the wavelength. This is typical of a surface wave, the motion decays
exponentially from the surface, it is ’evanescent’ or ’inhomogeneous’.

The flow is better understood by looking at the pressure p corrected for a hydrostatic pressure
pH = pa − ρwg(z − ζ). This reveals a striking property, which is only true for kD � 1, the isobars of
p− pH are also the streamlines. The streamfunction ψ is such that u = ∂ψ/∂z, which gives

ψ =
a

k
σ

sinh (kz + kD)

sinh (kD)
cos Θ, (2.32)

which is, for kD → ∞ the pressure times ρwgk. This flow corresponds to a cyclostrophic equilibrium,
with the pressure gradient balancing the centrifugal force of a water parcel turning around its circular
orbit.

Wave motion has a maximum horizontal speed at the crest, in the direction of propagation. T
Because of the Laplace equation, the motion decays away from the surface over a typical distance that
is 1/k = L/2π when kD >> 1.

2.4.5 Kinematics: influence of the non-dimensional depth kD

The changes in kinematics and dispersion from deep to shallow water are related to the hyperbolic
functions cosh, sinh and tanh, which are plotted in figure 2.5.
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of 2 s period wave in 3 m water depth, going from left to right. Right: trajectories of water particles.
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Figure 2.4: Velocity field in water for a wave train of period 10 s, and amplitude 18 cm in 3 m of water.
Snapshots are shown for (a) T = 0, (b) 1.25 and (c) 2.5 s. The trajectories of water parcels are integrated
over two Eulerian periods (20 s) for (d) linear waves, and (e) nonlinear waves with the same period and
height, using streamfunction theory (see chapter 18). For the height chosen here, H/D = 0.12 and
H/L = 0.0067, so that linear theory gives a fairly good approximation.
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Figure 2.5: The main hyperbolic functions, used again and again in ocean wave theory.

Airy waves in deep water

A good number to remember is that, at a depth equal to half the wavelength, the motion amplitude is
reduced by a factor exp(π) ' 25 compared to the value at the surface. As a result, waves such that
D > L/2 which corresponds to kD > π, are generally considered to be ’deep water waves’.

The dispersion relation becomes,
σ2 ' gk, (2.33)

the orbital velocities and pressures become

u = ak
σ

k
ekz cos Θ (2.34)

w = aσekz sin Θ. (2.35)

p = pH + ρwgaekz cos Θ. (2.36)

and displacements (2.30)-(2.31) are now

ξ̃h = −ak

k
ekz sin Θ, (2.37)

ξ̃3 = aekz cos Θ, (2.38)

which is the parametric equation of a circle of radius aekz. In first approximation, the water parcels
follow circular orbits with diameters that vanish with deph.

Airy waves in intermediate water depth

For smaller water depths, the orbital velocity is significant near the bottom and the trajectories are
now ellipses with horizontal major axis measuring 2acosh (kz + kh)/sinh (kD), and a vertical minor axis
2asinh (kz + kh)/sinh (kD) that shrinks from 2a at the surface, to zero at the bottom where the motion
is back and forth along the bottom.

Airy waves in shallow water

For very shallow water (say kD < 0.1), the dispersion relation becomes

σ2 = gDk2, (2.39)

and the velocities and pressure are

u = ak
σ

k sinh(kD)
cos Θ (2.40)

w = aσ
(kz + kh)

(kD)
sin Θ. (2.41)
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Figure 2.6: (a) Profile of the horizontal and vertical velocities on both sides of the sea surface at a wave
crest (x = 0), and (b) velocity field, with the white line indicating the position of the free surface. These
velocities correspond to waves of amplitude a = 3 cm, period T = 1.5 s, in D = 3 m water depth, which
correspond to a wavelength L = 3.5 m, and a non-dimensional water depth kD = 3.4.

p = pH + ρwga cos Θ = pH . (2.42)

This last expression states that the pressure is hydrostatic, just like in tidal waves. Tsunamis also nearly
follow this shallow water limit.

The orbital displacement (2.30)-(2.31) are now

ξ̃h = −a k

k sinh(kD)
sin Θ, (2.43)

ξ̃3 = a
(kz + kh)

(kD)
cos Θ, (2.44)

2.4.6 And in the air?

So far we have solved for the water motion. The same hypotheses of irrotational and incompressible
flow will, in the air, produce the same equations and solutions. The only difference is that the bottom
boundary condition is replaced by u→ 0 as z →∞. The air motion over waves is thus similar to the water
motion in deep water waves. The air pressure oscillates, with an amplitude that decays exponentially
with elevation.

These results were confirmed by the measurements of Elliot (1972), who found a vertical decay that
is slightly faster than e−kz, due to the effect of the mean shear in the wind speed. When this shear
is taken into account, the Laplace equation is replaced by the Orr-Sommerfeld equation, as detailed in
chapter 22. Besides, the velocity jump at the air-sea interface, gives rise to a boundary layer that is
laminar for low wave heights and wind speeds (Dore, 1978), but becomes turbulent otherwise (Perignon
et al., 2014), probably leading to an important dissipation of long waves traveling across oceans that is
discussed in chapter 22.

2.4.7 Dispersion

The velocity at which the wave crests or trough propagate is called the phase speed and is given by
C = σ/k which is also equal to the ratio L/T . Using the dispersion relation (2.22), we can eliminate σ

C =
σ

k
=
[g
k

tanh (kD)
]1/2

. (2.45)
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Figure 2.7: Wavelength as a function of the wave period and the water depth D, for linear waves in the
absence of currents.

The phase speed is clearly a function of the wavelength, and thus waves are dispersive, meaning that
wave packets that contain different components will spread over a larger space as they propagate, with
the long waves traveling faster than the shorter waves. As a result, the waves arriving from a distant
storm will always have a long period at the beginning and the average period will become shorter over
time.

This dispersion property disappears in shallow water (kD << 1) where C goes to (gD)
1/2

, inde-
pendently of k. On figure 2.7, this gives a constant slope, for example for D = 10 m and T > 5 s).

We also note that, for a fixed period, the phase speed decreases with the water depth. This property
is also true for a slowly varying water, in which case one can consider that the water depth is ’locally
constant’. This variation of C is the cause of refraction (see chapters 7 and 12).

2.4.8 Energy

For any water particle, there is an oscillation of the kinetic and potential energies that are exchanged.
Once integrated over the water depth and averaged over a wave period, that average is represented here
by the the overbar, the potential energy per unit horizontal surface is the vertical integral of the potential
energy per unit volume ρwgz. In practice, we ignore the constant energy between the bottom and the
mean sea level ζ, and we set our reference level such that ζ = 0,

Ep =

∫ ζ(x,t)

0

ρwgzdz = ρwg
1

2
(ζ)

2

=
1

2
ρwga

2cos2 (k · x− σt)

=
1

4
ρwga

2. (2.46)



24 CHAPTER 2. MAIN PROPERTIES OF LINEAR WAVES

For the kinetic energy we integrate the kinetic energy per unit volume,
(
|u|2 + w2

)
to obtain an kinetic

energy per unit horizontal surface,

Ec =

∫ ζ(x,t)

−h

1

2
ρw

(
|u|2 + w2

)
dz

≈ 1

2
ρw

(
agk

σ cosh (kD)

)2
[

cos2 Θ

∫ ζ

−h
cosh2 (kz + kh) dz + sin2 Θ

∫ ζ

−h
sinh2 (kz + kh) dz

]

≈ 1

4
ρw

(
agk

σ cosh (kD)

)2 ∫ ζ

−h
cosh (2kz + 2kh) dz

≈ 1

4
ρw

(
agk

σ cosh (kD)

)2
sinh 2kD

2k

≈ 1

4
ρwga

2, (2.47)

Et = Ec + Ep =
1

2
ρwga

2 = ρwgE, (2.48)

where E is the variance of the sea surface elevation, here E = a2/2. We have thus found that, to a first
order of approximation, the average kinetic and potential energy Ec and Ep are equal.

Wave propagation is associated to a flux of energy. This flux of energy is transmitted by pressure
forces from one water column to the next. This flux is the work of pressure forces given by eq. (2.28)
with a velocity given by eq. (2.26). When integrated over the depth and averaged over a wave period,
this gives the flux per unit crest length (i.e. per unit horizontal distance in the direction perpendicular
to the propagation direction),

W =

∫ ζ

−h
pudz

= ρwga
2σcos2 (k · x− σt)

∫ ζ

−h

cosh2 (kz + kh)

sinh kD cosh kD
dz

= Et
2σ

sinh(2kD)

∫ ζ

−h

1

2
[cosh (2kz + 2kh) + 1] dz

= Et
2σ

sinh(2kD)

(
sinh 2kD

4k
+
D

2

)
= CgEt (2.49)

where

Cg =
σ

k

(
1

2
+

kD

sinh 2kD

)
= C

(
1

2
+

kD

sinh 2kD

)
. (2.50)

W is a flux of energy per unit distance and Cg the average speed at which the energy density Et is
radiated, which defines the group speed.

The full expression for the energy flux should also include the advective flux u
[
ρwgz + 0.5

(
u2 + w2

)]
,

but that part is negligible in the absence of currents.
This speed is called ’group speed’ because it is indeed the speed at which a group of waves travels,

because Cg = ∂σ/∂k. Indeed, the superposition of two monochromatic waves of equal amplitude and
similar frequencies gives a surface elevation

ζ = a cos

[(
k − 1

2
∆k

)
x−

(
σ − 1

2
∆σ

)
t

]
+ a cos

[(
k +

1

2
∆k

)
x−

(
σ +

1

2
∆σ

)
t

]
, (2.51)

which writes

ζ = 2a cos (∆kx−∆σt) cos (kx− σt) . (2.52)

The first factor is the envelope of the group, with a length 2π/∆k and period 2π/∆σ, that propagates
at the speed c′ = ∆σ/∆k. This speed is, in the limit ∆k → 0, equal to Cg = ∂σ/∂k. Two examples are
shown in figure 2.9.
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Water depth: general case kD � 1 kD � 1
dispersion relation σ2 = gk tanh(kD) σ2 = gk σ2 = gDk2

phase speed C = σ/k = [g tanh(kD)/k]
1/2

C = (g/k)
1/2

= g/σ C =
√
gD

1/2

group speed Cg = C
(

0.5 + kD
sinh(2kD)

)
Cg = C/2 Cg = C

Linear properties (z < ζ)

horizontal velocity u = ak
kσ

cosh(kz+kh)
sinh(kD) cos Θ u = akσ

k ekz cos Θ u = akσ
k2D cos Θ

vertical velocity w = aσ sinh(kz+kh)
sinh(kD) sin Θ w = aσekz sin Θ w = z+h

h aσ sin Θ

Quadratic properties
Mean energy per unit surface Et = ρwgE = ρwga

2/2 E = ρwga
2/2 E = ρwga

2/2

Stokes drift Us = σkE cosh(2kz+2kh)
sinh2(kD)

Us = 2σkEe2kz Us = σkE/(kD)2

Table 2.1: Main results of Airy wave theory with deep and shallow water limites. We remind that the
phase is Θ = k · x− σt+ Θ0.

We note that for kD →∞, equation (2.50) gives Cg = σ/(2k) = C/2. Thus, in deep water the groups
of waves travel at a speed that is half of the phase speed. Things are very different in shallow water
(kD � 1), where Cg = C. In that shallow water limit, waves all all frequencies travel at the same speed
(they are not dispersive) hence the groups also travel at that same speed. This is only true for linear
waves. In chapter 18, we will see that phase and group speeds are also a function of the wave amplitude.

2.4.9 Energy and power

Eq. (2.49) gives the mean energy flux per unit crest length. For example, in the case of monochromatic
waves with a height of 2 m, a period of 12 s and a water depth of 15 m, this flux is W ≈ 50 kW m−1.
This means that if we take a surface facing the waves, 1 meter along the crest and the full water depth,
there is 50 kW of mechanical power that goes through this surface. This is 5 MW for 100 m along the
crests, which is the peak power of two 150 m high windmills. This number, for rather modest wave
heights, shows the strong concentration of power in water waves. Unfortunately, this power is difficult
to tap to produce electricity, in particular because it is very intermittent in most places.

2.4.10 Summary

We have obtained the main properties of regular linear waves, summarized in table (2.1). Because these
Airy waves are solutions of the linearized equations of motion, they can be combined to obtain the general
solution. Hence the surface elevation, velocities and pressure are given by the sum of monochromatic
waves, each proportional to their amplitude a. We will see in the next chapter that it is also possible
to add up the quadratic properties that are the energy and Stokes drift, which are proportional to the
surface elevation variance E = a2/2. These properties come from a series of assumptions, listed in table
2.2 and that will be discussed or removed in the following chapters that extend Airy theory, giving access
to all sorts of corrections and allowing to determine the evolution of Airy waves caused by different forcing
and dissipation processes. Indeed, we have determined here the eigenvectors of the linearized equations
of motion: these are free waves that can exist without forcing. In practice, the forcing is necessary to
generate these waves in the first place, and this forcing is balanced by dissipation when long time scales
and large spatial scales are considered. That dissipation requires to include vorticity and viscous effects.

2.4.11 Extending Airy wave theory

What happens when we do not make one of the assumptions A1 to A13? In which conditions should we
do this?

• A1. Except when considering acoustic and seismic noise generated by ocean waves, as in chapter
21, we can safely ignore compressibility effects.

• A2. Bottom deformations are relevant when considering acoustic and seismic noise generation. In
fact, the bottom deformation should be considered for all acoustic wave propagation in the ocean.
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Assumption justification consequences
A1. incompressible u� αw ∇ · u + ∂w/∂z = 0
A2. rigid bottom bottom motion � water motion w = −u · ∇h at z = −h
A3. inviscid high Reynolds number viscous stresses are zero
A4. irrotational motion driven by pressure forces + (A3) u =∇φ, w = ∂φ/∂z
A5. flat bottom bottom slopes usually � 1 with A2, w = 0 at z = −h
A6. sine wave basis function of the Fourier transform φ(z) ∝ cosh(kz + kh)
A7. pa constant on z = ζ ρa � ρw no wave generation by the wind
A8. no surface tension γ � g/k2 for L� 0.1 m (in clean water) no capillary waves
A9. ε1 = ka� 1 ε1 < 0.44 for periodic waves with A10, gives linear equations
A10. ε2 = a/D � 1 because it makes equations simpler ... but beware for kD < 1!
A11. no mean current most often U � C for dominant waves simple dispersion σ2 = gk tanh(kD)
A12. constant density ρ′/ρw < 0.03 for sea water no internal waves
A13. no Earth rotation f3 � σ

Table 2.2: Assumptions needed to derive Airy’s theory. αw is the sound speed in water, of the order of
1500 m s−1 (in the absence of air bubbles), and U is the mean current velocity. Finally ρ′ is a scale for
density perturbations relative to the mean ρw, and γ is the surface tension, such that γρw(R1 + R2) is
the additional pressure under a surface with radii of curvature R1 et R2, counted positive for a surface
that is convex on the air-side, e.g. a crest.

• A3. In the boundary layers at the sea surface, and more importantly at the sea bottom, we will need
molecular viscosity and turbulence effects (which can often be represented by an eddy viscosity).
However, these layers are very thin, with a thickness of the order of δ = (ν/σ)1/2, which is typically
less than a millimeter for the kinematic viscosity of water ν ' 4× 10−6 m2 s−1, and wave periods
T > 1 s, which is consistent with measurements of the water-side surface boundary layer by Banner
and Peirson (1998). At the bottom, turbulence effects are important but the wave boundary layer
is only a few centimeters thick.

• A4. For a viscous flow, the vorticity from the top and bottom boundary layers diffuses in the water
column and in the air (Longuet-Higgins, 1953; Weber and Førland, 1990). Besides, there is also a
weak vorticity caused by the Earth rotation, see A13 below.

• A5. The bottom boundary condition becomes −∇φ · ∇h = ∂φ/∂z (inviscid case), and is only
satisfied exactly in the presence of at least two wave trains, one incident and one reflected. The
incident wave train is also modified by diffraction effects. For small slopes, diffraction and reflection
are generally weak, and the wave motion is well approximated by a ”WKBJ” approximation:
replacing the phase Θ by a function S(x, t) with k = ∇S and σ = −∂S/∂t (see chapter 12).
In this context small means that refraction or diffraction effects do not produce of significant
variation of the wave amplitude at the scale of one wavelength. A more accurate approximation
of the dispersion relation over a sloping bottom was given by Ehrenmark (2005), in the form
σ2 = gk tanh(khβ/ tanβ), where β is the angle between the bottom and the horizontal. This
correction is weak, only 4% for a slope β = 10◦. For steep slopes, reflection becomes important
and the separation of the variables x and z becomes meaningless. The velocity potential can be
obtained numerically (e.g. Athanassoulis and Belibassakis, 1999; Belibassakis et al., 2001).

• A6. For a flat bottom this is not an assumption: we have the right to decompose the waves into
sine waves because these are a complete basis. For small bottom slopes, the wave train is only
locally equivalent to a sine wave. For steep slopes, the wave train can suffer strong distortions at
the scale of one wavelength (e.g. Magne et al., 2007).

• A7. An atmospheric pressure oscillation on the scale of the wavelength can produce an amplification
or attenuation of the waves, depending on its phase relative to the waves. This aspect is discussed
in detail in chapters 5 and 22.
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• A8. Due to surface tension, the pressure under the surface is increased by −γ
(
∂2ζ/∂x2 + ∂2ζ/∂y2

)
.

This added pressure modifies the dispersion relation to give σ2 =
(
gk + γk3

)
tanh(kD). This

modification is negligible for wavelengths larger than a few centimeters. The presence of a layer
of ice at the sea surface has a similar effect on the waves, with added terms due to bending and
inertia, and is significant for periods of 10 s and less (Liu and Mollo-Christensen, 1988) in the case
of an ice layer thickness of one meter or more, and thicker layers have an influence on longer waves.

• A9. Non-linear effects associated to ε1 6= 0 are fairly complex and will be discussed in chapters 5,
18 and 19. One particular consequence is that a monochromatic wave train is generally unstable
(Benjamin and Feir, 1967). For waves in one dimension, as produced in the laboratory, this can cre-
ate very high (freak) waves. Another consequence is that different wave trains interact, exchanging
energy an momentum.

• A10. Non-linear effects associated to ε2 6= 0 are important for kD < 1 even if the wave height is
small. This is particularly true near the shoreline, and the shape of waves can be strongly modified,
as discussed in chapters 13 and 18.

• A11. Since the laws of physics are unchanged by a change of Galilean reference frame, a uniform
current U in the absence of bottom friction only introduces a Doppler frequency shift, and all
results established here remain valid, replacing Θ by ΘD = Θ + k ·U. One can define an absolute
frequency, as measured in the reference frame attached to the bottom,

ω = σ + k ·U = k ·U + [gk tanh (kD)]
1/2

. (2.53)

For a current U(z) that varies only in the vertical, and in the limit ε1 � 1 and ε2 � 1, this
dispersion relation generalizes to the form,

ω ≡ σ + k ·UA (2.54)

with the advection speed given by Kirby and Chen (1989),

UA = k ·
∫ ζ

−h
U(z)

2k cosh [2k(z + h)]

sinh(2kD)
dz. (2.55)

Finally, when U also varies horizontally, the phase speed varies horizontally, so that refraction and
diffraction effects appear, just like they do on a sloping bottom. These questions are addressed in
chapter 7.

• A12. When the ocean is stratified, due to a vertical variation of temperature and/or salinity, the
Airy waves are the ’external mode’ in a family of waves that also include internal waves. Because
the equations of motion are weakly nonlinear, these different modes are coupled, with an exchange
of energy between surface waves and internal waves (Thorpe, 1966). This aspect is still relatively
unexplored (Osborne and Burch, 1980; Kudryavtsev, 1994). This stratification can also be due
to the presence of air bubbles near the surface or sediments near the bottom, with important
consequences for the bottom boundary layer and wave dissipation. (e.g. Winterwerp et al., 2003;
Styles and Glenn, 2000).

• A13. Taking into account the Earth rotation with a vertical Coriolis parameter f3, a very weak
transversal velocity component v appears, of the order f3u/σ and in phase with w. This transversal
component is important for the surface drift current (Hasselmann, 1970; Xu and Bowen, 1994;
Ardhuin et al., 2004b; Rascle and Ardhuin, 2009). In the case of wind-generated waves, f3/σ is
typically of the order of 10−4, so that the effect on the wave kinematics and dispersion is not
measurable. There is also a very weak deviation of the propagation direction of the waves (Backus,
1962). This is still true for tsunamis which have much larger periods than wind-waves, typically a
few minutes up to 30 minutes. Airy wave theory thus also applies to tsunamis, as long as non-linear
effects are weak. On the contrary, for motions with longer periods, such as tides, the Earth rotation
must be taken into account. This is why these waves are called inertia-gravity waves.



Chapter 3

Wave spectra: theory and
measurement

A detailed knowledge of the wave motion in any location is often not required, one may rather be
interested in the evolution of some wave properties on distances much larger than the wavelength. A
statistical approach is therefore preferred.

The most common method to represent the random nature of waves is the spectral analysis. It
owes its success to the dispersive nature of waves (different components travel at different speeds), and
it was made practical by the development of computer sciences in the 1960s and to the elegant Fast
Fourier Transform (FFT) algorithm. Those curious to know how a spectrum can be calculated without
a computer can read the amazing account of the rotating system invented by Barber et al. (1946) with
variable speed to read off different spectral components off a wave record printed on paper .

With the Fourier method, a record of wave elevation ζ(t) is decomposed into a superposition of sine
waves, each with a particular period. If the record has the three dimensions, ζ(x, y, t) this decomposition
can be done in frequency, wavelength and propagation direction. The phases of theses sine waves are
generally random, namely, the phase of one component in one record and the next record are not
correlated at all. The only slowly varying quantity is the spectral density, defined as the amount of
elevation variance per unit spectral bandwidth. The procedure can be applied to other variables, not
just the elevation: pressure, velocity ... This slow variation of the spectrum allows a numerical prediction
of ocean wave spectra.

3.1 Frequency spectrum

The spectral analysis that is applied to wave measurements is fairly different from the harmonic analysis
which is used for studying tides. Tides are described as a sum of discrete components whose frequencies
are very well known as they are associated with astronomical motions. For tides we thus have a finite
set of frequencies at which the amplitude and phase can be determined with great accuracy. Waves are
described as a the sum of a many components with energy at all frequencies. There is no gap in the
wave spectrum, and the phases are completely random, uniformly distributed between 0 and 2π while
the amplitudes also have random fluctuations. The result of the spectral analysis is a wave spectrum
that describes the wave energy distribution as a function of frequency. The practical method used to
compute wave spectra from time series of surface elevation or pressure is detailed in Chapter 17.

Figure 3.1 shows how a tide elevation signal is already quite well reproduced by the superposition of
only two sine waves (these two waves are called S2 and M2). On the contrary for the high frequency
signal, dominated by waves, one, two or three sines waves (black, red and green) are far from sufficient
for representing the initial signal (blue). Indeed, to reconstruct the wave signal a great number of sine
waves with relatively close frequencies are required. For simplicity, let us start with one realization m of
an elevation time series, that can be expressed in terms of a Fourier series,

ζm(t) =

N∑
i=1

am,i cos(2πfit+ Θ0,m,i) (3.1)

Where am,i, fi and Θ0,m,i are the Fourier amplitudes, frequencies and phases of the Fourier mode i,
found for the realization m of the sea state. As explained above, N must be a large number. In practice
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Figure 3.1: Example of surface elevation time series (a and b) deduced from pressure measurements
collected as the foot of Western cliff of Banneg Island, Molene Archipelago. The corresponding spectra
for the high and low frequency part illustrate the difference between a tide spectrum, presented as a
function of amplitude and a wave spectrum. Below: a sample of the initial elevation signal and one, then
two, then three sine waves are combined to approximate the initial signal. In the case of tides, the fit
is already good with 2 components. In the case of waves, the detailed shape of the elevation cannot be
reproduced without many components.

the phases are nearly random and uniformly distributed over [0, 2π] 1. The ensemble mean of the Fourier
amplitudes, expressed as function of the frequencies, A(fi) = 〈am,i〉 is called the amplitude spectrum.
For waves, identical sea state realizations can only be obtained in controlled laboratory experiments.
Instead, the sea state is assumed stationary and the ergodicity theorem is evoked to replace the ensemble
mean by a temporal mean. In practice, M samples of a given (stationary) wave record simulate M
realizations of the sea state and provide an equivalent ensemble mean.

For such random signals, the ’power’ spectrum is preferred to the amplitude spectrum. As demon-
strated in the previous chapter, the mechanical wave energy per unit surface of ocean, for an sine wave
of amplitude a is ρwga

2/2. As a consequence, the energy spectrum is

〈
1

2
a2
m,i

〉
=

1

M

M∑
m=1

1

2
a2
m,i, (3.2)

With this definition, the values taken by the spectrum decrease proportionally to the spectral resolu-
tion ∆f that is the inverse of the length of time over which the spectral analysis is performed. In order
to avoid this dependency on the record length, it is customary to work with a power spectral density
(PSD for short),

E(fi) =
1

∆f

〈
1

2
a2
m,i

〉
. (3.3)

In the limit of large record lengths, the frequency interval ∆f tends towards zero, and we obtain the

1The phases are not exactly random for an actual sea state, waves are slightly asymmetric, the front face being steeper
than the back, and the crests sharper than troughs (e.g. Agnon et al. (2005)). For most applications, these effects can be
neglected.
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continuous wave energy frequency spectrum,

E(f) = lim
∆f→0

1

∆f

〈
1

2
a2
i

〉
. (3.4)

While wave are irregular, the spectrum is relatively smooth, evolving slowly in space and time, with
a typical time scale of a few hours. This regularity that contrasts with the apparent irregular motion
of the sea surface, allows for a predictive numerical modeling. Note further, that for convenience we
continue to call (abusively) ’energy’ the elevation variance E which has units of length squared. The
true energy, in Joules per unit surface, is in fact ρwgE.

This approach can be generalized to waves travelling in all directions. The Fourier representation of
the sea surface elevation becomes,

ζm(x, y, t) =

N∑
i=1

M∑
j=1

am,i,j cos(2πfit− ki cos(θj)x− ki sin(θj)y + Θ0,m,i,j), (3.5)

as illustrated by figure 3.2

Figure 3.2: Reconstruction of a given sea state from the superposition of a great number of plane waves
each with a particular direction and wavelength. Illustration of equation 3.5. After Pierson et al. (1955).

In this expression ki and fi are related by the linear dispersion relation and θj is the direction of
propagation of the Fourier mode (i,j). In the same fashion as for the frequency, the continuous frequency-
direction wave energy density spectrum,

E(f, θ) = lim
∆f→0

lim
∆θ→0

1

∆f∆θ

〈
1

2
ρwga

2
i,j

〉
. (3.6)

Keeping only the wave energy and its distribution reduces the representation of the waves properties
to a manageable amount of information, but some information is lost in the process. Indeed, it is
not possible to reconstruct the sea surface from the spectrum, especially because the phases are not
conserved. In practice, the phase couplings are often negligible, and any reconstructed sea surface with
random phases is statistically similar to the initial wave field. In this sense, for a Gaussian sea surface
elevation, the spectrum contains the full statistics of the sea surface.
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3.1.1 Wavenumber or frequency?

Depending on the measurement method, the numerical model or the application, one may want to
perform the spectral analysis in the wavenumber or frequency space. The following relations between
the frequency and wavenumber spaces, assume that waves follow the linear dispersion relation. The rule
is simple, the variance of a given quantity does not depend on the coordinates in spectral space. The
variance is the spectral density times the spectral width, hence,

E(f, θ)dθdf = E(k, θ)dθdk (3.7)

which yields

E(f, θ) =
∂k

∂f
E(k, θ) =

2π

Cg
E(k, θ) (3.8)

In the same manner,

E(f, θ) =
2π

Cg
E(k, θ) =

2π

Cg
kE(kx, ky) (3.9)

The relationship must be used with caution for the high frequency part of the spectrum, because
long waves modulate the frequency of shorter waves, which causes a deviation from the linear dispersion
relation. This is significant at frequencies higher than three times the wind sea peak frequency (Leckler
et al., 2015; Peureux et al., 2018).

Finally, and we shall see why in chapter 7, when the effects of currents on waves are included,
numerical models usually work with the action spectrum instead of the energy spectrum. This action
spectrum is usually defined as

A(k, θ) =
1

σ
E(k, θ) =

1

σ
E(kx, ky) (3.10)

For instance, the numerical model WAVEWATCH III (Tolman and Booij, 1998) calculates the evolu-
tion of A(k, θ) discretized over N frequencies and M directions, through the variable ASPEC(I,J) with
1 ≤ I ≤ N and 1 ≤ J ≤M . However, the model output is transformed back to E(f, θ).

The spectrum is the primary variable of wave forecasting model, and, as such, it is important to
be familiar with its physical meaning. Figure 3.3 illustrates the relation between the sea surface and
spectrum shapes.

The reader is invited to try to recomposed a sea surface in the physical space from the spectrum
produced by a numerical model,

ζ(x, y, t) =

M∑
m

N∑
n

√
2E(fm, θn)∆f∆θ cos [km cos θnx+ km sin θny − σm + Θ0(m,n)] , (3.11)

where ∆f and ∆θ are the spectral resolutions, and M and N are the number of frequencies and directions
used to discretize the spectrum. Rigorously, M and N should be taken infinite, but we may start with
the typical resolution of a spectral wave model, of the order of 30 frequencies and 24 directions, with a
significant level of energy in maybe only 20 components.

The component amplitude
√

2E(fm, θn)∆f∆θ is consistent with the fact that the total variance
elevation is the sum of the amplitudes squared divided by two, or the spectrum integral over the entire
spectral domain. The phase Θ0(m,n) can be taken randomly distributed over [0,2π]. The resulting
surface will look smoother than an actual sea state, and the observed crest-trough asymmetry will not be
reproduced. This is due to the random phase assumption that disregards the phases coupling between
spectral components. These issues are further addressed in §18.3.2.

3.2 Using spectra

Skipping here the technical details necessary for a practical estimation of the spectrum (see chapter 17),
we now have a spectrum. Very nice, but what can we do with it?

3.2.1 Transfer function

Depending on the application, one can transform the elevation variance spectrum. For a variable A (for
instance the bottom pressure), related to the surface elevation through a linear relation:

A = Mζ, (3.12)
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Figure 3.3: Relation between spectral and physical spaces. Schematic spectra of monochromatic waves
(left panel) and modulated in terms of wavenumber or direction. For the last two cases, the surface is
composed of three components.

where M is a complex number that takes values in the spectral space, the variance spectral density of
A, EA is

EA(kx, ky) = |M |2E(kx, ky) or EA(f, θ) = |M |2E(f, θ) (3.13)

or any other equivalent expression in other spectral coordinates.
For instance, the bottom velocity variance will be given from the polarization relation (2.25)–(2.31),

that yield M = σ cos(θ)/ sinh(kD), with θ the angle between the x-axis and the wave direction of
propagation. We hence get the spectrum of the x-component of the bottom velocity.

3.2.2 Spectral and integral parameters: Hs, Tp ...

It can be inconvenient to describe a sea state by a two-variable function. Even when it is discretized into a
numerical model, typically over 30 frequencies and 24 directions meaning 720 spectral components, which
is a lot of numbers to describe a sea state. This information can be summarized into a few meaningful
parameters.

As the spectrum is a decomposition of sea surface variance, the most important parameter is certainly
the variance E, often abusively called energy. From the elevation variance E, we get a length scale

√
E.

Going back to sine waves, the variance is a2/2 with a the wave amplitude. Hence
√

2E is an equivalent
amplitude for random waves. More precisely, it is the root mean square amplitude. The root mean
square wave height for a random wave is thus twice this amplitude Hrms = 2

√
2E.

For practical applications, the most widely used height scale is the significant wave height Hs that
corresponds to the visual feeling given by the sea. From the wave height distribution we can define H1/3

(see chapter 1). From the spectrum we define,

Hs ≡ Hm0 ≡ 4
√
E = 4

√∫ ∞
0

∫ 2π

0

E(f, θ)dθdf (3.14)

In practice Hm0 ' H1/3, this property can be demonstrated in the limit of a narrow spectrum (Longuet-
Higgins, 1952). Following the recommendations of the World Meteorological Organization, we shall
consider Hm0 to be the definition of the significant wave height Hs. The ”m0” index indicates that it is
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based on the zeroth moment of the spectrum. The p-th moment of the spectrum is defined as,

mp =

∫ ∞
0

∫ 2π

0

fpE(f, θ)dθdf (3.15)

In many cases, the directional information is not available, and we only have the frequency spectrum,

E(f) =

∫ 2π

0

E(f, θ)dθ (3.16)

This distribution of the energy as a function of frequency contains information on the typical time scales
of the signal. E(f) generally exhibits a sharp maximum around the frequency fp, E(fp) = Emax. fp
is the peak frequency, corresponding to the peak period Tp = 1/fp. This peak period can be noisy in
the presence of several peaks. The frequency distribution can also be characterized from the spectral
moments,

Tm0,p =

[(∫ fmax

0

∫ 2π

0

fpE(f, θ)dθdf

)
/

(∫ fmax

0

∫ 2π

0

E(f, θ)dθdf

)]−1/p

. (3.17)

The most widely used periods are Tm0,−1, Tm0,1, Tm0,2. Each of these has a more or less weight on low
frequency part of the spectrum. If one is interested in an effect proportional to f2, as is the case of the
wave forces exerted on a structure, it is reasonable to use Tm0,2. Besides, Tm0,2 is very close to the mean
period Tz given by wave-by-wave analysis. Note however that Tm0,2 depends on the choice of fmax. The
values of the different periods for a typical spectrum are shown in figure 3.4.
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Figure 3.4: Typical example of a oceanic spectra in tropical area, measured by buoy 51001, moored
350 km North West of Kauai island, on January 11, 2007. The different peak and mean periods are
indicated along with the parameters produced by a decomposition of the spectrum into a primary swell,
secondary swell and wind sea. This analysis is generally not possible without directional information.
Note that the wind sea only appears as a soft ”shoulder” to the right of the secondary swell, while it
comes from a different direction. This shows the possible difficulty of separating swell and wind sea
from a frequency spectrum. Also note that the significant wave height Hs is less than the sum of Hs1,
Hs2, Hsws, of the three systems: the energy can be summed but the wave heights cannot. Namely
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Finally, we define,

a1(f) =

∫ 2π

0

cos θE(f, θ)dθ/

∫ 2π

0

E(f, θ)dθ, (3.18)

b1(f) =

∫ 2π

0

sin θE(f, θ)dθ/

∫ 2π

0

E(f, θ)dθ, (3.19)

(3.20)

that can be estimated from the elevation spectrum E(f) and the elevation-horizontal displacements
co-spectra, Exz and Eyz (see eq. (17.8) (17.9).

The mean wave direction at frequency f is,

θm(f) = arctan(a1(f)/b1(f)), (3.21)

and the directional spreading, as defined by Kuik et al. (1988) is the standard deviation (in radians) of
the spectral width in the limit of a narrow spectrum,

σθ(f) =
[
2(1− (a2

1(f) + b21(f))1/2)
]1/2

. (3.22)

For an equal energies in opposite directions, σθ is maximum at
√

2 radians, which is 81 ◦.

The directional wave properties of the dominant waves, can also be characterized with the mean
direction and directional spreading of the spectral peak: θm(fp) and σθ(fp). θm(fp) is often referred to
as ”main direction”, while the mean direction would rather be an average over the entire spectrum,

θM (f) = arctan

(∫ ∞
0

b1(f)E(f)df/

∫ ∞
0

a1(f)E(f)df

)
(3.23)

With all these directions, one must be careful with the directional convention. The directions are usually
counted from North (direction 0), progressing clockwise (90 east, 180 south, 270 West). However, de-
pending on the authors, the direction convention is either meteorological (direction from where the waves
or wind are coming, this is the convention used in the present manuscript) or oceanographic convention
(direction toward which the waves or currents are moving). Be careful!

3.3 Random waves in situ observations

The most common usage of wave time series is the determination of the frequency spectrum E(f) and,
when more than one variable are measured, the directional wave spectrum E(f, θ) may be estimated.
Details of this processing given in chapter 17. In practice, the most common in situ instruments for wave
measurements are surface-following buoys or bottom-mounted pressure gauges or ADCPs.

3.3.1 Wave gauges

These are reference sensors that directly measures the free surface elevation ζ(x, y, t) at a fixed hori-
zontal position (x, y). The measure is done through the electrical resistance or capacity of one (or two)
conducting wires forming a loop closed by the sea surface. This type of sensor is widely used in the
laboratory, but it is not so common at sea because this requires a fixed platform and the wires are
susceptible to damage by small floating debris. Also, the large wave heights encountered in the field
require long enough gauges. These wave gauges can also be mounted on a buoy that filters out the long
waves through its motion (Graber et al., 2000). Wave gauges are most often associated in an array (see
below) of several gauges synchronized and mounted on a single platform so as to provide a wave direction
estimation (Cavaleri et al., 1981).

The direct measurement of surface elevation can also be performed by radar and LIDAR systems,
which determine the distance to the sea surface from the travel time of an electromagnetic or sound
wave, and that can likewise be arranged in an fixed array or integrated in a scanning system.
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Figure 3.5: Left panel: Deployment of a Datawel Waverider buoy, 0.9 m of diameter, equipped with a
(long) HF radio antenna and with a (short) Orbcomm satellite antenna for data transfer. Right panel:
examples of displacements measured by this buoy offshore Crozon in May 2004. (same time series as in
figure 1.2). Of course, the 10 m high waves were not measured by the times of the buoy deployment.

3.3.2 Wave buoys

Buoys measure either the successive positions and velocities, determined by a global navigation satellite
system (such as the Global Positioning System - GPS) or vertical acceleration recorded by a buoy floating
at the free surface that give after a double integration in time, a surface elevation signal ζ(x, y, t).
Depending on the type of instrument and on the presence of currents, the horizontal position (x, y) is
not fixed but nearly follows the wave orbital motion. This later property may be annoying for purists
of the wave profile, as it partly filters out the free surface nonlinearity (the linear Lagrangian motion
involves a part of the Eulerian motion). In addition to the heave measurement, that was for long the
most common, the wave direction can be determined by measuring the horizontal accelerations that
yields, through double integration, the horizontal displacement x and y (figure 3.3.2). The use of precise
satellite positioning now allows a direct measure of the horizontal position, which can present certain
advantages, especially for very low frequency waves. Several models are commercialized by Oceanor and
Datawell, based on this concept.

The largest buoys generally use a measurement of the components ∂ζ/∂x and ∂ζ/∂y and of the local
free surface slope: pitch and roll as the first prototypes of Longuet-Higgins et al. (1963) and Cartwright
and Smith (1964). This is the case of the US National Data Buoy Center (NDBC) 3-m diameter buoys.
Details of buoy processing are given in chapter 17. Both methods, acceleration and pitch-roll allow,
thanks to the three signal covariance, the determination of the first four Fourier coefficients of the
angular distribution, also known as angular moments,

• a1 and b1, defined by (3.18)–(3.19) and calculated from the co-spectra Exz and Eyz (equations
17.8–17.9)

• a2 and b2, defined as a1 andf b1 but with cos θ and sin θ replaced by cos 2θ and sin 2θ, respectively.

A more complete measure of the directional spectra from floating buoys has been developed but has
not been as successful as expected: the cloverleaf buoy that consists in three pitch-roll buoy linked to
each other (Mitsuyasu et al., 1975). In principle this layout provides a measure of the surface curvature
and the Fourier coefficient up to a8 and b8. From a conventional buoy, one has to infer the function
S(f, θ) from only the four independent number a1, b1, a2 and b2. This is not so much a measurement
problem, but rather one of choosing a statistical estimator. There are many method for this. Among
these, the Maximum Entropy Method (MEM Lygre and Krogstad, 1986), has the advantage of conserving
the angular moment a1, b1, a2 and b2. The MEM method tends however to to give a bimodal shape
(two-peak spectra), which is often (Ewans, 1998) but not always realistic (Benoit et al., 1997).

Other recent analysis techniques aim at increasing the the directional resolution of this kind of
measurements. For instance, Donelan et al. (1996), have proposed an interesting method based on a
wavelet transform. Unfortunately their method assumes that for given certain frequency the wave field
is dominated by waves coming for one single direction, which is not the case. This analysis yields a very
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high directional resolution, and can be interesting to detect the presence of waves from a given direction,
but it cannot be interpreted as a directional spectrum as it leads to a low bias in the directional spreading.
Other methods can be biased and should be avoided. This is the case of the maximum likelihood method
(MLM) which yields output spectra that are systematically too broad and have moments a1, b1, a2 and
b2 that are different from the input parameters.

3.3.3 Pressure gauges

When surface elevation measurements are not possible, which may due to strong currents incompatible
with mooring lines, breaking waves in the surf zone or cost, a usually good alternative is the measurement
from bottom-mounted sensors. The most common and robust are pressure gauges that can be used to
measure tidal elevations at the same time. To recover the surface elevation from the pressure signal,
we can invert the linear transfer function given by eq. (2.28), namely, for a sensor at a height hd over
the bottom, M = ρwg cosh(khd)/ cosh(kD). The water depth D is also given by the measurement of
the mean pressure once it is corrected for the atmospheric pressure. because the elevation to pressure
transfer function M decreases when k increases, it is usually impossible to recover wave elevations for
frequencies above a cut-off value fc. That value fc is a function of water depth, instrument noise,
background noise (usually due to currents)... but also of the directional wave spectrum. Indeed, figure
3.6 shows an example of data recorded in 100 m depth, in which the second order pressure is larger
than the linear pressure for frequencies above 0.13 Hz. As discussed in chapter 21, this second order
spectrum is a function of the freuquency spectrum E(f) but also of the directional wave distribution. In
that case, it is not possible to recover E(f) for frequencies above 0.12 Hz. For example, on day 4, the
yellow-orange sloping line at frequencies 0.05 to 0.1 Hz is a due to swell waves arriving from a distance
of about 4000 km (see explanations in chapter 4, eq. (4.12)). At the same time, there is a fainter blueish
line at twice these frequencies which is caused by the second order effect. The vertical blue stripes above
0.13 Hz are caused by the tidal current effects on the directional wave spectrum (Ardhuin et al., 2013).
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Figure 3.6: Bottom pressure spectra
Time-frequency diagram of the pressure recorded over 11 days in 100 m depth off the French Atlantic
coast in October 2015. The colors show the pressure level in dB relative to 1 m2/Hz times ρ2

wg
2. These

measurements were performed by a very sensitive Paroscientific piezo-electric sensor, included in a RBR-
duo system, with a noise level below -80 dB. At our depth of 100 m, the usual linear pressure signal,
with a level between -40 to 10 dB, can be used to recover the surface elevation spectrum for frequencies
below 0.12 Hz. At higher frequencies, the pressure is dominated by a second order effect due to waves in
opposite directions (e.g. Miche, 1944b; Ardhuin et al., 2013). That effect has very important consequences
for seismology, as discussed in chapter 21.
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Figure 3.7: (a) Example of frequency-direction wave spectra, divided by frequency, computed from 8m
depth pressure measurements in Duck, NC, October 19, 1994, 7:00 (EST). (b) Corresponding Frequency
spectra whose secondary peak matches the first harmonic of the spectral peak (f = 2fp), and which is
likely due to the effect of nonlinear interactions that are of great importance in shallow water.

3.3.4 P-U-V sensors

As indicated by its name, this sensor measures the pressure p and the two horizontal components of
the velocity, u and v. It is indeed the combination of two instruments: a current meter (acoustic,
electromagnetic because a high sampling rate is required) and a pressure sensor, often piezo-electric.
This instrument is of particular interest as it is designed to be installed on the sea bottom. It is the
simplest mooring you may imagine, if one is not too worried about fishermen, for instance... Besides it
is delicate to recover real time data (cables, acoustical modems with surface buoys...).

We have seen in Chapter 1 that the fluid pressure and velocities exponentially decay from the surface
to the bottom with a typical scale which correspond to the wave length 2π/k. The ”P-U-V” sensor is
thus perfect if one wish to measure the agitation at the bottom. To measure the wave heights one may
use the theory that provide transfer functions between pressure, velocities, elevation, etc (equation 3.13).
In this situation, the closer to the surface, the more reliable will be the measurement (e.g. an instrument
mounted on a floating of fixed platform).

3.3.5 Sensor arrays and ADCPs

A set of wave gauge can be combined to record more covariances between the measurements. This kind
of measure allowed to get the first accurate spectra (Donelan et al., 1985) and is particularly used for the
air-sea interaction studies, for which the short waves spectrum is crucial (Graber et al., 2000; Pettersson
et al., 2003). It is essential to synchronize the sensors with an accuracy that is small compared to
the measured wave period. Similar techniques are employed in RADAR and SONAR technologies to
determine the sources of echoes. The original array processing algorithms used for waves were actually
developed for seismology.

These techniques have been largely applied to pressure sensors arrays with a number of statistical
methods for the spectrum estimation (e.g. Davis and Regier, 1977; Long and Hasselmann, 1979; Pawka,
1983; Herbers and Guza, 1990). An example of a spectrum is given in Figure 3.7 determined from
a coherent array of pressure sensors deployed in 8m depth on the site of the US Army Corps Field
Research at Duck, North Carolina. For large arrays, the underwater instruments positioning much be
very accurate. An acoustical positioning is generally used. The directional resolving power of the array
generally increases with the number of sensors in the array (see Kinsman, 1965). Arrays of pressure
sensors are excellent reference instruments for measuring the spectra of dominant waves, but they are
relatively expensive to deploy and maintain. O’Reilly et al. (1996) used such an array for the validation
of directional properties of two different types of buoys.

A recent and convenient alternative is the use of current profilers (ADCP). The combination of the
velocities measured by different acoustic beams, allows, in principle, for an interesting measure of the
directional spectra. However, the typical noise of up-looking ADCPs does not allow a higher angular
resolution than that of a simple P-U-V (Herbers and Lentz, 2010). The main benefit of ADCPs, however,
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is the use of measurements close to the sea surface, where the wave motion is less attenuated than at the
bottom.

3.4 Optical measurements

Waves are usually the first thing that you see when looking at the sea. But turning beautiful pictures
into numbers for scientific analysis is not so easy. We will not discuss here the techniques that are mostly
used in the laboratory (e.g. light refraction across the air-sea interface), but instead we present the main
methods in use for application to real ocean waves.

3.4.1 From stereo-photography to stereo-video

The first methods used to measure wave shapes were based on stereo-photography: pairs of photographs
taken at the exact same time can be analyzed to produce a 3D map of the sea surface (Schumacher,
1939). The basic principle is to determine the (x, y, z = ζ(x, y)) coordinates of points that have been
identified in both images. This identification can be done using automatic correlation analysis. The
pair of pictures can be obtained from a single platform to cover a modest area and reveal interesting
details about the wave shapes (Banner et al., 1989), typically less than 30 by 30 m, or from a pair of
aircraft to get a view of a much broader region (Cote et al., 1960; Holthuijsen, 1983) and produce a
full directional wave spectrum. Now that everyone is carrying a digital camera around, and that stereo
processing is much more common, there are many opportunities to measure the full evolution of the
sea surface in space and time ζ(x, y, t). Recent efforts by Benetazzo (2006) and Gallego et al. (2011)
have demonstrated the capabilities of stereo processing, leading to new applications (Fedele et al., 2013;
Leckler et al., 2015). Latest developments include auto-calibration and the proper motion corrections
needed for ship deployments. A general issue that remains is that not all light conditions are favorable.
Alternatively, the use of more expensive infrared cameras or polarization cameras is a very interesting
extension for overcoming the variability of lighting conditions and the lack of texture at small scale for
a correlation analysis (Sutherland and Melville, 2013; Laxague et al., 2015).

The great advantage of having the full surface ζ(x, y, t), is that we can now measure a 3D spectrum,
without the need to use linear wave theory. This is most important for the short wave components, for
which nonlinear contributions are important. Figure 3.8 shows slices of the 3D spectrum at a constant
frequency. These are obtained from a stereo-video system installed 11 m above the water in a platform
in the Black Sea. The image processing uses the epipolar method: the position of the sea surface is
obtained only by a knowledge of the geometry of the camera system. This record from October 4, 2011,
was acquired when the wind speed was 14 /s and the wave peak frequency is fp = 0.33 Hz (Leckler et al.,
2015). The Non-linear contributions to the frequency spectrum dominate for f > 4fp. For example
at f = 1.2 Hz, there is more energy in the peak located near (kx = 0, ky = −3) than along the linear
dispersion relation shown wit the white dashed line. Such non-linear effects are also important for the
statistics of extreme wave heights, as shown by Fedele et al. (2013); Benetazzo et al. (2017).

3.4.2 Using polarization and/or light intensity

Such a stereo system has difficulties in measuring waves with frequencies higher than 1.4 Hz that have
small heights. Other measurement techniques that are directly sensitive to slopes are better suited
for these shorter components: these include polarimetry (Zappa et al., 2008) or a measurement of the
radiance that can also be combined with the epipolar method (Gallego et al., 2011; Yurovskaya et al.,
2013).

Such a technique can also be applied to high resolution airborne or satellite imagery (with pixel sizes
less than 30 m in order to resolve waves). Kudryavtsev et al. (2017) have particularly taken advantage of
the 1.5 s to 4.5 s time lag in the acquisition of the different color channels of the MultiSpectral Instrument
on board Sentinel-2. Clouds or haze obviously limit the application of optical methods, which is why
radar is often preferred for wave remote sensing.

3.5 Radar remote sensing

Since the invention of radar, the sea was found to be an important source of echoes, at all radar frequencies
(from decametric to micro waves). This is due to the dielectric properties of sea water. An active radar
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Figure 3.8: Slices of the double-sided spectrum for positive apparent frequencies 0.7, 0.8, 1.0, 1.2, 1.4
and 1.6 Hz. The energy appears in the direction from where it is coming. For each panel the color
scale spans 30 dB with the dark red corresponding to the power indicated on the figure (e.g. -30 dB)
relative to 1 m4/Hz. Note that 1.4 and 1.6 Hz are twice 0.7 and 0.8 Hz, so that the first harmonic of
the components in (a) and (b) appear at approximately twice the wavenumbers in panels (e) and (f).
In each panel, the linear dispersion relation without current is plotted in black, and the white dashed
line gives the linear dispersion with a uniform current U = 0.15 m/s oriented towards the trigonometric
angle 99 degrees. The white dotted line marks approximately the separation between the linear part of
the spectrum and the faster non-linear components (Adapted from Leckler et al. 2015).

measures a electromagnetic power received by its antenna. This power (in Watts) is normalized by the
antenna-target distance, the antenna size, the emitted power. This is the normalized radar cross section
(NRCS), often represented by the symbol σ0. σ0 depends on the surface geometry, of the measurement
(incidence angle, range direction) and of the electromagnetic properties (polarization, wave length). In
particular, σ0 highly depends on the radar wavelength and of the wave radar incidence angle relative to
the surface.

A down-looking (nadir) radar will see high σ0 with a glassy sea surface. If waves are present, the
surface echoes may be considered as the incoherent superposition of the facet echoes.

Radar altimeter data are, the source of measurements of Hs available at global scale and used for
operational wave forecasting through data assimilation. Contrary to other observation systems, Hs is
directly determined, without the use of a spectral analysis. The usual arrangement is a radar antenna
looking straight down - at the nadir - on the the sea surface. The choice of the radar frequency is
dictated by a number of considerations, including atmospheric absorption – we want to be able to
measure a returning echo from the sea surface – and the size of the antenna – low frequencies give large
wavelength that require a proportionally large antenna to have a narrow beam. The radar wavelength
and frequency are related by the speed of light c, namely fr = c/λr.

3.5.1 Conventional or ‘delay’ altimetry

The first main principle of the analysis of the radar echoes is the determination of the distance, usually
called range, based on the delay of a radar pulse to travel from the transmitting antenna to the target
and back to the receiving antenna. Usually the two antennas are the same piece of hardware and this is
called a ‘monostatic system’. Because the radar pulse has a finite duration which limits the resolution of
the time measurement, it is customary to use a varying carrier frequency fr that is modulated as chirps:
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Figure 3.9: Altimeter waveform
Example of altimeter waveforms for different wave heights. These waveforms were selected along the
ascending track of SARAL/AltiKa on February 5, 2014, beteen 05:29:49 and 06:20:07 UTC. Each wave-
form shows the the power measured by the radar as a function of time: time is discretized with intervals
of 2 × 10−9 s corresponding to 30 cm range intervals usually called ‘range gates’. The corresponding
wave heights are 0.8, 3.2, 4.6, 9.7, 10.7, 13.2, and 14.8 m. Data is available from CNES/Aviso ftp. In
the case of the largest sea state the return power, the return power spreads over about 35 range gates,
i.e. a distance of 10.5 m, close to the root mean square wave height Hrms ≈ Hs/1.4. The power in range
gates beyond 50 come from the sea surface that is not directly under the satellite but on a circle around
it, and is still illuminated by the radar beam. Each waveform shown here was obtained for 1 s of data,
as the median of 40 conscutive waveforms.

fr is increased linearly between f0 and f0+B during a radar pulse. This change in frequency allows to
determine the precise time, within a pulse, when the echo was sent. As a result, the resolution in range
dr is determined by the frequency bandwidth B, with dr = c/(2B).

for all types of radars, it is thus better to use a larger bandwidth, but this usually limited by
atmospheric absorption windows or regulations. Hence, for satellite altimeters, B is limited to 320 MHz
in Ku-band, and 500 MHz in Ka band. Because of issues with rain attenuation, all altimeters since
GEOS-3 (1975-1979) have used Ku-band, in general jointly with another frequency, in C-band, except
for the ongoing SARAL/AltiKa mission which uses Ka-band. In Ku-band the range resolution is 47 cm,
compared to 30 cm in Ka-band.

Each radar pulse emitted by the radar antenna is reflected by a ocean area that expands with time.
As a consequence, the power received by the altimeter grows with time, until the illuminated area falls
out of the main lobe of the radar antenna. Over a flat surface, the power rises very rapidly to a high value
and decays. Over a wavy surface, the radar receives echoes from wave crests firsts and wave troughs
later: this difference in travel time between crests and troughs spreads the echoes over time. Brown
(1977) showed how the shape of the ‘waveform’, i.e. the received power return, is generally (under a
number of simplfiying assumptions) a convolution of the radar antenna pattern and the distribution of
the surface elevation ζ. As a result, the slope of the ‘wave form leading edge’ is proportional to Hs.

Another interesting parameter that can be derived from the waveforms is the mean square slope
(mss). Indeed, the backscattered power σ0 is nearly inversely proportional to the mss (Vandemark et al.,
2002). For display purposes the waveforms shown in figure 3.9 have been scaled: you can see that the
noise level (power in gates 11 to 21) which should be nearly the same for all sea states is scaled to lower
values for lower sea states that generally have low values of both Hs and mss. Because the mss is not a
very common parameter in applications, many authors have derived empirical estimates of peak or mean
periods from Hs and σ0.

Finally it should be noted that the main application of the altimeters was the mapping of the sea
surface height (SSH) for the determination of the geoid, and the measurements of ocean currents and
tides. The measured mean sea level can be much more accurate than dr, thanks to averaging. Waves
play an important role in the estimation of the mean sea level because of a range bias induced by wave
non-linearities, that is on average of the order of 3 % of Hs (e.g. Minster et al., 1991). This is known as
the sea state bias.
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Also, because Hs and SSH are estimated jointly using a parametric fit to the waveform, there are
important correlated errors in the two parameters (e.g. Dibarboure et al., 2014). As a result, without
any particular editing or fitting of the waveforms, the variability of Hs at scales shorter than 80 km is
expected to be mostly due to the error in the fitting procedure that can be associated to non-uniform
radar backscatter and other effects.

Hs (m)

Mean Hs value 
 for 2011

Number of valid
super-obs.

in 2011

Coverage in 1 day: 
February 5, 2014

Figure 3.10: Global coverage of satellite altimeters
Over one day, the 3 satellites Jason 2, Cryosat 2 and SARAL/AltiKa covered all the oceans and seas
with a density high enough to capture all the important storms. In a year, the full ocean is covered at
a resolution of 1 degree in latitude and longitude. Data provided by ESA and CNES and processed by
Ifremer. The spatial cover depends on the orbits shape. The number of tracks per 1 degree x 1 degree
box (bottom panel) varies from 20 to 160 over a year: the cover is weaker close to the pole since Jason
2 has a more oblique orbit that does not cover the ocean beyond 66 degrees of latitude. Also, sea ice
produces echoes that differ from those of water and prevent the estimation of the wave height.

3.5.2 delay-Doppler altimetry

Another principle that can be used to refine the position and/or to measure the velocity of targets along
the satellite flight path is the Doppler effect, which also relies on a shift in frequency: targets ahead of
the radar are moving towards it, and hence have a higher frequency, while targets that are behind along
the satellite path are moving away. Typical low Earth orbits give a satellite velocity around V = 7 km/s.
Hence, a Ka-band system at 36 GHz frequency will see a Doppler shift of the order of V fr/c = 840 kHz,
which is further reduced by the incidence angle θr. For a 0.5◦ antenna aperture, θr will normally vary
between 0 and 0.5◦, and the Doppler will be limited to 7.3 kHz.

A slicing of the radar echoes according to their Doppler shift allows a high-resolution mapping of
the surface along the satellite track. This principle is used on Cryosat-2 and Sentinel-3, with a 300 m
resolution along the track. At such a resolution, the surface elevation due to very long swells propagating
along the track can be resolved. A natural limit to this along-track resolving power is the fact that the
sea surface is moving up and down with the waves. Indeed, an orbital velocity of u = 2 m/s gives
a ufr/c = Doppler shift that can be mis-interpreted as a difference in incidence angle θr such that
(ufr/c) = (V sin θrfr/c), this corresponds to a horizontal displacement uHr/V ' 200 m for a radar
altitude Hr = 800 km.
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3.5.3 Synthetic Aperture Radars (SARs)

As explained, in section 3.5.1, the separation of echoes in the range direction is easily achieved by
combining the delay and frequency modulation of the chirped radar signal, with a resolution in distance
that is thus controled by the frequency bandwidth. In the other direction (azimuth), the simultaneous
echoes can be separated by their Doppler shift. This is perfect if targets are fixed relative to the ground,
and a very good resolution can be obtained, both in the range and azimuth directions (about 10 m for
Envisat, 5 m for Sentinel 1 in wave mode and 1 m in spotlight mode for TerraSAR-X). This processing
produces a map of the surface backscatter in delay-Doppler coordinates. Unfortunately these positions
are distorted from true geographic positions when the surface is moving toward the radar. With a
velocity u, targets are displaced by δ = uR/V along the azimuth direction. With a Sentinel-1 altitude
Hr = 693 km, and a typical speed over ground V = 7.5 km/s, the factor Hr/V is about 92 s−1, i.e. a
very small velocity of 10 cm/s gives a displacement in azimuth of δ = 9.2 m: if the velocity is random,
the image is completely blurred and the resolution of 1 or 5 m is useless. A high speed train traveling at
100 m/s in azimuth would be seen 9 km away from the tracks! Figure 3.11 shows an example of targets
displaced from their true locations according to their azimutal speed.

5 km/h

SAR image from DLR ESAR

range

azimuth

Optical image

target displacement 
for 11 km/h

target displacement
for 37 km/h

10 km/h

11 km/h

37 km/h?

Figure 3.11: Where is the fast car?.. it is in the optical picture, but out of the SAR ‘image’ !
Images of cars with different velocities along an airport runway in a nominally processed radar image (left)
and a reference optical image (right), adapted from Palubinskas et al. (2005). The SAR acquisition was
made from a Do-228 aircraft flying at only 88 m/s and altitude 3.94 km, giving a ratio Hr/V = 44 s−1.

In the case of waves motion a velocity bunching effect appears: the echoes on the image are shifted
from their actual position depending on the surface velocity towards the satellite creating a pattern of
brighter areas, where the displaced targets are ‘bunched together’, and darker regions. This mechanism
is often the main cause of the wave-induced σ0 modulation in the open ocean. In ice-covered water, this
is probably the only mechanism present that creates wave patterns in SAR images. This bunching in the
azimuth direction is very similar to the light patterns at the bottom of a shallow pool that are caused
by light refraction, as illustrated in figure 3.12.

In the case of a monochromatic wave train propagating in the azimuth (y) direction, with wavenumber
ky, and not located right under the satellite but at an icidence angle θi, the target displacement in the
SAR image due to the velocity towards the satellite is

δ = (W cos(kyy − σt) cos θi + U sin(kyy − σt) sin θi)Hr/(V cos θ). (3.24)

where U and W are the amplitudes of the horizontal and vertical velocities given by eqs. (2.26)-(2.27).
Assuming a uniform radar power scattered from the sea surface σ0, and taking the y dimension along

the azimuth, the SAR image intensity is the incoherent sum at the displaced positions y′ of the power
coming from the true pixe positions y, it is thus given by the inverse of Jacobian of the transformation
y → y′ = y + δ, (see eq. 21 in Hasselmann and Hasselmann, 1991),

J = |dy′/dy| , (3.25)

for a monochromatic wave of amplitude a it is,

I ′SAR(y) = σ0/J = σ0/ |1− CAR sin(kyy − σt)| . (3.26)
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Figure 3.12: Patterns in SAR images
Analogy between (a,b) light patterns at the bottom of a shallow pool, and (c,d,e) velocity bunching
effects in SAR images of ocean waves. (d) and (e) are taken from a wave mode Sentinel 1A image,
acquired on 9 September 2014 at 04:48:16 UTC, at 10 and 35 km inside of the sea ice. In (d), almost
all crests are doubled, for example in the region within the dashed circle. In (e) the lines are less bright
and not doubled (for example within the dotted circle). This is easily simulated, as shown in (f), with
the variations of image intensity expected from a sinusoidal monochromatic wave of wavelength 156 m
(Adapted from Ardhuin et al., 2017a).

The important parameter for image patterns is the coefficient c in Alpers and Rufenach (1979),

CAR = ky(W + U tan θi)Hr/V. (3.27)

For CAR << 1, eq. (3.26) can be linearized, but as CAR increases, the SAR displacements become
strongly nonlinear and for CAR = 1, the Jacobian is zero and I ′SAR becomes infinite just like the light
intensity at the focal point of a lens. In our figure 1.f, with a wave period of 10 s traveling in the azimuth
direction, CAR = 1 corresponds to an amplitude of the elevation a = 0.42 m, which, for random waves of
the same energy would be a significant wave height Hs = 4

√
(a2/2) = 1.2 m. For CAR > 1, each bright

line becomes a doublet. The two lines of the doublet progressively drift apart as the amplitude increases,
pulling the minimum intensity to lower and lower values, up to the point where lines from different
doublets meet, at CAR ' 4.6. Beyond this value there is no region of very low intensity anymore.

In practice, except far inside the sea ice cover, there are also short wave components in the wave
spectrum E(k). From a SAR processing point of view, these short waves are equivalent to Gaussian
random vertical oscillations of < v2 > leading to random displacements in the SAR image that are larger
than their wavelengths and that do not produce any pattern. These short waves also reduce the contrast
of longer components. Hasselmann and Hasselmann (1991) gave a theoretical derivation of the impact of
random waves on a SAR image spectrum ES(k), their eq. (55), with a simplified derivation by Krogstad
(1992). In practice the short wave effect is a reduction in the image spectrum by an exponential factor,

ES(k) ' exp(−k2
y < v2 > H2

r /V
2)El(k) = exp(−k2

yλ
2
c/(2π)2)|MS |2 (E(k) + E(−k)) /2, (3.28)

in which El(k) is a linearized spectrum, based on a modulation transfer function MS that includes a
linearized velocity bunching term, a hydrodynamic term due to the short scattering waves modified by
longer waves, and a tilt term due to the change in local slope along long waves (Hasselmann et al., 1985a;
Hasselmann and Hasselmann, 1991). All terms depend on the incidence angle, and these last two terms
depend on the polarization of radar waves, horizontal or vertical, and on wind speed and wave age.

The azimuthal cut-off wavelength is λc = 2π
√
< v2 >Hr/V , in which < v2 > is the orbital velocity

variance. This cut-off effect is so dominant that it can actually be used to measure the surface orbital
velocity variance from SAR images (Stopa et al., 2016c). A minor difficulty is the separation of the
part of the wave spectrum that produces patterns in the SAR image and the shorter part that only
introduces blurring. Looking at many ERS SAR data, Kerbaol (1997) concluded that, in the case of a
wind sea, the velocity variance < v2 > should be restricted to waves shorter than a factor fL times the
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peak wavelength, with fL ' 0.33 for a mean short wave direction in the range direction and fL ' 0.15
in the azimuth direction.
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Figure 3.13: Context of the Sentinel-1A image acquired on November 1st, 2015, at 17:23 UTC, and
available in situ data. The full image at full resolution can be viewed at http://bit.ly/22JFruo. (a)
SAR-derived roughness (gray scale) showing open water between the Alaska shoreline, to the West of
Barrow, and the measurement locations in the red box. (b) Location of the R/V Sikuliaq and some
of the measurement buoys. Note that buoy S15 is in open water. (c) piece of the SAR image around
the buoys S13 to W3. (d) Directional spectrum estimated from S15 data using the Maximum Entropy
Method. (e) Comparison of spectra derived from in situ data and the SAR image around buoy S13 and
buoy W3. In each panel the spectrum at the offshore buoy S15 is indicated for reference. The ’cut-off’
effect is the reduction of wave spectrum according to eq. (3.28). Adapted from Ardhuin et al. (2017a).

Combining all these effects with some empirically derived MTFs, it was possible to estimate the
heights of swells within 25% of buoy measurements using wave mode data from Envisat (Collard et al.,
2009). The full significant wave height, including the waves shorter than λc that are not resolved in the
SAR image, can also be estimated by combining all image parameters (Li et al., 2010).

Several aspects of SAR processing are the subject of active research, including the measurement of
high winds or currents, and improvements in the estimates of wave parameters in particular in ice-covered
regions.

Figure 3.13 shows an example of waves around the ice edge: in the water (buoy S15), the waves
cannot be seen by the SAR because, with a peak wavelength of 100 m, they are much shorter than the
290 m cut-off wavelength. Waves only appear in the ice with an increasing SAR spectral density which
is not due to an increase in wave height, but a reduction in the cutoff wavelength from λc = 114 m at
S13 to λc = 87 m at W3. Hence a correct estimation of λc is critical for a proper estimation of wave
heights either in the open ocean or in ice-covered water. Another important practical problem, especially
in ice-covered region, is the presence of non-wave features in the image: boats, slicks, variations in wind
speed, leads in ice... these usually show up in the low frequency part of the spectrum, and, in figure 3.13
they probably are the reason for the spurious bump at f = 0.1 Hz.

Since SAR images are characterized by high resolution (5 m in the Sentinel-1 wave mode, 10 m in
Interferometric Wide swath mode), and large coverage, they provide a unique opportunity to measure
the spatial patterns in the wave field, as shown on figure 3.14.

http://bit.ly/22JFruo
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Figure 3.14: Left: Sample of a SAR image, recorded by Envisat on March 9 2003, over French coast.
The grey level is a function of the radar cross section that is modulated by waves. Right: Full image
processed into wave spectra, with significant wave height and peak direction. AWA et SA1 are positions
of in-situ instruments, used for validation (Collard et al., 2005).

3.5.4 The wave spectrometer and the matching wavefront technique

Whereas a SAR resolves the wave patterns in an image to produce a wave spectrum, it is possible to
measure the 2D wave spectrum when high resolution – finer than half the wavelength – is only available
in range, using the stationary phase technique.

100 km

range R 

dR

(a) (b)

true 
North

0

Figure 3.15: Measurement principle the SWIM radar that should be deployed onboard CFOSAT. (a)
geometry of the measurements for one cycle in direction θ0. The resolution in range dR is of the order
of 10 m, but the azimuth resolution is 18 km. Using different incidence angles θI (0, 2, 4, 6, 8 and
10 degrees) and rotating around the nadir provides estimates E(k, θ0) in all direction θ0. (b) Coverage
expected for the SWIM instrument on CFOSAT: each colored dot is the center of a 19 km diameter
footprint.

When echoes are combined from narrow strip in range (red band in figure 3.15.a), the Fourier trans-
form of these echoes in the range direction selects only the modulations by waves that are perfectly
aligned with the direction θ0 to which the radar is looking, all other components do not have this sta-
tionary phase and their modulations cancel out. Hence, the Fourier analysis of radar echoes provides
a 1D spectrum E(k, θ0) in the look direction. A successive acquisition in different directions provides
the full directional spectrum E(k, θ). This is the principle of the wave spectrometer and it has been
demonstrated with the airborne instrument RAWS, developed by NASA (Jackson et al., 1985), STORM
and KuROS developed jointly by CNES and CNRS (Hauser et al., 1992; Caudal et al., 2014). The first
satellite wave spectrometer SWIM will fly on the future China-France Ocean Satellite (CFOSAT, Figure
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3.15), which is due for launch in 2018.
For larger incidence angles, the measurements cover a larger area of the ocean, but there is more

sensitivity to the wind speed in the radar back-scatter. Hence, the SWIM design is limited to 10 degrees
of incidence. A larger incidence also requires a more powerful radar, because the reflectivity decreases
with incidence angle.

It is also possible to analyze the Doppler of the backscattered signal, as done one KuROS. This
additional measurement allows to remove the 180 degree ambiguity on the wave propagation direction,
but it also provides an indepedant measuremnt of the wave spectrum via the orbital velocities, and finally
it contains the signature of surface currents. This Doppler capability was included in the proposal for
a sea Surface KInematics Multiscale (SKIM) that was submitted to the Earth Explorer 9 call of ESA,
now under evaluation. Because the current velocity projection on the line of sight is increases for large
incidence angles, the SKIM design goes a little beyond the SWIM incidence angles, with 12 degrees (?).

3.5.5 Grazing angle radar

Rotating radars are usually deployed at the coast, for ship traffic monitoring, or on ships, for navigation
safety, providing a detection of ships, land, and sea ice. Most of these radar work in X-band, with a
wavelength around 3 cm, but S-band can also be used. These radars also record many echos from the sea
surface due to waves. This ‘sea clutter’ is another case of the saying, somebody’s noise is somebody else’s
signal. The clutter greatly limits the detection of ships at sea, but wave and current information can be
extracted from it (Young et al., 1985). Because of the low elevation aforded from a ship, the incidence

Radar image C 

Radar image B

Radar Image A

Wave spectrum for
image C

Radar antenna 
(9 feet)

ship track

Figure 3.16: Examples of radar images recorded with a grazing radar (WAMOS system, Oceanwaves
GmbH), onboard the Hydrographic vessel Laplace. The measurements were undertaken on March 2003,
with a very long and high swell from the West (Hs = 6 m, Tp = 26 s). The spectrum shown here was
obtained in the shadow of Ouessant. The swell forms two wave systems that go around the islands by
the west and north directions.

angle is now grazing. Hence, the sea surface exhibits shadows behind wave crests and the relationship
between the backscatter image and the sea surface is fairly nonlinear. Still,the wave spectrum may be
related to the radar image spectrum using a transfer function (figure 3.16). The analyses procedure
uses a sequence of several images, in order to decrease the noise. The 3D (frequency-wavenumber-
direction) spectrum is estimated to filter the data into ’wave patterns’ that follow the linear gravity
wave dispersion relation, and other echoes and noise. This kind of system generally gives a good spectral
energy distribution, but the gain (proportionally factor between the radar image spectrum and the surface
elevation spectrum) is not very accurate, leading to typical errors of 20% or more on the estimate of Hs.
An additional measurement (altimeter, pitch/roll from a ship) can provide an independent measure of
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this gain. In systems that allow a measurement of the Doppler signal (e.g. Farquharson et al., 2005), the
orbital velocities may be measured but the radar really measures the velocities of scatterers which – at
this incidence – contains also the phase velocities of steep waves.

A side-product of the dispersion relation analysis is are maps of surface currents, with sub-kilometer
resolution, and water depth if the water is shallow enough. This is probably the best instrument available
today for the measurement of sub-mesoscale currents over a footprint of about 10 km in diameter. A full
exploitation of the dispersion relation can also provide an estimate of the vertical current shear near the
surface (Lund et al., 2015).

3.5.6 Surface wave radar

An extreme case of grazing angle occurs when the radar waves propagate along the surface. This kind
of propagation is possible in the HF-VHF range (from 2 to 50 MHz). This surface wave allows indeed to
get information beyond the horizon.

Figure 3.17: Example of Doppler spectrum from a HF radar.
This measured spectrum comes from the Porspoder radar (Finistere, France). The radar frequency is
12.4 MHz, corresponding to a wavelength Le = 2π/ke = 24 m. The main echo is due to Bragg scattering,
which selects the ocean waves with a wavelength Le/2 = 12 m that propagate towards (f > 0) or
away from the radar (f < 0). Multiple scattering by waves with wavenumbers k1 and k2, such that
2ke = k1 + k2 gives the ’second order echoes’. At first order, i.e. for linear waves, the waves of
wavenumber kw = 2ke have a frequency fB = ±

√
g2ke = ±0.36 Hz in deep water. The anomaly df of

the two highest peaks in the Doppler spectrum indicate that the phase speed 2πf/k is different from the
linear wave theory without current. the main reson for that difference is usually the presen of a current,
with a velocity Ur = 2πdf/(2ke) in the direction of the radar.

The radar reflection is well explained by the Bragg theory, with the maximum backscatter power at
the Doppler frequency fD occuring for electromagnetic incident and reflected wave numbers vectors ki
and kr that match with the wavenumber kw = ±ki ∓ kr and and the wave frequency fD = f , where f
and kw are related by the linear dispersion relation. In the monstatic configuration where the receiving
and transmitting antenna are almost at the same place, we have ki = ke, kr = −ke, and kw = 2k2.

The observed Doppler spectrum can be interpreted as the superposition of simple reflections (or first
order reflections) and multiple reflections. The extraction of sea state spectra is possible from the second
order that is a convolution of the spectrum (see for instance Wyatt, 2000). These second order echoes
are weaker than first order echoes at Bragg frequencies.

The main echoes are used for currents measurement. Their frequency provides a measurement of the
Bragg wave phase velocity. The deviation of this phase velocity from the expected linear wave phase
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speed can be interpreted as a surface drift current (Ardhuin et al., 2009a). This current also includes
non-linear corrections to the phase velocity, which is like a filtered Stokes drift (Stewart and Joy, 1974;
Broche et al., 1983; Ardhuin et al., 2009b). The secondary peaks, filled with black patterns, are caused
by either the multiple reflection of radar waves, or the single reflection off nonlinear wave components. In
some cases a peak can be seen at the frequency

√
2fB which corresponds to the reflection from the first

harmonic of waves with wavenumber k = ±ke, which have a frequency, 2
√
gke in deep water. Because

different wave components have different sensitivities to the current profile, it is possible to use that peak
to measure the vertical shear of the current (Ivonin et al., 2004).

3.6 The limitations to the usual spectral description of ocean
waves

The spectrum describes the whole statistical properties of waves, provided the components are effectively
independent. Yet, this is not exactly true as waves are slightly nonlinear. Two main relations exist
between components: the presence of harmonics and the modulations. The first effects comes from
the fact that a single nonlinear wave train corresponds to several spectral components whose wave
number and frequency are multiple of that of the carrier wave. Rigorously speaking, one needs the 3D
spectrum E(f,k), see for example figure 3.8, to discern these harmonic waves that do not follow the
linear dispersion. The 3D spectrum estimation requires specific measurement means. The link between
the 3D spectrum and the linear part of the spectrum is the topic of ongoing research. The calculation
technique of dressed and undressed spectrum presented by Elfouhaily et al. (2003) is a possible approach:
the undressed spectrum corresponds to the linear part and the dressed part to the nonlinear spectral
contents. To lowest order, however, the full spectrum can be obtained by the second order correction
(Janssen, 2009; Leckler et al., 2015).

The modulation effect is a bit most complex. Typically, short waves in the presence of much longer
waves see their environment modified. The short waves apparent gravity is the standard gravity plus the
vertical acceleration induced by the longer waves motion. In the same fashion, the long waves orbital
velocities acts as a variable current on the short waves and the depth is modulated as well. These effects
are likely the cause of the higher breaking rate of short waves at the crest of long waves. The short wave
spectra is hence modulated by the long waves. In practice, for the wind sea, such effects are rather low
for waves with frequency less that three times the peak frequency (Banner et al., 1989). This factor 3
on the frequency corresponds to a factor 10 on the wavelength (in deep water).

This modulation can be caused by other effects than the presence of other waves. In particular, if the
medium in which the wave propagate is not homogeneous, then the wave field will contain wavelengths
that are interferences between the medium and the waves, and that do not correspond to the linear
dispersion relation. These non-homogeneities can be variations in water depth, current, gravity, surface
tension ... If these occur at scales similar to the wavelength, the result will be a scattering of the waves,
see e.g. Bragg scattering by underwater topography in chapter 12, or the generation of seismic waves
over a sloping bottom in chapter 21. If the scales are shorter than the wavelength, then the medium is
a ’meta-meterial’, which can exhibit funny properties like negative refraction indices and can be used
to create ’invisibility shields’. Although these effects can be created in the laboratory, they may not
be relevant for ocean waves, due to the random nature of waves and the generally irregular patters in
geophysical contexts.
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Chapter 4

Measured waves: main parameters
and wave spectra

A casual observation of the sea is enough to figure out that, the stronger the wind, the higher the height
H and length L of the waves. From one location to another, it is also obvious that L and H change with
the water body: a large lake can hold bigger waves than a pond, and waves in the Pacific, the largest
water body on Earth, can reach close to 40 m high, with wavelengths above 600 m. Finally, within the
same water body, the heights and lengths increase when moving downwind. The present chapter aims
at providing a quantitative summary of observed wave properties, including useful empirical prediction
formulae. These were the basis of wave forecasting methods (e.g. Pierson et al., 1955) before the advent
of numerical models (Gelci et al., 1957).

4.1 Wind-sea growth

A wide range of visual observations were systematically gathered by Sverdrup and Munk, as early as
1941, in order to come up with a wave forecasting method for the U.S. Navy, faced with the delicate task
of landing on the swell-battered beaches of Morocco. This work, initially classified, was only published
as a landmark report after the war (Sverdrup and Munk, 1947). The miscelaneous observations were
organized thanks to dimensional analysis with wave variables H and T expressed as a function of the
wind speed U10 as measured at 10 m above the sea surface, the fetch X, the duration t over which of
the wind has blown and the acceleration of gravity g. The fetch X is the length of the region over which
the waves have been generated. In the open ocean X is not easy to define precisely, and it can be taken
as an order of magnitude, in relation with a representative wind speed U10: the region where winds are
very high is typically smaller than the region where winds are lower, so that the choice of the wind speed
will modify the fetch.

The use of U10 as the variable representing the strength of the wind is also fairly arbitrary. Many
studies have debated the possibly better choice of the friction velocity in the air, u?a = (τa/ρa)1/2.
unfortunately, the scatter of wave parameters as a function u?a is almost as large as when U10 is used.
Since U10 is more often measured than u?a, it turns out to be more practical.

In the most simple case, represented in figure 4.1, a uniform wind speed blowing perpendicularly
offshore from a straight shoreline. In such conditions Sverdrup and Munk found that we may express
the dimensionless wave energy Ẽ = H2g2/U4

10, as a function of the dimensionless fetch

X? = Xg/U2
10 (4.1)

and duration

t? = tg/U10. (4.2)

A similar result was obtained for the dimensionless wave period 1/f?p = Tg/U10. For random waves, it
is now customary to use

E? = Eg2/U4
10 (4.3)

and

f?p = fpU10/g (4.4)

51
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Figure 4.1: Definition of fetch.
Left: idealized conditions, Right: a real case corresponding to the 2010 Xynthia Storm, which caused
severe coastal flooding in France: the wind speed varies rapidly in space and time, making it very difficult
to define a fetch for an equivalent constant wind. The Xynthia storm crossed the bay of Biscay in 6
hours going to the North-East, as a result the waves had little time to develop.

where E and fp are the free surface elevation variance and the frequency of the elevation spectral peak,
respectively. Figure (4.2) shows values measured for t? > 105, for which the sea state does not depend on
duration anymore, during the Shoaling Waves Experiment (SHOWEX) in 1999, off the North Carolina
Outer Banks. The figure also includes a comparison with the average measured values during other
experiments Kahma and Calkoen (1992); Kahma (1981).

4.1.1 Full development and wave age

For large fetches, the wave energy and peak frequency appear to tend to an asymptotic limit. This
is very difficult to verify for moderate to strong winds, because the required non-dimensional fetch
X?

0 = 2.2×104 is already 220 km for U10 = 10 m/s. In practice we have very few observations for steady
and uniform winds over a non-dimensional fetch larger than X? > 104. In search of such conditions,
Pierson and Moskowitz (1964) have carefully selected 55 records obtained from weather ships. From
these measurements they estimated the asymptotic values

E? = 0.00402 (4.5)

and
f?p = 0.123. (4.6)

The stage of development of waves, limited by fetch or duration, can be defined by the wave age,

A = Cp/U10 (4.7)

where Cp = 2πfp/kp is the phase speed at the peak of the spectrum. This parameter can be used to
separate the wind sea, which is generated by the local wind and corresponds to young waves, with ages
less than 1.2, and swell, for which the local wind has almost no effect, and which corresponds to older
waves, with ages larger than 1.2. Donelan et al. (1992) showed that the wave growth stops or at least
becomes very slow, when Cp/U10 > 1.2, confirming the analyses of Pierson and Moskowitz (1964). This
means that, for a fully developped sea state, the dominant waves are propagating 20% faster than the
wind speed.

4.1.2 Fetch limitation

The region where the wind is faster than a given value of U10 is always finite. This can limit the wave
energy and peak frequency to a value lower than what would happen in a larger region. A practical
important problem is the actual value reached by the wave height and peak period is such a limited area.
With the non-dimensional fetch at full development X?

0 ' 2.2× 104, all measurements lead to empirical
wave growth formulae that are close to

Cp/U10 ' 1.2

(
min

{
X?

X?
0

, 1

})0.33

, (4.8)

Hs ' 0.26
U2

10

g

(
min

{
X?

X?
0

, 1

})0.5

. (4.9)
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Figure 4.2: Growth of waves with fetch, measured during SHOWEX. The wind is blowing at an angle
of 70 degrees relative to the shoreline, which generates a double peak in the wind sea for the shortest
fetches. Very close to shore, the high frequency part of the wind sea (in red) is in the wind direction, while
an ’alongshore wind sea’ (in black) grows to lower frequencies, in the direction of the largest available
fetch. For comparison, several empirical growth curves are superimposed, as given by Kahma et Calkoen
(1992), and Kahma (1981) from other datasets, and the expected ’full development’ proposed by Pierson
and Moskowitz (1964), as re-analysed by Alves and Banner (2003).

We remember that in deep water,

Tp =
2πCp
g

, (4.10)

which yields Tp from Cp.

The empirical growth laws (4.8)–(4.9) are a practical set of equations to obtain a quick estimate
of the order of magnitude of the sea state, with heights within a factor two of the measurements, as
shown in figure 4.2. Many variants of thes equations have been published, with numerical values of the
proportionality coefficients that may vary by a factor 2 (Kahma and Calkoen, 1992). These differneces
are probably due, among other things, to the variations of the wind which is never exactly stationary
nor uniform, and not exactly perpendicular to the shoreline... which is itself never quite straight and
infinitely long. A careful analysis by Young (1998) reveals that some of the differences between the
different datasets may be due to differences between the air and sea temperature, which modify the
properties of the turbulence in the atmospheric boundary layer. The details of how that impacts the
wave growth is still not understood. One possible factor is that the wind tends to be less regular (more
gusty) in unstable conditions when the water is warmer than the air. It is well understood that this
increased gustiness can lead to higher waves for mature waves (X? > 104, see Abdalla and Cavaleri,
2002).
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Figure 4.3: Estimation of significant wave height (Hs, contours) as a function of fetch and duration for
the idealized case of an infinitely long coast with a wind blowing perpendicularly offshore at a speed
U10 = 20m/s. In the left panel the estimate is given by a numerical integration of the wave action
equation, defined in the next chapter, using parametrizations for the wind-wave growth and dissipation
from Rascle and Ardhuin (2013) and non-linear wave-wave interactions from Hasselmann et al. (1985b)
using the WAVEWATCH III model, with a third order numerical scheme Tolman (1995). The right
panel combines eq. (4.9) and eq. (4.11). Both give the time-limited growth for large fetches and the
fetch-limited growth for large durations, with no more growth when waves reach full development at
Hs ' 10.8 m. The dashed line is the same in both panels. In the left panel, the model gives a slow
increase of the wave height even after the time limitation has been exceeded: this is because the infinitely
long shoreline allows the growth of very oblique components that travel very long distances alongshore.
That effect is not represented in the empirical formula of eq. (4.11). It is a well documented effect for
oblique fetches when the wind is not perpendicular to the coast (Ardhuin et al., 2007), but there is no
description of this phenomenon for winds perpendicular to shore.

4.1.3 Time limitation

If the wind has started to blow only a short time ago, with t? < 105, the sea state parameters can be
estimated, replacing X? by

X ′ = (t?/70)1.3. (4.11)

4.1.4 Double limitation

In practice, the sea state is often limited by both time and fetch. The sea state parameters are then given
the lowest of the two values for Hs and Cp/U10 between the one obtained with X? and the one obtained
with X ′ (see CERC, 1977). For an alternative estimation, one may read Hwang and Wang (2004). This
double limitation is illustrated by figure 4.3.

4.2 Swell

In addition to the wind sea, which is related to the local wind, the sea state often contains an important
swell contribution, which are waves radiating away from their area of generation. Swells are defined as
the waves for which the source of energy from the wind is zero or negative, in practice it corresponds
to waves travelling at a phase speed C faster than the wind speed U10, or at angle relative to the wind
θw − θu such that U cos(θw − θu) < C. This definition is often extended to allow the peak of a fully
developped wind sea, which can travel at a phase speed of 1.2 U10, to be classified as wind sea. This
extension is equivalent to adding the source of energy from the nonlinear wave-wave interactions to the
source of energy from the wind in order to separate wind seas and swell. Because the wind is neither
steady nor uniform the boundary between wind sea and swell is rather fuzzy.

Swells is most important in large oceanic basins, in particular near their eastern boundary as the
dominant winds generally blow from west to east where it can account for more than 90% of the wave
energy (e.g. Chen et al., 2002). The swell is the part of the sea state that cannot be amplified by the
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local wind because they are too fast, or travel at an angle too oblique to the local wind. This swell can
be composed of distinct individual swells, travelling in different directions and with different dominant
frequencies, these swells are the result of the evolution of wind seas that propagate out of their generation
area. Swells, when they exist, generally have longer periods than the wind sea because short waves are
rapidly dissipated away from their generation area. They are thus the result of storm conditions, with
winds strong enough to generate large period waves, as given by eq. 4.8. The stronger and larger the
storm, the longer the swell period.
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Figure 4.4: Example of the evolution of wave energy and mean direction as a function of frequency and
time, over one month, measured at the Christmas Island buoy (Kiritimati, Kiribati), in the middle of the
Pacific. Contour values equally spaced between 0.1 and 1.4 correspond to the logarithm of the spectral
density E(f), colors correspond to the mean direction for each frequency. The oblique dashed line from
15 July at 0.05 Hz to 18 July at 0.8 Hz correspond to eq. (4.12) with a distance Rα = 6100 km between
storm and observation point. The intersection between this line and the axis f = 0 gives the date of the
storm: July 9, when a severe storm was indeed present south of New Zeland. (taken from Collard et al.,
2009).

Modern swell studies started during the colonial war between France and Morocco in 1906. In the
absence of safe harbors on the atlantic coast of Morocco, the disembarkment of troops and supplies
used small shuttle boats that could be destroyed by heavy swells. Such an event made the harbor of
Casablanca unavailable for several months. Swell forecasting for Morocco became a an important matter,
and the first method was based on the propagation of swells from the mid-atlantic Azores Islands where
visual observations were made several times a day (Gain, 1918). This method was used in the swell
forecasting office of Casablanca in the early 1920s (Montagne, 1922), where the first modern numerical
wave models were invented (Gelci et al., 1957).

In the Pacific or Indian oceans, it is very common to find at the same time and place several swells
coming from distinct storms (e.g. Figure 3.4), that may have happened 10,000 km away and a week before
(Darbyshire, 1957; Munk et al., 1963). Owing to the large distances travelled by swells, the sphericity of
the Earth must be taken into account. The re-derivation of linear wave theory in that case shows that
the swell that propagated along a straight line on a flat ocean, now travel on the shortest path on the
sphere, which are the great circles: the circles that have their centers at the center of the Earth, such as
the meridians.

The height and period of swells depend on the height and period of waves in the strom, and the
propagation distance outside of the storm. Storms generate waves with a wide range of periods up to
about 1.2 times the peak period Tp. This mixture of waves ‘disperses’, and because the group speed
Cg = gT/(4π) in deep water, is a function of the period T , the largest period swell arrive first, followed
by shorter swells. At very large distances, the storm from which the swell radiates can be considered a
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point in space and time. The evolution of the peak period at a remote observatiokn position follows,

Tps(t) =
4πRα

g(t− t0)
, (4.12)

where R is the Earth radius, t0 is the time of the storm, and α is the spherical distance, i.e. the angle –
in radians – at the center of the Earth between the storm and the observation point. This relationship
very well verified, as shown in figure 4.4.

Swell heights decrease during propagation due to the dispersion from the source, and also due to
dissipation. Dispersion is the main effect for swell periods larger than 12 s, and corresponds to a stretching
of the wave fronts in the direction perpendicular to propagation, just like circles becoming larger away
from a stone dropped in a pond. There is also a stretching of the wave train in the propagation direction
due to the different group speeds, the longer wave periods contribute to a longer wave train away from
the storm, while the shorter wave periods are travelling slower behind. This spatial spreading of the swell
field is illustrated with numerical model results in figure 4.5, taken from Delpey et al. (2010). Neglecting
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Figure 4.5: Swell radiated from a storm.
(a,b,c) peak periods of the swell Tps and (d,e,f) significant swell heights Hss from a realistic numerical
model of the storm of February 24, 2004, centered at (160◦ E, 42◦ N). The maps correspond to February
27th (top) March 1st (middle) and March 6th (bas) at 00h UTC, which is 3, 6 and 9 days after the storm
(reproduced from Delpey et al., 2010).

dissipation effects, and for distances of the order of 4000 km or more from the storm center, the decrease
in swell height following the peak in space and time is given by

Hss(α) = Hss(α0)

√
α0 sinα0

α sinα
. (4.13)
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In practice, the height is further reduced by islands and continents where it breaks and dissipates on
the shore. Dissipation in deep water is locally weak but can add up to a significant effect over long
propagation distances (Ardhuin et al., 2009a). Even with these effects, it is possible to record swells
coming from the antipodes (e.g. Munk et al., 1963).

4.3 Frequency spectra

4.3.1 The early days

The first measurements of wave spectra from time series were performed in 1944, as part of the efforts
of Group W at the British Admiralty, after the amphibious assault on Normandy (Barber et al., 1946;
Ursell, 1999). These records, and the many others that followed, revealed that for frequencies above the
spectral peak, the decrease in energy takes always the same form. Phillips (1958) introduced the idea
of an equilibrium region for f > fp, and proposed that gravity was the only determining factor for that
part of the spectrum which was controlled by wave breaking. Dimensional analysis leads to the shape

E(σ) = αP g
2σ−5 soit E(f) = αP (2π)

−4
g2f−5, (4.14)

where αP ≈ 0.008 is now called Phillips’ constant. The non-dimensional energy E(σ)σ5/g2 is constant
in this model: the surface is thus fractal without any particular scale. In other words, these waves are
self-similar and have all the same shape, whether they are large or small. These ideas were also developed
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Figure 4.6: Evolution of the wave spectrum with fetch.
(a) measured spectra on September 15, 1968 at 11h during JONSWAP, with, inset, the proposed pa-
rameters for the JONSWAP spectrum. Numbers indicate the fetch in kilometers. (b) spectra measured
on November 3rd, 1999, averaged from 13h to 17h during SHOWEX, using Datawell Mark III waverider
buoys. Note that the scale is logarithmic. In the SHOWEX case, the wind speed is 10 m/s, 20 degrees
from the shore-normal. The peak around f = 0.1 Hz corresponds to swell arriving from the Atlantic,
against the wind. The instrument at the shortest fetch reveals two peaks in the wind sea, at 0.25 and 0.45
Hz. The analysis of wave directions, not shown here, show that the first peak is propagating alongshore,
and the second is in the wind direction. The existence of the first peak is due to the oblique 20◦ angle
between the wind and the shore-normal.

by Kitaigorodskii (1962), and led Pierson and Moskowitz (1964) to propose an empirical shape for the
full spectrum, based on fully developed sea states,

E(f) = EPM (f) = αP g
2 (2π)

−4
f−5 exp

[
−5

4

(
f

fp

)−4
]
. (4.15)

At short fetch, it was soon realized that this spectral shapes could be significantly different. The peak
is particularly narrower for young sea states. Also, the values of the spectral density E(f) for a given
frequency f can be larger than those found for old seas: this overshoot of the spectral peak was first
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discussed by Barnett and Sutherland (1968), and further investigated during the 1968-1969 Joint North
Sea Wave Project (JONSWAP, see Hasselmann et al., 1973), figure 4.6).

Based on these observations, a ‘peak enhancement’ was added to the Pierson-Moskowitz (PM) shape,

E(f) = EPM (f)γ
exp

[
−(f−fp)2

2σ2
A/B

f2p

]
. (4.16)

This may look a bit complex, but each parameter plays a fairly clear role, illustrated in figure 4.6.a.
γ ' 3.3 is the ‘peak enhancement-factor’, if equal to 1 then the spectrum is a PM spectrum, σA/B is
the relative width over which this enhancement applies. It was found that σA ' 0.07 if f < fp and
σB ' 0.09 otherwise. Using (4.16) and (4.8) one can estimate Cp and fp = g/(Cp2π) as a function of
the wind speed. This gives the average spectral shape measured in the North Sea during JONSWAP.

4.3.2 The modern era

More recent obvservations, starting with Toba (1973), have shown that, at frequencies between fp and
3fp, the spectrum was not following f−5 but f−4. This shape can be obtained by including the wind
speed or friction velocity in the dimensional analysis, it also corresponds to a constant flux of energy
towards high frequencies due to the non-linear wave-wave interactions. In passing, we can see that it
is always easy to find a theory for anything after the observations have been made. This f−4 decrease
near the spectral peak is particularly well verified by the wave gauge array data of Donelan et al. (1985),
which was one of the first clean measurements of the spectrum in both frequency and directions. Donelan
et al. (1985) also proposed a spectral shape that reconciles the peak enhancement of the JONSWAP data
with the mature wave spectral shape of Pierson and Moskowitz (1964). The adjustment given here in
eq. (4.8) is an adaptation by Elfouhaily et al. (1997), giving the proper asymptotes for wave energies
and periods. Further analysis by Long and Resio (2007) have shown that there is in general a transition
from f−4 at frequencies above the windsea peak to f−5 at higher frequencies, and the frequency where
this transition occurs appears to be a function of wave age.

This discussion of the detailed shape of the wave spectrum at frequencies beyond 2fp may sound
unimportant because it affects a very small fraction of the wave energy. However, that part of the
spectrum supports most of the energy flux from the wind to the waves, and thus defines the roughness
of the sea, and thus the growth rate due to the wind for the entire spectrum. Also, these short waves
dominate the surface slopes, which strongly affect ocean remotely sensed properties such as sea level,
surface salinity and wind speed and direction. Measurements of the sun reflection by the ocean performed
by Cox and Munk (1954) give a very good estimate of the mean square slope (mss),

mss =

∫ (
k2
x + k2

y

)
E(kx, ky)dkxdky '

∫
(2πf)4

g2
E(f)df, (4.17)

where the second equality uses the linear wave approximation. In order to have a finite value of the
mss, E(f) must decrease faster than f−5 towards the high frequencies. Elfouhaily et al. (1997) and
Kudryavtsev et al. (1999) have used this argument and detailed remote sensing data to propose a para-
metric shape of the wave spectrum that is a function of wind speed and wave age, and includes a strong
decrease for k > 10kp, taking also into account the effect of surface tension (see also Dulov and Kosnik,
2009; Yurovskaya et al., 2013). A few proposed parametric spectral shapes for gravity waves are com-
pared in figure 4.7. In practice there is a very strong variability of the observed specta around these
average shapes due to spatial and temporal variations in wind speed and direction. It should also be
noted that for f > 4fp there can be a dominant contribution of non-linearities, as revealed in stereo-video
imagery (see figure 3.8 in the preceding chapter).

4.4 Directional spectra

4.4.1 Early parameterizations

The distribution of wave energy as a function of directions, is still very much debated because of the
difficulty of measuring details of that distribution. Indeed, a wave buoy only measured 5 parameters for
each direction (e.g. Kuik et al., 1988), and even ADCP systems are generally too noisy to go beyond the
mean direction and possibly spreading at each frequency (Herbers and Lentz, 2010). There are, however,
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Figure 4.7: Example of proposed parametric wave spectrum shapes, for U10 = 10 m s−1 et X = 50 km.
Left: using a linear scale and right, the same spectra with a logarithmic scale. The slope of the curves in
log scale gives the power n of the dependance E(f) ∝ f−n. Note the transition from n = 4 for f < 2fp
to n > 5 at higher frequencies, broadly consistent with the analysis of Long and Resio (2007). We have
extended here the Donelan et al. (1985) spectrum beyond its range of validity, namely for f > 3fp, in
order to better visualize its f−4 decay.

important constraints on the high frequency directional distribution, with a surface slope variance which
is almost the same in the downwind and crosswind directions.

The frequency-direction spectrum E(f, θ) is often decomposed into a frequency spectrum and a
normalized directional distribution

E(f, θ) = E(f)S(f, θ) (4.18)

with the normalization ∫ 2π

0

S(f, θ)dθ = 1. (4.19)

The first parameterizations of S(f, θ) used the fact that S is a periodic function and that buoys can
provide the first terms in its Fourier decomposition,

S(f, θ) =
1

2π
+ a1(f) cos(θ) + b1(f) sin(θ) + ... (4.20)

This was soon abandonned because S can be negative for some directions if the series is truncated.
Longuet-Higgins et al. (1963) proposed another distribution that is always positive

S(f, θ) = cos2s ((θ − θm)/2) , (4.21)

which is symetric about the direction of the maximum θm, and narrower for larger s. This shape is
still widely used, although s cannot be readily measured, whereas the directional spreading σθ (defined
in chapter 3), is directly related to co-spectra of measured displacements or velocities. The width of
the directional spectrum is generally minimum at the spectral peak, and increases towards both higher
and lower frequencies. The mean direction, even for the wind sea, can differ significantly from the wind
direction, in particular at short fetch (see figure 4.9).

Among other proposed forms, the one by Donelan et al. (1985) is based on theoretical solutions for
non-linear wave groups,

S(f, θ) ∝ 1

cosh2 [β (θ − θm)]
(4.22)

and observations suggest β = 2.44(f/0.95fp)
1.3 for 0.56 < f/fp < 0.95 and β = 2.44(f/0.95fp)

−1.3 for
0.95 < f/fp < 1.6. That particular shape has been used for the estimation of the wind direction from HF
radar data because they have non-zero values in the direction opposite to the wind direction, consistent
with radar data. Unfortunately they still have a single maximum.
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Wind directionf/fp

D(f, )

Figure 4.8: Average spectral distribution measured in Currituck sound for U10 > 7 m s−1 (From Long
and Resio 2007).

4.4.2 Bimodality of the directional spectrum

Indeed, detailed observations using arrays (Young et al., 1995; Long and Resio, 2007) or surface mapping
systems with radar or optical imagery (Hwang et al., 2000; Romero and Melville, 2010; Leckler et al.,
2015) have clearly revealed that for f > fp the wind sea generally has two peaks on either side of the wind
direction, as shown in figure 3.8 and 4.8. Such a distribution is called bimodal. For frequencies f > 3fp
these peaks are 60 to 80 degrees away from the wind direction, at least for young waves (Cp/U10 < 1/3).
There is no simple parametric form for these bimodal spectra, and their general shape for more mature
waves is not established. Also, numerical models have a hard time reproducing clearly bimodal spectra,
as discussed by Alves and Banner (2003). In general, for the dominant waves, we only have a good
knowledge of the mean direction and directional spreading. One example of these two parameters is
shown in figure 4.9).

As a result, applications that require a detailed knowledge of the directional spectrum, such as the
interpretation of double-frequency acoustic and seismic noise, have to deal with large uncertainties. In
fact, underwater acoustic data is one important source of measurements that can be used to better
constrain our knowledge of the directional wave spectrum (Tyler et al., 1974). This source of data is now
better understood (Ardhuin et al., 2013) and is still being explored (Farrell and Munk, 2008; Duennebier
et al., 2012; Peureux and Ardhuin, 2016). This aspect is detailed in chapter 21.

At high frequencies, remote sensing using HF (e.g. Kirincich, 2016) or microwave radars can also
constrain the directional distribution, and specific spectral shape parameterizations have been proposed
by, for example, (Elfouhaily et al., 1997) and (Kudryavtsev et al., 2003) to provide wave spectra consistent
with radar observations. With more data available now in new microwave bands such as L band (e.g.
Yueh et al., 2013), and detailed wave shape measurements from stereo-video and polarimetric systems,
there will certainly be improvements in the coming years.

4.4.3 Swell spectra

The spectrum of a swell system is simply a wind sea spectrum that has dispersed and dissipated. Due
to the dispersion, it is much more narrow than a wind sea spectrum, and this narrowness increases with
the distance from the storm. This narrow peak may be parameterized by a Gaussian, with a frequency
bandwidth that is proportional to the size of the storm and inversely proportional to the spherical distance
α from the storm (Collard et al., 2009). The directional width is also increased by the storm size and
reduced by the distance, with one important difference due to the Earth sphericity. Indeed, beyond one
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Figure 4.9: Example of measured directional parameters
Measurements during SHOWEX on November 3rd 2003, in presence of a 1 m swell opposing the wind
sea. The wind direction is from 270◦ and the shoreline faces 70◦. The different wave systems are clearly
separated by a local maximum of the directional spreading σθ.

quarter of the Earth circumference, the directional width increases if no land has blocked the swell, and
is proportional to 1/ sin(α). Hence, the decrease in wave height given by eq. (4.13) corresponds to a
narrowing of the spectrum, not to a reduction of the spectral density. Indeed, in absence of disspation,
for deep water and without current, the spectral densities E(f, θ) are conserved during propagation.
Namely E(λ0, φ0, t0, f, θ0) = E(λ′, φ′, t′, f, θ′), where the point of coordinates (λ, φ, t) is on the same
great circle as the point (λ0, φ0, t0), and such that the azimuth of the great circle changes from θ0 to θ.

4.5 Summary

4.5.1 Important parameters

We have seen that the most important factor that control the wind sea are

• the wind speed U10

• the fetch X

• the duration t over which the wind has been blowing.

• The depth D, which was not discussed here. The reader may follow Young (1999).

Other parameters also have a quantitative effect,



62 CHAPTER 4. MEASURED WAVES: MAIN PARAMETERS AND WAVE SPECTRA

• the shape of the fetch area

• the air-sea temperature difference Ta−Tsea and the larger gustiness when this difference is negative.

• strong currents C (if U/C > 0.1).

• rain. That latter factor is not well known and is probably not so important in general.

The parameters of the first list have effects that are well understood. For the second list, the complex
situations usually require the use of a numerical wave model in order to get a reliable estimate of the sea
state parameter... but even in the models not all of these effects are well understood and thus not well
parameterized in the models. The next chapter will present the main concepts used in numerical models
for the evolution of waves in deep water.

4.5.2 Spectral shape

Wave spectra estimated from measurements have a wide variety of shapes, in particular close to coastlines
where the fetch limitation on wave growth gives mean direction that can vary with frequency. In the
open ocean, multiple swell systems that come from remote storms are also often present. (e.g. figure
3.4). The wind sea exhibits a clearly marked peak, where directional spreading has a local minimum,
and a decrease of the spectral density E(f) proportional to f−4 up to 2 to 3 times the wind sea peak
frequency. For higher frequencies, the spectral density decreases like f−5 or faster.

In the directional distribution, there is always some energy in all directions, as revealed by high
frequency radar data (e.g. Barrick et al., 1974; Tyler et al., 1974) but it can be very small. The wave
spectrum generally has a marked bimodality at frequencies between 2 and at least 4 times the wind sea
peak frequency, with two maxima on either side of the wind direction. This spectral shape is the result
of different processes that, as we will see in the next chapter, can be represented in an equation for the
evolution of the spectrum.



Chapter 5

Spectral wave evolution in deep
water

It is now well understood that ocean waves derive most of their energy from the wind, and lose most
of it to the ocean turbulence as they break. We shall see also in the next chapter that waves also
carry some horizontal momentum, which, for monochromatic waves of phase speed C has a density per
unit horizontal surface equal to ρwgE/C and points in the wave propagation direction. The generation
of waves by the wind is thus associated to vertical fluxes of horizontal momentum and energy going
from the wind to the wave field. This flux of momentum generally accounts for more than 70% of the
total momentum flux going from the atmosphere to the ocean, this total flux is usually called the wind
stress. That air-sea momentum flux does not remain in the wave field, but rather it is lost by wave
dissipation, mostly due to wave breaking, and ends up in the ocean currents. Most of this momentum
loss happens at the same place where waves were generated: the wave field is thus largely ’transparent’
to this momentum flux. However, a few percent of this momentum flux propagates away across ocean
basins and is transformed into changes in sea level – this is known as wave set up – and currents on
the beaches where waves break. These currents are the longshore currents. This transformation of wave
momentum in the nearshore is the topic of chapter 16.

Besides, the generation or attenuation by the wind and dissipation associated to breaking, a third
mechanism is very important for the evolution of the waves in deep water. It is the non-linear evolution
of the waves which can be understood as a wave-wave scattering process: waves components exange
energy and momentum, some components grow and others decay. In order to make things simple, we
will consider now each of these three mechanism separately.

5.1 Generation of waves by the wind

The fraction of the wave energy that is in the water is (ρw − ρa)/ρw ' 99.9%. Hence the transfer energy
from wind to waves involves a flux of energy through the sea surface. Because the surface is a material
surface, this flux cannot happen by advection, it thus requires the work of stresses on the surface, either
the tangential stresses τ or the normal stresses, i.e. the pressure p. In the case of tangential stresses,
the work is the correlation of the along-surface shear stress with the along-surface orbital velocity. The
work of normal stresses is the correlation of pressure times the velocity normal to the surface (see figure
5.1). A quantification of these energy fluxes thus require the identification of processes that produce
pressure and shear stresses on the surface. The first hypotheses on wave generation followed the theory
of hydrodynamic instabilities. The air flow over a water surface is a particular case of a sheared flow
in a stratified medium that may lead to the Kelvin-Helmholtz (KH) instability. This may indeed be
important for very high winds speeds (Soloviev et al., 2014), but it cannot explain the initial growth of
waves under moderate winds. In particular, KH theory predicts instabilities for an air-water interface for
wind speeds above 6,5 m s−1 (Jeffreys 1925), but ripples already appear on the water surface for winds
as low as U = 1, 1 m s−1 (Kahma et Donelan 1988).

This initial growth of ripples is rather well explained by the effect of turbulence in the air advected
by the wind Phillips (1957). That process is very soon overtaken by the feedback caused by the wave-
induced pressure oscillations in the air, as the airflow is modified by the presence of waves. When waves
travel slower than the wind projected in their propagation direction, the pressure is slightly higher on
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pressure-related flux is positive towards the water side. Likewise, if the shear stress τ is opposed to the
velocity vector (as here), the flux τu induced by shear stresses is negative (i.e. energy goes from the
water to the air). Similarly, the momentum flux is the average stress acting on the surface. Because of
the surface slope, the vertical flux of horizontal momentum is the average of p∂ζ/∂x plus the average of
τx.

the windward face, typically of the order of a few Pascals, and lower on the leeward side. In a first
approximation, the amplitude of the pressure fluctuations is proportional but shifted in phase compared
to the amplitude of the surface elevation, we shall thus use complex amplitudes for the pressure dPa and
the elevation dZ,

dPa = ρwg (α+ iβ) dZ, (5.1)

where α represents the in-phase oscillations and β the oscillations in quadrature. Here we will take α = 0
for simplicity as we shall see that it is not important for wind-wave growth. The boundary condition on
the continuity of pressure at the sea surface (eq. 22.25) writes,

∂2dZ

∂t2
+ σ2 (1 + iβ)Z = 0. (5.2)

When β � 1, the solution to first order in β is

ζ = a(t) cos θ1, (5.3)

φ =
ga(t)

σ
FCC sin θ1 + βg

a

2σ
FCC cos θ1, (5.4)

p = −ρwgz + ρwga(t)FCC cosψ − gβaFCC sin θ1, (5.5)

da(t)

dt
=

βσa(t)

2
, (5.6)

d

dt

a2(t)

2
= βσ

a2(t)

2
(5.7)

where FCC = cosh(kz + kh)/ cosh(kD), and Θ1 = k · x − σt. In the absence of other processes, this
surface pressure yields an exponential growth or decay of the wave energy, depending on the sign of β.

It is an interesting exercise to also compute the Eulerian-mean flux of momentum at each depth,
〈uw〉, and prove that it has the same profile as the Stokes drift, given in the next chapter. This means
that when the wind generates waves, the wave momentum increases in the water column, storing the
momentum flux across the air-sea interface.

5.1.1 Measuring and parameterizing wind-wave generation

With an air pressure that is proportional to the surface elevation, the energy growth in eq. (5.7) can be
written as,

Sin (f, θ) = σβE (f, θ) . (5.8)
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The magnitude of the non-dimensional growth rate β is a key parameter to determine the energy balance
with dissipative and non-linear processes, and, as a result, the shape of the wave spectrum. Numerical
wave models all use semi-empirical parameterized expressions, with β a function of the relative direction
between the wind and the waves, and a function of the ratio of the wind speed and the phase speed.

In most model parameterizations, β is inspired from theoretical results (e.g. Miles, 1959; Fabrikant,
1976; Miles, 1996), with empirical adjustments to the few available measurements of pressure over waves,
or numerical simulations of air flow over waves, or observed wave groth (Plant, 1982), or measurements
of pressure-slope correlations (Snyder et al., 1981; Donelan et al., 2005, 2006).

5.1.2 Parameterizations based on observations

Snyder et al. (1981) performed an important field experiment in the bight of Abaco, in the Bahamas,
in order to reconcile the previous diverging observations by Dobson (1971) and Snyder and Cox (1966).
Their measurements performed under light to moderate wind speeds are summarized by a growth rate

β = max

{
0, 0.25

ρa
ρw

[
28
u?
c

cos (θ? − θ)− 1
]}

. (5.9)

where ρa and ρw are the densities of air and water, and u? = 〈u′w′〉1/2 =
√
τa/ρa where τa is the air-sea

momentum flux per unit horizontal surface, usually called ‘wind stress’. This parameterization is used
in the ‘Cycle 3’ of the WAM model (WAMDI Group, 1988).

The measurements by Snyder et al. (1981) have been confirmed by other experiments, for example
in the North Sea by Hasselmann and Bösenberg (1991). Unfortunately these measurements at sea are
made only with moderate wave heights and wind speed, and only for waves around the spectral peak.

Besides, most wind measurements at sea consist of mean wind speed and direction at a fixed height,
typically 5 m, without the rapid fluctuations needed to estimate the friction velocity u?. A link between
this wind speed and the wind stress is provided by assuming that the turbulent momentum flux 〈u′w′〉
is constant with height (which is not so true near the surface in the presence of waves), and that the
mixing can be parametrized by an eddy viscosity of the form νT = l2∂U/∂z where the mixing length is
given by l = κz with von Kármán’s constant κ = 0.41. Under these assumptions, the wind speed profile
is a logarithmic as a function of height,

U (z) =
u?
κ

ln (z/z0) , (5.10)

starting from 0 at the roughness height z0. There are many discussions on the proper way to estimate
z0, but a first reasonable guess is provided by the dimensional analysis of Charnock (1955),

z0 ' αCHu2
?/g, (5.11)

where αCH ' 0.015 is Charnock’s ’constant’.
From this type of expression, several adjustement have been proposed, in particular it appears that

the Charnock coefficient may vary with wave age, with an increase for young waves. This is how Janssen
(1991) parameterized the numerical results of a coupled wave-atmosphere boundary layer model.

For very young waves, with U10/Cp > 3 there are also clear signs of strong air flow detachment from
the sea surface, which leads to an increase of β and decrease for extremely young waves when the air
flow is fully detached (Donelan et al., 2006; Babanin et al., 2007). This detachement of the air flow and
attenuation of the short waves by the wind (Soloviev et al., 2014) are possible explanations, together with
the effect of sea spray (Andreas, 2004), for the reduction of the drag coefficient Cd = u2

?/U
2
10 in hurricane

conditions. This is a very active topic of research with important consequences for the understanding
and forecasting of extreme storm surges (e.g. Resio and Westerink, 2008).

5.1.3 Short waves and multiple-scale interactions

For the high frequency part of the spectrum, say f > 3fp, there are no direct measurements of the
pressure-slope correlations. The growth parameterizations are thus inferred from the observation of
wind-wave growth (e.g. Plant, 1982), and numerical simulations that are consistent with an energy
source term Sin proportional to u2

? cos2 (θ? − θ). Besides, approaching the sea surface from above, a
growing fraction of the momentum flux is carried by the wave orbital motion, in the form of a correlation
uw. A likely consequence is that the short waves, which are affected by the air layers closest to the



66 CHAPTER 5. SPECTRAL WAVE EVOLUTION IN DEEP WATER

80 

70 

60 

50 

40 

$ 30 

20 

10 

0 

-10 

-20 
0 5 10 15 20 25 30 

c/u, 

of the wave growth rate from when IGQ = 

C/u* 

(b)(a)

u* / C 

2 
π 
β

 β
 [(

u */C
)2

 ρ
a/
ρ w

]-1

Figure 5.2: Growth rate of waves propagating in the wind direction, combining observations and theory.
a. solid line: Miles theory as extended by Fabrikant and Janssen, dashed: measurements of Snyder
et al. (1981) as summarized by eq. (5.9), symbols: estimations compiled by Plant (1982), this figure is
taken from Janssen et al. (1994). (b) growth rate for a non-dimensional wavenumber kz0 = 10−4 (filled
triangles) compared to numerical model results with connected circles by Mastenbroek (1996) and the
Plant (1982) data (other symbols), that figure is taken from Belcher (1999).

surface, only feel a reduced wind stress as they are ’sheltered’ by the longer waves (Hara and Belcher,
2002). In the presence of long waves, we thus expect that the growth rate of shorter waves is strongly
reduced.

5.1.4 In summary

Wind is a source of energy (Sin > 0) for all spectral components such that U/(C cos θu − θ) > 1. In the
spectral plane, this corresponds to a region bounded by the straight line defined by U/(C cos θu−θ) = 1.
The other components, with U/(C cos θu− θ) < 1 are a sink of energy for the waves (Sout < 0), and thus
a source of energy for the wind.

The wind generation source term can be written as

S(k, θ) = Sin(k, θ) + Sout(k, θ) = σβE(k, θ), (5.12)

where the non-dimensiona growth parameter β is of the order of 30ρau?/C/ρw for 1 < U/(C cos θu−θ) <
3, and a much smaller negative number, typically −2×10−6 for U/(C cos θu−θ) < 1. This negative part
appears to be non-linear with a magnitude of β that increases with the steepness of the swell.

In general it is expected that the growth rate of one component is also a function of the amplitude
of other components, but that effect is very poorly known.

5.2 Weakly non-linear evolution

Because waves are not exactly linear, they produce many interesting effects: presence of harmonics,
recurrence patterns, instabilities ... that are further discussed in chapter 18. Here we will focus on
the evolution of the wave spectrum that comes from the exchange of energy between different spectral
components.

This spectral evolution is generally described as a wave-wave interaction process, which is a partic-
ular case of wave scattering. In the case of a continuous spectrum, this effect is also known as ‘weak
turbulence’, as it exhibits Kolmogorov-type solutions with a cascade of energy towards the short waves
as well as an inverse cascade towards the longer waves. The rate of change of the spectrum due to
this non-linear effect was determined by Klaus Hasselmann (1960,1962) and Vladimir Zakharov (1968),
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starting from the Euler equations and assuming a quasi-Gaussian sea state. These two publications used
different methods that are equivalent, as shown by (e.g. Elfouhaily et al., 2000; Resio et al., 2001). The
confirmation of this theory using more complete equations of motions is fairly recent (Tanaka, 2001;
Korotkevich et al., 2008). The experimental verification in the case of a pair of monochromatic wave
train was first performed by McGoldrick et al. (1966), who showed that two wave trains of different
frequencies and directions can create a third wave train with yet another frequency and direction.

Hence, within the wave spectrum, there is a continuous exchange of energy between components
that strongly modifies the shape of the spectrum. This exchange is strongest for steep waves. The
only remaining doubts about this theory are its applicability to shallow water or in cases with strong
variations of depth or currents on the scale of the wavelength.

5.2.1 Wave-wave interation theory

When solving the Euler equations, we can keep the non-linear terms that were discared by Airy, and
write the solution as an expansion in powers of the wave slope ε = ka (see eq. 18.13). One then finds a
first order solution that is a superposition of Airy waves

ζ1 =
∑
k,s

Z(k, s)ei[k·x−sσt] (5.13)

and that can be introduced into the second order equations.
In order to make things simple, let us replace the full boundary conditions (18.3), by something more

simple, [
∂

∂t2
− gk tanh(kD)

]
ζ = g∇ζ · ∇ζ. (5.14)

At second order this gives the following forced harmonic oscillator equation[
∂

∂t2
− gk tanh(kD)

]
ζ2 = g∇ζ1 · ∇ζ1. (5.15)

If there are components (k, σ) such that k = k1 +k2 et σ = σ1 +σ2 then the solution contain resonances.
Phillips (1960) showed that such components do not exist because the dispersion relation of gravity waves
does not have an inflexion point, hence there is no resonance at second order and the solution is bounded
with a simple expression of the second order amplitudes as a function of the first order amplitudes,

ζ2 =
∑
k1,s1

∑
k2,s

A(k1,k2, s1, s2)Z(k1, s1)Z(k2, s2)ei[(k1+k2)·x−(s1σ1+s2σ2)t] (5.16)

with A(k1,k2, s1, s2) a constant coefficient given by

A = k1 · k2/ [s1σ1s2σ2 − gk tanh(kD)] . (5.17)

The actual Euler equation (18.3) has a few extra terms but it is the same principle with a similar
result, only the actual value of A changes. This second order elevation is the generalization of the first
harmonic of a monochromatic waves: if the first order only contains waves of frequency f , the the second
order has components with frequency 2f and 0.

Things get more exciting when resonances exist. Resonances at second order exist for dispersion
relation with an inflexion point, which is the case of gravity-capillarity waves or in the presence of sea
ice, but we will not discuss this here. For gravity waves Phillips (1960) showed that resonanced occur
at third order. The third order amplitude is a solution of a forced oscillator equation that looks like the
wind-forced waves (22.25),[

∂

∂t2
− gk4 tanh(k4D)

]
Z3(k4) =

∑
k1,k2,s1,s2,s3

B(k1,k2,k3, s1, s2, s3)Z(k1, s1)Z(k2, s2)Z(k3, s3)

ei[(k1+k2+k3)·x−(s1σ1+s2σ2+s2σ3)t] (5.18)

in which k3 = k4−k1−k2. The right hand side is resonant for k4 = k1+k2−k3 and σ (k4) = σ1+σ2−σ3.
This resonance condition is satisfied for an inifinite number of quadruplets (k1, k2, k3, k4), as illustrated
in figure 5.3, for the case of deep water. Resonances also exist in shallow water, only the shape of the
curves are changed.
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Figure 5.3: Geometric arrangement of wavenumbers that produce resonant interations in deep water,
and particular case of the quadruplet used in the Discrete Interaction Approximation (DIA), taken from
van Vledder (2006).
The resonance conditions k4 = k1 + k2 − k3 and σ (k4) = σ1 + σ2 − σ3 mean that for a given k1 + k2,
k3 must be on the curve where k1 lies: each curve corresponds to a fixed value of σ1 + σ2. A practical
parameterization uses a single configuration k1 = k2 = k, k3 = (1 + λ)2k and σ1 + σ2 = γσ, which
imposes k4 = (1− λ)2k. This DIA, as adjusted by Hasselmann et al. (1985b), uses λ = 0.25 et γ =

√
2.

The angle of the ∞-shaped curve near the origin with the x-axis, when k3 ' k1 is the same 35◦ angle as
in the next figure. Each curve corresponds to a different value of γ.

A particular case corresponds to k1 = k2, as in the figure. Any component k3 that lies on the thick
black curve shaphed like∞, will interact resonantly with components k1 and k4. This was verified in the
laboratory in the case where k3 and k1 are at right angles (McGoldrick et al., 1966), with the creation
of the new wave component k4.

The fact that not all combinations of wavenumbers are resonant reduces the number of dimensions of
the interaction space from 6 to 3. In other words, the components with wavenumber vector k4 interact
with components k1, k2 and k4 that follow some particular curves in spectral space. Assuming that
the surface elevation is Gaussian makes it possible to neglect the correlations of 4 different wave trains
(Hasselmann, 1962), giving a rate of change of the energy for time scales much larger that the wave
period,

∂E (k4)

∂t
= Snl (k4)

=

∫
|T (k1,k2,k3,k4)|2 δ (k1 + k2 − k3 − k4) δ (σ1 + σ2 − σ3 − σ4) (5.19)

×{E (k1)E (k2) [E (k3) + E (k4)]− E (k3)E (k4) [E (k1) + E (k2)]}

where δ is always zero except δ(0) = 1, and the coefficient T is an algebric expression similar to A in eq.
(5.17) but much more complex, and given by Herterich et Hasselmann (1980), or, with a simpler form,
by Zakharov (1999). The practical calculation of this coefficient and its integration requires a careful
handling of singularities (e.g. Gorman, 2003).

The positive term E (k1)E (k2) [E (k3) + E (k4)] in eq. (19.21) comes from the third order amplitude
squared in (18.39), and the negative term −E (k3)E (k4) [E (k1) + E (k2)] is due to the correlations
between first and fifth order terms in eq. (18.43). This negative part is critical to conserve the total wave
energy. In general the coefficient T decreases as the difference between wavenumbers is larger. In other
words, the interaction of very different wavelengths or directions is much weaker than the interaction of
components that are very similar. A rough estimate of the time scale of spectral evolution is ε4Tp.

Faster evolutions due to non-linear effects exist that are not represented by Snl. These faster changes
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are oscillations of the energies that do not contribute directly to the long term evolution of the wave
spectrum.

5.2.2 Conservation properties

The source term Snl conserves the total wave energy, namely,

Etot = ρwg

∫
E (k) dk (5.20)

as well as the wave momentum vector, which will be discussed further in the next chapter,

Mw = ρwg

∫
k
E (k)

σ
dk, (5.21)

and the wave action,

A =

∫
ρwg

E (k)

σ
dk. (5.22)

As we will see in chapter 7, the conservation of wave action in general is related to the invariance of the
phase-averaged physical situation by a change of the wave phases. In particular, wave action - and not
wave energy - is conserved when waves propagate across current gradients without energy dissipation.

The conservation of the two scalar quantities A and E in a non-linear system imposes the presence of
transfers of energy, also known as ’cascades’, towards both short and long wave components (Zakharov
and Zaslavskii, 1982). Indeed, once integrated over directions, Snl(k) is the rate of change of the energy
for a given wavelength. Assuming that there is only a transfer of energy from components with k < kt
to shorter waves with k > kt, we would have both∫ kt

0

Snl(k)dk = −
∫ ∞
kt

Snl(k)dk (5.23)

and ∫ kt

0

Snl(k)/σdk = −
∫ ∞
kt

Snl(k)/σdk, (5.24)

which is not possible since the division by σ makes the first integral relatively bigger than the second.
Hence there is a flux of energy towards both long and short waves, which explains part of the increase
in wavelength as the waves develop with time or fetch. Also, the conservation of momentum Mw,
further imposes that the energy transferred towards high frequency cannot be in the same direction, but
rather in oblique or opposed directions. This property is tighly linked to the resonant conditions that
is a consequence of the dispersion relation. Investigating the evolution of a narrow-peaked spectrum,
Longuet-Higgins (1976) showed that the energy tends to flow away from the peak towards high frequencies
at directions arctan(1/

√
2) rad ' 35◦ (figure 5.4). Under the effect of nonlinear interactions alone, a

narrow spectrum thus tends to have a split tail with two peaks separated by about 70◦, which agrees
with the observations of wind sea spectra at frequencies 1.5fp < f < 2fp (Hwang et al., 2000; Long and
Resio, 2007), as shown in figure 4.8.

Without forcing from the wind and assuming that the dissipation occurs only at the smallest scales, the
wave spectrum tends to evolve towards a self-similar shape known as the Kolmogorov-Zakarov spectrum,
with a decay towards high frequencies that is proportional to f−4. In reality, the presence of forcing and
dissipation at the dominant scales makes the wave spectra different from this self-similar solutions.

5.2.3 Other properties of wave-wave interactions

Besides the fluxes towards both ends of the spectral domain, the non-linear interactions also have a
very strong local smoothing effect. If one takes a spectrum near equilibrium and introduces a local
perturbation, the 4-wave interactions will very rapidly remove this disturbance giving a smooth spectrum.
This smoothing is faster for steeper waves. For a wind sea, this can happen in less than 100 periods,
(figure 5.5), which is much faster than the theoretical dimensional argument saying that Snl acts on a
time scale of ε6Tp. In the case of swells, with a much weaker steepness, it is possible that the interactions
produce a significant broadening of the directional spectrum, without a noticeable shift in frequency
(T.H.C. Herbers, personal communication, 2001).
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Figure 5.4: Non-linear interactions and bimodal spectral distributions.
The interaction of wave components with wavenumber vectors k1, k2, k3 and k4, when k3 ' k4.
Since k1 + k2 = k3 + k4, the 4 wave vectors make a parallelogram. taking k3 and k4 symmet-
ric about the spectral peak kp and taking the x-axis in the direction of kp, one gets kp,y = 0

and k1 =
√
k2
p + 2kp∆k1,x + ∆k2

1,x + ∆k2
1,y, the latter equation also applies to the three other wave

vectors. Expanding for small values of X1 = ∆k1,x/kp and Y1 = ∆k1,y/kp gives σ1 =
√
gk1 '√

gkp
(
1 + 0.5X1 − 0.125X2

1 + 0.25Y 2
1

)
,. The resonant conditions read X1 + X2 = 0 Y1 + Y2 = 0 et,

for the frequencies σ1 + σ2 = 2σp(1 + α) becomes 2Y 2
1 −X2

1 = 8α. That is the equation of an hyperbola
with a asympote at an angle arctan(1/

√
2) relative to the x-axis (figure adapted from Longuet-Higgins,

1976) .

5.2.4 Practical calculation of wave-wave interactions

The calculation of the full integral Snl is unfortunately a little too expensive today for operational wave
forecasting, except for large scale coarse models, due to the three-dimensional integral needed for each
spectral component and at each grid point where the source terms are evaluated. Such calculations
are thus confined to research applications. Operational wave models use some form of approximation,
and the Discrete Interaction Approximation by Hasselmann et al. (1985a) is the most common. That
approximation preserves the conservation properties of the full integral by using only a subset of the
resonant quadruplets k1, k2, k3, et k4. The original form of the DIA is only valid in deep water.

The shape of Snl produced by the DIA can differ significantly from the exact solution. It has been
adjusted to give the right order of magnitude for the transfer of energy to low frequencies in a wind
sea, which is very important for the wave development. That choice, has some side-effects on other
unconstrained parameters such as the directional wave distribution which is too broad for 1.5 < fp <
f < 4fp.

Several intermediate methods have been developed with some already used in operational wave fore-
casting (e.g. Komatsu and Masuda, 1996).

5.3 Dissipation

Many processes contribute to the dissipation of wave energy, or more exactly, the conversion of mechanical
wave energy into other forms of energy, in particular turbulence in the water and air.

Wave breaking is generally the most important sink of energy for wind seas. In the case of periodic
waves, breaking results from an instability that develops near the wave crest when the orbital velocity
appraoches the phase speed1. This criterion gives a maximum possible wave steepness that is

Hmax/L ' 0.14 tanh(kD) (5.25)

as first determined by Miche (1944a). The factor tanh(kD) happens to be also the ratio between the
amplitude of elevations a and the amplitude of the orbital velocities at the surface in the case of linear
waves. It is likely that a similar criterion applies to random waves. Indeed, water moving forward faster

1In the case of a stationnary wave, instability occurs when the vertical acceleration approaches g.
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Figure 5.5: Illustration of the smoothing effect of non-linear interactions.
A spectrum with a gap, evolves rapidly towards a smooth spectrum. Top-left: initial spectrum, right:
spectrum after 3 minutes, which is less than 100 dominant periods. Bottom: source terms for wind
generation Sin, wave-wave interactions Snl, and dissipation Sds. Figure taken from Young and van
Vledder (1993) .

than the crest will shortly find itself over air and ready to overturn. In deep water, the Miche criterion
(5.25), gives the Stokes limit, kamax = πHmax/L = 0.44.

Laboratory observations by Melville and Rapp (1988) and Stansell and MacFarlane (2002) show that
non-stationary breaking waves have orbital velocities u that approach the phase speed. One of the
important difficulties is to relate this orbital velocity to the wave spectrum, because, for real and thus
nonlinear waves, u increase much faster than a when approaching the breaking limit. Also, breaking is
defined for individual waves, which are not easily related to the spectrum. Many authors have sought
criteria for wave breaking based on the vertical acceleration, but this is not a good indicator of breaking
(e.g. Holthuijsen and Herbers 1986).

5.3.1 A classification of breaking waves

Breaking waves of different sizes look different. The shortest gravity waves, with wavelengths 0.1 <
L < 1 m (i.e. f > 1.25 Hz) do not make any bubbles. This is because an increase in the area of the
air-water interface requires an energy that is the surface tension T times the excess surface, hence the
short waves do not have enough energy to make bubbles when the break. Instead, short waves produce
micro-breakers (Banner and Phillips, 1974) that are characterized by a strong curvature of the surface
and the generation of capillary ripples on the forward face ahead of the breaking point. These capillary
waves are strongly damped by viscosity that absorbs a large part of the energy lost during breaking.
Observations reveal that short waves break very often, with a probability that increases from 11% for a
wind speed of 4.5 m/s to 80% for 7.4m s−1 (Siddiqui and Loewen, 2007). These micro-breakers play an
important role in setting the surface temperature and the gas fluxes at the air-sea interface because they
disrupt the viscous surface layer (figure 5.6.a).

Longer waves are energetic enough to produce bubbles with a particular noise. This ambiant noise is
an important factor in the performance of sonar systems (e.g. Lu et al., 1990; Ma et al., 2005). Injecting
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(b)

(c)

(a)

WIND

50 cm

Figure 5.6: Features of breaking waves from short to longer waves.
(a) Schematic of a micro-breaking waves viewed sideways, the vertical scale of the boundary layer is
exaggerated (from Siddiqui and Loewen, 2007, c©Cambridge University Press)), (b) breaking of a short
wave with entrainment of air at the crest (from Koga, 1982), (c) evolution of a breaking wave in the case
of a plunging breaker with one wave profile every 0.04 s (from Bonmarin, 1989, c©Cambridge University
Press) .

the bubbles at depths also requires a conversion of kinetic energy into potential energy, that can take
up as much as half of the energy lost in the whole breaking process (Lamarre and Melville, 1991). It
should be noted that long waves can contribute to the breaking of short waves, either because the long
waves are breaking or because they produce a straining of the short waves that locally increases the short
wave steepness. Wave breaking of all scales produce vorticity in the water column which is important
for upper ocean mixing, in particular for the diurnal cycle of sea surface temperature.

Several types of breakers are usually defined. When the breaking wave is quasi-stationary with a
gentle forward slope, it is a spilling breaker. A steeper waves that trap a tube of water near the crest, is
a plunging breaker (figure 5.6.c). Finally a waves that rapidly collapses on a steep shoreline is surging
breaker.

5.3.2 Parameterizations of dissipation due to breaking

A global energetic appraoch

Near the shore or on offshore shoals, the water is shallow enough that the dominant waves are not
dispersive. In that case the question of wave breaking is greatly simplified by considering the total
energy Et instead of the spectrum. Since waves near the shore often have a well-defined direction we
may consider that the wave energy is radiated in a single direction, that of the spectral peak. By analogy
with a hydraulic jump, as detailed in section 23.4.1, the rate of energy dissipation per unit surface is

ε(H,D, T ) ' 1

L
ε1(D −H/2, D +H/2) ≈ 1

4
ρg

(BH)
3

DT
(5.26)

where B is a tuning factor that is close to 1... empirical adjustments are often useful to produce accurate
simulations, and this is one of the better constrained coefficients. Obviously, as B comes to the third
power, a small change in B can be a significant change in the modeled dissipation rate.
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Effect of wave height distributions

Since the wave height H is very important for the dissipation rate, we should determine what is the
period and height of the waves that actually break. Experimental data shows that the breaking waves
have a probability distribution pB(H,T ) that is different from the distribution p(H,T ) of all – breaking
or not – waves. We can define a weighting function W that gives the breaking wave distribution from
the full wave distribution,

pB(H,T ) = p(H,T )W (H,T ). (5.27)

The dissipation rate per unit time and per unit horizontal surface is thus an average over all heights
and should equal the sum of all spectral components,

εtot =

∫
ε(H,D, T )W (H,T )p (H,T ) dH = ρg

∫
k

Sdis (k) dk. (5.28)

In deep water, neither the orbital velocity nor the pressure gradient are uniform over the vertical.
The energy flux is thus clearly different from the shallow water value. Hence the depth D that appears
in the dissipation rate ε should be – at the very least – replaced by a relevant length scale h̃. Chawla
and Kirby (2002) proposed to use h̃ = tanh(kD)/k which goes to D when kD goes to zero. In order to
reproduce the wave evolution in both deep and shallow water, Filipot et al. (2010b) have redefined B as
a function of kD with B = 0.185/ tanh[(kD)1.5]. This leads to

ε(H,D, T ) =
1

8π
ρgk (BH)

3

√
gk

tanh(kD)
(5.29)

The choice of h̃ can be debated and should be determined from an energy balance such as eq. (23.11).

5.3.3 Breaking wave statistics in shallow water

Finally, the dissipation rate requires a definition of W (H,T ) and p (H,T ). In shallow water, the energy is
usually integrated across frequencies, and in that case we only need W (H) and p (H). The latter is often
taken to be the Rayleigh distribution pR (figure 22.8). For W , two different choices have been made.
The first choice by Battjes and Janssen (1978) is based on the idea that all breaking waves have the same
height corresponding to the depth limitation H = γD in which γ is a known constant, and the probability
of occurence of these waves is simply given by the Rayleigh distribution, namely QB = pR(h > γD).
The resulting functions p(H) and W (H) thus have a singularity at H = γD. On the problem of this
first approach is that it can lead to unphysical parameters such as QB > 1, which is not very nice for a
probability (Janssen and Battjes, 2006).

The second choice is an empirical determination of W from observations. After days of counting
waves passing by a fixed location in the surf zone, Thornton and Guza (1983) have proposed the empirical
expression

W (H) =

(
Hrms

γD

)4

(5.30)

where γ plays a role similar to the γ in Battjes and Janssen (1978). One reason why they chose this
particular form, is that it allows an analytic integration of eq. (23.13) that gives,

εtot =
3

16
π1/2ρg

B3

γ4D5
fpH

7
rms. (5.31)

in which fp is the peak frequency.

Breaking wave statistics in deep water

Many applications, including underwater acoustics, remote sensing and the investigation of air-sea fluxes,
rely on some characterization of breaking waves. The investigation of breaking waves has been limited
for a long time ot the estimation of the whitecap coverage in which the active part and the residual
foam was separated (e.g. Monahan and Woolf, 1989). This coverage was found to be strongly related
to the wind speed, with an increase from very low values for pour U10 < 7 m s−1, to about 1 % for
U10 ' 10 m s−1, 6 % for U10 ' 20 m s−1, and much more for yet higher wind speeds. In fact, these
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variations in foam coverage and aspect are the basis of the Beaufort scale (see table A.1) that is still
used to determine the wind speed from a visual inspection of the sea.

Wave breaking can also occur without any wind, due to the convergence of wave energy associated
to current gradients or the bottom topography. Most authors have distinguished a ’depth-induced’ wave
breaking that occurs near the shore in the ’surf zone’, from the ’whitecapping’ that occurs in deep water,
usually in the presence of wind. This distinction can be fuzzy in the case of shallow tidal flats, which is
why we preferred to have a single breaking definition (Filipot and Ardhuin, 2012).

The fraction of sea surface covered by foam or the breaking probability used in shallow water is not
sufficient to fully characterize wave breaking. Hence Phillips (1985) proposed a spectral description of
breaking and introduced the breaking spectrum Λ, which is the density of breaking crest length per unit
surface and per unit vector speed c of the breaking fronts. With this definition, the length Λ(c)dcxdcy

(a) (b) (c)

(d)

160 m

(e)

Figure 5.7: Breaking fronts
(a) Detection of breaking front, in black, using infrared imagery of micro-breakers (picture from Jessup
and Phadnis 2005) , (b), (c), (d) foam coverage for wind speeds of 7, 10 and 14 m s−1 (Melville and
Matusov 2002), and (e) schematic defining Λ (from Reul and Chapron 2003).

is the total length of all breaking fronts per unit sea surface that move at a speed c = (cx, cy) within a
speed interval dcx and dcy. In general c is about 0.8 times the phase speed C of the dominant waves
that are breaking, due to modulation effects (Banner et al., 2014). Such a decomposion of the breaking
waves was motivated by the observation by Duncan (1981, 1983) in the laboratory that the dissipation
is proportional to c5.

Other interesting quantities derived from Λ include the fraction of the sea surface wiped by breaking
fronts per unit time

∫
cΛdcxdcy. Assuming that the breaking waves have self-similar shapes, Λ can also

be used to provide a an estimate of the mean foam thickness (Reul and Chapron, 2003).
The investigation of breaking wave properties has thus focused onthe estimation of Λ from observations

or models. This is not an easy task, requiring high resolution video data in both optical and infrared
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(b) (c)

(d)

Figure 5.8: Breaking probability and saturation
The probability of breaking of dominant waves bT is linked to the steepness of the dominant waves ε
which is related to the saturation ε2 ' 4B (k) with ∆θ = π and ∆k ' 0.6k. The threshold over which
breaking is observed is ε = 0.055, which corresponds to B (k) ' 1× 10−3.

as illustrated in figure 5.7 (e.g. Sutherland and Melville, 2013). More classical measurements of surface
elevation time series have also been associated to a visual or acoustic indentification of breaking waves
(Banner et al., 2000; Babanin et al., 2001; Manasseh et al., 2006). These studies have led to the conclusion
that the breaking of dominant waves is not associated to a fixed threshold, but that statistically, the
probability of breaking waves can be predicted from the energy level of dominant waves. There is a fixed
threshold, when the energy is put in non-dimensional form, over which breaking occurs. There is thus a
link between the breaking probability and the ’saturation’ spectrum B(k) introduced by Phillips (1985)
and defined by

B (k, θ) =

∫ θ+∆θ

θ−∆θ

∫ k+∆k

k−∆k

cosp(θ − θ′)k2E(k, θ′)dkdθ′. (5.32)

As pointed out by Phillips (1984), using a local definition of B with ∆θ and ∆k very small makes
sense only if the spectrum is relatively smooth. Indeed, for a narrow spectrum, B could be very large with
very small amplitude waves, even going to infinity for monochromatic waves. In their analysis Banner
et al. (2000) used ∆θ = π, p = 0 and ∆k ' 0.6k. In fact, it is difficult to investigate breaking statistics
for small values of ∆θ, due to the greater statistical uncertainty. In practice the breaking probability
is associated to the presence of steep waves, and these can exist only if wave trains with neighboring
wavenumbers and directions can interact to form wave groups that live long enough to let the waves
evolve towards breaking. The basic interaction is first a linear superposition, and the eventual evolution
up to breaking is obviously nonlinear (e.g. Song and Banner, 2002).

Besides, the fact that B has no dimensions suggests that breaking mainly depends on the shape of
the waves, while other factors (wind, current ...) are only secondary. After a first demonstration for
dominant waves, a threshold for B has also been proposed for the shorter compoents (Banner et al.,
2002).

We note that if B is constant then the wavenumber spectrum integrated over directions decays like k−3

and, assuming that waves are linear, the frequency spectrum decays like f−5. Besides, a constant non-
dimensional spectrum means that all the scales have the same shape: the waves are self-similar. We had
found before that non-linear wave-wave interactions tend to impose a f−4 shape to the spectrum. Well,
this shape is not possible beyond some frequency where it crosses the f−5 asymptote as the steepness of
the waves must be limited by breaking.
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5.3.4 A spectral approach

In order to decompose the overall dissipation rate εtot across the spectrum one can use an empirical
approach by distributing the total dissipation with particular shape factor, e.g. using a distribution of
the dissipation proportional to f2, as is often done for depth-induced breaking in the surf zone. In that
case, waves are almost not dispersive and it makes sense to combine all components.

In other conditions, it makes sense to decouple the disspation of wave components that have very
different wavelengths and directions. In that case we can define a parametrization that is consistent with
the data of Banner et al. (2000).

A first step is thus to determine the breaking probability for different wave ’scales’: these scales are
spectral regions within which the frequencies and directions are close enough that their superposition
produce well defined wave groups with long-lived wave crests that have enough time evolve towards
breaking. We can then link the breaking probability to B which, taking p = 2 is a non-dimensional
variance of the orbital velocity.

The second step is to atribute to each spectral component that contribute to a given scale the braking
probability and dissipation rate. This gives a dissipation source term

Sdis,s (k) =

∫
k

h(k′ − k)p (B(k′)) q (B′(k′)) dk′E (k) . (5.33)

in which the integral over k′ is the deconvolution from the scales to the spectral components with a filter
h, with p the breaking probability for the a give scale, and q the dissipation rate per unit crest length.
This approach was formalized by Filipot et al. (2010a); Filipot and Ardhuin (2012).

An intermediate approach is to define an empirical relationship between one definition of B and the
dissipation rate (van der Westhuysen et al., 2007; Ardhuin et al., 2010; Rogers et al., 2010; Romero et al.,
2012). The formulation of Ardhuin et al. (2010) introduced a partial integration over directions for B in
order to enhance the directional spreading of the resultin wave spectrum,

Sds(f, θ) = σCds

[
max

{
B (f, θ)

Br
− 1, 0

}]2

F (f, θ) + Sds,c(f, θ). (5.34)

where

B (f, θ) = 2π

∫ θ+π

θ−πθ
k3cos2 (θ − θ′)F (f, θ′)/Cgdθ

′, (5.35)

with Br = 0.0009 is a threshold for breaking that is consistent with the estimate of Banner et al. (2000).

All these parametrizations combine this kind of spontaneous dissipation rate with the dissipation of
waves that are steep, and an induced Sdis,c dissipation rate, in which the effect of long waves on short
waves is parameterized. One parameterization for that effect by Ardhuin et al. (2010) assumes that the
short waves are ’wiped out’ by the long waves. A first approximation is that a breaking wave with a
period at least M times the short wave period considered will lead to a complete disspation of the short
waves encoutered by the long wave breaking front. We can first estimate the number of long waves that
overtake ther short waves per unit time, it is the integral of |C−C′|Λ(C)dC. This gives an induced
dissipation source term

Sds,c(f, θ) =

∫ f/M

0

|C−C′|Λ(f ′, θ′)df ′dθ′F (f, θ), (5.36)

where we have considered that C′ is roughly the same as the phase speed of the waves with frequency
f ′ and direction θ′.

Most numerical wave models today use empirical expressions for the dissipation rate that are adjusted
to reproduce simple situations like fetch-limited growth and full development. Some of these parametriza-
tions can have funny behaviors in the presence of swells, shallow water of strong current gradients. In
general one extra dissipation term for depth-induced breaking is used in order to properly dissipate waves
in the surf zone. The parametrization of Filipot and Ardhuin (2012) is unique in being able to dissipate
waves in both deep and shallow water, but it still needs to be further tested in intermediate water depth
and over current gradients.
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Figure 5.9: Source term balance
Source terms for a wind speed of 15 m/s with a uniform sea starting from rest at t = 0. (a) spectrum
and source terms after 3 hours, (b) after 2 days.

5.4 Spectral energy balance

Given the uncertainties on generation and dissipation processes the empirical parameters in these two
source functions are usually adjusted so that the integration of the full spectral evolution equation

dE (k)

dt
= Sin (k) + Snl (k) + Sdis (k) (5.37)

reproduces as well as possible the observations of fetch-limited growth (e.g. Kahma and Calkoen, 1992)
and other observations, such as the the slanting fetch data reported by Ardhuin et al. (2007). Eq. (5.37)
where the total derivative is a rate of change following wave packets along rays, is most often written in
Eulerian form. In the absence of currents it is,

∂E (k)

∂t
+∇x · (CgE (k)) +∇k · (CkE (k)) = Sin (k) + Snl (k) + Sdis (k) (5.38)

in which ∇x and ∇k are divergence operators in physical and wavenumber space, respectively, Cg and
Ck are the corresponding propagation speeds. Cg is the vector group speed, which points into the
direction of the wavenumber k, and Ck is the rate of change of the wavenumber k, which is due to
the bottom slope and the Earth curvature. Indeed, waves follow geodesics, which are great circles on a
spherical Earth. Hence their direction, relative to the north pole, change during propagation.

Among the three source terms, Sin defines the range of frequencies where the wind sea is generated,
with phase speeds less than the wind speed, this is why it requires very strong winds to produce long
waves that will radiate as swells. At low frequencies Sin is weakly negative. The energy provided by
the wind via Sin is redistributed by the wave interaction term Snl with a flux to both high and low
frequencies. The low frequency flux makes it possible to have fully developed waves that actually travel
faster than the wind, with a peak frequency up to 1.2 times U10. The dissipation term Sds removes the
excess of energy due to strong wave steepness.
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The sum of the three terms gives the trend of the spectral evolution, which, integrated in time gives
the evolving spectrum, with an example on figure 5.9. All operational wave models use a discretization
of the energy balance equation (5.38), with finite differences in time.

Most differences between models, at least for the windsea part of the spectrum, are due to differences
in the parametrizations. Figure 5.10 shows and example of different parametrizations. Todays most
accurate model results have been obtained with the parametrizations by Rascle and Ardhuin (2013).
There are still problems at short fetch and for high frequencies, with a poor representation of the
directional distribution and an overestimation of the energy level at f > 3fp.
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Figure 5.10: Three sets of parameterizations, three different balances
Source terms for a wind speed of 10 m/s at a fetch of 40 km. Left: parametrization by Tolman and
Chalikov (1996) with much weaker input and disspation, center: WAM-Cycle 4 (Janssen et al., 1994),
right WAM-Cycle 3 in which the DIA parametrization has been replaced by an exact calculation of the
interactions. The Tolman and Chalikov (1996) terms have been multiplied by 2 in order to be in the
same range. Picture from Ardhuin et al. (2007).



Chapter 6

Waves and momentum

6.1 Stokes drift

The displacements of fluid parcels caused by waves is dominated by the periodic oscillations ξ̃h and ξ̃3
derived in chapter 2 for linear waves. For many application this first approximation may not be sufficient.
Let us examine what has been neglected. To be exact, the position (x(t), z(t)) of a fluid parcel is the
sum of its velocities at the successive positions (e.g. Phillips, 1977, p. 43),

(x(t), z(t)) = (x(0), z(0)) +

∫ t

0

(u (x(t′), z(t′), t′) , w (x(t′), z(t′), t′)) dt′. (6.1)

To the firs order in steepness ε = ka, the velocity equals the velocity at the initial position,

(u (x(t′), z(t′), t′) , w (x(t′), z(t′), t′)) ' (u (x(0), z(0), t′) , w (x(0), z(0), t′)) . (6.2)

Integrating in time this gives a periodic motion, (x(t), z(t)) = (x(0), z(0)) + (ξh, ξ3) as given by eqs.
(2.30)–(2.31).
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Figure 6.1: Left: Horizontal velocity field at t = 0 and particle trajectories integrated over 2 Eulerian
periods. Solid lines are isotachs and dashed lines are streamlines in the frame of reference moving with
the wave phase speed. Right: vertical profile of Eulerian mean water velocity (dashed, velocity is set to
zero in the air for computing the average), Generalized Lagrangian mean (red), Lagrangian mean (black)
and Lagrangian mean from the linear approximation (blue). Both top and bottom panels are computed
with streamfunction theory to 80th order (Dalrymple, 1974). Non-linear terms are only significant in the
bottom case.

However, the exact calculation (figure 6.1) shows that the motion is not periodic. This is because
the velocity varies over the displacement distance. That variation introduces a correction of the position
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that is of second order in the wave amplitude. This is given by the following Taylor expansion

u (x(t′), z(t′), t′) = u (x(0), z(0), t′)

+u2 (x(0), z(0), t′)

+ξh(t′) · ∇u (ξh(0), ξ3(0), t′) + ξ3(t′)
∂

∂z
u (ξh(0), ξ3(0), t′) +O(ε3), (6.3)

where u2 is the gradient of the second order potential φ2, which comes in the solution of non-linear wave
equation (18.3). That term can be rather complex to compute, and it is done in chapter 19. However,
we do not need to worry about that term because the average over time of u2 is zero. We will thus only
consider the last two terms which are given by products of linear terms.

First of all ξh(t) is 90 degrees out of phase with u, and∇u is also 90 degrees out of phase with u. Hence
ξh(t) and ∇u are in phase and their product has a non-zero average, kσa2 cosh2(kz+ kh)/[2 sinh2(kD)].
Physically this corresponds to the fact that the orbital velocity at the crest is in the same direction as the
crest motion, hence particles ride with the crest longer than they stay in the trough where particles move
opposite to the wave propagation. Likewise, ξ3 is in phase with ∂u/∂z, which corresponds to the fact that
the horizontal velocity increases vertically, and thus a particle goes forward faster when it is up compared
to when it is down. That other product gives also a non-zero average, kσa2 sinh2(kz+ kh)/[2 sinh2(kD)]
. These two effects add up to give give the definition of the Stokes drift,

Us ≡
1

TL

∫ T

0

u (x(t′), z(t′), t′) dt′ = σka2 cosh(2kz + 2kh)

2 sinh2(kD)
(1 +O(ε)), (6.4)

where TL is the Lagrangian period, namely the time it takes for a parcel starting from a crest to loop to
the next crest. The bottom panel in figure 6.1 clearly shows that the Lagrangian period is longer than
the Eulerian period: after two Eulerian period the particles that started at the crest are not yet back to
the crest, because they have moved forward ahead of the next crest.

In deep water (kD � 1), Us goes to

Us = σka2 exp(2kz). (6.5)

This speed Us is the average drift speed of a water parcel and it is directed in the direction of wave
propagation. It is a mean Lagrangian velocity. Hence the parcel displacement is not exactly periodic and
the parcels move forward (figure 2.3). This drift velocity decreases strongly with depth, in deep water
this decrease is twice as fast as the orbital velocity, as shown on figure 2.3.

First of all, it should be emphasized that we have computed a second order drift from a linear wave
field. The top-right panel in figure 6.1 clearly shows that for a nearly linear wave the Stokes drift is
dominated by the contribution of linear wave field (blue profile). There is a widely held misconception
that Stokes drift is a property of non-linear waves. This is wrong. In fact, the Stokes drift is a quadratic
property, just like the wave energy. Linear waves have a Stokes drift, just like they have an energy.

This correspondence between Stokes drift and energy is a very profound physical property (Andrews
and McIntyre, 1978b). The Stokes drift computed here is the pseudo-momentum of the wave field. When
integrated over the vertical it is

Mw = ρw

∫ 0

−h
Usdz =

cosh(kD)

2 sinh(kD)
ρwσa

2 = ρwg
a2

2C
=
Et
C

(6.6)

with Et the wave energy per unit surface. Eq. (6.6) is a very general result in physics for all types
of waves. It is the same result as the momentum of a photon p = E/c, where c is the speed of light.
For non-linear waves of finite amplitude, the exact relationship is Mw = 2Ec/C, where Ec is the mean
kinetic energy per unit surface (Longuet-Higgins, 1984, see chapter 18.2).

Finally, this transport can also be computed from the Eulerian velocity, integrated from the bottom
to the crest level,

Mw = ρw

〈∫ ζ

−h
udz

〉
=

∫ a

−a
〈ρu〉dz (6.7)

These two estimates of the transport correspond to the two different views of the Stokes drift. In the
Eulerian point of view, the mass transport only happens between the crests and the troughs, with a
profile that is a parabola for linear waves. In the Lagrangian point of view the drift happens over the
entire water column (figure 6.2).

Finally, we also note that there is also a Stokes drift in the air, which is also in the direction of
propagation and has a profile that decays vertically up, like the profile of Stokes drift in deep water. It
is easily computed by the same method that was used here in the water.
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Figure 6.2: Mass transport from an Eulerian and Lagrangian point of views, computed here for an
amplitude a = 30 m, wavelength L = 100 m in 30 m water depth, using linear wave theory.

6.2 The ‘shear’ of the Stokes drift

Another interesting property of the Stokes drift is that it has a strong vertical shear, in particular in deep
water, but also for strongly nonlinear waves in shallow water (Miche, 1944a). This may seem paradoxical
that an irrotational flow, with zero vorticity, has an average with a strong shear. This apparent paradox
comes from the fact that the curl operator does not commute with the Lagrangian average. Another
funny property is that the Lagrangian average of dw/dx is also non-zero, although the motion is periodic
in x (Ardhuin and Jenkins, 2006).

The shear of the Stokes drift also has the very nice property to persist in the presence of strong
mixing, because the mixing is usually done by eddies that have time scales longer than the wave period.
Hence one should be very careful to apply to the wave motion the eddy viscosity ideas that are usual for
currents. Indeed, the assumption that the effect of turbulence is analogous the the molecular viscosity
scaled up by a factor 100 or more does not work with waves: if it were the case the waves would dissipate
over very short distance and swells would never be recorded from remote storms. The ‘eddy viscosity’
idea is thus a very dangerous idea in the presence of oscillations, and turbulence closures should generally
be visco-elastic and not just viscous (e.g. Miles, 1996).

This persistence of the vertical shear of the drift makes the ocean surface boundary layer special and
tends to tilt vorticity that is perpendicular to the wind into the wind direction, promoting the generation
of rolls aligned in the wind. These are known as Langmuir circulations (Langmuir, 1938), which is a key
component of the ocean mixed layer. These properties of the upper ocean will be further discussed in
chapter 10.

6.3 Radiation stresses and the flux of wave momtum

Just like the wave energy is radiated by the wave field, the wave momentum is also radiated away.
Considering monochromatic waves (i.e. with a single period and direction) propagating along the x-axis,
there is a flux of momentum across any surface perpendicular to the propagation direction. By definition,
there are two ways to move momentum in the x direction,

• by pushing things around: the pressure forces transmit momentum from one water column to the
next,

• by advecting the momentum density per unit volume ρu with the velocity u.

The usual definition of the momentum flux associated to waves, and called the ‘radiation stress’,
is the flux of momentum when the waves are present minus the flux when waves are absent. It is a
strange definition because the interaction of waves and currents make it impossible to have the exact
same current without the waves, in practice it means that we assume the sea level to remain the same
and we just set the orbital velocity to zero and the pressure becomes the hydrostatic pressure. A more
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rigorous definition is given in Andrews and McIntyre (1978b) and discussed in chapter 24. Anyway, let
us make this thought experiment of removing the waves, we define the first component of the radiation
stresses by a phase average of the wave effects,

Srad
xx =

∫ ζ

−h
p+ ρwu2dz −

∫ ζ

−h
p0 + ρwû

2dz, (6.8)

where the second term correspond to the pressure p0 in the absence of waves (but with the same mean
sea level) and û is the the mean (current) velocity.

When the waves are present, the pressure is obtained by integrating the vertical component of the
momentum equation (we take v = 0 because waves propagate only along the x-axis)∫ ζ

z

[
∂ρw
∂t

+
∂ρwuw

∂x
+
∂ρww

2

∂z
+
∂p

∂z
+ ρwg

]
dz = 0 (6.9)

The first term yields ∫ ζ

z

∂ρww

∂t
dz =

∂

∂t

∫ ζ

z

ρwwdz − ρww (ζ)
∂ζ

∂t
, (6.10)

the second yields, ∫ ζ

z

∂ρwuv

∂x
dz =

∂

∂x

∫ ζ

z

ρwuwdz − ρwu (ζ)w (ζ)
∂ζ

∂x
(6.11)

the third yields ∫ ζ

z

∂ρww
2

∂z
dz = ρww

2 (ζ)− ρww2 (z) , (6.12)

and, assuming p (ζ) = 0, the fourth term gives the pressure at elevation z,∫ ζ

z

∂p

∂z
dz = −p (z) . (6.13)

Gathering all this and using the surface kinematic boundary condition gives,

p = ρwg (ζ − z) +
∂

∂t

∫ ζ

z

ρwwdz +
∂

∂x

∫ ζ

z

ρwuwdz − ρww2. (6.14)

We now take the average over a wave period and because linear wave theory has uw = 0, we find

p = ρwg
(
ζ − z

)
− ρww2. (6.15)

We can now compute the different pieces that make up Srad
xx . It is straightforward to generalize the

calculation to the flux of xα momentum in the xβ direction, where both xα and xβ can be either x or y.
Namely,

Srad
αβ =

∫ ζ

−h
ρwuαuβdz + δαβ

(∫ ζ

−h
p− p0dz +

∫ ζ

ζ

pdz

)
. (6.16)

We note that the pressure only come in Srad
xx and Srad

yy because pressure is a normal stress. In our case

of v = 0 and with waves propagating along the x axis, we clearly have Srad
xy = Srad

yx = 0.

Now replacing the velocity and pressure in Srad
αβ with linear wave theory, the first piece∫ ζ

−h
ρwuiujdz (6.17)

only comes into Sxx, and we actually have calculated almost the same integral in chapter 2. Indeed, the
energy flux is the same integral with pu instead of u2. For linear waves, u = p/Cρw, where C = ω/k is
the phase speed. Hence the first piece of Sxx is equal to EtCg/C. This is very nice, this is the flux of
wave momentum, just like CgEt is the flux of wave energy.

For the last piece and for z ' ζ we may replace p by ρwgζ. That piece yields ρwgζ2/2, which is equal
to the potential energy, namely Et/2. Finally, we use the linear wave expression for p to get the second
piece of Srad

xx , ∫ ζ

−h
p− p0dz = ρwghζ − ρwg

a2k

sinh (2kD)

∫ ζ

−h
sinh2 (kz + kD) dz (6.18)
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using now the fact that
sinh2 x = (cosh 2x− 1) /2 (6.19)

we obtain ∫ ζ

−h
sinh2 (kz + kh) dz =

1

4k
(sinh (2kh)− 2kh) (6.20)

and our second piece of Sxx becomes∫ ζ

−h
p− p0dz = ρwghζ +

ρwg

2
E

(
2

kh

sinh (2kh)
− 1

)
. (6.21)

Finally, the third piece is ∫ ζ

ζ

pdz = ρwg
ζ2

2
= ρwg

E

2
. (6.22)

It is common practice to remove the ζ term from Srad
αβ because this is the hydrostatic pressure that

varies with the sea level. Finally we have,

Srad
xx = ρwgE

(
Cg
C

+
kD

sinh (2kD)

)
= ρwgE

(
2
Cg
C
− 1

2

)
(6.23)

Srad
yy = ρwg

E

2

2kD

sinh (2kD)
(6.24)

= ρwg
E

2

(
2
Cg
C
− 1

)
(6.25)

For waves propagating in any azimuth θ relative to the x-axis, the non-isotropic part of Srad
αβ is modified.

The orbital velocity u becomes u cos θ and the v component becomes v sin θ. Hence Srad
xy and Srad

yx are
not zero anymore,

Srad
xx = ρwg

[
E
Cg
C

cos2 θ +
E

2

(
2
Cg
C
− 1

)]
(6.26)

Srad
yy = ρwg

[
E
Cg
C

sin2 θ +
E

2

(
2
Cg
C
− 1

)]
(6.27)

Srad
xy = Srad

yx = ρwgE
Cg
C

sin θ cos θ. (6.28)

This result was obtained using linear wave theory. For periodic non-linear waves, Srad is actually very
close to the linear theory result, with a difference that is less than 5% for kD < 0.3.

In general the radiation stress is thus the sum of the wave momentum flux and a correction for the
change in mean pressure in the presence of waves. If the wave field varies in space, a divergence of the
radiation stress is like a force exerted by the waves on the mean flow. In the absence of wave breaking
the usual response to this force is a change in mean sea level, as illustrated in figure 6.3. This type of
effect is discussed in more detail in chapter 16 which deals with nearshore hydrodynamics.
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Figure 6.3: Momentum fluxes associated to waves propagating over a variable bathymetry from left to
right, towards shallower water. The radiation stress Sxx is the sum of the flux of wave momentum
ρwgECg/C and the pressure correction Sp = 0.5ρwgE(2Cg/C−1). This pressure correction goes to zero
in deep water. Here a difference between Srad

xx = ρwgECg/C + Sp at points 1 and 2 drives a lowering of
the mean water level from ζ = ζ1 to ζ = ζ2. This phenomenon is called the set down.



Chapter 7

Wave propagation over varying
currents

7.1 Current effects on waves: propagation

7.1.1 A uniform current

For waves over a flat bottom, in the absence of any friction, the shape of waves and their motion is
unchaged by a Eulerian uniform horizontal current U. This is easily seen by changing the reference
frame to a reference frame in which the current is zero. This is obtained with a position x′ defined as

x′ = x + Ut. (7.1)

In particular the phase in the moving reference frame is given by eq (7.2), and it is transformed back to
the fixed reference frame as

Θ′ = k · x− k ·Ut− σt+ Θ0,= k · x− ωt+ Θ0 (7.2)

where we have defined the absolute radian frequency,

ω = σ + k ·U. (7.3)

The effect of a uniform current is thus a simple Doppler shift of the phase, which gives a modification
of the phase speed and group speed,

C′ = C + U (7.4)

C′g = Cg + U, (7.5)

where C′ and C′g are the phase and group speed in the fixed reference frame. σ is called the relative radian
frequency. We note that the general definition of the group speed still holds, C′g = (∂ω/∂kx, ∂ω/∂ky).

7.1.2 Current effects on waves: amplification or attenuation for changes in
current in the propagation direction

Taking a current U(x) in the direction of progation x, or in the opposite direction, varying only in this
same direction, the waves kinematics must adjust to this variation in current speed. For slow variations
on the scale of the wavelength, we use the approximation by Wentzel, Kramers, Brillouin et Jeffreys
(WKBJ), i.e. the waves are locally sinusoidal, and the conservation of the number of crests crêtes (which
holds for linear monochromatic waves), and which gives a constant absolute frequency ω because the
medium in which the waves propagate is constant (an interesting case where ω is not conserved is when
the water depth changes in time). As a result the intrinsic frequency σ must adjust. If the current
accelerates in the direction of propagation, then σ must be reduced because k ·U is positive. Because
σ grows with k, the wavelength increases. Conversely, for waves propagating against an accelerating
current, k ·U is negative, hence σ and k must increases to keep ω constant.
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A first application can be done in the case of deep water waves with a known radian frequency σ1,
propagating from a region 1 without current, to a region 2 where a current of magnitude U is uniform
and opposite to the waves.

For linear waves, the number of crests is conserved, which can be written as a conservation of the
absolute frequency,

σ2 − k2U = σ1. (7.6)

Combined with the dispersion relation σ2
1 = gk1 and σ2

2 = gk2, this gives us a second order equation
for the unknown relative frequency σ2,

U

g
σ2

2 − σ2 + σ1 = 0. (7.7)

This second-order polynomial equation has two solutions, but we shall only consider the one that gives
σ1 = σ2 when U goes to zero,

σ2 = σ1
1−
√

1− 4α

2α
(7.8)

with α = Uσ1/g, the ratio of the current velocity and the phase speed C1 = g/σ1 in region 1. We note
that there is no real solution for α < 0.25, in that situation the waves are blocked by the current and
cannot propagate in region 2. In the limiting case, α = 0.25, we have σ2 = 2σ1 and the local group speed
Cg2 is equal to U . In that case there is no wave energy flux, because the mean wave energy velocity is
Cg − U = 0.

We can further investigate the case when α� 1. In that case, we may write the following expansion,

√
1− 4α = 1− 2α− 2α2 +O(α3) (7.9)

which gives

σ2 ' σ1(1 + α), (7.10)

k2 = k1(1 + 2α). (7.11)

This means that the intrinsic wave period σ is shortened in proportion to the ratio α = U/C1 and the
wavelength is shortened by twice that amount.

In order to know what happens to the wave height, we may consider the energy balance, as we shall do
later. But be careful, this situation is precisely a situation where the wave energy is not conserved, even
without any dissipation. What is conserved is the total energy in the system (waves + current), and in
practice the waves and currents exchange energy. In the absence of dissipation, this interaction happens
with the conservation of another quantity, the wave action, which we may define for monochromatic
waves as

A =
gE

σ
. (7.12)

With a properly defined control volume, the equality of the action fluxes gives,

E2

σ2
(Cg2 − U) =

E1

σ1
Cg1. (7.13)

which gives an amplification of the wave energy

E2 = E1
σ2

σ1

Cg1
Cg2 − U

' E1(1 + 4α+O(α2)) (7.14)

in which three factors are important:

• the increase of σ makes it necessary to increase E to keep A constant, this amplification comes
with a transfer of energy from the current to the waves, this gives the factor σ2/σ1 ' (1 + α).

• the fact that the advection velocity involves the current, Cg is replaced by Cg − U , this accounts
for half of the total effect because U/Cg = 2α.

• the fact that the intrinsic group speed has been reduced because the wave have become shorter (
σ has increased).
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7.1.3 Effects of current gradients in the transverse direction:
rays and refraction

Just like changes in water depth discussed in chapter 12, currents induce a modification of the phase
speed. As a result, any current gradient in the direction transverse to the wave propagation will cause
refraction, namely a gradual turning of the wave crests. The particularity of cases with current is that
the direction of the phase advection can be different from the direction perpendicular to the crests. The
directions in which rays bend follows Fermat’s principle, namely waves will always take the path that
gives the shortest propagation time. As a result, waves will focus in a jet that flows in the direction
opposite to the wave propagation direction (as shown in Figure 7.1) and diverge in a jet of same direction.
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Figure 7.1: Example of strong impact of currents on wave heights due to wave refraction by currents. The
top panel shows a time series of Hs recorded at the wave buoy ‘Pierres Noires’ (WMO number 62069)
and modeled with WAVEWATCH III, while the middle panel shows the water depth at the buoy. The
bottom maps show the (c) currents provided by the numerical model MARS2D and the corresponding
wave rays for T = 10 s computed by integration of eqs. (7.16)–(7.18), and (d) shows Hs and mean wave
directions, both for October 28, 2008, at 11:00 AM UTC (corresponding to blue arrow in a). Clearly,
the wave height has a strong tidal modulation which is due to currents. The typical curvature radius of
the rays is around 10 km in the current jet located south-west of the island of Ouessant. This jet peaks
1.5 hours after the high tide, and deviates the waves away from the Pierres Noires buoy, located 20 km
down-wave (Adapted from Ardhuin et al., 2012).

Landau and Lifshitz (1960) gave a simple result on the curvature of the rays followed by wave groups
in a medium with varying mean flow velocity. This was re-derived by Dysthe (2001) for surface gravity
waves. In the limit of a weak current, û� C, the radius of curvature of the rays is

R =
1

∂θ/∂s
=

Cg
∇× ûh

(7.15)

where ∇ × ûh is the vertical vorticity of the flow. This result was recently applied by Gallet and
Young (2014) to explain the deviation, of the order of 10◦, of remote swells recorded off the southern
California coast, and Lavrenov (1986) explained the formation of freak waves in the Agulhas current by
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this refraction effect. Figure 7.1 shows an example off the West coast of France where the very strong
vorticity of tidal currents, of the order of 0.001 s−1 is enough to bend wave rays for T = 10 s waves with
a radius of curvature of 8.6 km.

The equations of wave rays are the trajectories followed by wave packets in time, these are identical to
the propagation equations, before discretization, that are solved by spectral models like WAVEWATCH
III (equations 2.9 to 2.11 in Tolman et al., 2014)

dx

dt
= Cg + ûh , (7.16)

dk

dt
= − ∂σ

∂D

∂D

∂s
− k · ∂û

∂s
, (7.17)

dθ

dt
= −1

k

[
∂σ

∂D

∂D

∂m
− k · ∂û

∂m

]
, (7.18)

where x is the horizontal position along the ray, D is the water depth, θ is the local intrinsic wave direction,
Cg is the vector intrinsic group speed, pointing in direction θ, s is a coordinate in the direction1 θ and m
is a coordinate perpendicular to s. These ray equations are the same as those used by Mathiesen (1987),
with the addition of finite depth and bottom refraction effects.

In practice the importance of refraction on wave height depends on the current structure. Gradients
that are perpendicular to the dominant wave propagation and are coherent over long distances will be
most effective in creating a variability in the significant wave height.

7.1.4 Waves over vertically sheared currents

In the presence of vertical shear, the Doppler shift k ·U for linear waves can be estimated by solving
the Rayleigh equation (22.8). Biesel (1950) gave solutions in the limit kD � 1 and for a constant shear,
with a current varying from û−D at the bottom to û0 at the surface. The phase speed is then

C =

[(
U0 − U−D

2

)2

+ gD

]1/2

(7.19)

For more general current profiles and water depths, Kirby and Chen (1989) gave an approximate
solution in the limit of small variations of U compared to σ/k,

C =
σ

k
+ 2

∫ 0

−D
k · ûcosh(2kz + 2kD)

sinh(2kD)
dz (7.20)

7.1.5 Practical importance of currents

In practice, current effects on waves combines the ‘bunching’ or ‘concertina’ effect described in section
7.1.2 due to a converge in the current, with the refraction, associated with current vorticity. A third
effect is the enhancement of wave generation in waves against currents due to the relative wind. When
we use the frame of reference moving with the current û, the wind speed in that frame of reference
changes from U10 to U10− û. In practive one should thus correct the wind speed provided by a weather
forecasting model to force the wind-wave generation... except for real adjustement of the wind to the
presence of the current which are generally not included in weather models. Hence, the true wind is
reduced by opposing currents so that the wind-wave forcing should be something between the modeled
U10 and U10− û, say U10− rû. Numerical experiments for large scale currents suggests that on average
r ' 0.5 is the right order of magnitude when adjusted to the fully coupled atmosphere-current solution
(J. Bidlot, personal communication 2010).

In figure 7.2, we show an example of modelled current effects on waves in the Drake passage, between
Chile and Antarctica. The variability of wave heights is investigated by computed the spatial spectrum
of Hs. We find that the variation in wave heights at large scales is dominated by the effect of refraction,
whereas at scales around 10 km, the variability is mostly due to the relative wind and advection effects.
At present there is no available data to validate these model prediction. Indeed, the satellite altimeter
data at scales shorter than 80 km (e.g. figure 7.2.d) is dominated by noise.

1Due to the presence of the current, s differs from the along-ray direction.
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Figure 7.2: Maps for September 16 at 18:00 UTC for (a) surface current magnitude modeled by MITgcm
(b) the modeled significant wave height when the current forcing is included in WAVEWATCH III (c)
significant wave height without effects of currents and wind directions (arrow). The dashed box is the
region used for spectral analysis. (d) Spectra of the modeled zonal current and Hs along the north-
south direction, with contributions of waves of periods shorter or longer than 6 s, along-track measured
spectra from AltiKa is shown for comparison, and power laws k−2 and k−3 are shown in green. (e)
Omnidirectional spectrum of Hs and contributions of the current through the four different terms of the
wave action equation (7.40) can be revealed by progressively switching off the different terms: refraction
θ̇, change in wavenumber k̇, relative wind r, and advection by uE and vE in λ̇ and φ̇. Adapted from
Ardhuin et al. (2017b).

7.2 Wave effects on currents

To make it as simple as possible we first follow the approach of Phillips (1977), in which the velocity
field u is the sum of a current û, that we assume uniform over the vertical, and a perturbation u′ such
that its average is zero, at least for the points of space that are always in the water.

7.2.1 Mean flow equations integrated over the vertical

A systematic discussion of wave effects on currents started with Longuet-Higgins and Stewart (1964),
and we follow their derivation. The three-component momentum vector ρ(u, v, w) can be advected in any
direction, giving a flux tensor ρuiuj . When one considers only velocity fluctuations u′, the momentum
flux due to the self-advection of momentum is the usual Reynolds stress −ρu′iu′j , which is used in the
analysis of turbulence. The divergence of this flux is equivalent to a macroscopic force that accelerates
the fluid particles, which is easily understood by considering the momentum balance over an elementary
cube.

Longuet-Higgins and Stewart (1964) introduced a similar tensor caused by waves, the radiation stress
Srad, that is confined to the two horizontal dimensions, it represents a flux of momentum that comes from
the average of the wave-induced Bernoulli pressure p+ u2. Compared to Taylor expansion methods, the
present approach is easier because the non-linear wave effects are directly included by using conservation
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equations.
Starting from the conservation of momentum in any horizontal direction α, with our notation uα is

either the u or the v component, 2

∂

∂t
(ρwuα) +

∂

∂xβ
(ρwuαuβ + pδαβ) +

∂

∂z
(ρwuαw) + εαβifiuβ = ρwν

∂2uα
∂z2

, (7.21)

in which there is an implicit sum over the repeated indices, here β, and where εαjifiuj is the α component
of the vector product of the Coriolis parameter vector with the speed vector. In the following we classically
consider only the vertical Coriolis parameter f3.

To be sure that we understand the implicit sum, an explicit form of the equation for the u component
is,

∂

∂t
(ρwu) +

∂

∂x

(
ρwu

2 + p
)

+
∂

∂y
(ρwuv) +

∂

∂z
(ρwuw)− f3v = ρwν

∂2u

∂z2
, (7.22)

Integrating over the vertical, and using the boundary conditon at the surface and bottom, w(ζ) =
∂ζ/∂t+ u · ∇ζ, yields

∂

∂t

∫ ζ

−h
ρwuαdz +

∂

∂xβ

∫ ζ

−h
(ρwuαuβ + δαβp) dz + εαβ3f3

∫ ζ

−h
ρwuβdz

= pa
∂ζ

∂xα
− p(−d)

∂h

∂xα
+ ρwν

∂uα
∂z
|z=ζ − ρwν

∂uα
∂z
|z=−h (7.23)

We now take the average over wave phases 3.
The second integral in 7.23, gives, on average4, using u = û+ u′,∫ ζ

−h
ρwuαuβdz = ρw

∫ ζ

−h
ûαûβdz + ρwûα

∫ ζ

0

u′βdz + ρwûβ

∫ ζ

0

u′αdz +

∫ ζ

−h
ρwu′αu

′
β + δα,βpdz

= Mα − ρwûαûβD +

∫ ζ

−h
ρwu′αu

′
β + δα,βpdz (7.24)

= ρwûαûβD + ûαM
w
β + ûβM

w
α +

∫ ζ

−h
ρwu′αu

′
β + δα,βpdz, (7.25)

where

Mw
α =

∫ ζ

0

ρwu′αdz (7.26)

is the α component of the wave-induced mass transport, also known as the Stokes transport5.
The the conservation of the vertical momentum is, neglecting viscosity and turbulence,

∂

∂t
(ρww) +

∂

∂x
(ρwuw + p) +

∂

∂y
(ρwvw + p) +

∂

∂z

(
ρww

2
)

= −ρwg. (7.27)

A vertical integration gives, after using the surface kinematic boundary condition,

p(z) = pa + g

∫ ζ

z

ρwdz +
∂

∂t

∫ ζ

z

ρwwdz +
∂

∂xβ

∫ ζ

z

ρwuβwdz − ρww2(z). (7.28)

in which the second term is the hydrostatic pressure, and the third vanishes only if the spatial average is
independant of time – which is not the case in the presence of waves travelling in opposite directions as

2Taking into account viscosity and the air pressure pa allows to include the surface and bottom stress, which are not in
the derivation by (Phillips, 1977, page 62).

3Phillips (1977) uses a horizontal average but as a result the obtained equatiosn are only valid at scales larger than the
wavelength. Using the phase average allows to keep sub-wavelength variations such as in the case of partial standing waves,
see Ardhuin et al. (2008c).

4This is here that we use the fact that û is independent of z, otherwise we would have an extra term coming from the
vertical current profile, that would be equivalent to a horizontal mixing term (Svendsen and Putrevu, 1994).

5The decomposition 7.25 and this definition of the Stokes transport require, to be well defined, an analytical extension
of the velocity field u′ in the air. This is not the real velocity field which, like the density, is very different from this
extension. A nice way to avoid this issue is to use an average that follows the up-and-down motion of the sea surface (e.g.
Ardhuin et al., 2008b).
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shown in chapter 21 – the fourth term vanishes for a motion that is periodic in time, and the last term
is the mean dynamic pressure which is zero only if the velocity is zero. If we make all these assumptions
the bottom pressure is hydrostatic,

p(−h) = ρwgD + p′. (7.29)

As a result the mean value of the right hand side of (7.23) is

τa,α − τb,α + ρwgD
∂h

∂xα
= τa,α − τb,α +

∂

∂xα

(
1

2
ρwgD

2

)
− ρwgD

∂h

∂xα
, (7.30)

where τa,α and τb,α are the α-components of the surface and bottom stress. The correlation p′∂h/∂xα
has been included in τb,α as it represents the form drag on the bottom, while the other part of τb,α is the
skin friction given by the average of the viscous stress.

We define Mα as the α-component of the mean mass transport 6. We now have,

∂Mα

∂t
+

∂

∂xβ

(
MαMβ

ρwD
+ Srad

αβ

)
+ εαβ3f3Mβ = −ρwgD

∂ζ

∂xα
+ τa,α − τb,α. (7.31)

where the radiation stresses are defined by

Srad
αβ =

∫ ζ

−h
ρwu′αu

′
β + δαβpdz −

1

2
ρwgD

2δαβ − ρwûαûβD. (7.32)

The expression for Srad using linear wave theory is given in chapter 6.

The same procedure applied to the mass conservation equation yields

∂Mβ

∂xβ
+ ρw

∂D

∂t
= 0. (7.33)

Equations (7.31) and (7.33) are the basic equations used in nearshore hydrodynamics, in their most
simple form. They can be used to explain a wide variety of phenomena, from changes in the mean sea
level, along-shore currents in the surf zone, infra-gravity waves .... All these will be discussed in chapter
16. The assumptions made by Phillips (1977) are fairly restrictive. Removing many of these, we present
in 24 an extenstion of the wave-current interaction theory to three dimensions.

We note that the mass transport Mα can be expressed with a mean velocity Uα ad Mα = ρwDUα.
This mean velocity includes the Stokes drift, which usually has a strong vertical gradient, even possibly
in the surf zone (Ardhuin et al., 2008c) and the mean current which can also have a strong vertical shear.
This mean speed can thus be very different from a measured mean velocity (Eulerian mean), and also
different from a tracer mean speed if tracers are not homogeneously distributed over the vertical, as it is
the case for suspended sediment.

7.2.2 Total energy

From the momentum equation the energy equation can be derived. With a viscous dissipation rate ε per
unit volume and the stress tensor pδij + τij , in which i and j can be any of the three directions x, y and
z,

∂

∂t

(
ρw
uiui

2
+ gz

)
+

∂

∂xj

[
ui

(
ρw
uiuj

2
+ gz + δijp+ τij

)]
= ε. (7.34)

Following the derivation of (Phillips, 1977, page 63), and defining the total depth-integrated mechan-
ical energy per unit surface as

Ea =

∫ ζ

−h
ρw

(
1

2
uiui + gz

)
dz =

1

2

MαMα

ρwD
+ ûαM

w
α +

1

2
ρwg(ζ

2 − h2)− 1

2
ρwûαûα + ρwgE +E′, (7.35)

in which ρwgE is the wave energy per unit surface and E′ is the turbulent energy.

6This notation differs from Phillips (1977) who used M̃α.
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Integrating (7.34) over depth and using eq. (7.32) for Srad, we get

∂Ea
∂t

+
∂

∂xα

(
UαEa + Fα + ρUαgh

2 + ûβS
rad
αβ

)
= −[wp+ τi3ui]

ζ
−h + (uαp+ τiαui)

∂ζ

∂xα
+

∫
εdz, (7.36)

in which the energy flux Fα is

Fα =

∫ ζ

−h
uα

[
1

2
ρwu′2i + ρwg(z − h) + p+ τiα

]
dz. (7.37)

7.3 Energy exchange and wave action

We can then subtract the mean flow energy [Uα× (7.31)+(gh−U2
α/2)×(7.33) ] from (7.36) to obtain the

wave energy evolution equation7,

ρwg
∂E

∂t
+

∂

∂xα
[ρwgE (ûα + Cgα)] + Srad

αβ

∂ûβ
∂xα

= φaw − φoc − φbf , (7.38)

where φaw = −wp+ τ ′i3u
′
i|z=ζ is the mean wind to wave energy flux per unit surface, φoc is the part of

−ε associated to wave breaking and dissipation in the water column, and φbf is the wave energy lost
through bottom friction, which will be further discussed in chapter 14.

The term of particular interest to us is the gain or loss of wave energy Srad
αβ ∂ûβ/∂xα, when they

propagate through current gradients, even without dissipative processes. This is indeed an exchange of
energy between waves and currents.

To simplify this term, one can introduce the wave action A = ρwgE/σ (Bretherton and Garrett,
1968; Andrews and McIntyre, 1978b), and using the evolution equation for the wave number, we obtain
(see Phillips, 1977, for details) (7.38)

∂A

∂t
+

∂

∂xα
[A (ûα + Cgα)] =

φaw − φoc − φbf
σ

. (7.39)

The action like the energy and the momentum is a quadratic quantity. It can be decomposed into
a spectrum N (k, θ, φ, λ, t) = E (k, θ, φ, λ, t) /σ where φ and λ define the horizontal position, here the
longitude and latitude. The spectral wave action equation is (Komen et al., 1994)

∂

∂t
N +

∂

∂φ

(
φ̇N
)

+
∂

∂λ

(
λ̇N
)

+
∂

∂k

(
k̇N
)

+
∂

∂θ

(
θ̇N
)

=
S

σ
, (7.40)

where S is the sum of the source terms that represent the interactions with winds, bottom, wave-wave
interactions and dissipation, and θ is the wave propagation azimuth, the angle between North and the
wave propagation direction. The propagation speeds in physical and spectral space are given by Tolman
(1990),

φ̇ = (Cg cos θ + v̂)R−1 (7.41)

λ̇ = (Cg sin θ + û) (R cosφ)
−1

(7.42)

θ̇ = Cg sin θ tanφR−1 + sin θ
∂ω

∂φ
− cos θ

cosφ

∂ω

∂λ
(kR)

−1
(7.43)

k̇ = − ∂σ
∂D

k

k
· ∇D − k · ∇û, (7.44)

where R is the radius of the Earth, û and v̂ are the zonal (towards the East) and meridional (towards
the North) components of the horizontal current û.

In the absence of dissipative processes, S = 0 and the wave action is conserved. This is a general
physical result and the action is an adiabatic invariant. It is the same for a pendulum of varying length,
A = E/σ is conserved, not E. More exactly, the total wave action, integral of A(k, θ) over the spectrum,

7Here it is assumed that û is a vertically-uniform current. In a more general case û is replaced by uA as defined by eq.
(2.55). There are still discussions about the interpretation of this, but it was derived by Andrews and McIntyre (1978b).
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is conserved for adiabatic processes that are independent of the wave phases. This is Noether’s theorem.
Wave action is thus conserved by 4-wave interactions discussed but it is not conserved with shallow-
water 3-wave interactions. In the context of wave-particle equivalence, A is equivalent to the number of
particles.

As we have seen in section 7.1.2, the conservation of wave action can be used to investigate the
amplification of waves across a current convergence.

7.4 Wave momentum and mean flow momentum

One of the difficulties when comparing model equations to measurements, is that eq. (7.31) and (7.33)
express the change of Mα which combines the Stokes drift and the mean flow. These two parts of the
total momentum have very different behaviors, and it is unlikely that turbulence acts on both in the
same way and thus requires different mixing parametrizations. Hasselmann (1971) was among the first
to point out this problem, followed by Garrett (1976), and more recently Smith (2006). We will follow
Garrett’s arguments. There is thus two classes of wave-averaged momentum equations, those that work
on the total momentum, and those that work only on the current momentum, as summarized in figure
7.3.

Which momentum? 
total                                 mean flow only

D
e
p

th
 i
n

te
g

ra
ti

o
n

?
n

o
: 

3
D

  
  

 y
e
s:

 2
D Phillips (1977) Garrett (1976): deep water only

Smith (2006)

Andrews & McIntyre (1978)
      eq. (8.7a): "alternative GLM"
Groeneweg (1999)
Mellor (2003)
Ardhuin & al. (2008)
Mellor (2008)

Andrews & McIntyre (1978)
      eq. (3.8): "GLM"
Leibovich (1981)
McWilliams & al. (2004)
Newberger & Allen (2007)
Ardhuin & al. (2008b)

Hasselmann (1971)
Ardhuin et al. (2004)

Figure 7.3: General organization of wave-averaged theories according to their choice of momentum
variable and depth integration. Names that appear in different shades of red correspond to theories
that are not fully consistent with their originating hypotheses. In the case of 3D theories for the total
momentum, the problem generally comes from the vertical flux of momentum and may only arise on
a sloping bottom, not explicitly considered by Groeneweg (1999). In the case of Mellor (2008), the
inconsistency arises from different averagings of different terms in the same equation, resulting in a
strange mix of Eulerian and Lagrangian mean equations. Other theories not listes here are even less
consistent and completely forgot about this vertical flux. The theory of Hasselmann (1971), extended
by Ardhuin et al. (2004a) does not quite fit the decomposition in mean flow and wave momentum as
the momentum fluxes between the two (the interaction stresses) are not the same as the known fluxes
(Ardhuin, 2006a). An arrow from a to b indicates a derivation link: b can be derived from a. Reproduced
from Bennis et al. (2011).

7.4.1 Wave momentum

The wave momentum is also sometimes called the pseudo-wave momentum (McIntyre, 1981). For a
modulated wave train with a narrow frequency range around σ/(2π) it is Mw = kE/σ = kA. This is
the momentum of the oscillations associated with waves, it is generally compensated by a motion at the
scale of the modulations. For example, in the case of an isolated wave packet the total momentum may
be zero but there is this pseudo-momentum that is compensated by an opposite momentum in the flow
that varies on the scale of the packet.

We have the evolution equation for A, we thus need an evolution equation for k to get the momentum
equation for Mw.
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With a generalized wave phase Θ ' k · x + k · uAt− sωt for the component (k, s), we have

∇Θ = k (7.45)

∂Θ

∂t
= −k · uA − sσ = ω. (7.46)

and thus
∂k

∂t
+∇ (σ + k · uA) = 0, (7.47)

which is also known as the ’conservation of number of wave crests’. Using the linear wave dispersion
relation, it gives,

∂kα
∂t

+ (ûAβ + Cgβ)
∂kα
∂xβ

= −kβ
∂ûAβ
∂xα

− kσ

sinh 2kD

∂D

∂xα
, (7.48)

where ûAβ is the β-component of the current that advects the wave action. For a vertically-uniform
current and neglecting nonlinear effects it is the Eulerian current ûAβ = ûβ . In a more general case see
Kirby and Chen (1989) and Weber and Barrick (1977).

Combining the equations for A and k and taking uAβ = uβ , we get,

∂Mw
α

∂t
+

∂

∂xβ
[(uβ + Cgβ)Mw

α ] = ρwg

∫
kα
Stot

σ
dk−Mw

β

∂uβ
∂xα

− ρwSJ
∂D

∂xα
. (7.49)

in wich SJ is a ‘Bernoulli pressure head’ term

SJ =
1

D

∫
k

(
Cg −

C

2

)
E (k)

C
dk = g

∫
k

kD

sinh 2kD
E (k) dk. (7.50)

Eq. (7.49) expresses the conservation of wave momentum that is advected at the speed u + Cg, and
modified via the source term by the processes that contribute to a change in wave action, and a force
−ρwSJ∂D/∂xα, in the presence of depth gradients. That force compensates for the changes in the wave
momentum flux (Ardhuin, 2006a).

7.4.2 Mean flow momentum

Removing the wave momentum (7.49) from the total momentum (7.31), and using Mα = Mm
α + Mw

α ,
with Mm

α = ρwuαD for a depth-independant current, we obtain (Smith, 2006),

∂Mm
α

∂t
+

∂

∂xβ

(∫ ζ

−h
ρwuβuαdz

)
+ uα

∂

∂t
[ρwD] + εαβ3f3M

m
β + [ρwgD − pw0 ]

∂ζ

∂xα

= −εαβ3 (f3 + Ω3)Mw
β − ρw

∂

∂xα

(
DSJ

)
+ τaα − τwα − τ bα − τdis

α + ρwS
J ∂D

∂xα
, (7.51)

where Ω3 is the vertical component of the mean flow vorticity, DSJ is the difference between the radiation
stresses and the flux of wave momentum on the one hand and on the other hand the Eulerian mean
pressure that is, at the surface

pw0 = −
∫
k

σ2E (k) dk. (7.52)

Finally, τaα − τwα is the net flux of momentum from the wind to the mean flow with

τwα = ρwg

∫
k

kαS
in(k)

σ
dk, (7.53)

and

τdis
α = ρwg

∫
k

kαS
dis(k)

σ
dk, (7.54)

is the flux of wave momentum going to the ocean due to wave dissipation due to breaking and interaction
with ocean turbulence, but not bottom friction8.

8for bottom friction seeLonguet-Higgins (2005)
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Finally we can gather the SJ terms in (7.51) following Smith (1990),

∂Mm
α

∂t
+

∂

∂xβ

(∫ ζ

−h
ρwuβuαdz

)
+ uα

∂

∂t
[ρwD] + εαβ3f3M

m
β + [ρwgD − pw0 ]

∂ζ

∂xα

= −εαβ3 (f3 + Ω3)Mw
β − ρwD

∂SJ

∂xα
+ τaα − τwα − τ bα − τdis

α . (7.55)
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Chapter 8

Numerical modeling in deep water

Numerical wave models are used for a wide variety of applications. These include navigation safety, ocean
engineering for marine energy (oil and gas or renewables) or ship design, coastal engineering. Wave models
are used both for forecasts and hindcasts, for deterministic simulations or ensemble predictions.

Because waves also have impacts on the atmosphere, ocean, sea ice, or sediments, wave models are
increasingly used in Earth System models, coupled with other dynamical models. This coupling is most
important in shallow waters (storm surges, wave-driven currents ...) and specific aspects of coastal and
shallow water wave modelling will be discussed in chapter 15. Our purpose here is to give indications
about the validity and limitations of wave models. As we focus on deep water, it removes the specific
issues of bottom friction, refraction, shoaling, making the question of wave evolution more simple. The
first question to consider is: what is deep water? From chapter 2, the ratio of the wavelength and water
depth represented by kD, is one criteria. Typically when kD > 2 the effect of shoaling and refraction
can usually be neglected.

This chapter only deals with spectral phase-averaged models, based on the wave action equation
(7.40), following the first numerical model of Gelci et al. (1957). The practical problem is to obtain the
most accurate result, either for a forecast for the coming days a climate projection over long terms, or a
restrospective simulation (hindcast), using limited computational resources and time. This leads to trade-
offs between expensive calculations, for example the 4-wave interactions, and cheaper parametrizations.
The choice of the numerical method also has a strong impact on the model cost, with benefits that may
be visible only for some parameters.

What are the main factors that control the model accuracy?

• Because waves are generated by winds, and propagate in a medium characterized by a bottom
topography, currents and obstacles (small islands, sea ice ...), the quality of these forcing fields is
determinant, and the accuracy of winds is certainly the most important.

• The second most important factor is the accuracy and behavior of the parametrizations use for
all the processes represented in the source terms S in eq. (7.40). These parameterizations should
be robust, meaning that they should work under all circumstances from calm seas to hurricane-
force winds, in the presence or absence of swells ... Many model errors can be traced to poor
parametrizations. No parametrizations is perfect but some definitely produce more accurate results
than others.

• Finally, there is no method to solve eq. (7.40) to the accuracy of the computer round-off error at an
acceptable computational cost. The numerical integration methods are thus based on approxima-
tions that lead to numerical diffusion. Also, numerical limiters in the evolution are used by many
models, so that the numerical result may be very different from the actual solution of the wave
action equation (e.g. Tolman, 2002b). One infamous example is the effect of semi-implicit integra-
tion of the source terms in time when large time steps are used (Hargreaves and Annan, 2000).
This particular issue motivated the use of an adaptative time step for source term integration in
the WAVEWATCH III model (Tolman et al., 2014).

The overall model quality is thus the result of many choices. As a user, you should be very careful
about supposedly ‘default’ model settings: this means that somebody has chosen for you, however
reasonable that choice may be in usual conditions, it may be not be the best choice for your particular
application. As a user of a wave model you may not have the freedom to choose, and the choice of model
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0        0.2      0.4     0.6      0.8       1.0         1.2
normalized wave height 

average Hs from altimeters (m)

Figure 8.1: Left picture: example of wave attenuation due to propagation across many islands, here
the Tuamotus, for a case of swell from the North-East, which almost never happens in this region,
as computed on a 3.6 km grid. These islands would not be resolved in a typical ocean global grid
(reproduced from Chawla and Tolman, 2008) and require a sub-grid parameterization as introduced by
Tolman (2003). The dashed box corresponds to the extent of the right panel which shows the mean
values of Hs recorded by TOPEX and Jason (reproduced from Andréfouët et al. (2012), showing the
very strong sheltering in real conditions with both windsea and swell, with swell usually coming from
the South-West.

or forcing may be imposed because it is more or less easily available and easy to use. Whatever the
circumstances, you should be aware of the impact on the model results. Also you may end up frustrated
by model result that exhibit unphysical behavior: such as the stronger growth of wind sea in the presence
of swell or a broadening of the directional wave spectrum in shallow water. You may thus want to try
yourself and improve on the existing models. Hopefully the next sections will be interesting advice. As
for the swell effect of wind growth, we have not get a full physical model that would give the proper
reduction in wind sea growth (Garćıa-Nava et al., 2012), but at least, going from the parameterization
by Janssen et al. (1994) to the one by Ardhuin et al. (2010) you will not see anymore the wind sea wave
height jump up when swell arrives.

As mentioned, the most important choices that define the model accuracy are the model forcing,
model parametrizations, and numerical schemes. Models may also assimilate measurements to correct
past estimates of the waves. However, contrary to atmospheric or oceanic circulation models, assimilation
is not necessary to obtain accurate forecasts and hindcasts. For all these choices, the most accurate result
is not necessarily obtained with the most complex choice, because some errors are often compensated by
other errors.

Finally, models are usually good only for the parameters for which they have been validated, and for
the ranges of these parameters in which we have data. Remember that there are very few measurements
of the full frequency-direction spectrum, so that the modeled spectral shapes can be really bad, especially
at high frequencies. When one predicts that the 100-year significant wave height off the west coast of
France is 18 m, based on a model that has only been validated up to 14 m, this is a real extrapolation.

8.1 Forcing

8.1.1 Bathymetry and islands

If you have never run a numerical wave model, it probably sounds trivial that the ocean depths and
shape of the shoreline should be known. In practice, though, it is not always easy. Global databases such
as ETOPO (Sloss, 1993) and GSHHS (Wessel and Smith, 1996) can have important errors, with large
error in water depth over continental shelves, and some islands misplaced by a few kilometers. Even
at global scales and coarse resolutions, it is important to take into account subgrid islands such as the
Tuamotus or Aleoutian islands in the Pacific (Tolman, 2003), as illustrated in figure 8.1.
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Figure 8.2: Root mean square error (RMSE) as a function of the forecast range, 0 corresponding to the
analysis, in the operational systems ran at ECMWF. These modeled wind speed and wave heights are
compared to buoy measurements over a year centered in winder (August to July). Only every other year
is shown (Picture courtesy of J. Bidlot).

8.1.2 Wind fields: analyses, forecasts, re-analyses

Although there are many measurements of surface winds based on satellite radiometers or scatterometers,
the coverage they provide is not enough to use a forcing field defined from these data only. Hence it is
most common to use winds from an atmospheric circulation model. In these models, the near-surface
wind speed, usually 10 meters, is not a an dynamical parameter because these models usually have a
vertical discretization in pressure levels that does not follow a constant height. This surface wind, possibly
corrected for stability effects in the form of a neutral wind, is in fact diagnosed from the atmospheric
boundary layer parameterization. As a result there are significant differences between models. For
example, for wind speeds exceeding 30 m/s, the winds provided by the European Center (ECMWF)
as part of their operational analyses were typically 10% slower than those of the U.S. weather service
(NCEP) for the year 2005. Given that there are very few reliable data at high wind speeds, it is difficult
to decide which is more accurate correct. As a result, the wave model parameterizations are adjusted
differently to the different forcing fields.

If you are a scientist, you will probably try to get the most accurate wind fields. If you are an
engineer, you may be in a rush or may not have access to the most accurate database. When it comes
to wind vectors, the most accurate model analyses and forecasts over the recent years and most of the
globe, are those provided by the European Center for Medium Range Weather Forecasting (ECMWF).
Although their data policy may soon change, these are usually not freely available. The anlysis is the
combination of model and observation that is expected to produce the most accurate estimate of the
state of the atmosphere, providing the initial conditions from which the forecast in produced.

ECMWF, like most Numerical Weather Prediction (NWP) organizations, produces both deterministic
analyses and forecasts, a single simulation, and ensemble predictions, which consist of a set of simulations
that is designed to explore the possible variations of the atmospheric state. ECMWF spatial resolution
of the deterministic product was reduced to 0.25 degree in 2008, 0.125 degree in 2011, and 9 km in March
2016. Their system, like those at all NWP centers is constantly improving to take the best advantage of
computer power, new observations, new model parametrizations and assimilation methods.

You may find details about ECMWF’s Integrated Forecasting System (IFS) on their website with a
nice quarterly newsletter. It can be a good idea to check on the quality of other sources by looking at the
wind and wave model verification http://www.jcomm-services.org/Wave-Forecast-Verification-Project.html,
presented by Bidlot (2008).

Wind analyses and deterministic forecasts have made enormous progress over the last 20 years (e.g.
Janssen, 2008), thanks to an increase in computational power that allows higher resolution, more complex
parameterizations and sophisticated data assimilation. This has gone with a dramatic increase in number
and quality of observations. Figure 8.2 shows the reduction in errors in both analyses and forecasts for
winds speeds and wave heights in ECMWF operational deterministic forecasting system.

Because of this continuous improvement of model quality, a time series of operational hindcasts is
not homogeneous in time. Hence, a statistical analysis of extreme events based on operational analysis
will probably have spurious trends. In order to reproduce past events as well as possible, recent versions
of the atmospheric models have been re-run to produce re-analyses. In this case the only source of non-
homogeneities are the observations assimilated. It is indeed not possible to go back in time and add a

http://www.jcomm-services.org/Wave-Forecast-Verification-Project.html
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Figure 8.3: Average wind and wave height in the Northern Hemisphere, Southern Hemisphere and
Mediterranean sea, obtained in different runs of the ECMWF model in which the spatial resolution is
changed. The resolutions of Gaussian grids T106, T213, T319, T511, T639, et T799 correspond to 188,
94, 63, 39, 31, and 25 km. Wind speed and wave height values have been divided by the values obtained
for the coarsest of these grids. Taken from (Cavaleri and Bertotti, 2006, c©Elsevier).

few satellites. For this reasons, some atmospheric reanalyzes start in 1978, when enough satellite data is
available for a reasonable estimate of the atmospheric circulation. This is the case of the Climate Forecast
System Reanalysis (CFSR Saha et al., 2010) and ERA-Interim (Dee et al., 2011). Other re-analyses go
back to 1958 (Kobayashi et al., 2015), and Compo et al. (2011) have produced a re-analysis from 1871
to 2008.

As we have seen, the highest waves require very high winds, and the quality of re-analyses for es-
timating past wave heights critically depends on the capability of the atmospheric models to resolve
the gradients in small storms, in particular for tropical storms or polar lows. As a result, some wave
re-analyses like ERA40 are notorious for understimating wave heights because of underestimated winds
(Caires and Sterl, 2005). Unfortunately for that aspect, the ongoing project for a fitfh generation re-
analysis (ERA5) at ECMWF favored an ensemble approach, rather than single and higher resolution
model.

8.1.3 Coastal winds

In coastal regions, closed or semi-closed basins surrounded by mountains, such as the northern Mediter-
ranean, the winds from global models are often inaccurate due to a lack of resolution of the land topog-
raphy that channels winds. A striking view of this is in figure 8.3 (Cavaleri and Bertotti, 2006). In this
case, a solution can be to use higher resolution local area models. However, it must be noted that the
quality of the nested grid result, owes much to the boundary conditions and the quality of the parent
model. Sometimes a statistical correction of coarse grid can be a better option (Signell et al., 2005).

8.1.4 Observed winds

Winds over the oceans are measured by altimeters, scatterometers (or their higher resolution cousins,
SARs) and radiometers with increasing coverage and accuracy. It is now possible to have data everywhere
over the oceans at a resolution of about 12 km, and every 12 hours. Although 12 hours is long compared
to the time scale of evolution of the wind fields and we cannot use this data as such to force a wave
model, it is possible to blend this with atmospheric models to improve the realism of modelled winds
(e.g. Bentamy et al., 2007).

Although some of that data is assmilated into atmospheric models, these models often reject the
highest winds that are often too far from their first guess. As a result, it is always a good thing to check
the consistency of modeled winds against data. Although traditional scatterometers that use Ku or C
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are not able to discriminate wind speeds beyond 25 m/s, the use the measured Doppler shift (Mouche
et al., 2012) or cross-polarizations (Vachon and Wolfe, 2011; Mouche and Chapron, 2015), has been
demonstrated with SAR data to be able to better constrain higher wind speeds, and will be used in
future scatterometers. The recent use of L-band, which is more sensitive to longer waves than Ku or C,
has also been shown to be sensitive to the highest wind speeds (Reul et al., 2006).

8.1.5 Currents

The main issue with ocean currents is to get accurate estimations of current fields, at the relevant resolu-
tion (Ardhuin et al., 2017b). This is relatively simple for tide-dominated environment for which numerical
models are reasonably goog (e.g. Ardhuin et al., 2012), it is much more delicate for regions dominated
by quasi-geostrophic dynamics, where deterministic ocean circulation forecasts have limited skills, and
even more so where internal waves are the main source of surface current gradients (Osborne and Burch,
1980) due to the required high resolution to resolve these features. As a result, most operational wave
forecasting systems take into account tidal currents, at best.

8.1.6 Sea ice

Wave-ice interaction is the topic of chapter 25. To summarize it here, the presence of ice has a strong
impact on wave growth and disspation, and a knowledge of ice concentration is required in any ocean
basin that has some ice, the Arctic of course, but all three oceans (Atlantic, Indian and Pacific) are
strongly influenced by ice, at least in their southern hemisphere part, and many regional seas an lakes
also freeze up: the Baltic, Caspian, the Great Lakes... Experimental evidence shows that waves are not
generated by the wind in ice-covered regions, and the ice can damp the waves very rapidly, in particular
the high frequency components.

8.2 Numerics

8.2.1 Wave models are big

The problem of numerical wave modelling at oceanic scales is often a question of compromise between
spectral and spatial resolution. Indeed, our wave action spectrum is a 4-dimensional beast that we
have to integrate in time. All models today use a fixed discretization into Nf ' 30 frequencies and
Nθ ' 30 directions. The wave action equation 7.40 is thus a set of Nf ×Nθ ' 1000 hyperbolic advection
equations that are coupled via the source term S and the refraction and shoaling terms. Each equation
for a component (fi, θj) is a 2-dimensional partial differential equation (PDE) that represents advection
equation with source term. This is a fairly standard problem to solve, with the transport velocity Cg+U
varying in space and possibly in time. If the spatial discretization is a regular mesh with only 100 by 100
points, hence a spatial discretization into 10,000 nodes, the overal problem has 10 million unknowns: all
the values of our gigantic wave action matrix. As result, wave models typically use a lot of memory. For
example at ECMWF, with the IFS system, the wave model uses about as much as the entire atmosphere.

Now, every time I think of it, it makes me mad that most of these unknowns are zeros: waves over 25 s
period do not happen very often, but they do happen once in a while in the biggest storms (Hanafin et al.,
2012). One trick could be to adjust the spectral grid to remove the components for which we have zeros
on the entire grid or in a subgrid. At the same time, the recent extension of wave models to add shoreline
reflections (Ardhuin and Roland, 2012) and sources of low-frenquecy infragravity waves (Ardhuin et al.,
2014) have replaced these zeros by small numbers that can be significant for some applications. Still, if
you do not activate these options, there should be a way to make models faster by avoiding to compute
zero plus zero times zero equals zero.

8.2.2 Spectral discretization

In frequencies, one needs to choose

• the spacing between frequencies: it is usualy exponential, with fi+1 = Xfrfi where Xfr is a
constant close to 1.1. The reason for this geometric progression is that it simplifies the calculation
of the 4-wave interaction term Snl: in deep water the geometric arrangement of the interacting
waves is the same from one frequency to the next. The choice of Xfr = 1.1 is relatively coarse, as
a JONSWAP spectrum will have only one or two frequencies inside of the peak. However, going to
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Xfr = 1.05 will double the number of frequencies, if you used 30 it now jumps to 60, and double
the cost of the model.

• a minimum frequency fmin: this should be low enough to allow waves to develop. In the open ocean,
it is possible to get a peak period of 25 s (Hanafin et al., 2012), and you probably need a couple of
frequency bands below that to allow the spectrum to roll back, this means that fmin = 0.037 Hz
may already be too high. Ardhuin et al. (2014) have also gone as low as 0.003 Hz to model the
infragravity part of the spectrum which will be discussed in chapter 13. However, adding these
frequencies means using a lager number Nf of frequencies, and also the computation cost for these
low frequencies can be higher due to numerical constraints: these long period waves have larger
group velocities, and explicit schemes will require a smaller time step.

• a maximum frequency fmax, this is dictated by the lowest winds that you want to represent properly:
to catch the peak of the wind sea you need to have fmax > 1.2Xfrg/(2πU10). For a fairly frequent
wind speed of 5 m/s, this means that fmax ' 0.4 Hz is not enough. Still, this was used recently
in many global models. Also, if you want to investigate properties of high frequency waves or
backscatter for remote sensing, you probably want fmax > 0.7 Hz. Finally, most wave model ignore
viscous dissipation (Dore, 1978) and capillary effects. These cannot be ignored for fmax > 2 Hz.
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Figure 8.4: Example of spectral discretization: here these modeled spectra use 32 frequencies from
0.037 Hz to 0.72 Hz with Xfr = 1.1, and 24 directions. The same spectrum is shown in cartesian and
polar coordinates. Note that the polar representation is nice to show the waves in the direction from
where they are arriving, but it squeezes all the dominant waves near the center, making it difficult to see
the details. Here the spectrum in polar coordinates is divided by the frequency f which compensates a
little for the squeezing: the total energy is still the area in the plot times the value plotted.

For the directions, with a directional spread that is about 20◦ for the wind sea peak, a resolution of 15◦

(i.e. 24 directions), can be satisfactory with 2 points in the peak – the spread is the half-width of the
spectrum in the limit of a narrow Gaussian shape. As wind-waves turn into swell, the spread can be as
low as 5◦, and it can be useful to have a higher directional resolution. Again this comes at a cost: more
direction means larger spectra, more memory and computational time.

8.2.3 Spatial discretization

Given the cost induced by spectral discretization, the spatial discretization can be optimized in several
ways. First of all, one should consider the necessary resolution. In the absence of currents, the gradients
in the wave field are given by the wind field and the shoreline geometry. There are thus several options,
from a regular grid in latitude and longitude to a triangle-based mesh (Benoit et al., 1996; Roland and
Ardhuin, 2014, e.g.), or mosaics of grids with different resolutions (Tolman, 2008) or quad-trees (Popinet
et al., 2010; Li, 2010). In particular, high resolution is desirable in hurricanes, and moving or adaptive
grids have thus been designed for this (Tolman and Alves, 2005; Popinet et al., 2010). All these options
are available in the WAVEWATCH III modelling framework.
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8.2.4 Integration methods

There are two large classes of methods used for this type of multi-dimensional PDE.

• a global resolution with an iterative method: this is the method of Patankar (1980) which has been
applied in the SWAN model Booij et al. (1999).

• A splitting method following Yanenko (1971). In that case the several terms of the equation are
integrated in succession,

∂N

∂t
+ advection = 0 (8.1)

∂N

∂t
+ refraction = 0 (8.2)

∂N

∂t
= S/σ. (8.3)

In the limit of small time steps, this is equivalent to the full integration. This approach is used in
WAM (WAMDI Group, 1988), and for most options of WAVEWATCH III (Tolman, 2002d), and
in TOMAWAC the first two steps are combined (Benoit et al., 1996).

The first approach can be interesting at very high resolution, typically in the nearshore, when used
with implicit methods that are not constrained to have very small time steps. It is used in SWAN (Booij
et al., 1999) and has been implemented in a research version of WAVEWATCH III (Huchet et al., 2015).

The great benefit of the second approach, is that the splitting allows to adapt the time step to the
time scale of evolution of each term. This is fully used in WAVEWATCH III, with an adaptative time
step for the source term integration, and different time steps for the advection and refraction.

In order to limit the computational time to something acceptable, wave models use limiters: the
rate of change of evolution is limited to ensure stability while keeping large time steps. These limiters
can completely change the solution (Tolman, 2002b; Roland and Ardhuin, 2014), so that it is a good
practice to test that a model gives similar results when reducing all time steps by a factor 2. When
a splitting approach is used, different limiters can be applied to different pieces of the equation. For
example, WAVEWATCH III has a limiter on refraction (waves cannot turn by more than ∆θ = 2π/Nθ
over one refraction time step ∆t,r: if the bottom slope of current gradient require a faster rotation then
the rotation speed is limited to ∆θ/∆t,r. Limiters for source term integration are a bit more complex.

8.2.5 Source term integration

The source terms link all spectral components together, including high frequencies that can evolve very
fast. For that reason and also because the source term balance Sin + Snl + Sds is generally not well
reproduced at high frequencies by parameterizations (e.g. Zieger et al., 2015), the spectrum above a
diagnostic frequency fd is usually prescribed to decrease like f−5. This cannot reproduce the observed
broadening of the directional spectrum with increased frequencies (e.g. Banner et al., 1989; Leckler et al.,
2015) but it is a shortcut to keep the models within reasonable bounds. In the ECWAM model fd is set
to be the maximum of 2.5 times the mean frequency of the wind sea and 3 times the Pierson-Moskowitz
frequency (Bidlot, 2012).

A stable integration of the source terms is possible with an implicit integration,

N(t+ ∆t) = N(t) +
S(t)∆t

σ(1− α∆t∂S/∂N/σ)
. (8.4)

With α = 0.5 this is accurate to second order in time, but α = 1 generally performs better for the
short wave components (Hargreaves and Annan, 2000). Still, one should be careful that source term
integration is sensitive to the choice of time step it if is constant. As a result, even at frequencies f < fd,
a limiter is used for spectral evolution. The design of this limiter is discussed in Tolman (2002b).

8.2.6 Spatial propagation

The early wave models such as WAM (WAMDI Group, 1988) have chosen the cheap but robust first
order ’upwind’ scheme. In only one dimension, the wave propagation direction is given by a sign s, going
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towards x > 0 if s = 1 and in the opposite direciton if s = −1. The upwind advection scheme is thus

N(x, t+ ∆t) = N(x, t)− ∆t

∆x
[Cg(x)N(x)− Cg(x−∆x)N(x−∆x, t)] if s = 1 (8.5)

N(x, t+ ∆t) = N(x, t) +
∆t

∆x
[Cg(x+ δx)N(x+ δx)− Cg(x)N(x, t)] if s = −1. (8.6)

The name upwind expresses the idea that the information is taken from where it is coming. That scheme
is stable when the Courant number Cg∆t/∆x is less than 1. This condition is known as the CFL condition
after the work of Courant, Friedrichs and Lewy (Courant et al., 1928).
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Figure 8.5: Time series of modeled wave height (computed over wave periods longer than 20 s) at two
locations of the Arctic, using the first order upwind scheme, or the third order upwind QUICKEST
scheme - including the Garden Sprinkler Effect correction of Tolman (2002a).

The main defect of the first order upwind scheme is its large numerical diffusion: a localized packet
of energy tends to disperse in space. This dispersion effect is not always bad because real waves are
dispersive, but the physical dispersion is only a function of the spectral resolution. A much reduced
diffusion can be obtained by using higher order schemes, such as the third order upwind QUICKEST
scheme of Leonard (1991). This is obvious in figure 8.6, which shows time series of wave heights in the
ice-free part of the Arctic, in February 2007. The two biggest storm of the year in the North Atlantic
occured on February 9 and 10, sending swell to the Arctic. This swell is modeled to arrive on 13 and 14
February off the East coast of Greenland at (74◦N,13◦W), and the two peaks are less separated with the
first order than with the third order scheme. Things are worse as waves propagate further, and the two
peaks are almost indistinguishable north of Siberia on February 16 and 17, at (78◦N,83◦E). As a result,
the investigation of the potential diffusion effect of sea ice on these swells (Ardhuin et al., 2016) would
not be possible with a first order scheme. That first order scheme is still used at ECMWF.

It is also troubling that the mean values are different, because the diffusion in the first order scheme
strongly depends on the orientation relative to the grid: the discrete directions that travel along the grid
axis are much less diffused. This shows up as north-south beams of energy in the case of slowly moving
storms, such as Tropical Cyclone Dora, shown in figure 8.6. To reduce that effect, the usual trick is to
shift the directions by ∆θ/2: instead of using 0, 15◦, 30◦ ... one uses 7.5◦, 22.5◦, 37.5◦ ... Now, instead
of a maximum along the meridian, we get a weak minimum (see top-left and bottom-left panels in figure
8.6).

When numerical diffusion is strongly reduced, the dispersion of the wave field can be less than
expected from the physical dispersion, giving an anomalous effect of the spectral discretization, known
as the ‘garden sprinkler effect’ (GSE). Without any GSE correction, the upwind QUICKEST scheme
gives the beautiful flower pattern in figure 8.6: because each spectral component has its own speed
and direction, waves from a very small source separate as they propagate away from the source as
discrete blobs of energy, instead of a smooth pattern that would be obtained with a very fine spectral
discretization in frequency and direction. The solution to correct this GSE is to introduce some explicit
diffusion (Tolman, 2002a).

Such differences are much less visible for fast moving storms, such as the more powerful cyclone
Gamede which struck La Reunion island on February 25.
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Figure 8.6: Example of wave heights for Tropical Cyclone Dora, in the Southern Indian ocean, using 4
different numerical schemes. ’GSEC’ is the GSE correction scheme of Tolman (2002a). All model runs
use 24 directions.

8.3 Parameterizations of physical processes

Because of the complexity of wave evolution processes that were briefly described in chapter 5, and further
discussed in chapters 22 and 23, there is no generally agreed upon parameterization for wave generation
and dissipation. Also, the non-linear wave interaction that is based on the theory of Hasselmann (1962)
is too costly to be computed accurately for routine applications. Hence several parameterizations have
been proposed to reproduce the non-linear source function. The most common is the Discrete Interaction
Approximation by Hasselmann et al. (1985b), which keeps the energy, action and momentum conservation
properties of the full non-linear interaction, at the price of an overestimation of the flux of energy to
high frequency, among other side effects.

For wave generation and dissipation, the parameterizations proposed by the WAMDI Group (1988),
Komen et al. (1994), Tolman and Chalikov (1996), Banner and Morison (2006), Ardhuin et al. (2010),
Rogers et al. (2010), and many others, have tried to represent the magnitude of the wind to wave energy
and momentum fluxes, as well as the overall balance that gives the wave growth. We cannot describe
here in details all the flavours of the proposed parameterizations, nor give all details about their impact
in the model solutions, which is the topic of an abundant record of scientific publications. We will
try to summarize what we believe to be the most salient aspects and side effects of a few common
parametrizaion, looking here only at the resulting wave spectra and derived parameters. In the context
of coupled models (wave-atmosphere or wave-ocean or wave-sea ice...) one should probably focus more
on the fluxes of energy and momentum than on the shape of the wave spectrum. This will be discussed
in chapter 10.

What follows is mostly taken from a few recent papers by Rascle and Ardhuin (2013), Roland and
Ardhuin (2014) and Stopa et al. (2016a), and focuses on large scale oceans away from the ice-covered
regions. Modelling in and around ice-covered regions will be discussed in chapter 25. Although we mostly
discuss the parameterization proposed in these papers and in Zieger et al. (2015), as implemented in the
WAVEWATCH III model (version 5.16), other papers, such as van Vledder et al. (2016), have discussed
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other models.
Figure 8.7 shows maps of systematic (bias) and total error in Hs from the same model ran with four

different parameterizations, compared to altimeter data. Altough it is difficult to associate a particular
error pattern to a single feature of the parameterization, the reduction in error from 1988 (top, WAM
Cycle 3) to 2013 (Rascle and Ardhuin, 2013), shows that some of the errors have been well identified. In
this case, they are mostly associated to swell dissipation and spurious swell - windsea interactions. The
next section discusses how such errors can be detected and corrected.

8.3.1 A model development and validation strategy

Historically, the validation of wave models started with the reproduction of academic cases followed by
fetch-limited growth and then application to a few real cases (e.g. WAMDI Group, 1988). Although
this approach is still valid, it is not sufficient: indeed, the parameterization proposed by Tolman and
Chalikov (1996) had input and dissipation terms 3 times smaller than those of Janssen et al. (1994), but
still it gave pretty much the same fetch-limited growth curve and performed reasonably well in regional
modeling cases. However, Tolman (2002d) had to strongly modify the dissipation for the swells to arrive
at reasonable results for oceanic basin scales, as shown in figure 8.7. This demonstrated, as now realized
by anybody who tried to improve the global models (e.g. Ardhuin et al., 2010; Zieger et al., 2015), that
the swell dissipation coefficient is the single most sensitive parameter in a basin-scale or global wave
model.

Today, with all the readily available data, including satellite altimeters, in situ buoys and wave
mode synthetic aperture radar spectra, it is possible to adjust the empirical parameters in wave models,
adjusting the full model (forcing, numerics and parameterizations). Indeed, the academic cases used with
very high spectral resolution are good for debugging a model but they tell very little of the true model
performance when using say 24 directions and 30 frequencies.

Many critics of the Tolman and Chalikov (1996) parameterization put forth the idea that it had too
many ‘tunable coefficients’, which was indeed a problem if you wanted to modify it, but was the simple
consequence that it was a fit to the detailed numerical calculations of air flow over waves performed
by Chalikov (1993). In contrast, Janssen (1991) had managed to summarize his numerical modelling of
wind profile coupled to the wave spectrum by replacing the surface roughness by a simple Charnock-like
relationship, which only reproduced part of the full model beahviour, namely a stronger wave growth
at short fetch. That made the Janssen (1991) parameterization of the wind input more amenable to
further modification. However, the Janssen (1991) parameterization is very sensitive on the shape of the
high frequency spectrum tail, so that the results it gives in Banner and Morison (2006) or Ardhuin et al.
(2010) are very different from the original form.

Given the complexity of the air-sea interface, it is not very surprizing to have many degrees of freedom
in the form of adujstable parameters. More important is the strategy to adjust them separately, typically
by using a set of well defined wave evolution conditions and measured parameters to which the model
can be adjusted. Following Ardhuin et al. (2010) we can propose the algorithm,

1. Start from a reasonable set of physically plausible processes with quantified magnitudes or at least
orders of magnitudes

2. Test wave growth and value of Hs under 10 m/s wind, after 24 hours: this should be of the order
of 2.3 m: this controls the difference of input and dissipation Sin + Sds

3. Reproduce the November 3, 1999 case of slanting fetch-limited growth, first analyzed in Ardhuin
et al. (2007). In particular the mean direction as a function of frequency depends strongly on the
magnitude of Sin. The directional spreading also gives an indication on the balance of source terms
and their directional distribution.

4. Adjust the sheltering and cumulative terms in order to reproduce the observed variability of mean
square slopes (from altimeters) and vertical acceleration variance (from buoys)

5. check on the decay of pure swells using one of the many cases sampled by SARs, for both large
and small amplitude swells.

6. Verify the biases of swell peak periods against buoy data, and frequency-dependent biases in the
energy content of the spectrum.

7. Once the deep water evolution is correct, later adjust bottom friction (see chapter 14), then sea ice
effects (see chapter 25).
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8.3.2 Overall performance for common parameters

We will not show time series of model and observations, as can be obtained using buoy data. Such
illustrations can be found in all publications. Instead we will use the globally available estimates of
Hs provided by satellite altimeters. Figure 8.7 shows typical error statistics over the global ocean
when using ECMWF operational analysis for the wind forcing, NCEP operational analyses for the sea
ice concentration, and Ifremer/CERSAT iceberg statistics for the southern ocean (Tournadre et al.,
2012). All these simulations use the DIA parameterization for the non-linear evolution, but different
parameterizations for the generation by the wind and various dissipation processes.

All four simulations have a near zero mean bias, but there are regional biases, particularly with the
parameterization by Tolman and Chalikov (1996), as adjusted by Tolman (2002c). The more recent
parameterizations generally perform better, but there can be local advantages, like the lower rms errors
of TC off West Africa. The differences between the BJA and TEST451 parameterizations are mainly in

Figure 8.7: Bias and normalized root mean square (RMS) error against altimeter data for the year
2007, using the same forcings but 4 different parameterizations of the wind input and dissipation: WAM
Cycle 3 (WAMDI 1988), TC (Tolman and Chalikov 1996, including the Tolman 2002c adjustment), BJA
(Bidlot et al. 2005) and TEST451 (Rascle and Ardhuin 2013). Solid lines in the right column correspond
to contours at the 7.5, 10, 12.5, 15 and 20% levels.

the dissipation source function.

8.3.3 Parameterization of the dissipation Sds

The dissipation used by Bidlot et al. (2005) and later adjustments (Bidlot, 2012), are based on the initial
proposition by Hasselmann (1974), later adjusted by Komen et al. (1984), that the dissipation rate is
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Figure 8.8: Example of scatter plot comparing two model runs, with the Bidlot et al. (2005) parameter-
ization and the Ardhuin et al. (2010) parameterization, described below. Data for the full year 2007 is
used at two locations: the Meteo-France - UK Met Office buoy 62163, located off the French Atlantic
coast, and the NOAA buoy 51001, located North-West of Hawaii. all observed data has been averaged
over 3 hours in order to reduce statistical uncertainties.

defined for the entire spectrum by single mean steepness defined from the full spectrum,

Sds (k, θ)
WAM

= Cdsα
2σ

[
δ1
k

k
+ δ2

(
k

k

)2
]
N (k, θ) (8.7)

where Cds is a non-dimensional constant, δ1 and δ2 are constant weights. This expression uses a mean
wavenumber

k =

[∫
kpN (k, θ) dkdθ∫
N (k, θ) dkdθ

]1/p

(8.8)

where p = 0.5 in the version used by Bidlot et al. (2005). The corresponding mean frequency is

σ =

[∫
σpN (k, θ) dkdθ∫
N (k, θ) dkdθ

]1/p

, (8.9)

This spectral average gives a mean steepness

α = Ek
2

(8.10)

This parameterization gives unrealistic variations of the wind sea dissipation in the presence of swell
(Ardhuin et al., 2007): the windsea dissipation can be much reduced by the addition of swell. This
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spurious effect contributes to the larger scatter in the western part of ocean basins which are dominated
by wind seas, with the occasional presence of swells.

As explained in chapter 5, today’s understanding of wave breaking and swell dissipation processes,
although not complete, have led to parameterizations in which the steepness is more local in spectral
space. For example Ardhuin et al. (2010) have proposed to use

Ssat
ds (f, θ) = σCds

{
0.3

[
max

{
B (f)

Br
− 1, 0

}]2

+ 0.7

[
max

{
B′ (f, θ)

Br
− 1, 0

}]2
}
F (f, θ) + Sds,c(f, θ).

(8.11)
with two different steepnesses, one that is integrated in directions,

B′ (f, θ) = 2π

∫ θ−∆θ

θ−∆θ

k3cos2 (θ + θ′)F (f, θ′)/Cgdθ
′, (8.12)

and the other that is the same for all directions

B (f, ) = max {B′(f, θ), θ ∈ [0, 2π[} , (8.13)

with a threshold Br = 0.0009 so that waves are expected to break if B > Br (Banner et al., 2000, 2002).
Because the first term of eq. (23.14), in curly brackets, is unable to give an energy balance at high

frequency, a ‘cumulative term’ Sds,c(f, θ) is added that produces dissipation of the short waves induced
by long waves. Hence, starting from a global steepness, we have come to a local steepness, and we are now
slowly trying to determine the mutual interactions of the different components through the dissipation
term. This will likely keep us busy for many years to come.

Compared to BJA, a ‘sheltering term’ was also added by Banner and Morison (2006, 2010), reducing
the input for high-frequency waves. Ardhuin et al. (2008a) found that this term was necessary to
reproduce parameters associated to the high frequency part of the spectrum, with further adjustments
discussed by Rascle and Ardhuin (2013).

The other dominant factor at global scales, is the parameterization of swell dissipation as first realized
by Tolman (2002c). Indeed, swells account for the majority of wave energy over most of the globe (Chen
et al., 2002), and given that dissipation is the only source term for swells away from the storm, a small
change of the dissipation rate can lead to very large biases. The swell wave height also depends on the
wave heights in the storm. Figure 8.9 shows a typical example, with the storm wave height overestimated
by the Tolman and Chalikov (1996) parameterization and a swell dissipation overestimated by Bidlot
et al. (2005) and Zieger et al. (2015) for very large propagation distances.

wave angle (heading from source, degrees)

       1       2       3       4       5
Hs(m)

Figure 8.9: Typical model result for swell wave height attenuation away from storms. The left panel
shows the modelled swell field using the TEST451 parameterizations described in Rascle and Ardhuin
(2013), and the center and right panel compares the measured swell height near and far away from
the storm, to modeled results with different parameterizations. ST2 is Tolman and Chalikov (1996), as
adjusted by Tolman (2002c), ST3 in Bidlot et al. (2005), ST4 is Rascle and Ardhuin (2013), and ST6
corresponds to Zieger et al. (2015). Adapted from Stopa et al. (2016a).

8.3.4 Beyond Hs, Tp ...

Besides the common sea state parameters, Hs, Tm0,2 ..., a wave model can be used to compute many
other parameters, estimated from the spectrum or from the fluxes associated to source terms. How good
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are all these?
Some parameters like the mean square slope and the surface Stokes drift are strongly influenced by

the high frequency part of the spectrum. For example, the Stokes drift vector at the sea surface is given
by,

Uss =

∫ ∞
0

∫ 2π

0

kσ
cosh(2kD)

sinh2(kD)
E(f, θ)dθdf (8.14)

in which cosh(2kD)/sinh2(kD) → 2 as kD → ∞. In deep water, if all waves go in the same direction,
Uss is thus proportional to the third moment of the frequency spectrum, m3 as defined by eq. (3.15).

For Uss or the mean square slope, the dissipation parameterizations that are based on a mean steep-
ness can introduce spurious effects of long waves on short waves that generally give a poor representation
of Stokes drift variability. This is illustrated in figure 8.10 (see also figure 8 in Ardhuin et al., 2010).
Hence, an empirical approximation that gives Uss as a function of Hs and wind speed can be a better
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Figure 8.10: Surface Stokes drift for all wave components with a frequency below 0.36 Hz, at the location
of NOAA buoy 46005, off the U.S. West Coast. In this calculation we have assumed that all waves travel
in the same direction, giving a non-directional Stokes drift Ussnd. The true directional spreading typically
gives a true Stokes drift that is 15% less. Observed and modeled values were binned as a function of
wind speed U10 and wave height. For each bin, the mean value is plotted and the black bars represent
half the standard deviation of the bin. We find that over 90% of the variance of Ussnd is explained by U10

and Hs. When using the parameterization by Bidlot et al. (2005), the variability is not well reproduced.

choice than some model results (see eq. (C3) in Ardhuin et al., 2009b).



Chapter 9

Extreme waves and historical storms

9.1 Extreme significant wave heights

The maximum measured and modeled wave heights are associated with storms. However, because it
takes both a high wind speed and a large fetch and duration to produce large waves, the largest waves
are generally caused by storms with high winds that move at a speed close to the group speed of the
dominant waves. Figure 9.1 illustrates that Hs generally exceeds 16 m once every 10 years in a good
fraction of the North Atlantic: the biggest waves on Earth are found between Ireland and Iceland.
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Figure 9.1: Estimate of the 10-year significant wave height (the expected maximum value of Hs that
occurs every 10 years) based on a 30-year hindcast, from 1985 to 2015, using WAVEWATCH III forced by
CFSR winds Saha et al. (2010), and fitting yearly maxima with a Generalized Extreme Value distribution.
Image courtesy of J. Stopa.

Wind speeds in tropical storms can be much faster, probably exceeding 70 m/s in the Typhoon Haiyan
that hit the Philippines in 2014, but the motion of these storms does not generally lead to the largest
wave heights (see also Quilfen et al., 2010).

The pattern on maxima is thus very different in the tropics where they are related to individual storm
tracks, and in the higher latitudes where the broad structures of extra-tropical storm give large values
of Hs over a wide region. For example the maximum in the Gulf of Mexico (around 11 m) in figure 9.1
is the result of the passage of a single storm: Hurricane Katrina, which led to widespread damage and
coastal flooding (e.g. Resio and Westerink, 2008). Using a different time frame, say around 1900 instead
of 2000, would probably have highlighted a different maximum, around Galveston, Texas, associated to
the 1900 hurricane that hit that part of the coast. Because it is not possible to know where the next
tropical storm tracks will be, an assessment of coastal hazards usually uses empirical storm tracks with
randomly shifted positions to investigate the local impact of a track displacement.

The highest-ever measured value of Hs is 20.1 m, using 1-Hz altimeter data from Jason 2. This
measurement was made over the North-Atlantic storm Quirin, in February 2011. Although the wind
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Figure 9.2: Modeled winds (top panel, every 12 hours from 13 February at 00h00 to 14 February at
12h00) and observed (bottom) during the development of the storm Quirin in February 2011. The light
blue and magenta contours give the limit of tropical storm (U10 > 24.5 m/s) and hurricane force (U10 >
32.7 m/s) wind speeds.

speed probably approached 40 m/s, these waves were associated to a storm travelling at the right speed
across the Atlantic, amplifying the dominant waves along its path, which resulted in an effective fetch
exceeding 2000 km and a duration larger than 48 hours.

For different regions of the world, different storms have been recorded as particularly severe. In
the United States, these are usually associated to hurricanes such as the 1969 Hurrican Camille, or
combination of North-Easter storms and hurricanes (e.g. the 1991 Perfect Storm that inspired the
movie, see Bromirski, 2001).

9.2 Physical processes at high wind speeds

Parameterizations in wave models have been developed for wind speeds ranging from 5 m/s (Snyder
et al., 1981) to 20 m/s or so. At higher wind speeds, the physical properties of the sea surface and the
airflow above it is expected to be significantly different. The sea surface is characterized by the presence
of foam and spray (e.g. Holthuijsen et al., 2012). In particular, Kelvin-Helmholz or other instabilities can
play a leading role Soloviev et al. (2014). It may be surprising that wave models actually work pretty
well for Hs up to 18 m (Rascle and Ardhuin, 2013), but this is probably because these large waves mostly
occur in regions when the wind is not so extreme, but rather where storms move with the waves.

9.3 Variability and trends of sea state parameters

As waves are related to ocean winds, so does the variability in wind speeds strongly impacts the waves.
The El-Nino Southern Oscillation has a very big impact on waves across the Pacific (Bromirski et al.,
2005; Stopa and Cheung, 2014), and North Atlantic storms are strongly affected by the North Atlantic
Oscillations (e.g. Dodet et al., 2010; Charles et al., 2012). Given this very large interannual variability,
it is very difficult to estimate long term trends, such as associated to global change. The studies by
Hemer et al. (2013), Wang et al. (2014), and Shimura et al. (2016) show that the shift of high winds
speed regimes towards high latitude generally leads to a reduction in wave height at latitudes under 50
degrees, and an increase at higher latitudes. However, the trends for extremes are a complex combination
of the number and intensity of tropical storms with the extra tropical storms, so that the extreme wave
heights may rise in some regions and decrease in others (Shimura et al., 2016). The case of the Arctic is
particular, with a general increase in wave height that is associated to a reduced extent of sea ice (Stopa
et al., 2016b).
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Figure 9.3: Measured Hs from altimeters on 13 and 14 February 2012. Bottom: measured (black) and
modeled (color) wave heights using different wind forcings: red is ECMWF operational analyses, green
is NOAA/NCEP analyses, and blue is the wind speed from NOAA/NCEP enhanced by 10%.
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Chapter 10

Air-sea interactions:
wind stress and mixing

10.1 Drift and mixing

10.1.1 Quasi-Eulerian currents

The interaction of waves and currents is the topic of onging research, in particular the effects of vertically
sheared currents on the waves. A general description of these interaction in three dimensions is given
in chapter 24. Here we will consider the much more simple case of a horizontally homogeneous ocean.
The wave-averaged momentum equation (24.37) for the mean current û then takes the following form
(Hasselmann, 1970; Xu and Bowen, 1994),

∂û

∂t
= −fez × (û + Us) +

∂

∂z

[
Kz

∂û

∂z

]
−Twc −Tturb (10.1)

The solution is determined by the surface boundary conditions, and the profiles of the mixing coeffi-
cient Kz, and the momentum injected by the waves Tw. The solution can be obtained by solving (10.1)
with a turbulent closure that gives an estimate of Kz. Following Prandtl (1904), the usual turbulence
closure has an addy viscosity that increases with the distance from the boundary (Schlichting, 1979) and
involves a velocity scale q associated to the turbulent motion,

Kz = qSM l, (10.2)

where the turbulent kinetic energy per unit mass is q2 = u′iu
′
i, SM ' 0.39 is a constant. With this, the

most simple model uses a prescribed mixing length l that is the maximum distance from the surface or
the base of the mixed layer.

l = max {−κDmς, κz0−} for (−h+ ζ)/2 < z < ζ

l = max {κD(1 + ς), κz0b} for − h < z < (−h+ ζ)/2, (10.3)

where Dm is the thickness of the mixed layer. The roughness length z0− yields a non-zero value of Kz

at the surface, which is consistent with measurements (e.g. Kitaigorodskii, 1994). Thorpe et al. (2003b)
and other authors have suggested that z0 is of the order of Hs, the significant wave height1.

More complex models consider also an equation of evolution for q, and one must also define the
surface boundary condition for q. For example Mellor and Yamada (1982) use the following equations

lqSq
∂q2

∂z
= αCB

ρ0
a

ρ0
w

u3
? at ς = 0, (10.4)

lqSq
∂q2

∂z
= 0 at ς = −1, (10.5)

1Ocean circulation models before the year 2000 used to ignore these effects, and could have very small values of Kz at
the surface, e.g. Large et al. 1994, which could give highly unrealistic values of the surface drift when using very high
vertical resolutions.
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Figure 10.1: Upper ocean current profiles for a wind speed U10 = 10 m/s
(a) Profiles with a very low value of z0, representing an unrealistic situation without waves (b) profiles
with a realistic value of z0. In terms of drift velocity, the much lower value of the surface current is
compensated by the Stokes drift. The velocity scale q is the square root of the turbulent kinetic enenergy
(TKE). A realistic surface flux of q is needed to get the realistic TKE profile in (b). (Figure courtesy of
Nicolas Rascle).

where Sq = 0.2. The mixing coefficient for q2 is lqSq, and αCB is the ratio of the energy flux coming
from ocean waves (presumably due to wave breaking), and the fruction velocity cubed. This coefficient
was particulary discussed by Craig and Banner (1994) and many following authors (Terray et al., 2000;
Mellor and Blumberg, 2004; Rascle and Ardhuin, 2009, 2013). Typically αCB is of the order of 100.

For a simple estimation we consider a fully developed sea state, and we assume that Twc and Tturb are
concentrated near the surface so that we can replace these terms in (10.1) by a local source of momentum
in the surface boundary condition,

τa − τwc
α − τ turb

α = τ in
α + ρwKz

∂ûα
∂ς

on ς = −δs
D
. (10.6)

In fact, in the presence of a strong surface mixing the numerical solution is not very sensitive to the
forcing in the boundary condition or as a body force concentrated near the surface (Rascle et al., 2013).

Because we assumed a fully delveloped sea state the momentum flux τ in
α that goes to the wave growth

is canceled by the dissipation terms and we have

τa = ρwu?u? = ρwKz
∂ûα
∂ς

on ς = 0, (10.7)

with u? is the wind friction velocity.
Until the 1990s, it was usuall to use very small values of mixing at the surface (e.g. Large et al.,

1994), corresponding here to low values of z0−, such as in Figure 10.1.a. This can give very high values
of the surface depending on the vertical resolution, up to the usally observed 3% of the wind speed
(Huang 1979). But Agrawal et al. (1992) found that the disspation of TKE was much higher in reality,
by at least one order of magnitude, so that the mixing must have been strongly underestimated. Recent
models have clearly shown that higher surface mixing values are more realistic. For example Mellor and
Blumberg (2004) use z0 = 0.8Hs to get a better fit to measure sea surface temperatures in the Gulf of
Alaska. This gives a much weaker surface quasi-Eulerian velocity. This mixing induced by wave breaking
is particularly important for relatively shallow mixed layers such as found in the Arabian Sea in summer
(Janssen, 2011), or caused by the diurnal cycle of heating (Noh, 1996; Noh and Kim, 1999).

There are very few measurements of velocity profiles of Eulerian or Lagrangian velocity within the
upper few meters of the surface. Observations by Santala and Terray (1992) show an Eulerian current
that does not exceed 0.5% of the wind speed, see fiugre 10.2. How general is that? Is it still true if we
can measure within a few centimeters of the surface, or right at the surface? This is not known yet but
several techniques using thermal imagery should be able to answer these questions.

10.1.2 Stokes drift

To this quasi-Eulerian drift one should add the Stokes drift induced by waves. Generalized to a random
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Figure 10.2: Quasi-Eulerian velocities near the sea surface.
Two types of current-meters (SASS and VMCM) provide mean current velocities that have been corrected
for wave motion. u?w = (ρa/ρw)1/2u? is the friction velocity in the water (Figure from Terray et al.
2000). The difference in current velocity between the surface and the thermocline is of the order of 0.5%
of the wind speed U10.

wave field in deep water, eq. (6.5) gives (Kenyon, 1969),

Us(z) =

∫ ∫
2σk cos(θ)E(f, θ) exp(2kz)dfdθ, (10.8)

Vs(z) =

∫ ∫
2σk sin(θ)E(f, θ) exp(2kz)dfdθ. (10.9)

Clearly this expression has a strong contribution from short waves, and thus should be largely influ-
enced by the local wind. Still, for any given wind speed, the surface drift value Uss has a root mean
square variability of the order of 40%, particularly for relatively low wind speeds, below 7 m/s, as shown
in figure 10.3.

Based on direction spectra measured by surface-following buoys, Ardhuin et al. (2009b) found that
the surface Stokes drift Uss could be estimated fairly accurately, with a root-mean-square error of the
order of 20%, by an expression as a function of the wind speed and wave height,

Uss(fc) ' 3.7× 10−4

[
1.25− 0.25

(
0.5

fc

)1.3
]
U10 min {U10, 14.5}+ 0.025 (Hs − 0.4) , (10.10)

in which fc is the frequency up to which the Stokes drift is taken into account. This expression was
validated for 0.3 < fc < 0.6 Hz.

When subtracting this Stokes drift from HF radar data they found that the quasi-Eulerian current
was of the order of 0.4 to 0.8% of the wind speed, with important variations due to inertial oscillations,
and, in the Northern hemisphere, a mean direction 60 degrees to the right of the wind.

The model proposed here adds the Stokes drift to the quasi-Eulerian velocity and matches relatively
well observations of surface drift and mixing (Rascle et al., 2006). The effect of stratification is particularly
discussed by Rascle and Ardhuin (2009). In particular this model gives both a strong vertical shear of
the drift velocity (mostly due to the Stokes drift) and a strong mixing (caused by wave breaking). Still
the modeled drift is low by 0.5 to 1.5% of U10 compared to the typical 3% surface drift. One possible
reason is that surface drift objects are trapped in convergence zones where the mean velocity is faster
than that of the surrounding water. These convergence zones are associated to Langmuir cells.

10.2 Langmuir circulation

Indeed the velocities in the upper ocean are not homogeneous horizontally (Weller et al., 1985). Many
observations, starting with Langmuir (1938) have revealed lines of convergence where foam, flotsam,
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Figure 10.3: Example of mean value (in red) of the surface Stokes drift vector norm Uss = |(Uss, Vss)|
as a function of wind speed for two locations: station PAPA in the North-East Pacific, and buoy 62069
off the French Atlantic coast. The black symbols show the mean plus or minus one standard deviation
for each wind speed. The dashed grey line is US = 0.01U10. For both buoys, the non-directional Stokes
drift (in blue) is about 50% higher.
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Figure 10.4: Langmuir cells (figure by J. A. Smith)

sargassum and any buoyant material gathers at the surface (Thorpe et al., 2003a). These lines are
roughly aligned with the wind direction (Figure 10.4).

These lines trap material because they correspond to the surface convergence of rolls that are stretched
by the Stokes drift and thus get their energy from the wave field via the turbulent kinetic energy pro-
duction term u′w′∂Us/∂z, as detailed in chapter 24. The momentum balance that gives these rolls was
further analyzed by Suzuki and Fox-Kemper (2016). These rolls have been observed in most experiments
in the ocean and in the laboratory (e.g. Thorpe, 1992; Melville et al., 1998; Smith, 1999), including in
shallow water (Marmorino et al., 2005). They are well reproduced in Large Eddy Simulations (e.g. Noh
et al., 2004; Harcourt and D’Asaro, 2006; Sullivan and McWilliams, 2010) and can interact with mixed
layer fronts (Suzuki et al., 2016).

The parameterization of Langmuir circulation in models that do not resolve them is the topic of active
research (e.g. Li and Fox-Kemper, 2017).
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Figure 10.5: Effect of sea state on the wind stress.
Left: measured neutral drag coefficient C10N , during the FETCH experiment in the Mediterranean.
Right: variation of the roughness length z0, normalized by a typical wave amplitude σ = Hs/2 for
various experiments. Figure reproduced from Drennan et al. (2003).

10.3 Sea state influence on air-sea fluxes

10.3.1 Wind stress and drag coefficient

As discussed above when investigating the near-surface current profiles, the energy lost by wave breaking
contributes to the upper ocean turbulence, and can impact the diurnal cycle of sea surface temperature
(Janssen, 2011).

Another well-known effect, although its magnitude is still debated, is the influence of waves on the
wind stress. The wind stress is often parameterized with a drag coefficient

τ = ρaC10NU
2
10N , (10.11)

where the neutral wind speed is the equivalent wind speeds that gives the same stress in the atmospheric
stratification is neutral. It was found in most experiment that C10N tends to be higher for relatively
young waves as shown in figure 10.5.

However, in general the wave age is correlated to the wind speed, so that it is very difficult to isolate
wave age effects. In their recent review of wind stress parameterization for wind speeds 0 to 25 m/s,
Edson et al. (2013) concluded that the updated COARE 3.5 parameterization gives a good reproduction
of the wind stress as a function of the neutral wind speed alone.

For higher wind speeds, several estimates of the stress suggest that the value of Cd may decrease,
possibly associated to a full separation of the boundary layer. Figure 10.6 shows several drag coefficient
from observations and as used in the ECMWF atmospheric model, for which the drag takes into account
the waves (Janssen, 2004). Interestingly the ECMWF drag is relatively high and the ECMWF winds are
relatively low compared to measurement from platforms. We also note that wind speeds derived from
satellite radiometers and scatterometers are not direct measurements and thus depend on the choice and
tuning of a Geophysical Model Function that translates the measured quantity (brightness temperature
or backscatter) into wind speed. For example the winds from the ASCAT scatterometer processed by
KNMI and RSS differ by 7 m/s on average for 30 m/s winds.

10.3.2 Swell and stress direction

Besides the magnitude of the wind stress, waves also modify the stress direction. This is particularly
noticeable at low wind speeds in the presence of swell. Indeed, the wind stress may be opposite to the
wind direction for wind speeds below 3 m/s, as the wave are loosing momentum to the atmosphere and
generating a low-level jet of wave-driven wind (Semedo et al., 2009; Hogstrom et al., 2009). It is more
frequent to observe systematic deviations of the wind stress and wind speed directions when waves and
wind are not aligned (Potter et al., 2015).
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Figure 10.6: Left: Comparison of drag coefficient for ECMWF (CY41R1) parameterization, empirically-
adjusted Charnock parameterization and observations (Donelan et al., 2004, ’R’ or ’M’ corresponds to
different measurements techniques Reynolds or Momentum Budget. Right: Wind speed biases, on the
period 23 to 27 of January 2014 on North East Atlantic, between (a) ASCAT-KNMI, (b) ASCAT-RSS,
(c)AMSR2, (d) WindSat, (e) buoys, (f) platforms and model for the default ECMWF CY41R1 (blue) and
empirically-adjusted (red) parameterizations. Beyond 30 m/s, values are plotted as points, representing
the large uncertainties on observations. Figure from Pineau-Guillou et al. (2018).

10.3.3 Other effects

See Veron (2015) for a review of spray generation.



Chapter 11

Waves and ocean remote sensing

Waves are usually the first type of motion that you see at the sea surface, and they appear in all
remotely sensed data. In some cases, the direct wave influence can be averaged out of the signal. In
other cases there is a residual bias due to the presence of waves. This is the case in range measurements
with altimeters (e.g. Minster et al., 1991), velocity measurement with Doppler systems (Chapron et al.,
2005; Nouguier et al., 2018), surface brighness temperature measurements used to infer sea surface
temperature or salinity (Reul and Chapron, 2003). Wave shapes and motion also introduce a variance
in the measured quantity which can be useful in the case of sea level measurement with altimetry, or
can blur the signal beyond recognition in SAR imagery or interferometry (Peral et al., 2015). All these
effects are opportunities for measuring wave parameters, or measuring other processes thanks to their
influence on waves.

11.1 Back-scatter from a rough surface

11.1.1 near-nadir incidences

In the case when the source of light or radar transmitter is at the same location as the receptor (this is
called monostatic geometry), radar waves reflected off from the sea surface is determined by either the
variance of the surface slopes (usually called mean square slope or mss), when the source shines within
about 20◦ of the vertical

incidence angle (degrees)incidence angle (degrees)
0     2    4     6     8   10    12   14   16 

(a)

(b)

Figure 11.1: (a) Average backscatter power from the TRMM radar (from Freilich and Vanhoff, 2003) (b)
Same variation for a given wind speed, as a function of wave height (from Nouguier et al., 2016).

For near-vertical angles the power recorded on a radar is well described by the theory for a nearly
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Figure 11.2: Surface roughness observed by the MERIS instrument on board ENVISAT.

Gaussian distribution of surface slopes, completely determined by the mss. In general, the mss is largely
determined by the wind speed, but it is also modified by the stage of development of the wave field,
increasing for more mature waves that generally correspond to higher wave heights, as shown in figure
11.1.b.

A flat surface gives a strong return near zero incidence (vertical sounding) and the return power
decreases as 1/mss. For incience angles larger than about 10◦ in Ku-band, the return increases with the
roughness. Hence the contrast in the sun reflection in an optical or radar image depends on the incidence:
near the vertical a slick flat surface will appear bright, but it will be dark at higher incidences.

11.1.2 higher incidence angle

For large incidence angles the reflection is proportional to the amplitude of waves in the radar look
direction and with a wavelength equal to λe/(2 sin θi) where λe is the electromagnetic wavelength. These
waves are called ’Bragg waves’. A similar scattering of waves by a periodic medium was described by
Bragg (1913) in the case of X-ray diffraction, and is thus known as Bragg scattering, although it was first
studied by Rayleigh (1896) for the reflection of sound waves at a wavy surface. This generally applies
to incidence angles above 30◦, and is used in the remote sensing of winds with “scatterometers” as well
as the measurement of currents with HF-radars having wavelength of several meters and using grazing
incidence angles (close to 90◦).

11.2 Various applications

11.2.1 Roughness and surface current gradients

Waves with wavelengths under 3 m are the main contribution to the surface slope variance (e.g. Cox and
Munk, 1954; Vandemark et al., 2002), and these short waves are strongly modified by current gradients
(e.g. Phillips, 1984). As a result, current gradients have a clear signature in the mean square slopes and
the measured back-scatter intensity for incidences 0 to 20◦, as shown in figure 11.2. This property has
been particularly investigated by Kudryavtsev et al. (2012); Rascle et al. (2014, 2017), with the objective
of estimated current gradients from optical imagery in the ’sun glint’, i.e. for incidence angles close to
the specular reflection direction of the sun. The quantitative analysis of glint data is generally based on
the wave action equation as given in chapter 7.
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Waves in coastal and nearshore
environments
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Chapter 12

Linear shoaling, refraction and
reflection

In chapter 2, we assumed that the wave field had spatially homogeneous amplitudes, propagating over a
flat bottom. We will now allow the water depth to vary, which, like variations in the current velocity in
chapter 7, causes important wave modifications.

12.1 Wave shoaling

In the absence of current, wave rays are orthogonal to wave crests are streamlines for the energy. Con-
sidering two rays of the same monochromatic wave train, parallel in a region where C is uniform (for
instance in deep water, KD >> 1, and without current) and spaced from ∆l, the energy flux between
those two rays CgE∆l is conserved along this ’tube’. All these properties can be demonstrated from
Laplace equation and from the boundary conditions at the surface and at the bottom, assuming that
amplitudes and phase velocities vary slowly.

Without current and for a beach with an uniform topography along the y-axis (longshore), wave
propagation along the x-axis have therefore rectilinear rays et ∆l does not change along the tube defined
par two of its rays. Hence, the spectral density of energy E matches the group velocity Cg changes
(see figure 2.50) so that the energy flux CgE remains constant. In particular, in the coastal area,

Cg = (gD)
1/2

, therefore, the spectral density of energy increases as H−1/2. Yet, E is proportional to the

mean or significant wave height squared Hrms = 2−1/2Hs and Hs = 4 (E/ρg)
1/2

. Therefore, the wave
height increases as D−1/4. In practice the wave height is limited for wave breaking when D approaches
zero.

This modification of the wave height due to variations of the group velocity is called shoaling. But
on a real shoal, which has a finite length, the non-uniformity of the depth along the crests also causes
refraction.

12.2 Refraction

We showed in chapter 2 that the wave phase velocity was a function of frequency and water depth. In
presence of an horizontal current U(x), vertically uniform, we observe a Doppler shift as well. The wave
angular frequency, in a fixed referential becomes then, ω = σ + k ·U, and the phase speed is :

C =
ω

k
=
[g
k

tanh (kD)
]1/2

+
1

k
k ·U (12.1)

The phase speed C changes induce the refraction phenomenon, discovered by Snel and Descartes in
optics.

Without current, this effect is perceptible from the moment that the water depth is less than half
the wave length (kD < π). Considering two areas with uniform water depths D1 and D2 for x < 0 and
x > 0, then the Snel law (also attributed to Descartes1) applies and expresses the wavenumber ky at the
boundary,

1The Dutch mathematician Willebrord Snel discovered the refraction law in 1621, but it was only published in 1703
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sin θ1

C1
=

sin θ2

C2
(12.2)

Where θ1 et θ2 are the angles between the propagation direction and the x-axis. This results applies to
a beach with a topography uniform along the y-axis. In this situation, sin θ/C is conserved by refraction
(figure 12.1).

All the results of geometric optics apply, replacing light velocity by C, in particular Fermat’s principle:
the integral of C along a trajectory is minimum in the variational sense. Hence, a bump at the bottom
acts like a optical converging lens while a trough will be divergent. This explains why waves converge
towards capes, increasing their height. Waves propagating against a localized current vein (the current
speed is zero outside the current vein) are deviated toward its center. In addition to being shortened due
to the Doppler effect, waves are higher and steeper, hence more dangerous, as in the Aguhlas current.

We can obtain a differential equation for the trajectories followed by waves from that same principle.
These trajectories are also called rays of characteristics. Let (x, y, θ) be the position and direction of
waves in a single point of the ray, and s the curvilinear coordinate along the ray, without current,

dx

ds
= cos (θ) , (12.3)

dy

ds
= sin (θ) , (12.4)

dθ

ds
=

1

C

dC

dh

[
dh

dx
· sin (θ)− dh

dy
· cos (θ)

]
. (12.5)

Without current, the motion of a wave packet is given by his speed ds/dt = Cg in the direction θ.

C1 C2

θi1

θr1
θi2

C3

θr2

θi3

Figure 12.1: Propagation directions for incident or reflected waves, for each part of two phase speed
C discontinuities. For a natural topography, refraction is steady and the intensity of reflected waves is
generally weak.

With a current ds/dt = |Cg + U| and the wave propagation direction is different from the direction
perpendicular to wave crests. These ”rays” have long been calculated by hand (Munk and Traylor, 1947)
before numerical methods took over Dobson (1967).

It is very insightful to look at wave plans, the diagrams showing the ray spacing from directions
parallel offshore. (see example in figure 12.2). From the energy flux conservation between two rays, a ray
spacing l narrower than the offshore spacing l0 means that the local wave height increases. This is the
case in front of Long Beach pier for the 20 s south swell. This augmentation only due to refraction, is of a
factor

√
l0/l, than needs to be multiplied by the shoaling coefficient

√
Cg0/Cg. This combination gives a

seven-fold increase in wave height that explains the destruction of the Long Beach Pier in April 1930 due
to a unusual south swell (Lacombe, 1950). Indeed ,only the very long swells can feel the topography by
200 m depth. The pier has been rebuilt since its destruction but with a slightly different configuration.

in Christian Huygens’s book Dioptrica where Snel is named in latin (Snellius) which leads to the frequent errors of the
English speakers that write his name Snell instead of Snel. The french philosoph René Descartes gives the Snel law in his
treaty La dioptrique, an appendix of his famous Discours de la méthode pour bien conduire sa raison et chercher la vérité
dans les sciences publish in Leiden in 1637 and apparently inspired from Snel’s work, although Descartes repeated Snel’s
experiments in 1626 and 1627.(Source: the MacTutor history of mathematics archive, University of St Andrews, Scotland,
http://www-groups.dcs.st-andrews.ac.uk/∼history)
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Figure 12.2: Refraction diagram for waves of 20 s period from 160◦ at Long Beach harbor, California
From Lacombe (1950). Note the units on the dashed depth contours: 1 fathom is 1.83 m.
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Figure 12.3: Refraction diagram over the Gouf de Cap Breton
From Lacombe (1950).
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Figure 12.4: Examples of two wave rays methods
a. ”Traditional” computation for a west swell with a 15-s period, near La Jolla, California. The location
of some the wave buoys deployed during the NCEX experiment is indicated by numbers 32 to 37 and the
10, 50, 100 et 200 m isobaths are shown by the dashed lines. From Magne et al. (2007). b. computation
of back-trajectories from point 34, for the same period T = 15 s and arrival directions evenly spaced
with a 1◦ interval. Only the wave rays reaching offshore, and able to bring energy at point 34 are shown
(this is true only within the optical geometry approximation, and by neglecting the wave reflection at
the shore. Regular marks are visible along the ray and correspond to the distance covered by the group
velocity within time intervals of 60 seconds.)
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Figure 12.5: Example of propagation of a monochromatic 16 s period, 1 m amplitude offshore swell.
Computation made with the finite differences elliptical extended Berkhoff model, from Athanassoulis et
Belibassakis (1999)

This computation for Long Beach can be compared to the one for 12-s waves at Cap Breton, France
(figure 12.3).

When using a numerical calculation, back-trajectories from a fixed point are more reliable (see for
instance in figure 12.4.b). That latter method avoids the occurrence of singularities such as caustics that
occur when forward-propagated rays cross. When using backward ray tracing, we use the equality of the
of the spectral densities in the coordinates (kx, ky), between two points A et B of the same ray. Hence
for a zero source term, and in the stationary case without current, using (3.9), equation (5.38) gives

EA(f, θA) = EB(f, θB)
Cg,BkA
Cg,AkB

, (12.6)

where θA et θB the ray directions when they cross A and B, respectively. One may hence transform an
offshore spectrum to the coast to account for refraction and shoaling. In this situation, we shall often
assume that the offshore spectrum is relatively uniform. Reciprocally, we may also estimate an offshore
sea state from coastal measurements. This technique can easily be extended to non-stationary situations
by adding a time shift between A and B corresponding to the propagation duration, i.e., the integral of
1/Cg along the ray. The difficulty of these calculations are limited to the ray tracing that can be done
once for all for stationary media (when the tide effect is negligible). This transformation method of a sea
state from offshore to the coastline is often very precise, especially for situations dominated by shoaling
and refraction (O’Reilly and Guza, 1993; Ardhuin et al., 2003b; Ardhuin, 2006b; Magne et al., 2007).

If wave rays happen to cross, a caustic appears and the wave height becomes infinite. In practice,
the wave amplification is finite, since the wave rays of the different spectral components are not at the
same location. Yet, for monochromatic wave, the wave height is in fine limited by wave breaking or
diffraction.

12.3 Diffraction

So far, we have considered that the wave amplitude and the properties of the medium in which they
propagate vary slowly in comparison to the wave period on wave length (WKB approximation).

It has been noticed earlier that for caustics due to refraction of a monochromatic wave, this WKB
approximation is not valid. This assumption is not verified in the vicinity of obstacles such as breakwaters.
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For small amplitude waves, neglecting the wind effect and the bottom friction, one may use the linearized
equations. Over a flat bottom and with such obstacles, a solution for φ can be found with the following
equation

φ = φ̂(x)
cosh (k0z + k0D)

cosh (k0D)
e−iωt + c. c., (12.7)

where ω2 = gk0 tanh (k0D). φ verifies the cinematic boundary conditions at the bottom and surface.
The Laplace equation, simplifies into the Helmoltz equation,

∇2φ̂+ k2φ̂ = 0. (12.8)

The elliptic nature of that equation imposes a solution method with boundary conditions imposed
along a closed contour. Taking a wave train φ̂ that varies slowly on the scale x̃ = εx, then φ̂ = Φ̂ (x̃) eiS(x),
with a local wavenumber k =∇S, that also varies slowly. This gives

∇2φ̂ = ∇ ·
(
∇Φ̂eiS

)
(12.9)

= ∇ ·
[(
ε∇Φ̂ + ikΦ̂

)
eiS
]

(12.10)

=
[
ε2∇2Φ̂ + 2iεk · ∇Φ̂ +

(
iε∇ · k− k2

)
Φ̂
]

eiS (12.11)

(12.12)

At zero order in ε, the variations of the amplitude Φ̂ are neglected to keep only the phase variations,
S (x), and we obtain |k| = k0 meaning that wave trains propagate exactly like plane waves. At first
order, we neglect the spatial derivatives of Φ̂. One may show (Mei, 1989, chapter 3, see also Ardhuin et

Herber2002) that if the bottom slope is of order ε as well, other terms, in addition to φ̂ are required to
satisfy the kinematic boundary condition at the surface and we get the action conservation equation,

∂

∂t

(
E

σ

)
+∇ ·

(
E

σ
Cg

)
= 0. (12.13)

Diffraction results from second-order terms, that tends to force waves to turn toward regions with lowest
wave amplitudes.

Berkhoff (1972) used the approximation, now known as the mild slope approximation, that φ verifies
the polarization and dispersion relations of linear waves over a flat bottom. After some calculations, we
obtain (see for instance Mei, 1989, chapter 3) the so-called mild-slope equation (or Berkhoff’s equation).

∇ · (CCg∇ζ) + ω2Cg
C
ζ = 0. (12.14)

The mild slope equation (12.14) is an extension of the Helmoltz equation to a mild bottom slope.
This equation is widely used in coastal engineering for determining harbor agitation, using finite elements
numerical models. Results of this type of model are shown in figure 12.5.

Radder (1979) proposed a parabolic approximation of the elliptic equation, by neglecting the ζ gradi-
ents in the propagation direction, which conserves the diffraction effects. Such a model (called refraction-
diffraction model) has been used for swell forecasting over the Californian Coastline (http://cdip.ucsd.edu),
from offshore prediction. The Californian continental shelf is indeed narrow enough to neglected the local
generation of waves.

However, contrary to what happens in the vicinity of coastal structures, the diffraction can generally
be neglected in this region (O’Reilly et Guza 1991, Peak 2004). hence during the Near Canyon EX-
periment (NCEX) offshore La Jolla, California, that lasted over three months, only one swell had been
measured with a frequency low enough to justify the use of a model solving Berkhoff’s equation. In this
situation the Berkhoff’s model provided slightly more accurate results than the ray tracing method and
only at a limited number of locations. This location corresponds to spots where the wave field varies
strongly over a distance that commensurates with the wave length, as for instance over Scripps canyon,
with a variation of a factor 5 in the wave amplitude over a distance shorter that the wavelength (figure
12.6).

One may often just use the refraction computation (figure 15.3). This kind of approach take into
account the details of the bathymetry and of the spectral shape, which is very important form complex
coastline.
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Figure 12.6: Wave observations and modeling during NCEX.
The significant wave heights (Hs) for the frequency band 0.04-0.08 Hz are computed from the spectra
generally observed from 1:30 to 4:30 pm UTC, on November 30 2003. The buoy location are shown
on figure 12.4. The models used are: a ray back-tracing (”refraction”, O’Reilly & Guza 1991) three
elliptical models and a parabolic approximation of the Berkhoff equation (”Ref-dif” Kirby 1986). The
three models use the same numerical code and solve Berkhoff’s equations (”Mild Slope Equation” or
MSE, 1972), their version modified by Massel (MMSE, 1993) and their extension by the coupling of
three evanescent modes and a local mode (NTUA5, Athanassoulis et Belibassakis 1999). The difference
that appears between the refraction model and the elliptical models at buoys 32, 36 and 37 is related to
the wave transmission by tunnel effect across the canyon, despite its large depth (see also Thomson et
al. 2005). This tunnel effect can not be represented in the geometric optics approximation over which
relies the ray tracing of the refraction model. Figure from Magne et al. (2007).

12.4 Reflection

Any variations of the water depth or current velocity - the wave guide parameters - result in partial
reflections. These reflections are significant only if the above cited variations are large over the wave
length scale. This is the case when the waves approach the coastline.

12.4.1 Reflection at the shoreline

Hence, the magnitude of the reflection, that can be characterized by the ratio R = ar/ai of the reflected
and incident wave amplitudes, increases strongly with the bottom slope β and with the wave period
T . Miche (1951) studied monochromatic waves over a constant bottom slope and reported that R2 is

Figure 12.7: Energy Reflection coefficient R2 as a function of the Miche number M , From Elgar et al.
(1994), copyright American Meteorological Society.
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roughly equal to the coefficient

M =
0.0016g2 tan5 βT 4

H2
∞

, (12.15)

where H∞ is the offshore wave height, in the case M < 1 and R = 1 for M > 1. The only precise study
published on the topic of in situ random waves shows that, using Hs instead of H, Miche parameter M
effectively gives an order of magnitude of the reflection coefficient for swells and wind seas (figure 12.7).

The study of Elgar et al. (1994) suggests that R2 > M for M < 0.05 and R2 < M for M > 0.1. A
better approximation, R2 = min{0.007(log10(M)+5)+0.2M, 1}, has been implemented by Ardhuin and
Roland (2012) in the WAVEWATCH III model. Besides, for a given sea state, the reflection decreases
toward high frequencies.

Casual observation of wave reflection from a beach suggests that, in addition to the reflection there is
also a generation of short wave components, that are radiated toward the open ocean. To our knowledge,
this has not yet been discussed in scientific publications.

12.4.2 Reflection by underwater topography

The variations h′ of the water depth at the wave length scale also impact waves. One way to represent
this effect in the spectral evolution equation consists in decomposing the topography variation h′ in sine
waves of wavenumber l,

h′ (x) =
∑
l

Bl (x̃) eil·x, (12.16)

and to calculate the interaction of the wave spectrum with each sine wave. Strictly speaking, we obtain
a wave forcing by the topography as obtained in Chapter 2 for the wind turbulence (Hasselmann, 1966).
At fist order in bottom slope (ε = lh), we obtain a resonance between two waves with wave numbers k
et k′, such as k = k′, that exchange energy thanks to bottom ripples with wave number l = k−k′. This
leads to an energy transfer in other directions (figure 12.9).

Figure 12.8: Bathymetry of a region with underwater dunes in the south of the North Sea.
On the spectrum (b) of this bathymetry, the contours indicate the value log10[4πFB(l)] with FB the
bottom spectrum. The circles indicate the components l that interact with waves of 12.5 s period coming
from the North-West (wave number k) for 3 current speeds, -2, 0 et 2 m/s. .

The local effect of this Bragg diffusion is a modification of the directional wave spectrum. If the
bottom topography is dominated by large scales (l << k), the result is an increase of the waves directional
spreading, that corresponds to a shortening of the wave crest length, rendering the wave field appearance
messier.
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Figure 12.9: Example of spectral evolution caused by bottom reflection for the wave spectrum shown in
figure 12.8 and applied in 20 m depth
(a) computation domain, (b) incident spectrum imposed at point F, (c) and (d) evolution term of the
spectrum with and without current, (e) spectrum at point O, 40 km inside the domain after 5 hours of
propagation. The frequency is here the relative frequency σ/(2π).

For a topography with a large spectral density at l = 2k, the wave are back-scattered (Heathershaw,
1982) and the wave height decreases in the initial direction of wave propagation. For random waves
this effect takes the form of a bottom induced scattering term Sbscat (Ardhuin and Magne, 2007), which
typically produces a broadening of the directional spectrum when important depth variations are present
at the scale of the wavelength.

12.4.3 Summary

In Shallow water (D < 0, 5L), waves are influenced by the bottom in addition to wave-wave interaction
and interaction with atmosphere. Leaving apart wave breaking that occurs in the direct vicinity of the
beach, the bottom effect depends on the relative amplitude of the waves and of the bottom topography.
All these effects are supposed independent of each other, and independent of the wave-wave interaction
or of the interaction between waves and atmosphere (e.g. Komen et al., 1994). This leads to a spectral
evolution equation that takes into account all the processes as source terms. This is thus an extension
of the deep-water action balance given by eq. (7.40) with additional source terms,

S = Sin + Snl + Sdis + Sfric + Sbscat + · · · (12.17)



Chapter 13

Nonlinear wave shoaling

13.1 Introduction

Chapter 3 has shown how random waves can be usually treated as a sum of linear waves with random
phases. Chapter 5 presented how it evolves under the influence of weak non-linearities as described by a
wave action equation. Non-linearities actually become stronger in shallow water when the waves are less
dispersive (kD << 1), and we have to reconsider the non-linear effects. In chapter 2 we have introduced
the two small parameters ε = ka and δ = a/D. The nonlinear effects that we will discuss here occur
when the parameter Ur = δ3/ε2 = a/k2D3 is of order 1. This parameter was introduced by Ursell (1953).
The regime Ur � 1 corresponds to the weak nonlinearity already discussed in chapter 5.

The stronger non-linearity that occurs for Ur = O(1) correspond to a near-resonance at second order,
i.e. k3 ' k1 + k2 and f3 = f1 ± f2, with the plus sign giving super-harmonics of higher frequency, and
the minus sign giving sub-harmonics of very low frequency or infragravity waves. These interactions can
also be seen as a non-linear wave scattering by the bottom topography with k3 = k1 + k2 + kb where kb
is the wavenumber of the topography (Liu and Yue, 1998; Groeneweg et al., 2015).

Instead of going back to the full Euler equations, several approximations have been proposed to
simplify the problem but keep the nonlinearity. In particular, assuming kD << 1 allows to derive a
simplified set of equations.

13.2 Boussinesq and KdV equations

Both the Boussinesq and (Korteweg and de Vries, 1895, ,KdV for short) equations were first derived by
Boussinesq (1872), we will here use the form given by Peregrine (1967).

For wave propagating in one dimension these give the KdV equation,

∂ζ

∂t
+
√
gD

(
∂ζ

∂x
+

3

2D
ζ
∂ζ

∂x
+
D2

6

∂3ζ

∂x3

)
= 0. (13.1)

This is asymptotically valid for kD << 1 and ka << 1. For a constant depth D, solutions of the KdV
equation include quasi-periodic recurrent amplitudes (Fermi et al., 1955) caused by the near resonances
k3 ' k1 + k2 which exist when kD << 1.

Interestingly, the KdV equation can be solved exactly using the inverse scattering transform, which
expresses the solution as a superposition of interacting waves trains and solitary waves also known as
cnoidal waves or solitons (Osborne et al., 1996). Among these cnoidal waves, the classical solitary wave
solution is,

ζ =
a

cosh2
[√

3a/D3 (x− Ct)
] (13.2)

with a propagation speed

C =
√
gD
(

1 +
a

2D

)
(13.3)

In this solitary wave the dispersive effect of the finite water depth is exactly canceled by the dispersive
effect of the finite amplitude, so that the wave propagate without changing form. The KdV equation is
also one of the asymptotic limits of the non-linear Schrodinger equation that describes the evolution of
narrow-banded waves in deep water 2003).
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Figure 13.1: Solitary wave given by eq. (13.2) that is a solution of the KdV equation (13.1) in the case
D = 10 m

The two-dimensional version of the KdV equation is the Boussinesq equation with many forms de-
veloped to improve on its dispersive properties, i.e. trying to extend it beyond kD � 1 (Nwogu, 1993;
Nadaoka et al., 1997). Other extensions for finite amplitude have been performed by Serre and others
(Lannes and Bonneton, 2009; Dias and Milewski, 2010). Some of these equations have been called fully
nonlinear Boussinesq equations but, although they are indeed valid for finite amplitude, they are not
correct for waves that are nearly breaking and always have round crests, not sharp like a nearly breaking
wave.

13.3 Wave evolution

As waves shoal, the reduction in group speed Cg comes with an increase in the significant wave height
Hs, in particular for a shore-normal incidence θ = 0. That effect is less severe for oblique propagation
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Figure 13.2: Wave profiles computed using the numerical solution method byDean (1965) and Dalrymple
(1974) at 60th order for a 3 m water depth, in the case of deep water waves in (a) and (b) with a period
T = 1.5s (kD ' 5), and shallow water in (c) and (d) with T = 8s, kD ' 0.45. The arrows represent
orbital velocities. Waves in (a) and (c) are moderately nonlinear (Uc/C ' 0.3), whereas those in (b) and
(d) are nearly breaking (Uc/C = 0.97).
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as the conserved energy flux is CgH
2
s cos θ/16 and cos θ increases due to refraction. The wavelength L

also reduces as C = L/T slows down and the period remains constant. This increase in height H and
decrease in wavelength L make the steepness H/L increase.

13.3.1 Waves over a flat bottom

For a monochromatic wave over a flat bottom, Miche (1944a) studied the shape of the waves of maximum
steepness. In the frame of reference moving with the phase speed C, it appears that a singularity
develops when the orbital velocity Uc approaches C. Figure 13.2 shows the difference between waves
with Uc/C ' 0.3 and Uc/C = 0.97. When Uc/C ' 0.3, waves in deep water look linear whereas waves in
shallow water look like cnoidal waves. As Uc/C approaches 1, the crest become triangular with an angle
of 120◦, as was already found by Stokes for the deep water case.

Hence, using Uc/C = 1 as a sufficient condition for wave breaking, Miche used an analytic stream-
function expansion from the wave crest to find that the maximum wave height Hmax is

Hmax/L ' 0.14 tanh(kD) (13.4)

In the limit kD → 0, this Miche limit is Hmax/D ' 0.28π = 0.87. The deep water limit kD → ∞ gives
the previously known kH/2 = 0.44. Miche’s approximation is very accurate. Figure 13.3.a shows that it
can be improved a little by using

Hmax/L ' 0.10 tanh(kD) + 0.0298 tanh2(kD). (13.5)

It should be noted that, so far, we have used H = 2a and E = a2/2. In shallow water this does not
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Figure 13.3: Steepness of nearly breaking waves, Y = Hmax/L. The original breaking criterion of
Miche (1944) is recalled. A new criterion, using a second order polynomial fit for H/L as a function of
X = tanh(kD) is given. The bottom panel shows the alternative steepness parameters β defined from the
wave height, or βE defined from the wave energy. In the case of Ruessink et al. (2003), his γ parameter is
interpreted as Hmax/D, and transformed to βE , using the peak wavenumber kp to estimate k̄ (adapted
from Filipot et al., 2010a).

hold anymore, and the error on the wave height can be a factor 3 or more. Even if it is probably less
important on a sloping bottom, as we will see below, if one wants to apply a limit on the wave height
when using wave energy, we can first define a generalized maximum wave steepness from the height

β = kHmax tanh(kD) (13.6)

or from the wave energy

βE = k
√
Emax/8 tanh(kD). (13.7)

This parameter varies with kD in a way that is very close to the estimated variation of the model
parameter γ used in the wave breaking parameterization by Ruessink et al. (2003). This γ parameter
is often interpreted as Hmax/D, the fact that it follows βE and not β suggests that it should rather be
interpreted as

√
Emax/8/D.
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13.3.2 Sloping bottom and the Iribarren number

Besides the water depth, the local bottom slope also has an influence on the shape of breaking waves,
as shown in figure 13.4. These different wave breaking shapes can be predicted using the surf similarity

d

Figure 13.4: Examples of (a) spilling, (b) plunging breakers, taken from Coastal Engineering Manual -
Part II (2002). (c et d) are not so nice pictures of a surging breaker on a steep beach and on a rocky
point (Ruscumunoc beach, Plouarzel, France).

parameter, proposed by Iribarren and Nogales (1949) and further discussed by Battjes (1974). This is
also called the Iribarren number,

ξ0 =
tanβ√
H0/L0

=
tanβ√

2πH0/(gT 2)
(13.8)

where tanβ is the slope of the shoreline, H0 and L0 are the height and wavelength of the waves in deep
water (before shoaling), which is not always easy to define since shoaling is not the only process involved
in transforming the waves from deep water to the shoreline.

Depending on the value of ξ0 the breaking of waves takes three forms

• spilling for ξ0 < 0.5. Foam is generated at the crest of the wave and spills over the front face.
Apart for this foam, the crest keeps its front-back symmetry, and can later evolve in an asymmetric
saw-tooth shape.

• plunging for 0.5 < ξ0 < 3.3. This is characterized by a ballistic jet of water ahead of the crest,
creating a tube of air trapped by the water. The jet produces further splashes as it partially
bounces on the sea surface.

• surging for ξ0 > 3.3: in that case the wave breaks right at the shoreface.

For the steepest slopes, waves can be reflected without breaking (Carrier and Greenspan, 1958).
On sandy beaches, which generally have moderate slopes, one can distinguish the surf zone where

the waves break, from the swash zone which is the region of the beach which gets wet and dry during a
wave cycle.

13.3.3 Wave shapes

The shape of a waves evolves from nearly symmetric front-back shapes outside of the surf zone with a
strongly asymmetric shape in the inner surf zone that resembles a hydraulic jump with a rapid rise of
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Figure 13.5: Time series of surface elevation before and after wave breaking, for monochromatic waves
with T = 2.2 s and H0 = 0.115 m over a laboratory beach of constant slope β = 1/35 (taken from Cox,
1995). These are spilling breakers with an Iribarren number ξ0 = 0.23. The distance is measured from
the point x = 0 of incipient breaking.

the surface elevation on the forward face of the waves, as shown on figure 13.5 for laboratory spilling
breakers. These wave shapes are fairly different from the flat bottom solutions shown in the previous
section. This shock-like behavior has been particularly well studied in the shallow water limit(Bonneton
et al., 2004). On the contrary top-bottom asymmetry decreases. The front-back asymmetry is associated
to a strong acceleration of the flow under the crest, which is very important for sediment transport. In
particular, Hoefel and Elgar (2003) have shown how the asymmetry could explain the onshore migration
of sand bars.

13.3.4 Wave spectra and bi-spectra

In the case of random waves, the wave evolution is more complex. Looking at the energy only, it is
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Figure 13.6: Evolution of significant wave height during breaking
Results of the model by Thornton and Guza (1986) for a wave period T = 12 s and 20◦ incidence angle
in 20 m depth. Waves propagate over a schematic beach with a mean slope β = 0.04 and a bar at
x = 300 m.

possible to have a good approximation of the evolution of the wave energy with a wave dissipation
parameterized following the hydraulic jump model presented in chapter 23. This was first developed in
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models for the total wave energy by Battjes and Janssen (1978) and Thornton and Guza (1983). An
example result from the model by Thornton and Guza, is shown in figure 13.6.

Although the wave height is a key parameter, the important application to sediment transport and
beach morphodynamics requires more than information on energy only. First of all, orbital velocities at
the bottom, which determine the re-suspension of sediments, require a knowledge of the wave spectrum, or
at least wave periods. Hence these energy models have been extended in the form of wave action equations
by defining suitable wave breaking parameterizations (e.g. Filipot and Ardhuin, 2012). However, the
spectral evolution also exhibits the development of harmonics and their progressive release over varying
bathymetry. These processes and the reproduction of the important asymmetry of the waves requires
an investigation of the relative phase of the wave components. The relative phases of the different
components are given by the bi-spectrum, which is defined as a generalization of the spectrum (our
equation 3.3),

B(ωi, ωj) = 〈am,iam,jam,i+j〉. (13.9)

This bi-spectrum is a complex number. Just like the spectrum is the Fourier transform of the 2-point
correlation function, the bi-spectrum is the 2D Fourier transform of the 3-point correlation function of a
time series,

S(τ1, τ2) = 〈ζ(t)ζ(t+ τ1)ζ(t+ τ2)〉 (13.10)

B(ω1, ω2) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

S(τ1, τ2)e−iω1τ1−iω2τ2dτ1dτ2. (13.11)

More properties of the bi-spectrum in the context of ocean waves are discussed in Hasselmann et al.
(1963). We will particularly note that B is zero for a Gaussian wave field. The skewness and asymmetry
of the time series are given by integrals of the bi-spectrum,

〈ζ3(t)〉 = 12
∑
n

∑
l

R [B(ωn, ωl)] + 6
∑
n

R [B(ωn)] (13.12)〈(
∂ζ

∂t

)3
〉

= 12
∑
n

∑
l

= [B(ωn, ωl)] + 6
∑
n

= [B(ωn)] /
(
〈ζ2(t)〉

)3/2
, (13.13)

where R and = stand for the real and imaginary parts respectively.
For practical purposed the bi-spectrum is generally normalized to obtain a bi-coherence b(ω1, ω2),

with values between 0 and 1, and a bi-phase β(ω1, ω2),

b(ωi, ωj) =
|B(ωi, ωj)|√〈

|am,iam,j |2
〉〈
|am,i+j |2

〉 , (13.14)

β(ωi, ωj) = arctan

[
=[B(ωi, ωj)]

R[B(ωi, ωj)]

]
. (13.15)

In the absence of phase-correlations between different components, b = 0 all waves are free and propagate
at the linear phase speed. The other extreme are the harmonics of a monochromatic waves for which
b = 1, which are bound to the underlying wave and propagate at its velocity, different from the linear
phase speed.

Real waves in shallow water are intermediate between these two extremes and harmonics are partially
locked and can be released as free waves by changes in the bottom topography (e.g. Sénéchal et al., 2003).

Elgar and Guza (1985) have made one of the first analyses of the bi-spectral evolution on a gently
sloping beach as part of the Nearshore Sediment Transport Study (NSTS) experiment. Figure 13.7
shows the evolution of time series of surface elevation, estimated from bottom-mounted pressure gauges,
and the statistical representation of phase-relationships give by the bi-coherence. From a superposition
of uncorrelated waves in 9 m depth, the spectrum evolves with the generation of harmonics that, on
this particular beach, remain locked in phase and exchange energy. In 3.9 m depth, the bi-coherence
already has 3 peaks at 0.06, 0.12 and 0.18 Hz that show the non-linear interaction of the main peak and
its harmonics. In other cases with a more complex topography, Sénéchal et al. (2003) showed the the
harmonics can become free and the bi-coherence can be reduced after wave propagation over a bar.

A representation of this effect as a ’triad’ interactions source term in the wave action equation can
be expressed theoretically from the bi-spectrum (Herbers and Burton, 1997; Becq, 1998). However, the
integration of an evolution equation for the bi-spectrum comes at a considerable cost, although this is
still much less than the cost of a phase-resolving models. As a result, most spectral wave models have
adopted relatively crude parameterization of the triad interactions (e.g. Eldeberky and Battjes, 1995).
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Figure 13.7: Spectral and bi-spectral evolution recorded on February 2, 1980.
The position of bottom-mounted pressure gauges is shown in the upper-middle panel, from 9 m depth
to 1.1 m depth. Short pieces of the time series of surface elevation at the different sensors is shown in
the right panel. Left and bottom panels show spectra E(f1) and and associated bi-coherence b(f1, f2) at
selected locations. Adapted from Elgar and Guza (1985).

13.4 Infragravity waves

13.4.1 Observations

In the same way that sum interactions f = f1+f2 give rise to harmonics, difference interactions f = f1−f2

also produce very low frequency components that are called infragravity waves, that we will often shorten
as ’IG waves’. This beating pattern was first investigated by Munk (1949). Infragravity water level
oscillations are often dominant in the swash, with a typical range of periods between 30 s (0.033 Hz) and
5 minutes (0.003 Hz). Figure 13.8 shows spectra of surface elevation from off-shore of the surf zone to
the swash zone, with a typical wind-sea spectrum transforming into a spectrum dominated by motions at
frequencies below 0.04 Hz. These long period oscillations of the water level are readily observed by video
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Figure 13.8: Spectra of surface elevation recorded in Santa Barbara on February 4, 1980.
Measurements at D = 0 m were performed with a run-up wire: the elevation is not at a fixed position
in x but along the beach profile. Adapted from Elgar and Guza (1985).

systems, as shown in figure 13.9 and their analysis is very important for the understanding of coastal
hazards.

The contribution of IG waves to the run-up is relatively larger for small beach slopes (Stockdon et al.,
2006), with some exceptions. The highest measured IG wave heights, around 2.5 m, was recorded on the
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Figure 13.9: Measurement of run-up using a video system
Left: Snapshot of the beach at Duck, North Carolina, with the white line marking the position of a
transect. Right: time-stack of pixel grey values along this transect. The red line marks the detected edge
of the water: using the beach profile h(x) this gives a time series of run-up. Adapted from Stockdon
et al. (2006).

cliff of the small island of Banneg, France, as shown in figure 13.8.
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Figure 13.10: Large infragravity wave heights measured on Banneg Island, France.
Left: (a) Time series of pressure converted to surface elevation from the sensors at the top of the cliff
(P2, red) and the bottom of the cliff (P3, blue). A typical burst of high water levels, lasting 90 s, is
enlarged in (b). Center: cliff profile and schematic of water level at the time of highest recorded pressure.
Right, picture of the cliff from P3, at low tide. Adapted from Sheremet et al. (2014).

13.4.2 Theories for IG waves generation

A first theoretical explanation for the formation of infra-gravity waves was given by Whitham (1962a)
and Longuet-Higgins and Stewart (1962), looking at the flow response to the passage of wave groups.
They actually gave two derivations, the first follows the perturbation method used in chapter 2 and 19.
The second method, which we will use here, is only applicable when wave groups are long compared to the
water depth, and uses the wave-averaged mass and momentum equation, (7.31) and (7.33). Neglecting
the Coriolis force, advection, and surface and bottom friction, these become, for waves propagating in
the x direction only

∂M

∂t
= −ρwgD

∂ζ

∂x
− ∂Srad

xx

∂x
, (13.16)

∂M

∂x
= −ρw

∂ζ

∂t
. (13.17)
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These are exactly the equation of long waves (i.e. in the shallow water limit),forced by Srad
xx . For a

narrow wave spectrum, we note that Srad
xx is attached to the wave groups and travels at the speed Cg,

the solution of such a forced wave is bound to travel with the forcing, so that the time derivative is equal
to −Cg times the horizontal gradient.

We recall eq. (6.23) that gives Srad
xx = ρwgE(2Cg/C − 0.5), which is always positive. Taking a

particular case of modulation of energy E = E0 +E1 cos[Kx(1−Cgt)], we have Srad
xx = S0 +S1 cos[Kx(1−

Cgt)] we look for solutions of the form, M = M1 cos[Kx(1−Cgt)] and ζ = A1 cos[Kx(1−Cgt). Replacing
in our mass and momentum equation, this gives,

CgM1 = −ρwgDA1 − S1 (13.18)

M1 = −CgρwA1, (13.19)

which gives the transport and elevation amplitudes of the bound long wave,

M1 = − CgS1

gD − C2
g

(13.20)

A1 = − S1

ρw(gD − C2
g )
. (13.21)

This solution thus gives a total transport M1 by the long and short waves that is partly compensating
the modulation of the wave-induced transport ρwCgE1/C. Because the compensation is not exact, the
net divergence of the flow is driving a change in mean sea level, with a lower level where the wave energy
E1 is larger. It should be noted that this bound wave response has a singularity in the limit of shallow
water when Cg →

√
gD, this is the limit into which the interaction of two short waves and the long wave

becomes resonant.

break point

z = 0

mean sea level
z = 

bound long wave
propagation speed = group speed

wave group

Nota bene: vertical scale is strongly exaggerated

Figure 13.11: Schematic of bound infragravity waves associated to wave groups.

This 180◦ phase shift between the wave energy and the long waves was indeed verified in some
experiments, typically just outside the surf zone on gently sloping beaches, but it is typically less in the
surf zone (Elgar and Guza, 1985). This may be due to the difference between the flat bottom solution
where the long wave is exactly bound, and the real case of a varying depth in which the long wave is
partially free. For a general wave spectrum with waves in all directions, the theoretical bound response
is integral over all possible pairs of waves, as detailed in chapter 19, and the theory is well verified over
a flat bottom (Herbers et al., 1994). The free and bound IG wave energy can be separated using a
bi-spectral analysis (Herbers et al., 1994). Free IG energy usually dominates even in 8 m depth, and
even more so in deeper water (Herbers et al., 1995).

It is also possible that other mechanisms generate long period oscillations. In particular, over coral
reefs, the modulation of the position of the initial wave breaking with wave groups can produce mean
sea level oscillations that are rather in phase with the wave groups (Symonds et al., 1982).

13.4.3 Free wave radiation from the coast

Whatever the details of the generating process, it is clear that bound waves traveling with the incoming
wave groups are released and partially dissipated in the surf zone where the groups are dissipated.
Because the phase speed of the released waves is much larger than that of the incident waves, most of
the energy is strongly trapped by refraction along the coast.



144 CHAPTER 13. NONLINEAR WAVE SHOALING

Observations compiled by Ardhuin et al. (2014) suggest that the free IG wave spectrum near the
coast can be parameterized as,

AIG = HsT
2
m0,−2 (13.22)

EIG(f) = 1.2α2
1

kg2

Cg2πf

(AIG/4)2

∆f
[min(1., 0.015Hz/f)]

1.5
(13.23)

EIG(f, θ) = EIG(f)/(2π), (13.24)

where α1 = 6 × 10−4 s−1 might vary with bottom topography, and ∆f = 0.0279 Hz. The k/Cg factor
accounts for the shoaling of a broad directional spectrum, while the frequency shape of the spectrum is
given by the other terms. In the shallow water limit, i.e. kD going to zero, this spectrum is constant up
to f = 15 mHz and decreases like f−1.5 for higher frequencies. In that frequency range, this asymptote
is identical to the form tanh(kD)−1.5 given by Godin et al. (2013). The differences at lower frequencies
may be due to the fact that, in particular for f < 2 mHz, the measured wave field in the open ocean is
mostly driven by atmospheric pressure and not IG waves radiated from shorelines (Filloux, 1980; de Jong
et al., 2003).

Eq. (13.24) gives an estimate ĤIG of the infragravity wave height,

HIG = 4

√∫ 30 mHz

0.05 mHz

ÊIG(f)df. (13.25)

A global model with such a source of free infragravity waves at the coast gives average IG wave
heights shown in figure 13.12.
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Figure 13.12: Mean values of HIG over (a) January and February 2008, (b) June and July 2008. Small
squares with numbers correspond to the location of DART stations used for model validation. Taken
from Ardhuin et al. (2014).



Chapter 14

Bottom boundary layer: processes
and parameterizations

Bottom friction is a complex process because the bottom is generally a complex medium that can combine
sand, mud, rocks, plants and animals. Also the bottom topography can strongly vary in the case of mobile
sediments, with wave-generated ripples. Finally, flow in the bottom boundary layer may be turbulent,
which requires a turbulence closure of the flow equations.

The wave bottom boundary layer connects the region of potential flow where the oscillatory wave-
induced velocity is given by eq. (2.26) to the sea bed where the velocity is zero. This boundary layer is
very thin, typically 10 cm or less. This is much less than the boundary layer of the mean current. As a
result, when a current is present, the wave boundary layer also affects the friction for the current.

We will consider here the case of a linear monochromatic waves. The velocity above the boundary
layer is given by eq. (2.26),

u+(x, t) =
σa

sinh(kD)
cos(kx− ωt+ Θ0), (14.1)

Because the wave propagates at the phase velocity C, the horizontal advection of any quantity X by the
velocity u is u∂X/∂x, which can be neglected compared to ∂X/∂t because the first term is u/C smaller
than the second, and u/C is typically less than 0.2. Let us define uδ(x, z, t) = 〈u(x, z, t)〉 − u+(x, t), in
which the brackets 〈.〉 represent a Reynolds average, over the realizations of the turbulent flow.

The conservation of the horizontal momentum component reads

∂ũ

∂t
= − 1

ρw

∂p

∂x
− ∂u+

∂t
+G (14.2)

with G the divergence of the vertical momentum fluxes due to viscosity or turbulence,

G = ν
∂2ũ

∂z2
+
∂ 〈u′w′〉
∂z

. (14.3)

Because the thickness of the boundary layer δ is much less than the wavelength, the pressure gradient
in the boundary layer equals the pressure gradient outside the boundary layer, which is balanced by the
acceleration,

− 1

ρw

∂p

∂x
=

σ2a

sinh(kD)
sin(kx− σt) = ∂u+/∂t. (14.4)

This is another way to write the Bernoulli equation (see also Mei, 1989).

Replacing (14.4) in (14.2) one obtains

∂uδ
∂t

= G, (14.5)

with the matching condition

uδ → 0 pour z � δ. (14.6)

145
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14.1 Viscous solution

The laminar situation is very interesting because it has an analytical solution that allows to show general
properties of the boundary layer. In the laminar case G = ν∂2ũ/∂z2 and the solution is

uδ(x, z, t) =
σa

sinh(kD)
e−z+ cos (kx− σt− z+) (14.7)

with
z+ = (z + h)/

√
2ν/σ = (z + h)/δ, (14.8)

in which we have used the definition
δ ≡

√
2ν/σ (14.9)

that gives an order of magnitude of the boundary layer thickness.
The full velocity profile is thus u = u+ + uδ. Because of the −z+ term in the phase, the velocity u

in the boundary layer has a phase ahead of the the free stream velocity u+. This phase advance grows
with z+ but it only impacts a smaller fraction of velocity for larger values of z+. This advance is due to
the importance of the friction term in the momentum balance, which gets added to the pressure gradient
and inertia. A linear friction for laminar flow is proportional to −u and thus in phase with the pressure
gradient ∂p/∂x, whereas inertia ρw∂u/∂t has a phase lags of 90◦.

From the velocity solution, we obtain the dissipation rate of wave energy per unit surface, as given
by the work of the viscous stress. Once divided by the wave energy Et per unit surface, one gets the
attenuation coefficient

βν =
〈ρwνu∂u/∂z〉
ρwga2/2

(14.10)

Using the solution in eq. (14.7) we get

∂uδ
∂z

= − σa

sinh(kD)

e−z+√
2ν/σ

[cos (kx− σt− z+)− sin (kx− σt− z+)] (14.11)

in which only the first term correlates with u, and gives

βν = − σ3δ

2g sinh2(kD)
. (14.12)

The spectral dissipation rate is thus of the following form

Sbfric(k) = − σ3δ

2g sinh2(kD)
E(k). (14.13)

As we have seen in chapter 6, the dissipation of wave energy also comes with a loss of momentum at
the rate βνE/C for a monochromatic wave train. So what happens to that momentum?

14.2 Streaming

Because momentum is conserved, we have to investigate where it goes, and thus look into the mean
current. For this we also need the vertical velocity wδ associated to uδ. It is simply given by the
conservation of mass ∂wδ/∂z = −∂uδ/∂x, with the result

wδ = − 2kδσa

sinh(kD)
e−z+ [cos (kx− σt− z+) + sin (kx− σt− z+)] . (14.14)

The phase shift between the boundary layer and the free stream has interesting consequences. Indeed,
the conservation of mean flow momentum is

∂uw

∂z
= ν

∂2U

∂z2
. (14.15)

Following Phillips (1977), one easily gets

(u+ uδ) (w + wδ) =
σ2a2kδ

4 sinh2(kD)

[
2

δ
e−z+ sin(z+)− 1 + 2e−z+ cos z+ − e−2z+

]
. (14.16)
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Figure 14.1: Mean current known as ‘streaming’, induced by a monochromatic wave train.
Profiles of the Eulerian mean and Lagrangian mean velocities in the boundary layer for a constant
viscosity ν, with δ =

√
2ν/σ.

As z+ goes to very large values (z +D � δ), the momentum flux goes to

lim
z+→∞

ρwuw = − ρwσ
2a2kδ

4 sinh2(kD)
. (14.17)

This is exactly the momentum lost by the waves per unit time and unit horizontal surface. Hence, the
momentum lost by the waves is taken up by the mean flow, and the waves accelerate a near boundary
‘streaming current’ that was first reported by de Caliginy (1878). The steady state corresponds to a
situation in which the bottom friction for the mean current passes on this momentum to the sea floor
(Longuet-Higgins, 2005).

The integration of eq. (14.15) gives

U(z) =
σa2k

4 sinh2(kD)

[
3− 2 (z+ + 2) e−z+ cos z+ − 2 (z+ + 2) e−z+ sin z+ + e−2z+

]
. (14.18)

We can also update our estimation of the Stokes drift from chapter 6, now using ũ and w̃. This gives

a mass transport velocity U
L

= U + Us (Longuet-Higgins, 1953),

U
L

=
σa2k

4 sinh2(kD)

[
5− 8e−z+ cos z+ + 3e−2z+

]
. (14.19)

We note that this mass transport velocity at the top of the boundary layer is independent of the value
of ν, because the same viscosity appears in the wave dissipation and in the friction for the current. An
infinitely small viscosity gives the same current at the top of the boundary layer as strong viscosity, only
the thickness of the boundary layer changes, whereas there is no mean current for a zero viscosity. The
mass transport velocity reaches 2.5 times the Stokes drift we had estimated in chapter 2. The effect of
bottom friction on near-bed currents is thus considerable, which is very important for sediment transport.
The velocity profiles are shown in figure 14.1. The boundary layer introduces a significant change in the
velocity profile between the bottom and z = −h+ 2.5δ, where the velocity amplitude is maximum. The
effective thickness of the boundary layer is thus close to 2.5δ. We note that the velocity profile is linear
near the bed, and its vertical derivative gives the bottom stress, fond ρwν∂U/∂z,

ρwν
∂U

∂z
=

σ2a2kδ

4 sinh2(kD)
= βνE/C. (14.20)

The loss of wave momentum to the bottom means that it is not the full radiation stress that is relevant
for the change in sea level (Longuet-Higgins, 2005; Ardhuin, 2006a).
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p+ p-

Figure 14.2: Schematic of the flow in the boundary layer, showing the importance of flow detachment
from the boundary that induces a drag.
Detachments can occur at all scales, from the grain size to ripples or coral elements (e.g. Monismith
et al., 2015).

In the presence of partially standing waves, the situation is a little more complicated, and the stream-
ing is directed towards the surface elevation nodes, which is probably the cause of the formation of
multiple sand bars (Heathershaw, 1982).

14.3 Turbulent boundary layer

In practice the boundary layer is often turbulent, as very well observed in the laboratory by Jensen et al.
(1989). In the presence of a mean current, the wave boundary layer is thinner than the current boundary
layer so that the waves define the roughness felt by the current. As a result a change in wave height can
lead to a change in tidal currents and tidal range (Wolf and Prandle, 1999). As the effect of currents on
the boundary layer is generally weaker, we will firs assume that the mean current is zero.

Defining a Reynolds number from the free stream wave displacement amplitude aorb and velocity
amplitude uorb,

Re =
aorbuorb

ν
(14.21)

a transition to turbulence is observed for a smooth bottom for Re > 105. For a wave period of 10 s and
monochromatic waves, this corresponds to a aorb ' 0.5 m. In practice the bottom roughness, even with
fin sand, is enough to make the boundary layer turbulent for much lower amplitudes (Jonsson, 1967).
The bottom roughness is defined by all the elements of topography of horizontal scales less than the
typical orbital amplitude ab,rms.

Following Prandtl, turbulence is characterized by eddies with a typical diameter κδ at a distance δ
from the bed. These eddies turn around in time that is of the order of κδ/u?. The equivalent viscosity
(or eddy viscosity) Kz is defined by a linear relation between the momentum flux and the velocity shear

u2
? = u′w′ = Kz∂u/∂z. (14.22)

When the flux u2
? is constant, Prandtl’s mixing length l = κ(z + D) gives Kz = κ(z + D)u?, leading to

a log profile. Namely the solution of ∂u/∂z = u?/(κz) is

u(z) =
u?
κ

log

(
z

z0

)
. (14.23)

The eddies mix the flow on a time scale that is the u?/l. When this is is faster than the wave period
we are in the boundary layer. Thus, an order of magnitude for the boundary layer thickness is given by

δ = u?/(κf) ≈
√
Kz/f/κ. (14.24)

The friction velocity u? is often related to the velocity u∞ outside of the boundary layer, with a
friction coefficient fw, this gives u2

? = 0.5fwu
2
∞. Experiments typically give a highly variable fw, with

values under 0.3. Typically fw is a function of the ratio of the size of roughness elements ks and the
orbital displacement A, and of the Reynolds number Re. In particular fw decreases when A/ks increases,
and the wave boundary layer thickness is typically less than 10 cm.

Using eq. (14.2) and (14.3) a parameterization of the turbulent term G following Prandtl mixing
length ideas gives (u′w′ = Kz∂u/∂z) with Kz = κ(z + D)u?. This leads to the following equation
(Kajiura, 1968; Grant and Madsen, 1979),

∂

∂z?

(
z?
∂uδ
∂z?

)
+ iũ = 0, (14.25)
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Figure 14.3: Comparison of velocity profiles in the bottom boundary layer observed by Jensen et al.
(1989) at high Reynolds numbers and the model of Wiberg (1995). This case has a wave period of
10 s, with an amplitude of velocity oscillations of 1 m s−1. The solid line represents model results using
Kz = κu?(z + D)e−z

?

that is time-independent, and the dashed line is the model with a time-varying
Kz. Left panel: acceleration phase, right panel: deceleration. This figure is taken from Wiberg (1995).
We note that the laboratory experiment of Jensen et al. (1989) uses a U-shaped tube and thus does not
include wave propagation effects such as the bottom streaming.

with z? = ω(z + D)/(κu?). This equation has an analytical solution. The boundary conditions of uδ
going to zero when z? is large gives

u =

[
1− ker(2

√
z?) + ikei(2

√
z?)

ker(2
√
z?0) + ikei(2

√
z?)

]
u+, (14.26)

where z?0 is the non-dimensional roughness z?0 = ωz0/(κu?). For a smooth sandy bottom with well sorted
grain sizes, Nikuradse (1933) gives z0 = D50/30 where D50 is the median sand grain size.

The Kelvin functions ker and kei are similar to a logarithm for z? → 0, and oscillate for z? → ∞.
The general result is that the velocity amplitude is largest near the top of the boundary layer, and has
a phase that leads the free stream oscillation (figure 14.3).

Using this solution and taking the limit z? → 0, one gets the stress at the bottom and the wave
energy dissipation rate, in the form of eq. (14.33) below. But we will first have to determine the bottom
roughness.

This linear eddy viscosity model was extended to more realistic profiles, including a decrease of Kz

outside of the boundary layer and its variation with the wave phase. These modifications have a very
limited impact on the results (Trowbridge and Madsen, 1984; Jensen et al., 1989; Wiberg, 1995; Davies
and Villaret, 1999; Marin, 2004). In particular the velocity profile is well reproduced by the linear and
time-independent eddy viscosity (figure 14.3). Still, there can be an impact on the shear stress at the
bed, with consequences for the resuspension of sediments due, among other things, to the asymmetry
between the acceleration and deceleration phases of the flow. Such flows are generally better captured
by a k − ω turbulence closure (e.g. Marieu et al., 2008).

14.4 Bottom roughness

For a rocky seafloor, the bottom geometry may be complex, but at least it is fixed. In the case of sand,
silt and mixtures the shape of the bottom and the associated roughness is modified by the flow and can
also be strongly impacted by animals living in the sediment. Here we will discuss the case of a solid
bottom, and leave the possibility of mud liquefaction for later (e.g. Jaramillo et al., 2009).
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14.4.1 Sand and ripples

For a sandy seafloor, ripples are generally formed by the oscillatory wave motion, and these ripples
determine the roughness and thus the dissipation rate of wave energy (Zhukovets, 1963; Nielsen, 1992).
Starting from a flat seafloor, we can assume that the roughness of the flow over sand grains is the same as
measured by Nikuradse (1933) in pipes in which sand was glued with lacquer. He found that z0 = 30kN
where kN is the grain diameter. This scale kN is also called the Nikuradse roughness. In practice the
sand grains may not have all the same diameter and it is customary to use the median grain size D50.
Another issue is that the bottom is not flat and thus it is not just the grains that contribute to the
roughness (that part is called “skin friction”) but there is also a “form drag” associated to the bottom
geometry. This form drag generally varies with the amplitude of the flow characterized by the orbital
diameter which is the length of orbits of water particles just outside the wave bottom boundary layer.

When the effects of a mean current are neglected, the bottom boundary layer can have three flow
regimes, depending on the ratio of friction and buoyancy forces acting on sediment grains. This ratio is
the Shields number, and we generally consider the maximum value over a wave period defined as

ψmax =
f ′wu

2
max

(s− 1)gD
, (14.27)

where f ′w is a skin friction factor, s is the sediment grain density normalized by the density of seawater,
e.g. s = 2.65 for quartz, D is the grain size (Shields, 1936).

When ψmax is low, the skin friction is not enough to set grains in motion and the bottom shape is
fixed, possibly due to previous motions when waves were bigger. This is also called “relict roughness”.
This does not mean that the roughness z0 is constant, because z0 is a function of both the bottom shape
and the flow. In that regime the dissipation of wave energy is weak.

In a turbulent regime, the dissipation source term can be put in the following quasi-linear form, as
proposed by Madsen et al. (1990),

Sfric (f, θ) = λ (f)× E (f, θ) (14.28)

λ (f) = −feub,rms
(2πf)

2

2g sinh2 (kD)
, (14.29)

where the friction factor fe is the ratio of the average dissipation rate and the cube of the root mean
square velocity.

as the orbital velocity increases, ψmax may exceed the threshold ψc and sand grains start moving.
At that point, it only takes a few wave periods to form sand ripples. For quartz sand, the threshold ψc
ranges from 0.03 to 0.1, depending on the grain size D (e.g. Soulsby, 1997). The formation of these ripples
enhances the form drag, and thus the dissipation rate of wave energy, corresponding to larger values of
fe. Random wave experiments by Madsen et al. (1990) show that fe is maximum for ψrms ' 1.2ψc,
where ψrms is estimated from the rms orbital velocity amplitude in (14.27) instead of umax. For example,
fine sand (D = 0.15 mm) in 25 m depth and a wave period Tp=12 s give this maximum dissipation for
Hs = 1.5 m. Beyond this threshold for sediment motion, any increase of the orbital velocity leads to
smoother ripples and a reduction of fe.

For very large values of ψmax, of the order of 10ψc (Li and Amos, 1999), a layer of sediment called the
‘sheet flow’ is fluidized and oscillates with the water column. At that stage, ripples are completely wiped
out. Grain collisions become an important factor in the sediment layer. In that regime, the dissipation
factor fe grows with ψ. The three regimes of relict roughness, actively formed ripples and sheet flow are
illustrated in figure 14.4.

Using dimensional analysis and numerical modeling, Andersen (1999) showed that ripples self-organize
to reach wavelengths of the order of λ = 0.63d where d is the orbital diameter of water parcels above the
boundary layer, and their slopes are of the order of 15%. This is typically observed for random waves in
depths larger than 10 m, replacing d by 21/2drms (Traykovski et al., 1999; Ardhuin et al., 2002). In very
shallow water, it seems that ripple wavelengths are shorter and scale with the grain size (Dingler, 1974;
Wiberg and Harris, 1994).

The determination of wave energy dissipation reduces to a parameterization of fe that must take into
account ripples (Graber and Madsen, 1988; Tolman, 1994; Ardhuin et al., 2003b).

It is common to use a representative grain size for the sediment, usually the median diameter D50

for which we may estimate a critical Shields number ψc, above which grains start to move. It is also
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(a) (b) (c) 

Figure 14.4: Three regimes of the boundary layer over a sandy bottom
(a) Relict roughness with possible contribution from benthic fauna. (b) ripple formation. (c) sheet flow.
The ocean wave wavelength L and the depth are not to scale L ≈ 100 m, compared to λ ' 1 m for the
ripple wavelength. Horizontal arrows represent the velocity profile under wave crests. Curvy arrows in
(b) represent the eddies in the wake of ripples.

common to use root mean square values for the wave forcing at the top of the bottom boundary layer,
in particular the orbital velocity ub,rms and displacement ab,rms,

u2
b,rms =

∫
k

8π2f2

sinh2 (kD)
E (k) dk, (14.30)

a2
b,rms =

∫
k

2

sinh2 (kD)
E (k) dk. (14.31)
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Figure 14.5: Example of dissipation factors fe as a function of the r.m.s. Shields number ψrms

The solid line is the parameterization by Tolman (1994), for fine sand (D50 = 0.15 mm), and a wave
period T = 14 s. This parameterization was adjusted to SHOWEX field data by Ardhuin et al. (2003a).
The dashed line correspond to an equivalent value of fe given by the JONSWAP parameterization, which
does not take into account the varying bottom roughness.

The boundary layer model gives a skin friction factor f ′w, a Shields number ψrms = f ′wu
2
b,rms/ [g (s− 1)D50],

and a total friction factor that includes skin and form drag fw, that is the ratio of the shear stress τ and
u2

b,rms,

z0

l
=

√
2

f ′w ou fw

D50 ou kN
30κ ab,rms

, (14.32)

f ′w or fw =
κ2

2
[
ker2

(
2
√
z0/l

)
+ kei2

(
2
√
z0/l

)] . (14.33)

where z0/l is a non-dimensional roughness length, κ is von Karman’s constant (κ = 0, 4), ker and kei are
the Kelvin functions of order 0 and 1.
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When ψrms/ψc < 1, 2, kN is given by the relic roughness and may weakly increase with the orbital
diameter ab,rms because larger horizontal scales contribute to the roughness when the flow amplitude
increases. When ψrms/ψc > 1, 2 kN can be taken as the sum of a ripple roughness kr and a sheet flow
roughness ‘sheet flow’ ks. For example, Madsen et al. (1990) and Wilson (1989) give

kr = ab,rms × 1.5

(
ψrms

ψc

)−2.5

, (14.34)

ks = 0.57
u2.8

b,rms

[g (s− 1)]
1.4

a−0.4
b,rms

(2π)
2 . (14.35)

Another approach to bottom friction that is completely empirical, goes back to the analysis of the
JONSWAP experiment by Hasselmann et al. (1973). In his analysis K. Hasselmann had initially thought
that the bottom stress would be quadratic with a relation given by Hasselmann and Collins (1968), so
that the dissipation rate may be cubic in the wave amplitude, with a theoretical formulation given for a
Gaussian velocity distribution. The JONSWAP data contradicted this view, and K. Hasselmann ended
up fitting a dissipation rate that is proportional to the spectrum of the velocity variance at the bottom,

Sfric,JONSWAP (f, θ) = −Γ

[
2πf

g sinh (kD)

]2

E (f, θ) . (14.36)

The only justification for this expression was that the near-bottom tidal current û could have played a
role and would give Γ = gcbû where cb is the drag coefficient of Hasselmann and Collins (1968). The
JONSWAP data gives a mean value Γ = 0,038 m2s−3, but it ranges from 0.0019 to 0.160 m2s−3). It may
be surprising that this parameterization have been widely used, even in the absence of mean current. It
is probably because, by chance, it follows the general trend over a sandy bottom shown in figure 14.5.
However, it fails in many cases (figure 14.6).

As for the effect of a mean current, what is happening in the wave bottom boundary layer will be
discussed in the next section. Other wave-turbulence interaction effects are probably similar to what
is happening near the surface, with a production of turbulence kinetic energy due to the Stokes drift
stretching of the turbulence, at the rate u′w′∂Us/∂z, which can be large in the presence of tidal currents
(see chapter 24).

14.4.2 Rocks

The strong dissipation over coral reefs can be attributed, to a large extent, to the very large roughness
of corals. Lowe et al. (2007) and Monismith et al. (2015) gave detailed analyses of this situation.

14.5 Joint wave and current boundary layers

The joint interaction of waves, current and turbulence can be relatively complex and Madsen (1994) has
extensively studied this problem, showin that the roughness for random waves could be given by a single
parameter. A recent review and analysis is given by Zou (2004).

The theory distinguishes a wave boundary layer z + H < δwc, in which the wave stress τw = ρwu
2
?w

and the current stress τc = ρwu
2
?c add up to give a total stress τwc = ρwu

2
?wc, that is the net momentum

flux towards the bottom, and a thicker current-only boundary layer z + H > δwc in which the stress is
given by the current stress only τ = ρwu′w′ = τc.

Following the analysis by Grant and Madsen (1979), the Eulerian mean horizontal momentum equa-
tion is

κ |u?c| z
∂û

∂z
= u2

?c where (z +H) > δwc, (14.37)

with the momentum mixed by eddies of sizes controled by the distance to the bottom, following Prantl.
Close to the bottom, turbulence comes from shear production by both the current and the wave-induced
velocities so that the current velocity is mixed by this combined turbulence

κ |u?c| z
∂û

∂z
= u2

?wc where (z +H) < δwc. (14.38)

These two equations can be solved separately giving

û =
u?c
κ

ln
z

z0c
where (z +H) > δwc, (14.39)
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Figure 14.6: Sand ripples and wave dissipation
Top: three ripple fields observed with a sidescan sonar, each square is 30 m across (Ardhuin et al.,
2002). Bottom: comparison of modeled and measured wave heights, normalized by the measured wave
height at the location of the Chesapeake Lighthouse in 18 m depth, during swell-dominated conditions
for the SHOWEX experiment (Ardhuin et al., 2003a). The left panel shows the case in which the model
has no dissipation, and the modeled Hs can be 4 times the measured value. The center panel uses
the JONSWAP parameterization, with Γ = 0,038 m2s−3, and the right panels are based on Grant and
Madsen (1979) as modified by Tolman (1994) and Ardhuin et al. (2003b) to include ripple formation and
relic ripple roughness. This last parameterization is now called the SHOWEX parameterization.

and,

û =
u?c
κ

u?c
u?wc

ln
z

z1c
where (z +H) < δwc. (14.40)

Because û is continuous, we get

z0c = zε0wcδ
1−ε
wc . (14.41)

where z0wc is the roughness for the wave motion, and ε = u?c/u?m with u?m the maximum combined
friction velocity, defined by

u2
?m = u2

?wm + u2
?c (14.42)

in which u?wm = max(u?w) for monochromatic waves. In the case of random waves, it is logical to use
the r.m.s. value.

This theory thus gives a wave-induced modification of the bottom roughness applicable to the current.
Mellor (2002) showed that a wave-averaged numerical model could use an enhancement of the turbulent
kinetic energy due to wave dissipation, and the resulting mean current profile is similar to the result
of a k − l turbulence closure with a modified bottom roughness. Such an approach can be extended to
add other sources of turbulence like wave breaking, which may influence bottom friction in the surf zone
(Feddersen et al., 2003) .

The equation (14.38) for z0c misses the source of momentum due to wave dissipation, which is re-
sponsible for streaming. Mathisen and Madsen (1996) have thus modified the equivalent roughness to
shift the velocity profile by −û(δwc), namely,

z0a = z0c exp [κû(δwc)/u?c)] . (14.43)

Near the bottom this gives û(z) = u?c/κ ln(z/z0a) = u?c/κ ln(z/z0c)− û(δwc).
This adjustment of the roughness gives a mean velocity û at the elevation −H + δwc. In practice this

may change the effective z0 from 1 to 3 cm (Mathisen and Madsen, 1996).
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Chapter 15

Numerical wave modelling at
regional to beach scales

Pour la qualité:

• il faut avoir à l’esprit tout d’abord que, les vagues étant générées par le vent, et se propageant dans
un milieu caractérisé par une bathymétrie, des courants et des obstacles (trait de côte, couverture
de glace ...), la qualité de ces paramètres de forçage est déterminante.

• Ensuite, il a beaucoup été question aux chapitres précédents de processus physique et de ”terme de
source” dans le bilan spectral d’énergie et d’action. Le réalisme et la robustesse de ces paramétrage
est donc aussi très importante. Beaucoup d’erreurs des modèles sont dues à de mauvais paramétrage.
Et, si aucun n’est parfait, certains sont clairement meilleurs. Il faut bien réaliser que des paramétrages
empiriques ne peuvent être valables que dans la gamme de paramètres où ils ont été calibrés et
validés. A l’heure actuelle, aucun paramétrage de la dissipation des vagues n’est calibré pour
fonctionner correctement en présence de forts courants.

• Enfin, alors que l’on pourrait croire résoudre le bilan spectral de façon exacte, il ne faut pas se
leurrer: les méthodes numériques choisies peuvent avoir un effet très important sur la solution. Il
faut donc être conscient de leurs limitations. Ainsi il ne peut y avoir de méthode implicite d’ordre
élevé qui soit positive et monotone. Ainsi l’utilisation de schémas implicite, comme dans le code
SWAN, permet des pas de temps très grands, et donc un temps de calcul réduit, mais elle a un
prix: la diffusion numérique.

La qualité d’ensemble du résultat dépend donc des choix, explicites ou implicites, dans ces trois
domaines: forçage, paramétrages, méthodes numériques, ces dernières peuvent aussi inclure les méthodes
d’assimilation. Dans tous ces domaines, les choix les plus complexes ne sont pas forcément les meilleurs, et
le choix optimal dépend beaucoup de la configuration à traiter (simulation à grande échelle, propagation
côtière avec ou sans courants ...).

Toutefois, on n’a souvent pas trop de choix: tel code est imposé parce qu’il fait partie d’une châıne de
modélisation ou bien parce qu’il est plus facile à mettre en oeuvre, ou bien parce qu’il donne un résultat
plus rapidement. Cela n’est pas forcément très grave. Par contre il convient d’avoir conscience de ce que
cela implique en terme de qualité du résultat.

Par ailleurs, les paramétrages sont généralement ajustés aux forçages et aux schémas numériques.
Changer le forçage, par exemple utiliser les vents fournis par le Centre Européen (CEPMMT ou ECMWF
en anglais)au lieu de ceux du service météorologique des Etats-Unis (le National Center for Environmental
Prediction - NCEP - , qui dépend de la National Ocean and Atmosphere Administration - NOAA) peut
avoir des effets assez inattendus. En effet les vents du NCEP sont en moyenne 0.5 m/s plus forts que
ceux du CEPMMT, et les statistiques des vents extrêmes sont elles aussi très différentes.

Enfin, les modèles ne sont généralement bons que pour les paramètres sur lesquels ils ont été validés
et dans les intervales de valeurs où ils ont été validés. Ainsi prévoir que la hauteur significative centenaire
au large de la Bretagne est de 18 m sur la base d’un modèle qui n’a été validé que jusqu’à 14 m est une
réelle extrapolation. Les phénomènes extrêmes sont très mal compris et les paramétrages et les forçages
dans ces cas peuvent très bien se révéler insuffisants. Toutes ces questions sont l’objet de ce chapitre.

155
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15.1 Forcing fields

15.1.1 Winds, currents and water levels

Là où le scientifique ira généralement chercher ce qu’il y a de mieux, l’ingénieur doit souvent faire avec
ce qu’il a. Pour le vent, les meilleures analyses et prévisions à l’échelle globale sont actuellement fournies
par le CEPMMT, disponible depuis début 2008 à une résolution de 0.25 degré par pas de 3h. Il peut tout
de même être prudent de vérifier la qualité d’autres sources, par exemple en consultant les statistiques
compilées dans le cadre de la vérification des modèles par le JCOMM, disponible sur le site internet
http://www.jcomm-services.org/Wave-Forecast-Verification-Project.html, voir par exemple Bidlot (2008).

En effet, sur certaines régions les analyses et prévisions d’autres centres météorologiques peuvent s’avérer
meilleures, comme c’est le cas pour le U.K. Met Office et le NCEP en océan Indien, et pour Météo-France dans
certaines régions de la mer du Nord (figure ??).

Du coup, les séries temporelles issues des modèles atmosphériques opérationnels ne sont pas homogènes, et
le rejeu d’évènements passés fait plus souvent appel à des ré-analyses: les modèles actuels sont utilisés pour
reproduire le passé... la seule source d’inhomogénéité est alors le champ d’observations, assimilé lors de la
ré-analyse. La question de l’homogénéité temporelle de la qualité du forçage est déterminante pour étudier
les évolution climatiques. De nombreux efforts on été fait pour améliorer cette homogénéité. Dans le cas de
la réanalyse ERA40 du CEPMMT, on peut citer Caires and Sterl (1979) qui ont développé une méthode de
correction de ERA40 à partir d’observations.

15.2 Numerics

La première approche pose quelques problèmes de principe quand on veut utiliser des schémas numériques pas
trop diffusifs. Un des principaux défauts est que les schémas numériques qui ne sont pas d’ordre 1 (et donc
pas trop diffusifs) sont soit non-linéaires (ce qui rend la résolution itérative quasi-impossible) soit produisent
des oscillations, et donc, potentiellement des valeurs négatives. C’est le théorème de Godunov. Dans le modèle
SWAN ces valeurs négatives sont redistribuées suivant les directions afin de garder un énergie positive partout.
Malheureusement cette procédure introduit une diffusion dans l’espace des directions, ce qui limite l’intérêt du
schéma d’ordre 2 (figure 15.1). Par ailleurs, la résolution de l’ensemble du système d’un bloc alors que les vitesses
d’advection sont très diverses dans les différentes dimensions, peut produire des erreurs numériques importantes,
et la convergence vers la solution exacte peut être très lente.

Pour la deuxième approche, le problème est l’erreur liée à la séparation des modes. Elle tend vers zéro quand
le pas de temps tend vers zéro, mais en pratique elle est finie, et d’autant plus importante que le terme source
est une fonction non-linéaire variant rapidement en fonction du spectre ou des dimensions d’espace.

Afin de ne pas utiliser des pas de temps trop petits, l’ensemble des méthodes utilise en général des limiteurs:
le changement du spectre lors de l’intégration est artificiellement limité. Ces limiteurs peuvent avoir un effet très
important sur la solution numérique (Tolman, 2002b). Dans le code SWAN, comme l’ensemble de l’équation est
résolue en même temps le limiteur peut avoir pour effet de limiter la réfraction lorsque le nombre de Courant
devient trop élevé, c’est en particulier le cas pour des vagues sur de forts gradients de courant, il faut donc y
prendre garde.

Enfin, en pratique l’intégration du spectre est généralement limitée à une fréquence diagnostique fd au delà
de laquelle on suppose que le spectre décrôıt de façon régulière, comme f−5 par exemple. Cette astuce évite
d’avoir à trop réduire le pas de temps pour résoudre les temps d’évolution très rapides des vagues les plus courtes.
Malheureusement, la forme du spectre n’est pas aussi simple, et il vaut mieux de pas prendre fd trop bas. Dans
le modèle WAM du centre Européen, fd est fixé à 2.5 fois la fréquence moyenne fm,0,−1 de la partie du spectre
ou le terme de génération Sin est positif. Ce facteur 2.5 est trop faible si on s’intéresse aux propriétés telles que
la pente moyenne de la surface.

15.3 Parameterizations of physical processes

15.3.1 Bottom friction

15.4 Validation

La qualité des résultats en zone côtière est beaucoup plus difficile à obtenir et à interpréter. Outre les incertitudes
sur les spectres au large, il faut rajouter des effets liées au courants, souvent plus forts près des côtes, le frottement
sur le fond, etc. Pour des côtes assez découpées, les résultats à la côte sont très sensible aux directions au large
(directions moyennes et étalement angulaire) du fait des effets d’abri et de forte réfraction. Ainsi sur la figure
15.3, on peut constater que la tempête du 5 mai 2004 (Hs = 5.3 m à Iroise) est bien atténuée aux Blancs
Sablons (Hs = 1.2 m), et complètement absente à Bertheaume (Hs = 0.4 m). Cet effet est normal car il
s’agit d’une tempête de nord-ouest. Au contraire, le 25 avril, les vagues d’ouest sont très peu atténuées à



15.4. VALIDATION 157

 

5

10

15

20

25

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Length [m]

D
ire

ct
io

na
l s

pr
ea

di
ng

 [°
]

-150

-100

-50

0

Analytical results using Snell's law
SWAN Higher Order Scheme, DX = 2000m
SWAN BSBT Scheme, DX = 2000m

SWAN Higher Order Scheme, DX = 1000m
SWAN BSBT Scheme, DX = 1000m
Ardhuin & Herbers, 4-step, DX = 2000m
Depth[m]

 

5

10

15

20

25

D
ire

ct
io

na
l s

pr
ea

di
ng

 [°
]

WWM CRD-N1 scheme, DT = 150, DX = 1000m
WWM CRD-N3 scheme, DT = 150, DX = 1000m
WWM CRD-N scheme, DT = 150, DX = 1000m

WWM CRD-FCT scheme, DT = 150, DX = 1000m
Ardhuin & Herbers, 4-step, dx = 2000m

P
ro

fo
nd

eu
r  

(m
)

P
ro

fo
nd

eu
r (

m
)

-150

-100

-50

0

Figure 15.1: Mise en évidence de la diffusion numérique sur l’étalement directionnel d’une houle de
période 15 s de largeur angulaire 15◦ au large se propageant sur un plateau continental bosselé dont la
topographie est indiquée par la courbe marron (échelle à droite). Trois modèles sont testés, le tracé de
rayon partiel de Ardhuin et coll. (2003) avec des rayons intégrés sur un total de 600 s, le code SWAN
avec les schémas d’ordre 1 et d’ordre supérieur, et le code WWM de Roland (2008) avec un maillage non-
structuré et différents schémas d’advection. Les schémas N1 et N2 sont implicite tandis que les schémas
N et FCT sont explicites avec différents ordres (Abgrall 2006). Ces schémas ont aussi été implémentés
dans le code WAVEWATCH III. Figures tirées de Roland (2008).
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Blancs Sablons

Bertheaume

Iroise

Figure 15.2: Exemples de carte de hauteur des vagues en mer d’Iroise, calculée avec la version non-
structurée du code WAVEWATCH III (schéma CRD-N de Csik), et, pour un autre jour, avec un modèle
de propagation linéaire (refraction-diffraction). On retrouve les mêmes structures. On remarque que les
conditions aux limites au large sont supposées homogènes dans le modèle de réfraction-diffraction.

Bertheaume, et beaucoup plus faibles aux Blancs Sablons. Différents modèles numériques peuvent donner des
résultats sensiblement différents. Tout d’abord on peut remarque qu’un calcul de propagation seule (modèle de
réfraction-diffraction), sans prise en compte de la génération locale par le vent, est déjà assez précis. Ensuite, il
est probable que l’effet de des courants, négligés dans ce calcul soit assez important.
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Figure 15.3: Evaluation de modèles de propagation en mer d’Iroise
En haut, résultats pour la bouée Iroise en termes de hauteur (Hs), et direction moyenne. En violet le
calcul est fait avec la version non-structurée du code WAVEWATCH III utilisant le paramétrage décrit
ici, en bleu par tracé de rayons forcés par le spectre calculé en un point au large d’Ouessant avec le
même paramétrage, en orange avec WAVEWATCH III non-structuré et le paramétrage de Bidlot et coll.
(2005) et en rouge par tracé de rayons à partir d’un spectre calculé avec le paramétrage de Bidlot et coll.
(2005). On constate un assez bon accord général. En bas, comparaisons entre observations aux bouées
Bertheaume et Blancs Sablons (voir figure 15.2).
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Chapter 16

Waves and nearshore circulation:
water levels and currents

La surcote (ou décote quand elle est négative) est définie comme la variation du niveau moyen de la mer qui n’est
pas associée à la marée astronomique. Une définition exacte nécessite de définir la durée de cette moyenne. En
pratique on considère toutes les variations qui ne sont pas associées aux vagues, avec une moyenne sur au moins
30 secondes. Les vagues contribuent beaucoup aux variations du niveau de la mer, en particulier pour un littoral
en pente forte. Même pour les faibles pentes de la topographie du golfe du Mexique, il a été estimé que les vagues
ont contribué environ 1 m aux 8 m de surcote qui ont conduit à l’inondation de la Nouvelle Orléans en 2005, lors
du passage de l’ouragan Katrina (Resio and Westerink, 2008). Sur les côtes françaises métropolitaines, les plus
fortes surcotes mesurées, environ 4 m, ont été enregistrées sur l’̂ıle de Bannec, dans l’archipel de Molène, avec
une falaise exposée à la houle de l’Atlantique (Ardhuin and Magne, 2010). Cette surcote à Bannec est due à plus
de 80% à l’effet des vagues, comme nous allons le voir. Ce n’est donc pas un phénomène anodin, si bien qu’il est
possible que l’évolution des risques de submersion marine dans les années à venir soit beaucoup plus sensible à
une modification de la forme et probabilité des tempêtes extrêmes, qu’à la lente et inexorable montée du niveau
de la mer associée au réchauffement global.

16.1 Mean flow equations

Nous avons vu au chapitre ?? que, par rapport à une situation sans vagues, la présence de l’agitation induit un
terme supplémentaire dans les équations intégrées de conservation de la quantité de mouvement (7.31) et (7.33):
la divergence de Srad, tenseur des contraintes de radiation. En définissant la profondeur moyenne D = ζ + h
et le flux de masse total (dû aux vagues et au courant moyen) comme M = ρûD + M, la vitesse moyenne du
transport de masse est U = M/ (ρD) = û + Mw/ (ρD).

Ici nous allons négliger la force de Coriolis, et nous placer d’abord en situation stationnaire pour ré-écrire
(7.31) sous la forme

∂

∂x

(
UxMx + Srad

xx

)
+

∂

∂y

(
UxMy + Srad

yx

)
= −ρgD ∂ζ

∂x
+ τx,s + τx,f (16.1)

∂

∂x

(
UyMx + Srad

xy

)
+

∂

∂y

(
UyMy + Srad

yy

)
= −ρgD∂ζ

∂y
+ τy,s + τy,f , (16.2)

où (τx,s, τy,s) et (τy,f , τy,f) sont les tensions en surface et au fond respectivement. La divergence du flux de quantité
de mouvement est donc équilibrée par la pression hydrostatique, le vent et la friction au fond. ı̈

16.2 Mean sea level: set-down and set-up

Soit une plage et un champ de vagues uniforme dans la direction (Oy), toutes les dérivées par rapport à y
deviennent nulles. En particulier, la conservation de la masse (7.33) devient

∂Mx

∂x
= 0, (16.3)

donc Mx est constant, et pour une plage imperméable, Mx = 0. Au passage, on note que le courant moyen doit
équilibrer le flux de masse dû aux vagues qui est concentré près de la surface. Le courant doit donc s’inverser en
profondeur: c’est le courant de retour (‘undertow’ en anglais).
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La conservation de la quantité de mouvement dans la direction x donne

∂

∂x
Srad
xx = −ρgD∂ ζ

∂x
+ τa,x + τb,x (16.4)

Prenons des vagues d’incidence normale θ = 0 et supposons que τa,x = τb,x = 0, alors on obtient la pente moyenne
de la surface

∂ζ

∂x
= − 1

ρgD

∂

∂x

[
CgE

C

(
2− sinh 2kD

sinh 2kD + 2kD

)]
(16.5)

Sans résoudre cette équation différentielle, on remarque que lorsque les vagues ne déferlent pas, CgE est conservé
et C diminue vers la plage donc Srad

xx augmente vers la plage si la profondeur D diminue régulièrement et ∂ζ/∂x
est négatif: le niveau moyen s’abaisse vers la plage (‘set-down’).

En supposant ζ << h, on peut remplacer D par h et on trouve (en exercice... un truc: comme la fréquence
est conservée, en différenciant ω2 = gk tanh kD on a une relation entre ∂k/∂x et ∂D/∂x):

ζ = − a2k

2 sinh (2kD)
(16.6)

où a est l’amplitude locale des vagues. On peut montrer que cette relation est indépendante de la direction des
vagues au large, en appliquant la loi de Snel.

Juste au point de déferlement, de profondeur hd, on peut supposer que kD << 1 et Hv = 2a = γhd et donc

ζ = − γ

16
Hv. (16.7)

En reprenant les valeurs de la figure ?? pour une houle de période T = 12s, et d’incidence θ = 20◦, la hauteur
maximale avant déferlement était 2, 3 m, ce qui donne, avec γ = 0, 4 une décote de 6 cm.

Dans la zone de déferlement, le flux d’énergie n’est plus conservé et la hauteur des vagues est limitée par la
profondeur, en gros 2a = Hv = γD et donc

E = ρgγ2D2/8. (16.8)

On peut aussi faire l’approximation de l’eau peu profonde kD << 1 et donc Cg = (gD)1/2 ce qui donne

Srad
xx =

3

16
ρgγ2 (h+ ζ

)2
(16.9)

qui équilibre le gradient de pression hydrostatique

3

16
γ22

(
h+ ζ

) ∂

∂x

(
h+ ζ

)
= −

(
h+ ζ

) ∂ζ
∂x

(16.10)

qui se simplifie en
∂ζ

∂x
= −B∂h

∂x
(16.11)

avec

B =

[
1 +

1

3γ2/8

]−1

(16.12)

et s’intègre en

ζ = −Bh+A0. (16.13)

La constante A0 est donnée par la condition au point de déferlement, de profondeur hd, et

ζ = −B (hd − h) + ζd. (16.14)

(hd − h) étant positif dans la zone de déferlement, on a une surélévation du niveau moyen, une surcote de vague
(wave set-up), qui est maximale à la côte. En réutilisant les valeurs numériques ci-dessus (houle incidente de
hauteur 2 m), on a pour h = 0, à la côte, ζ = 26 cm.

16.2.1 Application pratique

En pratique, on constate que le frottement sur le fond est très important pour la surcote lorsque la profondeur
devient faible (D < 2 m). Or le frottement sur le fond est assez mal connu et semble augmenter avec du
déferlement des vagues (Feddersen et al., 2003), ce qui est cohérent avec la connaissance de la couche limite de
fond. Les paramétrages actuels du frottement sur le fond sont capable de produire un bon accord entre surcotes
mesurées et observées pour D > 1 m, mais pas pour les très petits fonds (figure 16.1). Par ailleurs, comme les
erreurs sont probablement associées à un paramétrage imprécis du frottement au fond, il est illusoire de vouloir
améliorer les résultats avec des modèles théoriques plus complexes que (16.1), par exemple fondés sur les équations
de Boussinesq.
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Figure 16.1: Surcotes induites par les vagues sur la plage: mesures et modèles
Les observations de niveau moyen pendant plusieurs moins ont été analysées et comparées à trois ap-
proximation de l’équation (16.1). Le “rouleau de déferlement” ajouté dans le modèle consiste à prendre
en compte la quantité de mouvement piégée dans le paquet d’écume porté par les vagues, il a tendance
a décaler vers la plage le transfert de quantité de mouvement et donc contribue à une augmentation du
niveau d’eau. Toutefois, l’effet du rouleau est négligeable par rapport à l’effet attendu du frottement au
fond. Ici le frottement a été paramétré via une viscosité turbulente qui dépend de la hauteur des vagues.
Ce frottement est proche des valeurs données par (16.21) avec un coefficient 0.018 < Cf < 0.028 qui
est plus fort que ce qui est généralement utilisé pour le courant le long de la côte, et qui pourrait être
associé à l’orientation des faciès sédimentaire, avec des crêtes de rides face à la côte. Tiré de Apotsos
et al. (2007), droits réservés à l’American Geophysical Union.
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Figure 16.2: Niveau maximal de l’eau observé à Bannec pour chaque intervalle de 10 minutes entre
octobre 2008 et mars 2009, en fonction de l’indice de hauteur de Hunt par 20m de fond au large, calculé
avec un modèle numérique. Les observations sont des mesures de pression converties en hauteur d’eau,
après correction de l’effet -réel - de baromètre inverse et de la marée astronomique. Les mesures sont
classées en fonction de la hauteur de la marée astronomique. Le modèle numérique est une version du
non-structurée du code WAVEWATCH III, forcé par le vent du CEPMMT et des conditions aux limites
au large issues des modèles WAVEWATCH III utilisés dans le cadre des projets Prévimer et IOWAGA
(Ardhuin and Magne, 2010).

Ainsi, on est souvent amené à utiliser des paramétrages empiriques de la surcotes, qui peuvent s’avérer plus
précis qu’une résolution déterministe de l’équation (16.1). De nombreux auteurs ont proposé de relier la surcote
(niveau moyen) et le niveau maximal (qui prend en compte le jet de rive) à un nombre réduit de paramètres.
Ainsi Hunt (1959) a considéré un paramètre du type

HH = Tm0,−1

√
gHs (16.15)

pour le dimensionnement des digues avec Hs la hauteur des vagues au large du point de déferlement. Les
observations montrent que les niveaux moyen et maximal atteint par l’eau sont fonction de l’indice de hauteur
de Hunt HH . Ils sont aussi fonction de la géométrie du profil des profondeurs, dans la direction perpendiculaire
à la côte. Pour un profil donné, on peut trouver une très bonne correspondance entre HH et les niveaux mesurés,
comme le montre la figure 16.2 pour le niveau maximal mesuré sur l’̂ıle de Bannec.

Toutefois, on n’a pas toujours le loisir de disposer de mesures pour déterminer une relation empirique entre
HH et d’autres paramètres, et les niveaux d’eau. On peut alors essayer d’appliquer des formules empiriques
génériques, du type de celles données par Stockdon et al. (2006), et déterminées à partir d’observations. Pour le
niveau moyen, ils donnent,

ζ ' 0.14βfHH (16.16)

où βf est la pente de la plage au niveau de la ligne d’eau. Cette formule est indicative, et elle n’explique que la
moitié de la variance du signal dans les données collectées par ces auteurs. Cette proportion augmente toutefois
à près de 70% si l’on considère des conditions fortement dissipatives. Ainsi pour ξ0 < 0.3, la relation

ζ ' 0.0064HH (16.17)

apparait plus fiable.

Cette surcote s’ajoute à la marée, aux surcotes de tempêtes et à l’effet de baromètre inverse, et peut être
très importante pour l’érosion côtière, ou les inondations, comme à Venise où les grosses vagues correspondent
aux vents du Sud et tous ces effets s’additionnent. Son effet au large est par contre très faible car le gradient de
pression lié à la pente de la surface exerce une force considérable quand il est intégré sur de grandes profondeurs
(Ardhuin et coll. 2004).

Par ailleurs, pour l’étude du risque de submersion, ce n’est pas forcément le niveau moyen qui est le plus
pertinent car les ondes longues forcées par les vagues et le jet de rive sur la côte peuvent faire monter de l’eau bien
au dessus du niveau moyen. Les ingénieurs s’intéressent alors plutôt à la quantité d’eau susceptible de franchir
une dune ou un ouvrage. Il faut alors prendre en compte la végétation et bien d’autres facteurs. On peut à ce
sujet consulter Pullen et al. (2007).
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16.3 The longshore current

Près de la plage les vagues ne sont jamais tout à fait uniformes le long de la plage, et des différences de hauteurs
de vagues suivant (Oy) créent un gradient de surcote le long de la plage, et donc une circulation le long de la plage
qui explique le transport de sable derrière les ouvrages de protection (formation de tombolos...). Mais ce n’est
pas la seule source de circulation le long de la plage. Nous avons, pour le moment seulement, utilisé l’équation
(16.1) pour la composante x de la quantité de mouvement. Lorsque les vagues sont uniformes dans la direction
(Oy) mais ont un angle d’incidence θ, l’équation (16.18) pour la composante y donne

∂Srad
xy

∂x
= τy,s + τy,f (16.18)

et

Srad
xy = E

Cg
C

sin θ cos θ. (16.19)

Or sin θ/C est conservé par la loi de Snel, et le d’énergie flux vers la plage = ECg/ cos θ est conservé... en
dehors de la zone de déferlement seulement. Il ne se passe donc rien de plus à cause des vagues hors de la zone de
déferlement (on a déjà mis en évidence la décote) car Srad

xy y est constant. Par contre, dans la zone de déferlement,
Srad
xy diminue si sin θ > 0 et augmente si sin θ < 0 vers la plage et donc la divergence de Srad induit une force qui

pousse l’eau le long de la plage. Puisque nous sommes dans un cas stationnaire et en négligeant la tension de
vent τy,s, seule la tension au fond peut maintenir l’équilibre, et comme elle est en général dans le sens opposé au
courant moyen V , le courant moyen est vers les y > 0 si sin θ > 0.

En prenant une loi de friction quadratique instantanée

T (t) = −Cf |(U + u)| (U + u) (16.20)

on montre facilement (Longuet-Higgins, 1970) que pour |V | << |u| et de faibles valeurs de θ, la tension devient

τy,f = −ρCf |u| (V + v) (16.21)

où V est le courant moyen suivant (Oy) et (u, v) est la vitesse orbitale des vagues au fond.

u =
gD

2C
cos (kx− ωt) (16.22)

|u| =
gD

πC
(16.23)

τy,f = −ρCf
gD

πC
V (16.24)

et donc V, le courant moyen le long de la plage est donné par

V = − πC

ρCfgD

∂ (ECg cos θ)

∂x

sin θ0

C0
. (16.25)

Ce courant, la dérive littorale, peut être très intense, de l’ordre de 1 m s−1, et son orientation moyenne dépend
du climat de vagues, déterminant le transport de sable le long de la plage.

L’équation (16.25) est le modèle de Thornton et Guza (1986), qui utilise la dissipation d’énergie des vagues
∂ECg cos θ/∂x prévue par le modèle de transformation des vagues de Thornton et Guza (1983), décrit au para-
graphe 5.3.3. En revenant à nos vagues H = 2 m, T = 12 s et θ0 = 20◦, on trouve une valeur maximale du
courant de 2 m s−1 (voir figure ??). Ce modèle comporte assez de paramètres ‘libres’, en particulier Cf (on
peut ‘bidouiller’) pour permettre de reproduire les observations. Les premières vérifications furent faites lors de
l’expérience NSTS (Nearshore Sediment Transport Study) en 1980, sur les plages de Torrey Pines (au Nord de
San Diego) et Leadbetter (Santa Barbara). L’hypothèse |V | << |u| faite par Longuet-Higgins (1970) pour la
forme paramétrée de la tension est assez dérisoire car pour une couche limite oscillante (chapitre 3), la tension
n’est plus tout à fait quadratique, cela n’a pas empêché Thornton et Guza (1986) d’étudier en détail l’effet de
la non-linéarité de τy en fonction de V quand V ∼ |u|. On peut améliorer le modèle en ajoutant une diffusion
horizontale de quantité de mouvement qui réduira un peu les gradients de V . Beaucoup de travail a aussi été fait
récemment sur le mécanisme exact du transfert de quantité de mouvement entre les vagues et le courant. Il a en
particulier été mis en évidence que le ”rouleau” (le paquet d’écume transporté par une vague qui déferle) pouvait
jouer le rôle d’un ”tampon à quantité de mouvement” et retarder le transfert entre les vagues et le courant.

16.4 Cross-shore flows

On vient de voir que, dans ce chapitre, la description de la couche limite au fond était assez sommaire, or pour des
applications au transport sédimentaire, la représentation des vitesses au voisinage du fond est très importante.
Les oscillations des vagues au dessus de la couche limite et la non-linéarité des contraintes peuvent forcer un
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Figure 16.3: Equilibre des forces pour des vagues au-dessus d’une marche lissée.
En absence de réflexion et de dissipation des vagues, la force correspondant à la divergence du flux de
quantité de mouvement induit par les vagues se combine avec la pression moyenne. Cette combinaison
est généralement équilibrée par un gradient de pression hydrostatique associé au gradient de la surface
libre. L’accélération de la circulation moyenne (petites flèches en pointillés) n’apporte, en général, qu’une
faible correction à cet équilibre. En absence de réflexion, il n’y a pas de force exercée par le fond, outre
la pression hydrostatique.

courant au dessus de la couche limite (Longuet-Higgins, 1953) dans le sens de propagation des vagues (voir aussi
Mei, 1989, chapitre 9).

Enfin, car il faut bien s’arrêter quelque part, le courant de dérive littoral forcé par les contraintes de radiation
est lui-même instable à cause de son fort cisaillement, et ses méandres génèrent des oscillations (Oltman-Shay et
coll., 1989) de très grande période (‘far infragravity waves’). Le courant de dérive est aussi fortement couplé à la
bathymétrie et est la source des courants de bäıne (‘rip currents’), dirigés vers le large.

16.5 Séparation des qdm vagues et circulation

Les deux termes en SJ dans (7.51) représentent la pression moyenne induite par les vagues, qui agit logiquement
sur la circulation moyenne, et une force supplémentaire ρwS

J∂D/∂xα qui compense la force −ρwSJ∂D/∂xα qui
agit sur la PQDM dans (7.49). Il apparâıt donc que ce deuxième terme est une interaction entre la circulation
moyenne et l’état de mer, il n’y a donc pas d’interaction avec le fond. Ainsi, en absence de frottement sur le
fond et sans réflexion des vagues, la force moyenne exercée par le fond sur la colonne d’eau n’est que la pression
hydrostatique. Il n’y a pas de force moyenne sur l’écoulement susceptible de modifier la quantité de mouvement
des vagues ou de l’écoulement moyen et la réfraction et le levage ne sont pas la conséquence d’une force exercée
par le fond, mais seulement le résultat d’une modification du guide d’onde, sans échange d’énergie ou de quantité
de mouvement avec l’extérieur (Longuet-Higgins 1967, 1977, Ardhuin 2006).

On peut alors reconsidérer le problème de vagues unidirectionnelles se propageant au-dessus d’une marche
d’escalier lissée avec un changement de profondeur de h1 à h2 (Whitham 1962, section 2). Nous sommes d’accord
avec Whitham sur la conservation du flux de masse E1/C1 + ρw(h1 + ζ1)U1 = E2/C2 + ρw(h2 + ζ2)U2, mais
par contre, pour la quantité de mouvement notre conclusion est différente de la sienne. La différence de flux de
PQDM Cg2/C2E2−Cg1/C1E1 ne correspond pas à la force exercée sur la marche, comme suggéré par Whitham,
mais à une force exercée sur l’écoulement moyen, à laquelle s’ajoute le gradient de la pression induite par les
vagues SJ pour donner les tensions de radiation classiques. Dans le cas d’une dissipation négligeable, l’ensemble
des deux termes est compensé par une variation de la surface libre: la décôte (figure 16.3). Cette conclusion est
vérifiée expérimentalement par les mesures de la dépression du niveau moyen faites par Saville (1961, voir aussi
l’analyse faite par Longuet-Higgins and Stewart 1963, et Phillips 1977) et Bowen et coll. (1968).

En outre il doit aussi y a avoir une divergence de la circulation moyenne pour compenser la divergence de
la dérive de Stokes. Toutefois, la divergence correspondante de quantité de mouvement moyen (flèches courtes
en pointillés sur la figure 16.3) est généralement beaucoup plus faible que les tensions de radiation à cause du
rapport des flux de quantité de mouvement et de masse des vagues, qui est égal à la vitesse de groupe Cg, qui est
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en générale plus grande que le rapport correspondant pour la circulation moyenne, égal au courant en moyenne
verticale. Dans des cas ou la réflexion des vagues est importante, la force de diffusion Tbscat doit aussi être prise
en compte car elle est exercée par le fond, et annule la partie correspondante de la divergence du flux de quantité
de mouvement.

On doit donc clairement séparer trois forces horizontales induites par les vagues,

• la force de pression induite par les vagues, qui est typiquement équilibrée par la décôte dans les cas
conservatifs. Après intégration sur la vertical elle est égale à −ρw∂SJ/∂xα.

• la force de vortex qui est due au cisaillement de courant et à l’advection croisée de quantité de mouvement
des vagues par le courant et du courant par les vagues

• la force exercée sur la circulation moyenne correspondant à la divergence de la pseudo-quantité de mouve-
ment (PQDM), corrigée des effets de réflexion des vagues par la topographie, et de la perte de PQDM par
frottement sur le fond.

En effet, la fraction de la PQDM perdue par frottement sur le fond n’est que temporairement communiquée à la
circulation, en contribuant au courant de ruissellement (Russel and Osorio 1958), avant de finir dans le fond via
un cisaillement moyen (Longuet-Higgins 2005).
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Figure 16.4: Ecoulements Eulériens et Lagrangiens moyens pour des vagues au-dessus d’une marche
lissée.
(a) Perturbation de pression (p− p)/(ρwg) à t = 0 telle que calculée avec le modèle NTUA-nl2 (Belibas-
sakis and Athanassoulis 2002), qui résoud l’équation de Laplace à l’ordre 2 en pente des vagues, pour
des vagues d’amplitude a = 0.12 m. (b) Courant Eulérien moyen −û, et (c) composante horizontale de
la pseudo-quantité de mouvement P1, qui est ici égale à la dérive de Stokes. Les flèches indiquent le sens
de l’écoulement.
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Chapter 17

Practical estimation of the wave
spectrum

17.1 General properties of discrete Fourier transforms

Time series can be obtained from many sensors, for example; a pressure gauge in the water at at fixed depth,
a range measurement from a laser or radar mounted on a platform or ship, velocity from underwater acoustic
or electromagnetic systems, accelerometer in a floating system. In the laboratory, it is common to measure the
surface elevation with resistive or capacitive wave gauges. These times series thus consist of a signal ζ(t) or
p(t) sampled at a fixed frequency fs, typically 1 < fs < 4 Hz in the ocean, and fs ∼ 10 Hz or more in the
laboratory because laboratory waves are generally shorter and also, in the laboratory, the internal memory and
power consumption of instruments is less of an issue: either they are directly cabled to the acquisition system or
the experiment is short enough. In general, it is very important that fs is at least 4 times the expected frequency
of the signal of interest. Indeed, representing a cosine wave with only 4 points is already relatively coarse. As a
result, some of the signal (the very short waves) is not resolved.

Assuming we have such a series of discrete surface elevations ζ(n) with 1 ≤ n ≤ M . The duration of the
recording is (M − 1)/fs. All data processing softwares have a discrete Fourier transformation routine that will
provide

Zm =
1

M

M∑
n=1

ζ(n)e−2iπ(m−1)(n−1)/M . (17.1)

17.1.1 Spectral resolution

For any frequency index m, the complex amplitude Zm is large when the signal ζ actually contains fluctuations at
the frequency fm = (m− 1)/Mfs. The complex amplitudes contain both amplitude and phase information, i.e.
Zm = |Zm| exp[i arg(Zm)]. The Fourier transform is simply a projection of the signal onto the elementary functions
that are the complex exponentials, or if you prefer sines and cosines, with all frequencies fm = (m − 1)/Mfs
where m goes from 1 to M. We note that the difference between frequencies fm and fm+1 is the spectral resolution
df = fs/M . Because fs is the inverse of the sampling interval dt, we have df = 1/(Mdt), which is the inverse
of the record duration. Namely, the frequency resolution is the same as the lowest frequency which is at m = 2,
and it such that the lowest period equals the record duration. We recall that m = 1 is the average value of the
signal.

17.1.2 Nyquist frequency

The decomposition of a discretized real signal with M pieces of information into M frequencies cannot produce M
amplitudes and frequencies that are independent, that would be 2M pieces of information. Indeed, the frequencies
from M/2fs to Mfs do contain the same information as those between 0 (M/2− 1)fs, as shown in figure 17.1.

With the definition given by eq. (17.1), Zm = ZM+2−m, where the overbar is the complex conjugate, so
that the modululs of the spectrum is symmetric around m = M/2. This index M/2 corresponds to the Nyquist
frequency fN = fs/2 = M/2df . The symmetry means that above fN there is no new information. In other
words, fN is the highest resolvable frequency. At this Nyquist frequency, a cosine wave is only represented by 2
points over a period.

The continuous spectral density F (f) is obtained in the limit when the spectral resolution df goes to zero of
the following expression

F (f = (m− 1)fs/M) = 2
ZmZm
df

. (17.2)
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Figure 17.1: (a) Example of surface elevation time series sampled at 12 Hz, (b) Discrete Fourier transform
amplitude of the signal, and (c) phase of the same signal.

The factor 2 comes from the combination of positive and negative frequencies in the interval [0, fN ]. That
definition is called the single-sided spectrum. For some applications it may be convenient to keep the double-
sided spectrum defined without this factor 2, for f in the range [0, 2fN ] or [−fN , fN ]. In practice, the zero
spectral resolution is never achieved because it corresponds to an infinitely long record. We are therefore stuck
to finite spectral resolutions df , and thus a discrete spectrum sampled at df , corresponding to record lengths over
which the random variable of interest is stationary.

17.1.3 Co-spectra

In the same manner, we can define the co-spectrum of two variables a and b having Fourier transforms dA and
dB,

Cab(f = (m− 1)fs/M) =
AmBm
df

= P (f) + iQ(f), (17.3)

where P and Q are real numbers, the co-spectra in phase and quadrature.
We note that the product of two Fourier transforms is the Fourier transform of the convolution of the two

functions. When these two functions are the same, this result tells us that the spectrum is the Fourier transform
of the auto-correlation function. When the two functions are different, the co-spectrum is the Fourier transform
of the correlation function.

17.2 Spectra from time series

17.2.1 Filtering of data and aliasing

For any physical parameter, the complex amplitude at a frequency above fN is the complex conjugate of the
amplitude at a frequency below fN : dZ(N−m) = dZ(m). In other words, the energy above the Nyquist frequency
is aliased at lower frequencies. This is one reason for applying a low-pass filter before the Fourier transform, in
order to remove signals that would otherwise be aliased.

For example, a signal of period 1 s sampled every second (fs = 1 Hz) is constant. In general, any signal
with frequency higher than the Nyquist frequency gives an apparent frequency in the range [0fs/2], with a value
obtained by folding back the spectrum along a vertical line at f = fs/2 or f = 0 as many times as necessary,
until falling in [0fs/2]. Figure 17.2 shows an example of a true signal (in red) with frequency at 9/10 which gives
1-9/10=1/10 by aliasing. This is well known problem in oceanography in the case of the measurement of tides
from satellite data. In the case of ocean waves, it is really necessary to measure waves with a sampling frequency
that is at least 4 times the dominant frequency.

0 1 2 3 4 5 6 7 8 9 10

0

Figure 17.2: Example of spectral aliasing. A signal with period 10/9, in red, and sampled with a step of
1 (black dots) gives an apparent period of 10, in blue. (Moxfyre, wikimedia commons).

In practice the high frequency roll-off of the wave spectrum, for f > fp in particular for pressure or velocity
at the ocean floor, means that this filtering may not be necessary for the surface elevation. Figure 17.3 shows
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an example of the filtering of a surface elevation record and its impact on the spectrum. Here the filter helps in
reducing the noise associated with the measurement method. The worst filter is clearly the boxcar (or moving
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Figure 17.3: Example of surface elevation measured by stereo-video from the Katsiveli platform, in 20 m
depth, on Octoebr 4, 2011 (see Leckler et al., 2015; Aubourg et al., 2017, for further detailed analysis
of this dataset). (a) small piece of record around t = 1430 s with (red) and without (black) a 3-point
smoothing filter (b) full record (1780 s) (c) spectra of the time series with different filters applied.

average) filter with equal weight given to the consecutive data values, this does not suppress very well the shortest
components.

17.2.2 Windows, Gibbs phenomenon and averaging

The discrete Fourier transform of signal ζ that takes values at locations 1 to N, corresponds to the Fourier
transform of a periodic signal that would repeat itself with ζ(n+mM) = ζ(n) for any n and m. If ζ(1) 6= ζ(M),
then this periodic function has a sharp jump from ζ(M) to ζ(M + 1). Such a jump can give a strong spectral
signature, all across the spectrum.

This artifact is known as the Gibbs phenomenon, and it is generally removed by multiplying the signal ζ(n)
by a window function W (n) which goes to zero or very small values for both n = 1 and n = N . Obviously the
spectrum of ζ(n) ×W (n) is different from the spectrum of ζ(n). The first obvious effect is that the variance of
the signal has been reduced by a factor that is the average of W 2. That is easily corrected for.

Let use the time series shown in figure 17.3.b. We first start with a small piece of only 1000 points. The
original time series, in black in figure 17.4.a gives the power spectral density in figure fig:anaspec:spectre1.b. If
the time series is brought to zero at both ends (in red) by multiplying with a Hann window, then the spectrum is
transformed. However, because of the random fluctuations of the spectral estimates this is not obvious. Indeed
waves are random and the surface elevation is nearly-Gaussian. As a result, the complex Fourier amplitudes are
also random and Gaussian, so that they modulus, which is the power spectral density follows a χ2 distribution
with two degrees of freedom.
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Figure 17.4: (a) First 1000 points of time series shown in (17.3).b, with (red) and without (black)
multiplication by a Hann window. (b) Resulting spectra (c) Average spectra using Welch’s method with
21 independent windows and thus 42 degrees of freedom.

Using figure 17.5, we find that the expected ratio of the lower and upper bound of a 95% confidence interval
is 146. This number is the ratio of χ2

2,0.975 and χ2
2,0.025, that give the probabilities that χ2

n > χ2
n,α is equal to the

acceptance threshold α.
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Figure 17.5: Table of χ2 distributions. This table gives the confidence intervals for the estimation of
spectra with n = 2N degrees of freedom, where N is the number of independent spectra used.
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Figure 17.6: (a) Succession of the Hann windows applied to the data, with 21 independent windows and
20 overlapping windows, from number 22 to 41. The solid line is the mean spectrum and the dotted and
dashed line show the expected 95% confidence intervals for 2 and 42 degrees of freedom. à 95%.

For an expected value Ê, the Gaussian statistics theory predicts a 95% probability that the estimate of E(f)

is in the range [E1, E2] with E1 = 0.0506Ê and E2 = 7.38Ê. In other words, the random fluctuations of the
spectrum estimated by a single Fourier transform typically spans two orders of magnitude.

That is fairly annoying. There are two ways to reduce this uncertainty: the first, which is most easily done in
the laboratory is to run more experiments, repeating the same conditions, with random wave phases, and average
the results. For measurements in the field, this is the same as processing a longer time series, but it only makes
sense if the conditions are stationary: same wind, same wave age, same current, etc. In practice, this stationarity
constraints limits the length of records from half an hour to a few hours. As we average N spectra together,
the number of degrees of freedom increases to 2N . Here we have used 21 independent spectra, and we get an
uncertainty that narrows like 1/

√
N for large N . For 20 spectra, the ratio E2/E1 is 59.34/34.43 ' 1.7 at 95%

confidence.
Because the Hann window practically removes part of the data, Welch (1967) has defined a method in which

the windows are shifted by half their length, as shown in figure 17.6.a. The lower panel shows the 21+20 spectra
estimated, and the average result.

Another method that is almost equivalent to Welch’s is the smoothing of the spectrum, also known as band-
averaging. Because the Fourier transform of a shorter window has a coarser resolution, both methods effectively
trade off the spectrum accuracy against the spectral resolution. An extension of such methods is the use of
wavelet transforms (e.g. Liu and Babanin, 2004) which aims at localizing events in both time and frequency.

Whatever the choice of method, without any prior knowledge on the signal, the product of the spectra
uncertainty and the square root of the frequency uncertainty remains constant. Thus the optimal choice of df is
up to the user. For wind seas, the typical relative width of the spectrum is 0.1, and for a typical peak period of
0.1 Hz, resolving the peak requires df < 0.01 Hz. For swells one may like to have an even narrower frequency
resolution. In the example above, df = 0.012 Hz is enough for the relatively short wind sea found in the Black
Sea.

17.2.3 Interpretations and further developments

The general idea of spectral analysis is to decompose a signal into its basic constituents. If waves were indeed
linear, the Fourier components would be truly independent and the spectrum would give the energy of different
wave components. In practice, there is a significant level of nonlinearity, which actually dominates the frequency
spectrum E(f) at frequencies above 3 to 4 times the wind sea peak (e.g. Leckler et al., 2015). As a result, the
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interpretation of these high frequencies (f > 1 Hz in the example above) as the energy of linear waves is wrong.
Several methods have been developed to try to separate linear and non-linear components, including higher order
analysis (Hasselmann et al., 1963) which is illustrated in chapter 13. This question has inspired other nonlinear
methods, such as the Empirical Mode Decomposition method by Huang et al. (1998).

17.3 Spectral analysis of directional buoy data

17.3.1 Case of 3-axis displacements or accelerations

We have seen in section 3.2.1 that the spectrum of x-component velocity at the ocean bottom is given from the
surface elevation spectrum multiplied by a transfer function,

EUx (f, θ) =
σ2 cos2 θ

sinh2(kD)
E (f, θ) . (17.4)

The same method applies to spectra of displacements, velocity and slopes at the sea surface. For a water
particle at the surface, the spectra of displacement in the three directions are given by (2.31),

Ex(f) =
1

tanh2(kD)

∫ 2π

0

E (f, θ) cos2 θdθ (17.5)

Ey(f) =
1

tanh2(kD)

∫ 2π

0

E (f, θ) sin2 θdθ (17.6)

Ez(f) =

∫ 2π

0

E (f, θ) dθ. (17.7)

We note that this last spectrum is the usual elevation spectrum E(f), also called heave spectrum, with a minor
modification due to the fact that it is not obtained at a fixed position (x, y) but at a positions that moves with x
and y. As a result, the shape of the waves and the shape of the spectrum are modified, with a strong reduction
in the contribution of nonlinear harmonics: a surface buoy signal looks much more linear than a wave staff or
stereo video record.

The co-spectra of horizontal and vertical displacements are

Cxz(f) =
i

tanh(kD)

∫ 2π

0

E (f, θ) cos θdθ, (17.8)

Cyz(f) =
i

tanh(kD)

∫ 2π

0

E (f, θ) sin θdθ. (17.9)

Cxy(f) =
1

tanh2(kD)

∫ 2π

0

E (f, θ) sin θ cos θdθ. (17.10)

These co-spectra are thus related to the mean direction and directional spread, through the directional moments
introduced in section 3.2.2

a1(f) =

∫ 2π

0

E (f, θ) cos θdθ, (17.11)

b1(f) =

∫ 2π

0

E (f, θ) sin θdθ, (17.12)

a2(f) =

∫ 2π

0

E (f, θ) cos(2θ)dθ, (17.13)

b2(f) =

∫ 2π

0

E (f, θ) sin(2θ)dθ. (17.14)

To summarize, starting from the displacement time series x(t), y(t)) and z(t) one obtains the spectra and
co-spectra Cxx(f), Cyy(f), Czz(f), Cxz(f), Cyz(f) , Cxy(f). Using cos(2θ) = cos2(θ) − sin2(θ) and sin(2θ) =
2 sin θ cos θ, they give the following directional moments, in which = stands for the imaginary part,

a1(f) = −=(Cxz(f))/ [Czz(f) (Cxx(f) + Cyy(f))] (17.15)

b1(f) = −=(Cxy(f))/ [Czz(f) (Cxx(f) + Cyy(f))] (17.16)

a2(f) = (Cxx(f)− Cyy(f))/(Cxx(f) + Cyy(f)) (17.17)

b2(f) = 2Cxy(f)/(Cxx(f) + Cyy(f)) (17.18)

(17.19)
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from which we get directional parameters, with mod the modulo operator,

θ1(f) = mod (270.− atan2(b1, a1)× 180/π, 360) (17.20)

σ1(f) =

[
2

(
1−

√
a2

1(f) + b21(f)

)]0.5

× 180/π (17.21)

θ2(f) = mod (270.− 0.5atan2(b2, a2)× 180/π, 360) (17.22)

σ2(f) =

[
0.5

(
1−

√
a2

2(f) + b22(f)

)]0.5

× 180/π (17.23)

These 4 parameters can be used in statistical estimators to obtain the directional spectrum E(f, θ). A
commonly used estimator is the Maximum Entropy Method of Lygre and Krogstad (1986). See also the review
by Benoit et al. (1997).

17.3.2 Case of other systems with 3 variables or more

in the above method, we can replace x and y by the slopes ∂ζ/∂x and ∂ζ/∂y as done in the pitch-and-roll buoys
developed by Cartwright and Smith (1964) and still widely used. For example, most of the 3-m discuss buoys
operated by the U.S. National Data Buoy Center are based on this measurement (Steele et al., 1992). Also,
the horizontal velocities at any given level, (u, v). These give access to the heave spectrum E(f) and the same
directional moments a1, b1, a2 and b2.

In order to go beyond these first 5 parameters, one can built an array of instruments. The cloverleaf buoy
of Mitsuyasu et al. (1975) was such an attempt, and arrays of pressure gages or lasers have been routinely used.
Today’s optical techniques (Benetazzo, 2006; Fedele et al., 2013; Laxague et al., 2015) are other ways to get to
more details about the sea surface.

17.4 Some links between spectral and wave-by-wave analysis

The spectrum E(f) gives the distribution of the surface elevation variance as a function of time scales. As
discussed in chapter 1, one can also chop the signal in individual waves and study the statistics of their properties.
A model for the sea surface elevation could be a signal of constant amplitude with a random frequency modulation.
In that case, Woodward (1952)’s theorem tells us that the spectrum of the signal is the distribution of its
frequencies Pf (f − fc) where fc is the carrier frequency,

E(f) =
a2

2
Pf (f − fc). (17.24)

Extension of that theorem by Blachman and McAlpine (1969) with an additional amplitude modulation
makes it applicable to ocean waves. As shown by Elfouhaily et al. (2003) the spectrum is then given by the
joint probability distribution of wave heights and periods P (a, f) with a = H/2 and f = 1/T . Separating linear
(naked) and full (dressed) spectra, Elfouhaily et al. (2003) showed that the peak region is dominated by linear
components

Ebare(f) =
1

2

∫
a2P (a, f)da. (17.25)

At high frequency the nonlinear contributions dominate the spectrum which can be interpreted as fast mod-
ulations of the short components. Taking into account that effect leads to asymetries α et β (see figure 17.7),
and the dressed spectrum

Edressed(f) = Enu(f) +
1

2

[∫
α2P (α, f/2)da+

∫
β2P (β, f/2)da

]
' E(f) (17.26)
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Figure 17.7: Definition of parameters M ,m, T1 et T2 used to estimate the amplitude a = (M −m)/2,
period T = T1 +T2, vertical asymetry α = (M +m)/2 and horizontal asymetry aπ(T1−T2)/(T1 +T2)/2
(from Elfouhaily et al. (2003), c©Elsevier). Here m < 0, because m is defined as the trough level between
two up-crossing zeros that define the start and end of the wave.



Chapter 18

Nonlinear waves over a flat bottom

In this chapter we investigate the consequences of two nonlinear parameters which are the steepness ε1 = ka,
and the amplitude normalized by the water depth ε2 = a/D. The linear theory of 2 was obtained in the limit
of ε1 = 0 and ε2 = 0. After giving the full equations for nonlinear wave motion, this chapter focuses on the
properties of monochromatic waves. The next chapter will consider the solution up to second order in ε1 but
extended to a random wave field.

18.1 Dimensional analysis and importance of ε1 and ε2

In order to simplify the equations, we will assume here that the mean water level is ζ = 0, so that the mean
water depth is D = h.

The wave equation for irrotational waves includes non-linear terms in addition to the linear term given in
chapter 2. These come from the advection in the momentum equation or u2 and w2 terms in the Bernoulli
equation,

∂φ

∂t
= −1

2

[
|∇φ|2 +

(
∂φ

∂z

)2
]
− p

ρw
− gz + C(t), (18.1)

and the surface kinematic boundary condition,

w =
∂φ

∂z
= u · ∇ζ +

∂ζ

∂t
=∇φ · ∇ζ +

∂ζ

∂t
sur z = ζ. (18.2)

Taking ∂(18.1 at z=ζ)/∂t +g×(18.2) in order to eliminate the linear ζ terms, gives 1

∂2φ

∂t2
+ g

∂φ

∂z
= g∇φ ·∇ζ − 1

2

∂ζ

∂t

∂2φ

∂z∂t
− 1

2

(
∂

∂t
+
∂ζ

∂t

∂

∂z

)[
∇φ ·∇φ+

(
∂φ

∂z

)2
]

+ C′(t), at z = ζ. (18.3)

We note that the non-linearity comes from the terms on the right hand side but also from the fact that eq.
(18.3) is valid at z = ζ, which is unknown. Indeed, a Taylor expansion around z = 0 adds many terms, for
example

∂2φ

∂t2

∣∣∣∣
z=ζ

' ∂2φ

∂t2
+ ζ

∂3φ

∂t2∂z
+

1

2
ζ2 ∂4φ

∂t2∂z2
+ ...

∣∣∣∣
z=0

(18.4)

Before solving this, a question arises: should we really keep all these terms? Do they have the same impor-
tance? This is where a dimensional analysis of eq. (18.3) is necessary. This requires to define scales for time and
space.

Because we are studying waves, they are naturally characterized by a wavelength L = 2π/k, a period T , and
their amplitude a. Besides, the water depth D = h+ ζ comes in the bottom boundary condition. Finally, gravity
g is constant and naturally links space and time scale. We can recall the Reech-Froude law for hydrodynamics:
if time is multiplied by α, then space is multiplied by α2, and velocities by α.

We can thus consider that the time scale is fixed by the spatial scale and our problem is thus only a function
of the ratios of the different space scales. Since we have a, k et D, we can make two independent ratios which
can be ε1 = ka, ε2 = a/D, or µ = kD. The combination of the last two gives the Ursell (1953) number

Ur = ε2/µ
2 (18.5)

It is common to use ε1 and Ur. We will see below that a Froude number α = ga/C2, where C is the phase speed,
can also have interesting properties (Kirby, 1998).

1Be careful that, when computing ∂(18.1)/∂t at z = ζ, you should not forget that ζ is a function of time.

179



180 CHAPTER 18. NONLINEAR WAVES OVER A FLAT BOTTOM

Let us now look at the different terms in eq. (18.3) following the analysis of Kirby (1998). We take

x′ = k0x, (18.6)

y′ = k0y, (18.7)

t′ = k0C0t, (18.8)

ζ′ = ζ/a. (18.9)

This gives φ′ = φ/φ0 where φ0 = Cα/k and the Froude number is

α = ga/C2. (18.10)

For the vertical coordinate we choose a scale Z, giving z′ = z/Z. Eq. (??) thus becomes

∂2φ′

∂t′2
+

g

Zk2
0C

2
0

∂φ′

∂z′
= α∇φ′ ·∇ζ′ − a

Z

∂ζ′

∂t′
∂2φ′

∂z′∂t′

−
(

1 +
akC

Z

∂ζ′

∂t′
∂

∂z′

)
α

[
∇φ′ · ∂∇φ

′

∂t′
+

1

k2
0Z

2

∂φ′

∂z′
∂2φ′

∂t′∂z′

]
+

C′(t)

φ0k2
0C

2
0

, at z′ =
a

Z
ζ′.

(18.11)

If one chooses Z = 1/k, then α = a/Z = ε1 and the linear wave equation only requires ε1 � 1. Choosing
instead Z = D, will also require ε2 = a/D � 1. Hence the linear wave theory requires both ε1 � 1 and ε2 � 1.
It is easy to verify that the solution given in chapter 2 are indeed consistent with these assumptions.

18.2 Finite amplitude solutions

18.2.1 Stokes expansion for weak non-linearity

The common method, introduced by Stokes (1880) is to expand the solution to the nonlinear equations in powers
of ε1, which is most appropriate for deep water waves,

φ = φ1 + φ2 + φ3 + ..., (18.12)

ζ = ζ1 + ζ2 + ζ3 + ..., (18.13)

in which each term of index n is of order εn. Levi-Civita (1925) proved that this expansion was convergent for
monochromatic waves. For general random waves, φ1 is the solution to the linear equations (2.15), and thus φ1

is a linear sum of monochromatic waves as determined in chapter 2,

φ1 =
∑
k,s

cosh (kz + kh)

cosh (kh)
Φs1,k

(
t̃
)

ei(k·x−sσt), (18.14)

where σ and k are related by the linear dispersion relation (2.22).
Tke long term evolution of the amplitudes Φs1,k on time scales t̃ is not constrained by the linear equations

which give constant amplitudes, but this evolution will be part of the solution at higher orders.
When we collect all terms of second order, we have a wave equation for φ2, which is forced by products of φ1

and ζ1. The full second order solution is given in chapter 19.
We also note that at third order, one obtains a modification of the phase speed. For monochromatic waves

in deep water this is (Stokes, 1880)
C = gk

[
1 + k2a2] . (18.15)

Stokes waves are generally unstable any small perturbation will grow to produce shorter and longer compo-
nents that will exchange energy with the initial wave. This is known as the instability of Benjamin and Feir
(1967). Finite amplitude growth was further analyzed by Chalikov (2007).

18.2.2 Numerical methods for finite amplitude periodic waves

The analytical calculation of the amplitude of different harmonics is becomes very tedious at higher order and
has only been completed up to fifth order by De (1955). Beyond fifth order, several method can provide very
accurate numerical solutions (Dean, 1965; Dalrymple, 1974; Schwartz, 1974). Such methods have been used by
Longuet-Higgins and Fenton (1974) to show that energy and phase speed first grow and then decrease as the
wave height increases. Hence, the

Here we use the streamfunction method of Dean, as extended by Dalrymple to allow for a linear current shear
such that the velocity potential still satisfies Laplace’s equation. This iterative method fits the Fourier amplitudes
of the velocity potential to minimise the deviations from a constant pressure along the sea surface. This easily
produces the first 100 harmonics for waves that can be really steep, with orbital velocities at the crest umax up
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to 98% of the phase speed C, as shown in figure 18.1. We recall that periodic waves break when 100% is reached
and no periodic waves can exist with orbital velocities These near-breaking waves are particularly interesting for
exploring the kinematics and energetics of breaking waves, although real breaking waves can be very different
due to their non-stationary shapes. Cokelet (1977)) introduced the small parameter

ε =

[
1−

q2
crestq

2
trough

C4

]1/2

(18.16)

with qcrest and qtrough the orbital velocities at the crest and trough in the frame of reference moving with the
wave, so that qcrest = umax − C = 0 in the case of nearly breaking wave. This parameter is clearly between 0 et
1 and allows an expansion in powers of ε for nearly breaking waves.

18.2.3 Kinematics of finite amplitude waves

Finite amplitude waves are characterized by flat trough and steeper crests, in particular in shallow water. The
orbital velocities are even more asymetric with much larger velocities at the crest than in the troughs. At the
limit when umax/C = 1 the surface slope is discontinuous with a 120◦ angle at the crest.
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Figure 18.1: Surface elevations and velocity fields at 60th order using Dalrymple (1974)’s numerical
method for a water depth of 3 m. (a) and (b) are deep water waves with a period of 1.5 s, so that
kD ' 5. (c) and (d) are shallow water waves of 8 s period. The nonlinearity is intermediate for (a) and
(c), with umax/C ' 0.3, and extreme in (b) and (d) with umax/C ' 0.97.

These nonlinear effects have several consequences. In particular the phase speed, energy and Stokes drift
are slightly higher (up to 10% in deep water, much more in shallow water) than predicted by linear theory with
the same surface elevation variance (Cokelet, 1977). If accurate estimations of wave kinematics are needed, the
linear theory may not be good enough. To know how far the nonlinear solution differ from the linear theory, it
is possible to compute numerically the finite amplitude solutions. For example, in the shallow water limit, the
surface Stokes drift can exceed several times the linear value (Ardhuin et al., 2008c).

18.2.4 Integral properties

The properties of periodic finite amplitude waves over a flat bottom still follow some exact relations. Here
we reproduce the results of (Cokelet, 1977). For any water level z0 below the wave troughs (i.e. such that
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−h < z0 < min(ζ)) we may define,

M =
1

L

∫ L

0

ρwζdx = ρwζ, (18.17)

C =
1

L

∫ L

0

ρwu(x, z0)dx = ρwu, (18.18)

Mw =

∫ ζ

−h
ρwudz, (18.19)

Ec =
1

2

∫ ζ

−h
ρw (u2 + w2) dz, (18.20)

Ep =

∫ ζ

ζ

ρwgzdz, (18.21)

Sxx =

∫ ζ

−h
(p+ ρwu2) dz −

∫ ζ

−h
pHdz =

∫ ζ

−h
(p+ ρwu2) dz − 1

2
ρwgD

2, (18.22)

F =

∫ ζ

−h

[
p+

1

2
ρw (u2 + w2) + ρwg (z −z eta)

]
udz, (18.23)

u2
b =

1

L

∫ L

0

u2 (x,−h, t) dx. (18.24)

In the frame of reference moving at the phase speed, the following three quantities are are independent of the
horizontal position x. These are the mass flux per unit crest length,

−Q =

∫ ζ

−h
ρw (u− C) dz = −ρwCd. (18.25)

the dynamic pressure

R =
p

ρwg
+

1

2g

[
(u− C)2 + w2]+ (z + h) , (18.26)

and the momentum flux per unit crest length

S =

∫ ζ

−h

[
p+ (u− C)2]dz. (18.27)

These quantities are used in other relations

Mw = ρwCD −Q, (18.28)

2Ec = CMw − ρwC, (18.29)

Sxx = 4Ec − 3Ep + ρwu2
b + ρwC

2 (18.30)

F = C (3Ec − 2Ep) +
1

2
u2
b (Mw + ρwCD) + CCQ (18.31)

K = 2
M
ρw

+ u2
b + C2, (18.32)

R =
1

2
K + h, (18.33)

S = Sxx − 2CMw +D

(
C2 +

1

2
D

)
, (18.34)

where K is Bernoulli’s constant, linked to the surface dynamic boundary condition of constant pressure along
the sea surface,

K = (u− C) + w2 + 2ζ pour z = ζ (18.35)

18.2.5 Nonlinear corrections to Airy waves

Using periodic numerical solutions, one may propose empirical corrections for various quantities. For example,
figure 18.2 shows the expected correction for the wave momentum Mw, as a function of the parameters H/D and
kD.

18.3 Nonlinear theory for random waves

La non-linéairité des vagues aléatoires aboutit à plusieurs effets sur le spectre des vagues. Tout d’abord, le
transfert d’énergie entre composantes ’libres’ est décrit par la théorie de Hasselmann (1960) déjà présentée au
chapitre 18.
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Figure 18.2: Ratio of the wave momentum for periodic waves of finite amplitude and linear waves with
the same surface elevation variance. This was computed using the streamfunction theory of Dean and
Dalrymple (1974) with orders 80 à 120.

18.3.1 Dispersion relation

Par ailleurs la relation de dispersion est modifiée. Cet aspect est particulièrement important pour la mesure de
courants à partir de la relation de dispersion (radar HF ou autres techniques). Barrick and Weber (1977) ont
montré que pour des vagues de nombre d’onde kB et de direction θB , la correction de second ordre par rapport
à la relation de dispersion linéaire est, en eau profonde (Broche et al., 1983; Ardhuin et al., 2008c),

C2(kB , θB) =

√
g

2
k

3/2
B

∫ ∞
0

∫ 2π

0

F (x, α)E(f, θ)dθdf,

où, si on définit, y = x1/2 = f/fB and a = cosα,

F (x, α) = y {2a− y + 3xa}+y
∑
ε=±1

ε− a
aε − (1 + εy)2

{
(ya− x)

(
aε + (1 + εy)2)/2 + (1 + εy) (1 + εxa+ εy (x+ εa)− aε)

}
,

(18.36)
avec

aε =
(
1 + x2 + 2εxa

)1/2
. (18.37)

Pour x < 1, alors F (x, 0) = 4x3/2, et pour x > 1, F (x, 0) = 4x1/2 (Longuet-Higgins and Phillips, 1962). En
général F (x, α) ' F (x, 0) cosα, avec les erreurs les plus importantes pour x = 1, où F (x, α) > F (x, 0) cosα pour
|α| < π/3, ce qui peut donner une erreur de 2 to 5% par rapport à l’approximation F (x, α) ' F (x, 0) cosα.

18.3.2 Harmoniques

Comme pour des vagues périodiques, le fait qu’il n’y ait pas d’interactions résonnantes (pour les vagues de gravité)
à l’ordre 2, permet de calculer de manière explicite le spectre des harmoniques, qui est une correction nonlinéaire
du spectre. Plusieurs méthodes ont été développées, mais certaines sont incomplètes car, pour être cohérent, il
faut non seulement prendre en compte les termes du type Φ2

2,2(k) qui résultent du produit d’amplitudes de vagues
linéaires Φ2

1(k′)Φ2
1(k − k′), mais aussi les termes du type Φ3,1(k)Φ1,1(k) avec Φ3,1(k) les amplitudes d’ordre 3.

C’est justement ce qu’avait oublié de faire Weber and Barrick (1977).
Les solutions correctes sont fournies par Creamer et al. (1989) et Janssen (2009). Cette dernière approche

est bien adaptée à la modélisation numérique: en faisant travailler le modèle sur les variables canoniques que
sont les amplitudes modifiées par la transformation de Krasitskii (1994), on obtient les harmoniques par un post-
traitement des spectres résultats pour revenir dans l’espace des variables naturelles, avec les harmoniques. Ce
type d’approche est utile pour calculer des efforts sur des structures en mer (e.g. Prevosto et Forristall 2002)
mais aussi pour la zone littorale où cela peut permettre de prendre en compte une bonne partie de la génération
des harmoniques.
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Il semble que la théorie n’est pas encore tout à fait au point pour appliquer cette méthode dans des conditions
de profondeur et courant variable, mais elle suggère une alternative interessante au calcul (faux) des interactions
de 3 vagues dans les modèles à phase moyennée.

18.4 Evolution non-linéaire du spectre: quadruplets

18.4.1 En eau profonde

Pour un spectre continu de vagues, on se retrouve dans la même situation que pour la résonance forcée par le
vent, avec une évolution des amplitudes de la même forme que (22.35). Pour des temps d’évolution longs devant
la période des vagues, l’évolution du terme d’ordre 3

E3,3(k) =
|dZ3(k)|2 + |dΦ3(k)|2

2dk
(18.38)

tend vers une expression du type de (22.36)

∂E3,3(k) (k)

∂t
=
π

2

∫
|B|2E(k1)E(k2)E(k3)dk1dk2dk3. (18.39)

On peut donc calculer l’évolution du spectre

E(k) = E2(k) + E4(k) + E6(k) + ... (18.40)

où l’on a négligé les ordres pairs qui sont rigoureusement nuls dans le cas d’un état de mer Gaussien, car ce sont
les produits d’un nombre impair de variables aléatoires Gaussiennes. C’est le travail accompli par Hasselmann
(1960,1962). On connait en effet les contributions d’ordre 2,

E2(k) = 2
|dZ1(k,+)|2

dk
(18.41)

d’ordre 4, pour lequel on n’a plus d’équipartition de l’énergie, il faut donc combiner énergie potentielle (termes
en Z) et cinétique (termes en Φ),

E4(k) =
1

2dk

{
|dZ2(k)|2 + 2R

[
Z1(−k)Z3(k)

]
+
σ2

g2
|dΦ2(k)|2 + 2

σ2

g2
R
[
Φ1(−k)Φ3(k)

]}
(18.42)

et d’ordre 6,

E6(k) =
1

2dk

{
|dZ3(k)|2 + 2R

[
Z1(−k)Z5(k)

]
+ 2R

[
Z2(−k)Z4(k)

]
+
σ2

g2
|dΦ3(k)|2 + 2

σ2

g2
R
[
Φ1(−k)Φ5(k)

]
+ 2

σ2

g2
R
[
Φ2(−k)Φ4(k)

]}
(18.43)

Ainsi il faut calculer jusqu’au cinquième ordre... au moins les termes résonants qui sont importants pour
l’évolution du spectre.

18.4.2 Evolution en profondeur finie

Enfin, Janssen et Onorato (2007) ont montré que l’application usuelle du DIA pour des profondeurs intermédiaires,
via un coefficient qui augmente quand kD diminue, est probablement erroné. En effet, en résolvant la singularité
du coefficient T pour k1 = k2 = k3 = k4 ils montrent que les interactions avec des composantes spectrales proches
s’annulent pour kD = 1.363 et sont nettement plus faible qu’en eau profonde pour 1.2 < kD < 3, comme le
montre la figure 18.3). A l’heure actuelle, cette variation de l’intensité des interaction n’est prise en compte que
dans le modèle du Centre Européen. Il reste encore à vérifier ces prédictions théoriques.
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Figure 18.3: Variation de l’intensité des interactions pour des nombres d’onde proches, en fonction de
la profondeur adimensionnelle. En pointillés figure la variation préconisée par le groupe WAM (1988),
avant les travaux de Janssen et Onorato (2007).
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Chapter 19

Waves at second order

19.1 Equations of motion at second order

From the full Bernoulli equation (18.1), the second order approximation is

∂φ2

∂t
= −1

2

[
|∇φ1|2 +

(
∂φ1

∂z

)2
]
− p2

ρw
− gz + C2(t). (19.1)

The usual combination with the surface kinematic boundary condition yields the second order wave equation,(
∂2

∂t2
+

∂

∂z

)
φ2 + g

∂φ2

∂z
= −gζ1

∂2φ1

∂z2
+ g∇φ1 · ∇ζ1 −

∂

∂t

(
ζ1
∂2φ1

∂z∂t

)
−∇φ1 ·

∂∇φ1

∂t
− ∂φ1

∂z

∂2φ1

∂t∂z
on z = 0.

The first term on the right hand side comes from the Taylor expansion of the left hand side around z = 0, and
the four other terms are coming from eq. (18.3).

19.2 Monochromatic waves at second order

Plugging a single monochromatic wave solution with wavenumber k0, as given in chapter 2, gives second order
Stokes solution. For a linear amplitude a = 2Z+

1,k0
, we have Φ+

1,k0
= −iag/ (2σ) and

φ1 =
cosh (k0z + k0h)

cosh (k0D)

(
Φ+

1,k0
ei(k0·x−σ0t) + Φ

+
1,k0

e−i(k0·x−σ0t)
)
, (19.2)

The solution is,

φ2 =
cosh (2k0z + 2k0h)

cosh (2k0D)

(
Φ+

2,2k0
ei(2k0·x−2σ0t) + Φ

+
2,2k0

e−i(2k0·x−2σ0t)
)

+ 2Φ+
2,0 (19.3)
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Figure 19.1: Profiles of a linear Airy wave and a second order Stokes wave.
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avec

Φ+
2,2k0

= D (k0,k0)

(
Φ+

1,k0

)2

σ2 (2k0)− 4σ2
0

(19.4)

=
3iσk cosh (2kh)

4g sinh3 (kh) cosh (kh)

(
Φ+

1,k0

)2
, (19.5)

and

Φ+
2,0 = 0, (19.6)

giving

Z+
2,2k0

= a2 k cosh (kh) [2 + cosh (2kh)]

32 sinh3 (kh)
, (19.7)

and

Z+
2,0 = a2 σ

2

g2
k2 [tanh2 (2kh)− 1

]
. (19.8)

The phases of the harmonics are locked with the phase of the linear waves, and the elevation and velocity
fields are given by (Dean and Dalrymple, 1991),

ζ = a cos [k (x− Ct))] + ka2 [2 + cosh (kD)]

4 sinh3 (kD)
cos [2k (x− Ct))] (19.9)

u = ωa
cosh (kz + kD)

sinh (kD)
cos [k (x− Ct))] +

3

4
k2a2C

cosh (2kz + 2kD)

sinh4 (kD)
cos [2k (x− Ct))] (19.10)

Compared to linear waves, this orbital velocity is higher the crests, and lower under the troughs.

19.3 Second order motion for random waves

Before generalizing to a full wave spectrum, we note tha Miche (1944b) provided the solution for two monochro-
matic wave trains in opposite directions, which gives a non-zero contribution C2(t). The general second-order
solution, first given by Biesel (1952), comes from using a full superposition of linear waves for φ1 and ζ1, which
are related by eq. (2.25). Here we generally follow the notations used by Hasselmann (1962). We obtain the
following wave equation for φ2,

∂2φ2

∂t2
+ g

∂φ2

∂z
=
∑
k1,s1

∑
k2,s2

D (k1,k2) Φs11,k1
Φs21,k2

ei[(k1+k2)·x−(s1σ1+s2σ2)t]. (19.11)

The coupling coefficient D (k1,k2) is given by collecting all the terms from the right hand side ot eq. (19.2). A
nice symmetric form ( unchanged if k1 and k2 are exchanged) is given by Hasselmann (1962)

D (k1,k2) = i (s1σ1 + s2σ2) [k1k2 tanh (k1h) tanh (k2h)− k1 · k2]− i

2

(
s1σ1

k2
2

cosh2(k2h)
+ s2σ2

k2
1

cosh2(k1h)

)
.

(19.12)

This form of D (k1,k2) can be obtained as follows. One can first expand the products such as ∇φ1 · ∇ζ1,

∇φ1 · ∇ζ1|z=0 =
∑
k1,s1

ik1Φs11,k1
ei(k1·x−s1σ1t) ·

∑
k2,s2

ik2Z
s2
1,k2

ei(k2·x−s2σ2t), (19.13)

then replacing Zs21,k2
by is2σ2Φs21,k2

/g, and collecting the terms

∇φ1 · ∇ζ1|z=0 =
∑

k1,k2,s1,s2

−ik1 · k2
s2σ2

g
Φs11,k1

Φs21,k2
ei[(k1+k2)·x−(s1σ1+s2σ2)t]. (19.14)

To get the symmetry, the trick is to write the two sums with k1 and k2 switched or not, and take half of their
sum,

∇φ1 · ∇ζ1|z=0 =
∑

k1,k2,s1,s2

−ik1 · k2
s1σ1 + s2σ2

2g
Φs11,k1

Φs22,k2
ei[(k1+k2)·x−(s1σ1+s2σ2)t]. (19.15)
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19.4 Pressure at second order

Using the coupling coefficient D given by Hasselmann (1962, eq. 4.3) for the velocity potentials, our coupling
coefficient for the elevation amplitudes is

Dz
(
k, s,k′, s′

)
= − g2D (k, s,k′, s′)

isσs′σ′ (sσ + s′σ′)

=
g2

sσs′σ′

{[
k · k′ − σ2σ′2

g2

]
+

0.5

(sσ + s′σ′)

(
sσk′2

cosh2(k′h)
+

s′σ′k2

cosh2(kh)

)}
(19.16)

In the bottom pressure, the additional term arising from the orbital velocity has a coupling coefficient

Dpb
(
k, s,k′, s′, z

)
=

g2 kk
′ sinh[k(z + h)] sinh[k′(z + h)]− k · k′ cosh[k(z + h)] cosh[k′(z + h)]

2sσs′σ′ cosh(kh) cosh(k′h)
.

(19.17)

The relationship with the coupling coefficient C given by Herbers and Guza (1991, their eq. 4) for the bottom
pressure, is given by solving eq. (??) for φ2, and then rewriting Bernoulli’s equation (19.1), as

p2

ρw
=
∂φ2

∂t
− 1

2

[
|∇φ1|2 +

(
∂φ1

∂z

)2
]

(19.18)

This gives, for z = −h,

C = − Dz(sσ + s′σ′)2

g [gK tanh(Kh)− (sσ + s′σ′)2]
+
Dpb(z = −h)

g
. (19.19)

φ2 is a solution to Laplace equation and the bottom boundary condition, and its Fourier component Φ2,k

for the wavenumber k thus has a vertical structure that is the same as that of φ1, namely it is proportional to
cosh (kz + kh). The Fourier transform of eq. (??) thus gives

∂2Φ2,k

∂t2
+ gk tanh (kh) Φ2,k =

∑
k1+k2=k,s1,s2

D (k1,k2) Φs11,k1
Φs21,k2

ei−(s1σ1+s2σ2)t, (19.20)

et les coefficients de Fourier Z2,k de ζ2 en sont déduit via le développement à l’ordre 2 de la condition cinématique
en surface,

Z2,k = −1

g

∂Φ2,k

∂t
+

∑
k1+k2=k,s1,s2

G (k1,k2) Φs11,k1
Φs21,k2

e−i(s1σ1+s1σ1)t. (19.21)

où G est donné par Hasselmann (1962)

− i

2

(
s1σ1k

2
2

cosh2 (k2h)
+

s2σ2k
2
1

cosh2 (k1h)

)
,

G (k1,k2) =
1

2g

[
k1 · k2 − g−2s1s2σ1σ2

(
σ2

1 + σ2
2 + s1s2σ1σ2

)]
. (19.22)

L’équation d’oscillateur forcé (19.27) ne peut conduire à une résonance car la relation de dispersion est telle
que σ (k1 + k2) 6= σ (k1) + σ (k2) sauf dans la limite de l’eau peu profonde kh → 0, ou pour des vagues de
gravité-capillarité. En dehors de ces deux cas, les solutions de second ordre sont donc des vagues d’amplitude
limitée et elles sont liées aux solutions du premier ordre. Ces variations d’amplitudes causées par des interactions
non-résonnantes peuvent donner lieu a des échanges temporaires d’énergies entre les différentes composantes aussi
appelées récurrences (Fermi, Pasta et Ulam 1955).

The dynamic and kinematic boundary conditions a the free surface z = ζ are

p = pa (19.23)

w =
∂φ

∂z
=∇φ · ∇ζ +

∂ζ

∂t
. (19.24)

As done in chapter 2, we move the boundary condition on z = ζ to an equation on z = 0 with a Taylor expansion

∂ζ

∂t
− ∂φ

∂z
'∇φ · ∇ζ + ζ

∂2φ

∂2z
on z = 0. (19.25)
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Again the combination of eq. (19.1) at z = ζ, where p = pa, and (19.25) allows us to remove the unknown ζ,[(
∂2

∂t2
+ g

∂

∂z

)
φ2

]
z=0

= − ∂

∂t

(
pa
ρw

)
− 1

2

{
∂

∂t

[
|∇φ|2 +

(
∂φ

∂z

)2

+ 2ζ
∂2φ

∂t∂z

]}
z=0

− g
{
∇φ · ∇ζ + ζ

∂2φ

∂2z

}
z=0

.

(19.26)
We now replace by the forcing by the first order solution to obtain the forced second order wave equation

[(
∂2

∂t2
+ g

∂

∂z

)
φ2

]
z=0

=
∂

∂t

− paρw −∑
k,s

∑
k′,s′

D (k,k′)

i (sσ + s′σ′)
Φs1,kΦs

′
1,k′e

i[(k+k′)·x−(sσ+s′σ′)t]

 , (19.27)

where the coupling coefficient D (k,k′) is given by Hasselmann (1962),

D
(
k,k′

)
= i
(
sσ + s′σ′

) [
kk′ tanh (kh) tanh

(
k′h
)
− k · k′

]
− i

2

(
sσ

k′2

cosh2(k′h)
+ s′σ′

k2

cosh2(kh)

)
. (19.28)

As noted by Hasselmann (1963), the forcing terms in the equations are equivalent to a pressure term p̂2.
Replacing Φs1,k by −isgZs1,k/σ it is

p̂2 = −ρw
∑

k,s,k′,s′

{
sσs′σ′

[
1− k · k′

kk′ tanh (kh) tanh (k′h)

]

− 1

2 (sσ + s′σ′)

(
g2k′2

s′σ′ cosh2(k′h)
+

g2k2

sσ cosh2(kh)

)}
Zs1,kZ

s′

1,k′e
i[(k+k′)·x−(sσ+s′σ′)t]. (19.29)

19.5 The second order spectrum

Because the wave spectrum is a quadratic quantity, the expansion of the surface elevation up to third order

ζ = ζ1 + ζ2 + ζ3 + ... (19.30)

is needed to evaluate what is ofen called the second order spectrum, but that is in fact a fourth order quantity.
The fourth order elevation variance is

E = ζ1 + ζ2 + ζ3 + ...
2

= ζ2
1 + 2ζ1ζ2 + ζ2

2 + 2ζ1ζ3 + ... (19.31)



Chapter 20

Wave-wave interactions:
general properties of random wave
scattering

All wave scattering and wave-wave interaction processes can be expressed as source terms in the wave action
evolution equation, it is so general that it also covers wave generation by the wind, microseism generation, wave
scattering by bottom, currents, internal waves ... The general theoretical framework is very well described by
Hasselmann (1966), and the detailed description of interactions in the case of 4-wave interactions by Hasselmann
(1962) can be transposed to many interaction types. This chapter thus insists on key elements of that theory
and explains how they apply in other contexts.

20.1 How the interactions of k1 and k2 give k3

20.2 Why resonant interactions emerge

20.3 Large time limit and finite time evolutions

20.4 Amplitude and energy growth

20.5 What if the medium is not homogeneous?
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Chapter 21

Ocean waves and microseisms

I thought that this chapter would treat two mechanisms of microseism generation, at the same frequency and at
the double frequency. Now it appears that it is getting a bit too long and so this chapter will probably be split
into a same-frequency and a double frequency chapters. The two mechanisms only differ by how the ocean waves
are able to generate much longer waves with K << k, but the following propagation is exactly the same. As a
result the sources for the different types of waves, surface Rayleigh waves or body waves, can all be expressed as
some coefficient that multiplies the wave-induced pressure spectrum at the sea surface or bottom Fp(Kx,Ky, fs).
For the same-frequency mechanism this is Fp1(Kx,Ky, fs) as given by (Ardhuin et al., 2015, eq. S12), whereas
the double-frequency mechanism gives Fp2(Kx,Ky, fs) as given by (Ardhuin and Herbers, 2013, eq. 2.28 with a
correction by the bottom pressure 2.31 for waves in finite depth).

21.1 A short history of microseism observations

In the early days of seismology in the late 19th century, a background noise of varying amplitude was detected.
Bertelli (1872) performed measurements in Italy and found that the amplitude of these microseisms changed with
the passing of storms. By the year 1900, the phenomenon was measured all around the globe, and Algué (1900)
related measurements in the Philippines to the passage of Typhoons. All seismometer measurements on Earth
contain microseisms. These seismic waves propagate through the solid Earth and oceans, with a displacement
amplitude that rarely exceeds 10 microns, and a dominant wave period typically between 3 and 10 s.

From seismograph records, the apparently random signal gives a power spectrum with very robust features.
Stutzmann et al. (2000) showed how the noise level generally decreases from island stations to stations deep inside
continents, with a classical shape. When the vertical acceleration is considered, the noise generally has 2 broad
peaks. The so-called ‘secondary’ peak lies at periods between 3 and 10 s, typically half of the dominant ocean
wave periods, and it is the most energetic. The weaker ’primary’ peak has the same period as typical swells,
between 10 and 25 s, and a broad interval of noise is found at periods above 30 s. That long period range is
called the hum.

In all of these frequency bands, the seismic waves can be separated in different modes,

• Raleigh waves: these are waves that follow the surface of the crust, with a motion in the plane of prop-
agation, and an exponential decrease of the motion amplitude towards the center of the Earth. Within
2000 km from the source, these Rayleigh waves usually dominate the microseisms recorded in the 3 to 10 s
period band.

• Love waves: these are waves that follow the surface of the crust, with a motion out of the plane of
propagation, and an exponential decrease of the motion amplitude towards the center of the Earth.

• compressive body (P) waves: these waves travel through the Earth mantle, with a motion in the direction
of propagation.

• shear body (S) waves: these waves travel through the Earth mantle, with a motion transverse to the
direction of propagation, either in the vertical direction, these are then called SV waves, or horizontal
direction, and they are called SH waves.

What was a curiosity is now an important source of data for studying the Earth’s structure and it can also
be used to measure wave properties from land-based seimometers (Zopf et al., 1976). Ongoing efforts are now
explaining how and where this noise comes from, which may have some important application for seismology
or the study of the ocean wave climate. The acoustic noise field in the ocean is also part of this seismic noise
field, with some wave modes that have important signatures in the water column and in the atmosphere. The
atmospheric components are called microbaroms and are often studied separately, although they have the same
sources. These microbaroms offer unique opportunities to study the upper atmospheric circulation.
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Figure 21.1: Measured and modeled seismic spectra. (a) Median vertical acceleration power spectra
in March 2008 at the French SSB seismic station, located near Saint-Etienne, France. (b) observed
and (c) modeled spectra in March 2008 following Ardhuin et al. (2015). Light blue to red vertical
stripes correspond to earthquakes (not modeled). Contrary to intuition, the direct impact of waves at
the shoreline shown on these pictures is not the main source of the microseisms recorded at remote
stations. Instead, seismic waves are mostly generated by two mechanisms: a same-frequency mechanism
involves wave propagation over varying topography in intermediate water depth, and a double-frequency
mechanism that involves the interaction of waves in opposite directions. The dashed line separates the
low frequencies where the same-frequency mechanism dominates from the higher frequencies explained
by the double-frequency mechanism. The Johanna storm, marked by the vertical arrow on March 10, is
conspicuous with powerful and low frequency microseisms. Pictured right: coastal impact of Johanna at
Gâvres and Le Conquet, France.

A key feature of the generation of microseisms is that it transfers energy from ocean waves that are slow,
with typical phase speeds of 10 m/s, to the much faster seismic waves with speeds of several km/s. How can slow
waves excite fast waves?

21.2 The particular case of standing ocean waves

Miche (1944b) was the first to show that, at second order in the wave steepness, the pressure under stationary
waves oscillates in time but does not decay with depth. Clearly, we cannot generally assume that C(t) in (2.10) is
zero. Taking two propagating waves that give standing waves, with elevations a cos(kx− σt) and a cos(kx+ σt),
going in directions towards x > 0 and x < 0. Their sum is the stationary wave,

ζ = 2a cos(kx) cos(σt). (21.1)

w = −2aσ
sinh(kz + kD)

sinh(kD)
cos(kx) sin(σt). (21.2)

(21.3)

It is particulary interesting to look at the horizontally averaged pressure at depth z using eq. (7.28)

p(z) = ρwg(ζ − z) + ρw
∂

∂t
ζw(ζ)− ρww(z)2. (21.4)

The last two terms are deviations from the hydrostatic pressure and they give the non-hydrostatic (NH) pressure,

pNH(z) = −2ρwa
2σ2

[
cos(2σt) +

sinh2(kz + kD)

sinh2(kD)
sin2(σt)

]
. (21.5)

While the second term does not oscillate in time and decays with depth, the first term oscillates at a period equal
to half of the propagating wave period, but is uniform over the vertical.

This fluctating pressure, predicted by Miche (1944b), was interpreted by Longuet-Higgins (1950) as the
vertical force that is necessary to compensate the fluctuations of the vertical momentum per unit surface

Mz =

∫ ζ

−h
ρwwdz ' ρwζw(ζ). (21.6)

This momentum is only non-zero when w and ζ are correlated, and at depth dMz/dt = pNH(z →∞).
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Figure 21.2: Schematic positions of the free surface in a stationary wave at different phases of the period
T of the progressive wave.

It should be noted, also, that the first term in pressure pNH is lowest when the wave amplitude is maximum,
contrary to the second term. In the limit of shallow water kD � 1 and we have pNH(z) = 0.

Of course, the surface pressure is not immediately transmitted at large depth, and a more detailed description
requires to take into account the compressibility of sea water. In reality, the surface oscillations produce acoustic
waves that radiate in the water column (Longuet-Higgins, 1950), and are easily recorded at the ocean bottom
(Farrell and Munk, 2008). Eq. (21.5) was verified in the laboratory by Cooper and Longuet-Higgins (1951).
Hence, compared to the classical studies of ocean waves, the investigation of seismic and acoustic noise requires
to relax two of the hypothesis made in chapter 2. Namely, we will have to take into accound the compressibility
of sea water and air, and we will also need to allow the sea bottom to deform under the varying water pressure.

In the case of exactly standing waves, the associated acoustic waves is propagating along the vertical. So this
is not yet giving the seismic Rayleigh waves observed on land as surface waves. But the ocean waves are not
monochromatic, so that it is much more likely to have interactions of waves with different wavenumbers rather
than waves with exactly opposing direction and frequency. In fact, mathematically, the measure of these exactly
opposing waves is zero. We thus need to generalize the standing wave to what we will find to be supersonic wave
groups in the next section.

21.3 Wave-wave interaction theory for microseism generation

Here we generally follow the method of Hasselmann (1963) with several corrections exposed by Ardhuin and
Herbers (2013). In this process we also compute properties of Rayleigh waves in the presence of a water layer,
which was first done by Stoneley (1926), and is covered in seismology textbooks such as (Lay and Wallace, 1995,
page 133, note the typo with ρw and ρs excahnged in the dispersion relation).

21.3.1 Wavenumber diagrams and isotropy of microseism sources

We have seen in the previous chapters that wave components of frequency f and wavenumber vector k can interact
with another wave or a change in medium (water depth or current) that has a frequency f ′ and wavenumber
k′, giving rise to a wave of frequency fs = f + f ′ and wavenumber K = k + k′. The general theory of such
interactions was sumarized by Hasselmann (1966), and exposed in chapter 20.

If the phase speed 2π(f + f ′)/|k + k′| matches the speed of a seismic mode, then there is a resonance and
interaction of waves with that seismic mode. In the case of microseisms, the ocean waves transfer energy to the
seismic wave. Conversely, the vertical shaking of water, usually in the laboratory, gives rise to standing waves in
the water, also known as Faraday waves.

For seismic frequencies fs around 0.2 Hz, the phase speed of seismic waves is larger 1.5 km/s, such large speed
can only be achieved if K << k, which imposes k′ ' −k, as illustrated on figure 21.3. The two neear-resonant
configurations produce seismic waves that travel in very different directions. However, compared to that of the
ocean waves, a 1% change in the wave vector k is generally negligible, because the half-width of the wave spectrum
in frequency and direction is generally of the order of 5% or more, and the wave energy spectral density E(f, θ)
is the same if k changes by only 1%. Hence, at the spectral peak, the source of microseisms is isotropic.

We can distinghish two mechanisms that give rise to these interactions,

• A same-frequency mechanism: k′ corresponds to a change in depth or current, this is usually fixed in time
or at least much slower than the waves, hence f ′ = 0 and fs = f , the seismic waves have the same frequency
as the ocean waves.

• A double-frequency mechanism: k′ corresponds to another wave component. Since k′ ' −k, we also have
|k′| ' |k| and f ' f ′, thus fs ' 2f : the microseism have a frequency that is the double of the ocean wave
frequency.
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Figure 21.3: Typical configuration of interacting wave components

Figure 21.1 shows that the same-frequency mechanism only explains the hum and primary microseism, while
the double-frequency mechanism explains the higher frequency secondary peak. We will now give more theoretical
details for each mechanism.

21.3.2 Motion in the water and equivalent wave-induced pressure

We follow here the theory of Hasselmann (1963) made for waves in deep water (kD >> 1), including the correction
by Ardhuin and Herbers (2013) for finite water depth.

From Longuet-Higgins (1950), we know that at first order the wave motion is given by Airy theory as exposed
in chapter 2. At second order, the motion is forced at the surface by the interaction of pairs of linear (first
order) solutions. This is thus the exact same problem that is solved in chapter 18, with the only change caused
by compressibility, namely the mass conservatin equation that was ∇2φ + ∂2φ/∂z2 = 0 in the incompressible
case, is now, assuming that the time-average density ρw only varies in the vertical, and ρ′ are wave-induced
perturbations,

dρ′

dt
=
∂ρ′

∂t
+
∂φ

∂z

∂ (ρw + ρ′)

∂z
+∇φ · ∇ρ′ = −ρw∇2φ− ρw

∂2φ

∂z2
. (21.7)

We now need an equation of state that relates the pressure fluctations p′ to density fluctuations ρ′, via the sound
speed in the water αw,

−α2
wρ
′ + p′ = 0. (21.8)

Combining (21.26)–(21.25) and expressing ρ′ as a function of p′ gives

−α2
wρ
′ + p′ = 0 (21.9)

dp′

dt
= ρwα

2
w

[
∇2 +

∂2

∂z2

]
φ = 0 (21.10)

We have thus three unknowns, ρ′, p′ and φ. They are related by eqs. (21.25), (21.10) and a third equation
that is unchanged from the incompressible case, namely the Bernoulli equation (18.1).

As detailed in chapter 19 the surface boundary condition contains the interaction of linear ocean waves, and
it is equivalent to a surface pressure p̂2 given by eq. (19.29). The last term of that equation was absent in
Hasselmann (1963) because he only considered waves in deep water where kD � 1, so that it is also missing in
Webb (2007). Using (19.29) the surface pressure spectrum can be expressed in terms of quadratic products of
the (linear) sea surface elevation spectrum

E(kx, ky) = 2 lim
|dk|→0

∣∣∣Z+
1,k

∣∣∣2
dkxdky

(21.11)

with a coupling coefficient given by eq. (19.16) that simplifies for K ' 0 to

Dz (k, 1,−k, 1) = −2σ2

[
1 +

1

4 sinh2(kh)

]
. (21.12)

For any value of kD, the coupling coefficient given by eq. (21.12) differs from the full second order coefficient
for the bottom pressure (e.g. eq. 4 in Herbers and Guza, 1991), which also involves the Bernoulli head (the
bracket in eq. 19.1). However, that extra term is also relevant to the generation of seismic noise due to the
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bottom boundary condition that couples the solid crust to the water column. Indeed, the second-order pressure
perturbation at the bottom writes,

p2(−h) = −ρw
∂φ2

∂t
+ p̂2,bot, (21.13)

where the Bernoulli head contribution to the pressure can be expressed from the first order wave amplitudes,

p̂2,bot = ρw
∑

k,s,k′,s′

Dpb
(
k, s,k′, s′, z = −h

)
Zs1,kZ

s′
1,k′e

iΘ(k,k′,s,s′), (21.14)

with a coupling coefficient Dpb given by eq. (19.17).
We may interpret the bottom pressure (21.13) as the sum of the surface forcing p̂2,surf transmitted to the

bottom by φ2, and a direct effect of the Bernoulli head at the bottom which is an additional forcing p̂2,bot that
partly cancels p̂2,surf .

We shall see in the next section that the forcing term for seismic noise is p̂2,surf +cos(lh)p̂2,bot, with l ≤ K � k
the vertical wavenumber in the water. For shallow water gravity waves, kh � 1 and thus cos(lh) ' 1 so that
the effective forcing term becomes p̂2,surf + p̂2,bot, which equals the bottom pressure in the incompressible limit.
The shallow water asymptote of the spectrum of this total forcing term is very different from the surface pressure
only. Compared to eq. (21.22), the

[
1 + 0.25/ sinh2(kh)

]2
factor is now replaced by 1. For kh � 1, this is a

factor (kh)4/16 smaller,
This second order surface pressure is not the only effect of waves, which also appear in the wave equation

obtained by eliminating p between (21.10) and (19.1),

α2
w

[
∇2 +

∂2

∂z2

]
φ =

d

dt

[
∂φ

∂t
+ gz +

1

2

(
|∇φ|2 +

(
∂φ

∂z

)2
)]

(21.15)

α2
w

[
∇2 +

∂2

∂z2

]
φ− ∂2φ

∂2t
− g ∂φ

∂z
' −1

2

∂

∂t

[
|∇φ|2 +

(
∂φ

∂z

)2
]
. (21.16)

Longuet-Higgins (1950) showed that for σ ' 0.5 s−1, the right hand side in eq. (21.16) was negligible (his F
terms). We can thus neglect it for noise generated by wind seas and swell. This term might be important foe
longer wave periods.

For the generation of seismic waves, the only relevant interactions are the ones with phase speeds |k +
k′|/|sσ + s′σ′| close to the horizontal speed of seismic modes, typically more than 1500 m/s, except for waves
over unconsolidated sediments for which the speed could be only a few hunder meter per second. This condition
imposes that k ' −k′ and thus sσ ' s′σ′, we can thus ignore the other terms and we re-write eq. (19.29) as

p̂2 ' −ρw
∑

k,k′'−k,s

{
σ2

[
1 +

1

tanh2 (kh)

]
− g2k2

2σ2 cosh2(kh)

}
Zs1,kZ

s
1,k′e

i[(k+k′)·x−2sσt]

' −ρw
∑

k,k′'−k,s

{
σ2

[
1

2
+

3

2 tanh2 (kh)

]}
Zs1,kZ

s
1,k′e

i[(k+k′)·x−2sσt] (21.17)

21.3.3 The elementary interaction: a supersonic wave group

Instead of this complete sum, we first detail the simplest case of interaction, with only two monochromatic wave
trains in opposite directions with nearly equal periods. Here we take an example with an amplitude a and period
Ta = 12 s for the first wave train, with a surface elevation a cos(kax − σat) and an amplitude b and a period
Tb=11.88 s, with a corresponding elevation b cos(kbx+σbt). In the middle of the oceans, with a depth of 5000 m,
these two wave trains are in deep water and the difference of the two wavenumbers is K = kb − ka = 5.2× 10−4

rad/m, corresponding to a wavelength L = 12 km, to be compared to the wavelength of the first wave tran that
is only 225 m. We thus have wave groups that contain 12000/225 = 53 waves (figure 21.4). The group speed is
L× (1/Ta + 1/Tb), namely 2 km/s.

because k in eq. (21.17) can be either ka or −kb, the equivalent wave-induced pressure has 8 different terms.
Only 4 of these terms are relevant for seismic wave generation. We have Z+

1,a = Z−1,a = a/2 and Z+
1,b = Z−1,b = b/2,

giving

p̂2 ' −2ρwσ
2 ab

4

[
ei[(ka−kb)x−2σt] + ei[(−kb+ka)x−2σt] + ei[(ka−kb)x+2σt] + ei[(−kb+ka)x+2σt]

]
' −2ρwσ

2ab [cos (Kx+ 2σt)]

This result, given by Ardhuin and Herbers (2013) is the generalization to of the Longuet-Higgins (1950) standing
wave. The wave group propagates in the direction of the shortest of the two wave components. This propagation
in one dimension is easy to generalize to cases where the wave directions are not exactly opposite but in the
directions of two wave vectors kb and ka. The direction of propagation of the second order pressure is in the
direction of K = kb − ka. In the incompressible case, this equivalent pressure is equal to the measured pressure
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Figure 21.4: Two wave trains with slightly different periods and propagating in opposite directions in
deep water interfere to form wave groups. The groups propagate in the same direction as the wave train
which has the shorter wave periods. The red and black dots are attached to a crest of their monochromatic
component, and these crests travel 100 times slower than the group.

in the water column. In reality, with compressibility we have to solve the equations of motion forced by this
surface term, this is done in the following sections.

It is also interesting to consider the pressure at the bottom. Indeed, for finite values of kD the orbital velocity
at the bottom induces a pressure oscillation given by the usual Bernoulli term, that is equal to −(u2 + w2)/2,
which is out of phase with the surface wave groups, whereas p̂2 is in phase. As notes by Ardhuin and Herbers
(2013), these two terms exactly cancel in the limit kD → 0, which is clear from the incompressible solution for
the bottom pressure given by Herbers and Guza (1991).

21.3.4 Sum for a continuous spectrum

In the limit of a continuous spectrum, 2
∣∣∣Z+

1,k

∣∣∣2 → E(kx, ky)dkxdky. The factor 2 is there because we use only

positive frequencies (i.e. single-sided spectra), nameliy we gather the variance of the components with amplitudes
Z+

1,k and Z−1,−k. Liekwise the spectrum of p̂2 is,

Fp2(K, fs) = 2 lim
|dK|→0,dfs→0

|p̂2(K, fs)|2

dk2xdk2ydfs
, (21.18)

where p̂2(K, fs) is the Fourier amplitude of p̂2 with wavenumber vector K and frequency fs. We now replace
with eq. (21.17), and transform the ocean wave spectral density E(kx, ky) = CgE(f)/(2πk). Now using fs = 2f ,
we get dkxdky/df2 = πk/Cgdθ et il vient,

Fp2(K, fs) ' 2ρ2
wσ

4

[
1

2
+

3

2 tanh2 (kD)

]2 ∫
kx,ky>0

E(kx, ky)E(−kx + k2x,−ky + k2y)
dkxdky

dfs
(21.19)

' 2ρ2
wg

2k2 tanh2(kh)

[
1

2
+

3

2 tanh2 (kD)

]2 ∫
kx,ky>0

E(f, θ)E(f, θ + π)
C2
gdkxdky

k24π2dfs
(21.20)

' ρ2
wg

2 tanh2(kD)
kCg
2π

[
1

2
+

3

2 tanh2 (kD)

]2 ∫ π

0

E(f, θ)E(f, θ + π)dθ (21.21)

' ρ2
wg

2 tanh2(kD)fs

(
1

4
+

kD

2 sinh(2kD)

)[
1

2
+

3

2 tanh2 (kD)

]2 ∫ π

0

E(f, θ)E(f, θ + π)dθ

(21.22)

In the limit of deep water (kD � 1), and writing the directional wave spectrum as E(f, θ) = E(f)M(f, θ),
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this becomes
Fp2(K ' 0, fs) = ρ2

wg
2fsE

2(f)I(f)/2, (21.23)

where the ‘overlap intergral’ I was defined by Farrell and Munk (2008) as

I(f) =

∫ 2π

0

M(f, θ)M(f, θ + π)dθ. (21.24)

As a result, there are seismic waves generated at all frequencies, provided that some energy travels in opposite
directions. This is also true for capillary waves, although in that case the dispersion relation and surface boundary
conditions are different (Farrell and Munk, 2008). From an ocean wave perspective,K is so small compared to k
that we can use K = 0. However, for the seismic waves, the magnitude and direction of K will determine the type
of seismic wave and its direction. Indeed, K = 0 correspond to P -waves than travel along the vertical. Because
the spectrum Fp2 is nearly constant for seismic wavenumbers, all the different waves are actually generated at
the same time from the same pressure force. In this sense, the wave-induced forcing is equivalent to an oscillating
point force at the sea surface.

21.3.5 Free solutions: Rayleigh waves

Motion in the water layer

z=0

z=-D

p

L= 2 / K

L =
 2 

/ k
s

s

Figure 21.5: Schematic of wave group forcing acoustic waves in a water layer over a solid half-space.
The horizontal wavenumber K is set by the forcing, whereas the true acoustic wavelength also involve
the vertical component Ls = 2π/ks = 2π/

√
K2 + l2a = αw/T . The dashed arrows give the propagation

direction of acoustic waves in the water with the thin solid lines representing the surface of equal phase.
The superposition of up-going and down-going waves is a horizontally propagating mode. In practice the
angle of propagation of sound waves in Rayleigh modes is less than 65 degrees, as shown in figure 21.7.

Our three equations for perturbations p′, φ, and ρ′w in the water (21.9)–(19.1) linearize as

−α2
wρ
′ + p′ = 0 (21.25)

∂ρ′

∂t
+
∂φ

∂z

∂ρw
∂z

+ ρw∇2φ+ ρw
∂2φ

∂z2
= 0 (21.26)

1

ρw
p′ + gz +

∂φ

∂t
= 0. (21.27)

Boundary conditions, in the absence of forcing are p = 0 at the sea surface, and a coupling with the solid Earth
by continuity of vertical velocity w = ∂φ/∂z, which is not zero, and stresses.

We can re-write (21.25)–(21.27) with ρ′ replaced by p′,

− ∂

∂t
p′ + ρwα

2
w

[
∇2 +

∂2

∂z2
+

g

α2
w

∂

∂z

]
φ = 0 (21.28)

1

ρw
p′ + gz +

∂

∂t
φ = 0 (21.29)

and finally, the combination of (21.28) and (21.29) removes p′, giving a wave equation,[
∂2

∂t2
+ α2

w

(
∇2 +

∂2

∂z2
− g

α2
w

∂

∂z

)]
φ = 0 (21.30)
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For a monochromatic wave of phase Θ = Kx− ωt, the velocity potential is given by the real part of

φ = Cela(z+h)eiΘ. (21.31)

Replacing in eq. (21.29) gives a second order polynomial for the unknown la,

−ω2 + α2
w

(
−K2 + l2a −

g

α2
w

la

)
= 0 (21.32)

with a solution
la =

g

2α2
w

± l. (21.33)

The water motion is thus a superposition of two terms with the two possible signs,

l =

√
ω2

α2
w

−K2 +
g2

4α4
w

'

√
ω2

α2
w

−K2 (21.34)

giving

φ = egz/2α
2
w

(
Ceil(z+h) +De−il(z+h)

)
eiΘ (21.35)

In the ocean αw ' 1500m/s and z > −11000 m, so that the term gz/2αw varies between 0 et 0.02, and can be
neglected for simplicity. For a supersonic forcing (ω/K > αw) l is real and we get acoustic waves, whereas a
sub-sonic forcing (ω/K < αw) gives evanescent waves, decreasing exponential from the sea surface. These are
acoustic-gravity modes.

Motion in the solid Earth

Treating the solid Earth as a homogenous medium with a compression velocity αs and shear velocity β, given by
the Lamé coefficients of the solid,

α2
s =

λ+ 2µ

ρs
, (21.36)

β2 =
µ

ρs
. (21.37)

The elasticity equation gives Laplace’s equation for the velocity potential φs and the stream function ψ. With
the same phase as in the water, Θ = kx− ωt a finite amplitude at z → −∞ gives solutions of the form

φs = Aem(z+h)eiΘ, (21.38)

ψ = Ben(z+h)eiΘ. (21.39)

The vertical wavenumbers m and n are given by the generalized Bernoulli equation,

m =
ig

2αs
+

√
K2 − ω2

α2
s

− g2

4α2
s

'

√
K2 − ω2

α2
s

and n '

√
K2 − ω2

β2
, (21.40)

where A and B are the two constant amplitudes of the velocity potential and streamfuction, that have units of
m2/s. These two unknowns are given by the boundary conditons.

Hence, the horizontal and vertical displacements are given by the real parts of

ξx =
(
KAem(z+h) + inBen(z+h)

)
eiΘ/ω, (21.41)

ξz =
(
−imAem(z+h) +KBen(z+h)

)
eiΘ/ω (21.42)

The first term is a compression wave with a velocity field uA = ∂ξx/∂t = ∂φs/∂x, avec φs = Aem(z+h)eiΘ. The
second term is a shear wave with a velocity field uB = ∂ξx/∂t = −∂ψ/∂z.

Coupling at the water-solid interface requires to express the stresses in the solid using Hooke’s law, which
states that the stress is linearly related to the strain,

τzz = λ

(
∂ξx
∂x

+
∂ξz
∂z

)
+ 2µ

∂ξz
∂z

, (21.43)

τxz = µ

(
∂ξx
∂z

+
∂ξz
∂x

)
. (21.44)

In our case we consider that the water freely slips over the solid, so that the shear stress at the bottom is τxz = 0
at z = −h. Using (21.41)–(21.42) we get,

B =
2iKm

n2 +K2
A. (21.45)

This relationship is characteristic of Rayleigh waves.
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Coupling of water and solid Earth and pseudo-Rayleigh waves

The boundary condtions w+ = w− and τzz + p = 0 give the following relations that couple the amplitudes A, C
and D,

A(m− 2K2m

n2 +K2
)− ilE + ilF = 0, (21.46)

A
i

ω

[
−ρsm2α2

s + λK2 + 4µ
K2mn

n2 +K2

]
− iωρwE − iωρwF = 0. (21.47)

Replacing λ and µ by their expression in terms of αs and β, this gives

A
mω2

ω2 − 2K2β2
− ilE + ilF = 0, (21.48)

A
i

ωβ2
ρs

[
− 4β4K2mn

ω2 − 2K2β2
+
(
ω2 − 2K2β2)]− iωρwE − iωρwF = 0 (21.49)

The last unknown, ω is now given by the sea surface boundary condition. Without forcing, this is p(z = ζ) =
0 ' p(z = 0), and it gives,

E = B2e−ilh, (21.50)

F = −B2eilh, (21.51)

and

mω2

ω2 − 2K2β2
A− 2il cos(lh)B2 = 0 (21.52)

i

ωβ2
ρs

[
− 4β4K2mn

ω2 − 2K2β2
+
(
ω2 − 2K2β2)]A− 2ωρw sin(lh)2B = 0. (21.53)

The determinant of this linear system is thus zero, which gives the dispersion relation first given by Stoneley
(1926),

tan (lh) =
ρs
ρw

l

m
×

4β4K2mn−
(
ω2 − 2K2β2

)2
ω4

. (21.54)

We also have

B2 = m
(n2 +K2)− 2K2

(n2 +K2) (2il cos(lh))
A = mi

ω2

(2K2β2 − ω2)2l cos(lh)
A. (21.55)

The dispersion relation (21.54) and motion are characteristic of Rayleigh waves, modified by a water layer.
Because of this modification, these are usually called pseudo-Rayleigh waves.

The practical of the dispersion relation is complicated by the presence of multiple solutions that are associated
with different modes,

Figure 21.6 shows how different values of K are possible due to the multiple branches of the tangent function.

The dispersion relation 21.54 is slightly different from that of Rayleigh waves without an ocean layer, which
is

β4K2mn−
(
ω2 − 2K2β2)2 = 0. (21.56)

We also note that for large depths or short wavelengths (lh > 3π/2) there are several solutions that correspond to
different modes, each with a distinct motion pattern in the water column, while the pattern in the crust remains
similar. Figure 21.7 shows the phase speed that are between the sound speed and the shear wave speed. For a
given mode, the higher the frequency, the slower the horizontal propagation which tends to the sound speed. The
acoustic part in the water thus propagate at shallower angles, becoming horizontal in the limit of high frequency.

For high enough frequencies, the acoustic wavelength is much shorter than the water depth, and the variation
in sound speed across the water layer can modify the propagation. In particular, nearly horizontal sound waves
can be trapped in the SOFAR channel, and there can be a decoupling of the water layer and solid Earth.

The angle of the acoustic propagation in the water are plotted for D = 5000 m in figure 21.8, together with
the vertical profiles of velocities in the water and crust. We note that the higher modes, with a lower K, penetrate
deeper in the solid Earth.
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Figure 21.6: Real and imaginary parts of the left hand side and real part of the right hand side of
eq. 21.54. This calculation was performed for a water depth D = 5000 m, with a sound speed in
water of αw = 1500 m/s, a shear wave speed of β = 2800m/s and water and crust densities of 1000
et 2500 kg/m3. The chosen seismic frequency is fs = 0.263 Hz, corresponding to a non-dimensional
depth fsh/αw = 0.88. The determinant of the system is zero for three values: one acoustic mode Ka for
which l = 0 (horizontal propagation) and two seismic Rayleigh modes with wavenumbers K0 and K1.
For non-dimensional frequencies below 0.34, only the 0 mode exists, and as the frequency increases, K0

increases and new branches of tan(lh) appear (in black) giving higher modes, that have a lower value of
K. Besides, the zero of the right hand side (in red) gives the wavenumber of Rayleigh waves KR in the
absence of a water layer.

Displacements, pressure, velocity and energy in Rayleigh waves

To finish wth this description of Rayleigh waves, we can express all the wave-related quantities in terms of the
ground displacement amplitude at the top of the crust δ,

A =
ω2 − 2k2β2

mω2
δ (21.57)

B =
2ikm

n2 +K2
A (21.58)

B2 =
iω

2l cos(lD)
δ (21.59)

ξz(z = −D) = δ cos Θ (21.60)

φs = Aem(z+D)eiΘ (21.61)

ψ = Ben(z+D)eiΘ (21.62)

φ = 2ilB2 sin(lz)eiΘ (21.63)

p′(z) = R [iρwωφ] = −δρwω2 sin(lz)

l cos(lD)
cos Θ. (21.64)

From these we can evaluate the seismic wave energy per unit horizontal surface Es, taking twice the kinetic
energy in both water and solid Earth,

Es = ρw

∫ 0

−D
(u2 + w2)dz + ρs

∫ −D
−∞

(u2 + w2)dz (21.65)

= TEδ(D)
δ2

2
with (21.66)

TEδ(D) = ρs

[
(KB/A+m)2

2m
+

(nB/A+K)2

2n

](
A

δ

)2

+ρw
{
l2 [2D + sin(2lD)/l] +K2 [2D − sin(2lD)/l]

}(B2

δ

)2

(21.67)
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Figure 21.7: Phase speeds and group speeds for Rayleigh waves in the presence of a water layer. Calcu-
lations have been made with a water depth D = 5000 m, a sound speed in the water αw = 1500 m/s,
a shear wave speed of β = 2800m/s and water and crust densities of 1000 et 2500 kg/m3. Without the
water layer the values are given by the blue line: in that case the Rayleigh waves are not dispersive. We
have used seismic frequencies from 0 to 1 Hz, the latter value corresponding to fsh/αw = 3.4.
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Figure 21.8: (a) Angle of propagation, relative to the hoizontal, of the two acoustic waves that combine
to make acoustic modes in the water. The vertical profile of the velocity amplitude for mode 0 and 1 and
fsD/αw = 0.88 are shown in the right panels. For modes 1 and higher, the vertical velocity is zero at
the nodes of the vertical standing acoustic wave. The zero-pressure level correspond to the zero-velocity
levels, in particular at the surface.

21.4 Forced solutions: Acoustic-Gravity, Rayleigh and body
waves

21.4.1 Matrix inversion

Let us now consider what happens with the ocean wave forcing. The surface boundary condition is now p′ =
P ei(Kx−ωt) at z = 0, and p′ = −ρw∂φ2/∂t + Pbe

i(Kx−ωt) at the bottom. This is now analog to the problem of
wave generation by the wind, treated in chapter 22.

Boundary conditions are now, for kD � 1,

Eeilh + F e−ilh =
iP

ρwω
(21.68)

mω2

ω2 − 2k2β2
A− ilE + ilF = 0 (21.69)

i

ω
ρs

[
− 4β4k2mn

ω2 − 2k2β2
+
(
ω2 − 2k2β2)]A− iωρwE − iωρwF = 0 (21.70)

or, in matrix form,

M

AE
F

 =
i

ρwω

P0
Pb

 (21.71)
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We will now focus on kD >> 1 and neglect Pb. The solution of this system of equation is the sum of a the solutions
to the ’homogenous system’ (without forcing) and one particular solution with the forcing. That solution can be
written using the determinant and co-factors od the matrix 1 M giving

A = −2liP/detM (21.74)

with

detM =
2

ω (ω2 − 2K2β2)

{
lρs cos(lD)

[
4β4k2mn−

(
ω2 − 2K2β2)2]− ρwm sin(lD)ω4

}
. (21.75)

21.4.2 Four different types of waves and equivalent point force

The amplitude of the seismic displacement as a function of the sea surface pressure amplitude in the form of a
gain factor δ = G(ω)P (ω), with the gain

G =
2lm(K2 − n2)

(n2 +K2)ω detM
. (21.76)

Contrary to the case without forcing, we can now have waves at all wavenumbers and frequencies, but their
amplitude GP varies as shown in figure 21.9. We can distinguish 4 different domains
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Figure 21.9: Magnitude of the transfer function G(K, fs) illustrating the singularities along the dispersion
relations of the free Rayleigh modes with wavenumbers K = Kn(fs), that correspond to det(M) = 0. The
oblique dashed lines correspond to phase speeds equal to αc, β, and αw, and separate the four domains
body waves (P+S), mixed body and evanescent waves (S), Rayleigh waves (R) and acoustic-gravity
modes (A-G).

• acoustic-gravity waves (AG) for K/ω < αw: for a monochromatic forcing, these waves vanish exponentially
with depth

• free and forced Rayleigh waves for αw < K/ω < β: the free waves are the ones with ω = ωr

• evanescent P waves and SV body waves for αs < K/ω < β: the SV propagate down in the solid Earth

1For a linear system of three equations a b c
d e f
g h i

AE
F

 =

1
0
0

 , (21.72)

the determinant is
detM = aei+ bfg + cdh− ceg − fha− ibd (21.73)

and the first co-factor is ei−fh so that A = (ei−fh)/ detM , and likewise E = (fg−di)/detM and F = (dh−eg)/detM .
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• P and SV body waves for αs > K/ω: both P and SV propagate down in the solid Earth.

Ocean waves are random and have a spectrum with a finite width which is typically much wider than the
K’s of Rayleigh waves, so that waves at a given location excite, simultaneously, a broad range of wave numbers
on the wavenumber plane, ans illustrated by figure 21.10. The wave-induced pressure spectrum Fp(Kx,Ky, fs)

W n (km)

K (m )-1
x

S-P+S 22 14
S-R : 0 13 8
R - AG : 73 6 4

1 10

(a)
horizontal
phase

ed (km/s)
c
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Figure 21.10: (a) The vertical evanescent or propagating nature of the noise field in the solid and liquid
layers is defined by the horizontal phase speeds relative to the distinct values of the sound speed in the
ocean (αw), and the shear (β) and compression (αc) speeds in the crust. From slow to fast, there are
the acoustic-gravity (AG) domain, the Rayleigh (R) wave domain, and two body wave domains (S only,
and P and S together) (b) For any fixed frequency, the four domains correspond to 4 concentric regions
in the wavenumber plane. For three selected noise frequencies generated by OSGW in the infragravity,
dominant and high frequency ranges of the forcing wave field, the limiting wavelengths between the four
domains are indicated, using αw = 1.5 km/s, β = 3.2 km/s, αc = 5.54 km/s. One example of interaction
is shown with two gravity wave modes that interact to generate a Rayleigh wave (black vectors, not to
scale, k and k′ should be much larger).

waries smoothly around K = 0 and is roughly constant for seismic wavenumbers. Thus, it is simimar to a white
spectrum, corresponding to the spectrum of delta function in horizontal (x, y) space. Hence, in terms of the
power spectrum of the radiated waves, the ocean wavemotion is equivalent to a vertical oscillating force pushing
on a single point of the sea surface with a root mean square value,

Frms = 2π
√
Fp(Kx = 0,Ky = 0, fs)dAdfs, (21.77)

where dA is the area over which the forcing is distributed and dfs is the frequency interval of interest. This
equivalence is easy to show by computing the spectrum in Kx,Ky of such a force, either directly as a delta
function or as a pressure over a small square and taking the size of that square to zero. The spectrum of that
force is equal to Fp(Kx = 0,Ky = 0, fs) for all values of Kx and Ky, unlique the true effect of waves which
becomes zero for large K. Also, compared to this point force, the phases of the different seismic modes are
independant with real waves whereas they are identical with the point force. As a result, correlations of synthetic
traces from a model forced by such point forces may be artificially high, where as power spectral densities should
be alright. Such vertical forces were used by Gualtieri et al. (2013) to model the seismic response, which contains
all four types of waves, AG, R, P and S. We will now discuss these 4 types of waves.

21.4.3 Rayleigh waves

For a given wavenumber K, there are one or several values of ω that gives a zero determinant, for which G is
infinite. Let us call ωr one of these values, ωr and K are related by the Rayleigh wave dispersion relation (21.54).
In practice the wave forcing is continuous across frequencies and wavenumbers and characterized by a power
spectral density Fp(Kx,Ky, f), and in the case of the double-frequency source it is Fp2(Kx,Ky, f) given by eq.
(21.22). It is thus possible to find the power spectrum of the ground displacement by integrating in frequency
across these singularities,

Fδ(Kx,Ky) =

∫ ∞
0

|G|2 Fp3D(Kx,Ky, ω)dω (21.78)
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or in terms of seismic energy
FE(Kx,Ky) = TEδ(D)Fδ(Kx,Ky) (21.79)

with TEδ(D) given by (21.67).
Where the singularities in G can be expanded at G = G′(ω)/(ω2 − ω2

r). Following Hasselmann (1962, see
also chapter 20), it is easy to prove that the response of a harmonic oscillator forced by a continuous spectrum
of density FpKx,Ky, ω with a singularity at ω = ωr integrates to a finite spectral density that grows linearly in
time, giving a rate of change,

∂Fδ(kx, ky)

∂t
= SDF (kx, ky) =

π |G′|2

2ω2
r

Fp(kx, ky, ωr). (21.80)

In practice we are often in a situation where the wave field changes slowly at the time scale of seismic
propagation. In this quasi-stationary situation, assuming seismic energy conservation along rays, we have an
energy balance similar to that of ocean waves, with conservation of the spectral densities in K−space,

U · ∇FE(Kx,Ky) = TEδ(h)SDF (kx, ky), (21.81)

where U is the group speed of seismic waves. The seismic spectrum at point s = 0 is given by the integral of
sources along propagation rays with an along-ray distance s. Introducing the dissipation of seismic waves by
anelastic processes, represented by a non-dimensional factor Q, we have

Fδ,0(Kx,Ky)(Kx(0),Ky(0)) =

∫ ∞
O

TEδ(s)

TEδ(0)

SDF (Ks(s),Ky(s))

U(s)
exp

[
−
∫ s′

0

ω

U(s′)Q(s′)
ds′
]

ds (21.82)
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Figure 21.11: Non-dimensional coefficients ci and C̃. We note that the peaks of modes i = 0 and i = 1
occur for depths D that are close to but slightly larger than D 0.25 + i/2 the acoustic wavelength, just
like the resonant modes of an oran pipe. In fact ci is maximum for a depth that is exactly 0.25 + i/2 the
vertical wavelength: because the propagation direction is oblique in the water, what is important for a
maximum ci is the constructive interference of these waves that reflect on the bottom and surface. This
figure was drawn for αw = 1500 m s−1 and β = 2800 m s−1. The peak of c0 is higher for larger values of
β/αw, which is similar to the impedance ratio of the bottom that defines the reflection of waves at the
bottom. For example, changing β to 3200 m s−1, the maximum value of c0 is 1.03.

It is more convenient to work in azimuth and frequency because frequency is conserved during propagation.
For the Rayleigh mode number i we have

Fδ,0(ω, θs) =
K(0)

U(0)
Fδ,0(Kx(0),Ky(0)). (21.83)

To simplify our equations we will now assume that Q is independent of the distance along the ray s, and we get

Fδ,0(ω, θs) =

∫ ∞
O

SDF (ω)

U(s)
exp

[
− ω
Q
t(s)

]
ds (21.84)

where t(s) is the travel time (propagation time) and

SDF (ω) =
k(0)

U(0)

TEδ(s)

TEδ(0)

SDF (kx, ky)

U(s)
. (21.85)
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This source is a source of the power spectral density of the vertical elevation variance at point 0, per unit
propagation length along a seismic ray. It thus has units of distance times time (m s).

Equations are more simple when this source is written per unit propagation distance

SDF (ω) =
K(0)U(s)

U(0)K(s)

TEδ(s)

TEδ(0)

K(s)SDF (Kx,Ky)

U2(s)
(21.86)

=
K(0)U(s)

U(0)K(s)

TEδ(s)

TEδ(0)

2πωc2i
β5ρ2

s

Fp3D(Kx,Ky, ω) (21.87)

where ci is a non-dimensional coefficent that is a function of the non-dimensional depth ωD/αw and the seismic
mode index i,

ci =

√
β5ρ2

ski
U2
i 2πω

π |G′i|
2

2ω2
. (21.88)

Going to an extreme simplification, we will assume that U and K are independant of i and D. The seismic
source is thus of the order of

SDF (fs) '
2πωC̃2

β5ρ2
s

Fp3D(kx, ky, fs). (21.89)

where C̃ combines all the ci values

C̃2 =

∞∑
i=0

c2i . (21.90)

The values of ci are obtained by finding the roots of the dispersion relation and using eq. (21.88). This gives

values such as given in figure (21.11). When combining all modes the coefficient C̃ varies with the ration of the
vertical acoustic wavelength and the water depth D.

21.4.4 body waves

A first theory of body wave generation by ocean waves was proposed by Vinnik (1973), who found that in some
regions far from the ocean, the recorded microseism signals were dominated by body waves and not by surface
Rayleigh waves. Since that time, many observations of body waves have been performed (e.g. Zhang et al., 2010;
Obrebski et al., 2013). The theory of Vinnik did not include the important effect of the water layer. This was
corrected by Ardhuin and Herbers (2013) who simply applied the Hasselmann (1963) theory. This theory can
explain both P and SV waves, but not the transversally polarized SH waves observed by Nishida and Takagi
(2016), which probably require some bottom slopes or mode conversion. The following theoretical expression
for the spectrum of P waves was also derived by Gualtieri et al. (2014), and a first quantitative verification was
performed by Farra et al. (2016).

In the case of body waves, for K/(2πfs) > β, there are no singularities and thus the spectrum of the ground
displacement is directly given by,

Fδ,P (fs) = fsE
2(f)I(f)

ρ2
wg

2

ρ2
sβ4
s

c2P (21.91)

with a non-dimensional coefficient cP ,

c2P = 2π

∫ ωs/αc

0

4l2m2ρ2
sβ

4
s

ω2
s det2(M)

KdK. (21.92)

A similar expression can be written for S waves, and both are illustrated in figure 21.12,

Fδ,S(fs) = fsE
2(f)I(f)

ρ2
wg

2

ρ2
sβ4
s

c2S . (21.93)

However, in the range of wavenumbers where S waves exist, k < ωs/β, there can also be evanescent P waves,
and the system can approach the singularity for ωs = ωs,j and k = ωs/β. We evaluated numerically the coefficient

c2S = 2π

∫ ωs/β

0

4l2m2k2ρ2
sβ

4
s

ω2
s(n2 + k2) det2(M)

KdK. (21.94)

It is striking that the maxima of the coefficients cP and cS are much more pronounced that that of ci for
Rayleigh waves,shown in figure 21.11. This is probably due the fact that, in the case of P and S waves, the
acoustic waves in the water are propagating closer to the vertical, with a narrow range of angles. As a result, the
spatial distribution of sources of body waves is much more constrained by the water depth, and should focus on
smaller regions (Obrebski et al., 2013).

For the estimation of the spectrum recorded outside of a source area, it is more convenient to express the
local seismic source as a function of the horizontal propagation angle θ, and the vertical take-off angle ϕ. For P
waves, this gives,

Fδ,P (fs, θ, ϕ) = fsE
2(f)I(f)

1

ρ2
sβ4
s

c2P,ϕ sinϕ (21.95)
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Figure 21.12: Non-dimensionless coefficients cP and cS that amplify the wave-induced pressure into
ground displacement associated with P and S waves.

with the non-dimensional coefficient cP,ϕ defined by

c2P,ϕ =
4l2m2ρ2

sβ
4
s

ωsαc det2(M)

∂K

∂ϕ
, (21.96)

which is the normalized source per unit solid angle Ω, so that the average over the half space of downward
directions Ω− is

c2P =

∫ 2π

0

∫ π/2

0

c2P,ϕ sinϕdϕdθ =

∫
Ω−

c2P,ϕdΩ (21.97)

as defined by eq. (21.92).
It is noteworthy that the distribution of the P -wave energy with the take-off angle is very close to the one

given by a small disk pushing at the top of a uniform half space, as given by Miller and Pursey (1955) and used
by Vinnik (1973), although it also varies with the non-dimensional water depth fsh/αw. The only missing item in
the work by Vinnik (1973) is the very strong amplification of the motion for resonant frequencies associated with
the water layer. Due to the large impedance contrast at the water-crust interface the relative amplification of P
waves is one order of magnitude stronger than for Rayleigh waves. We thus expect a much tighter correspondence
of the strong seismic noise sources with the water depths that correspond to a maximum amplification.

Ardhuin and Herbers (2013) estimated that P waves will dominate the signal at large distances from the
source. The exact location where P -wave levels overtakes Rayleigh-wave levels depends on the relative attenuation
of the two types of waves. With a realistic Q = 2000 for the P waves, and Q = 400 for the Rayleigh waves, figure
21.14 shows that it occurs at an epicentric angle of ∆ ' 40◦, which is a distance of 4400 km, consistent with the
observations reported by Vinnik (1973) using Kazakhstan array data.

21.4.5 acoustic-gravity waves

At the other end of the scale of forcing speeds, for K/(2πfs) < αw, the response in the acoustic-gravity regime
is also given by the local forcing.

In order to illustrate the different types of solutions, it is interesting to evaluate the solution for an unbounded
ocean, in which sound waves are radiated from the surface only. The velocity field and associated pressure
fluctuations are

φ2 =
1

ρw

∫
iωsp̂2(K, fs)

−ω2
s + igl

ei[−lz+Θ(k,k′,s,s′)]dKdfs (21.98)

p2 =

∫
p̂2(K, fs)

1− igl/ω2
s

ei[−lz+Θ(k,k′,s,s′)]dKdfs (21.99)

where p2 has been obtained using the linearized version of eq. (19.1). The measured pressure signal is the sum
of the linear pressure p1, the second-order wave pressure p2 given by eq. (21.99), and the Bernoulli correction
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Figure 21.14: Estimates of the rms vertical ground displacement associated with Rayleigh or P waves, as
a function of the epicentric angle ∆, for a source of intensity

∫
Fp2,surf(K = 0, f)df = 4.2× 104 hPa2 m2

over a 330 by 330 km square, assuming an attenuation factor Q = 2000 for the P waves (Pasyanos et al.,
2009), with travel times given by the ak135 reference Earth model (Snoke, 2009).
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p2,B given by

p2,B(z) = ρw
∑

k,s,k′,s′

Dpb
(
k, s,k′, s′, z

)
Zs1,kZ

s′
1,k′e

iΘ(k,k′,s,s′). (21.100)

We note that p2,bot defined in eq. (21.14) is equal to p2,B(z = −h).

We shall neglect g|l|/ω2
s , which is bounded by the ratio between the deep water gravity and sound speeds,

which is less than 0.1 for wave periods less than 180 s. We express the velocity potential as a sum of propagating
(acoustic, l real) and evanescent (acoustic-gravity, l imaginary) modes,

φ2 = φ2,p + φ2,e. (21.101)

We get the frequency spectrum of the propagating modes by integrating over the inner regions of the wavenum-
ber space (labelled P+S, S and R in figure 21.10),

Fp2,p(fs) =

∫
K<ωs/αw

Fp2,surf(K, fs)dK. (21.102)

For this range of wavenumbers |k− k′| < K < ωs/αw, and using the relations ωs ' 4πf and, (for small |f − f ′|),
|k−k′| ' 2π|f−f ′|/Cg ' 8π2f |f−f ′|, we obtain an upper bound for the frequency difference |f−f ′| < g/(2παw)
which is close to= 0.001 Hz. Typical ocean wave spectra have a relative frequency half-width σf/f that is between
0.03 for swells and and 0.07 for wind-seas (Hasselmann et al., 1973), so that E(f) ' E(f ′) is a good approximation
for the interactions that drive long wavelength pressure fluctuations.

The wave spectrum is thus broad enough for us to evaluate Fp2,surf at K = 0 using eq. (??), and take it out
of the integral in eq. (21.102). The acoustic spectrum simplifies to

Fp2,p(fs) =
πω2

s

α2
w

ρ2
wg

2fsE
2(f)I(f). (21.103)

This is identical to the expression given by Lloyd (1981).

Gravity noise in an unbounded ocean

The pressure associated with acoustic-gravity modes is the other part of the integral in (21.102), for K > ωs/αw.
The imaginary wave number l gives a vertical attenuation of the power spectrum by a factor e−2|l|z. With that
attenuation we may, for large enough depths, assume that only modes with K � k contribute to the result, so
that we may take Fp2,surf(K, fs) ' Fp2,surf(K = 0, fs), and take it out of the integrand. This approximation
is valid only up to a maximum wave number Kmax that is a small fraction of k, Kmax = εk. For numerical
applications we used ε = 0.2.

With this approximation we have,

Fp2,e(fs, z) = Fp2,surf(K = 0, fs)2π

∫ Kmax

ωs/αw

Ke2|l|zdK

= Fp2,surf(K = 0, fs)2π

∫ Kmax

0

|l|e2|l|zd|l|

=
π

2z2
ρ2
wg

2fs
[
1− e2zKmax

]
E2(f)I(f) (21.104)

A previous investigation by Cox and Jacobs (1989) included an extra factor (1+zKmax) in front of the exponential
term e2zKmax , because they neglected compressibility effects. That term , however, is negligible in the upper part
of the water column, and their observations collected within 100 to 290 m of the surface in 4000 m depth, are
thus not affected by this small compressibility correction.

As shown in figure 21.15, the oceanic pressure signals can be dominated by linear gravity waves down to
depths of a few hundred meters. When looking at the double frequency band, linear waves may only dominate in
the top 100 m. At these frequencies, the acoustic-gravity modes have the most important contribution between
about 100 to 500 m, provided that E2(f)I(f) is large enough. Propagating modes should dominate only beyond
about 1000 m in the case of an unbounded ocean, or only 300 m, when accounting for the reverberation in a
finite depth ocean, assuming a typical tenfold amplification for a sea floor with realistic elastic properties2. These
depths will be reduced in the case of surface gravity waves with periods shorter than the 15 s swells example
shown in figure 21.15.

2This amplification depends not only on the impedance ratio of the water and crust, which defines the amplification
coefficients cj derived below, but also on the seismic attenuation coefficient Q, which is discussed in section 4. Realistic
calculations following Ardhuin et al. (2011a) typically give a factor 10 to 20 amplification of the sound in the water column
due to the bottom elasticity.
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Figure 21.15: Example of (a) directional wave spectrum and (b) resulting profiles of the different con-
tributions to the pressure fluctuations in the ocean, assuming infinite water depth. The ratio of double
frequency to linear wave contributions depends on the amplitude of the waves and on the directional
spectral shape, because all double frequency contributions are proportional to E2(f)I(f). This direc-
tional spectrum was estimated with a numerical wave model, and corresponds to the loudest noise event
recorded at the ocean bottom seismometer H2O, on 31 May 2002 at 25 N, 136 W. This unusual spectrum
has large wave energies in opposite directions, radiated from a North Pacific storm and Hurricane Alma
(This event is analyzed in detail by Obrebski et al., 2012).

Noise in a finite depth ocean

For large depths compared to the OSGW wavelength, kh� 1, the finite depth has little effect on the evanescent
modes except for a doubling of the motion amplitude near the bottom, as the vertical profiles of the form
exp(Kz) are replaced by cosh(Kz + Kh)/ cosh(Kh). This is similar to the finite depth effect on linear wave
motions. However, the propagating modes radiated by the surface will now undergo multiple reflections at the
bottom and sea surface, as shown in figure 21.5. The oceanic acoustic field is tightly coupled to elastic waves in
the crust through these reflections.

One of the greatest complications induced by the presence of a bottom is the heterogeneity of the sediment
and rock layers below the water column. The natural layering of the crust has a strong influence on the sound
reflection and the nature of the seismic modes (e.g. Latham and Sutton, 1966; Abramovici, 1968).

21.5 From the ocean to the atmosphere: microbaroms

The source of noise in the atmosphere can also be derived with the same formalism, as an alternative to the
Green functions used by Waxler and Gilbert (2006). Indeed, we may consider the atmospheric motion to be
irrotational, so that the equations of motion are identical in the atmosphere and in an unbounded ocean, with
the only difference that the atmospheric density is ρa and the atmospheric sound speed is αa. The second-order
velocity potential takes the form,

φ2,a ∝ exp[i(Kxx+Kyy + laz − ωst)] for z > 0, (21.105)

with

la =

√
ω2
s

α2
a

−K2. (21.106)

Because ρw/ρa ' 1000, the air motion has only a small O(ρw/ρa) local influence on the water motion, so
that the solutions derived earlier for the water motion remain valid in the presence of air. The air motion, with a
velocity potential φa also obeying eq. (??) is fully determined from the water motion via the kinematic boundary
conditions on the air and water-sides of the interface (19.25),

∂φa
∂z
− ∂φ

∂z
'∇ (φa − φ) · ∇ζ − ζ ∂

2 (φa − φ)

∂2z
at z = 0. (21.107)
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From the first order potential in the air (e.g. Waxler and Gilbert, 2006)

φ1 =
∑
k,s

is
g

σ
Zs1,ke−kzei(k·x−sσ) (21.108)

we obtain the second order potential,

∂φ2,a

∂z
=
∂φ2

∂z
+

∑
k,s,k′,s′

Dza
(
k, s,k′, s′, z

)
Zs1,kZ

s′
1,k′e

iΘ(k,k′,s,s′)

and a new coupling coefficient

Dza
(
k, s,k′, s′, z

)
= −2isg

σ

(
kk′ + k · k′

)
.

(21.109)

We note that for k′ = −k, Dza = 0, so that the long-wavelength motion with K � k simplifies to

∂φ2a

∂z
' ∂φ2

∂z
at z = 0. (21.110)

consistent with the result given by Posmentier (1967) for the interaction of monochromatic wave trains, and in
disagreement with a factor 8 correction proposed by Arendt and Fritts (2000).

This gives a pressure spectrum for the propagating atmospheric waves,

Fp2,ap(fs) =

∫
K<Kmax

ρ2
a

∣∣l2∣∣
ρ2
wl2a

Fp2,surf(K, fs)dK = R(Kmax)
πω2

s

α2
w

ρ2
ag

2fsE
2(f)I(f). (21.111)

with the non-dimensional factor

R(Kmax) = 2
α2
w

ω2
s

∫ Kmax

0

∣∣l2∣∣
l2a
KdK == 2

α2
w

ω2
s

∫ Kmax

0

∣∣l2∣∣
l2a
KdK. (21.112)

In order to avoid the singularity for la = 0, and atmospheric ducting effects not represented here, we take
Kmax = ωs/(2αa) which restricts the acoustic propagation directions to be within 30 degrees from the vertical.
In that case we have R(Kmax) ' 0.54 instead of R(Kmax) = 0.25 with the vertical propagation approximation of
Waxler and Gilbert (2006), which replaces the l2/l2a factor in the integral by its value α2

a/α
2
w for K = 0. Other

than that, our expression is consistent with their low Mach number asymptote, i.e. σ/k � αa (Waxler and
Gilbert, 2006, eq. 61). The present theory also allows the estimation of the evanescent wave components given
by wavenumbers K > ωs/αa.

21.6 Modeling of seismic spectra using a numerical wave model

While Hasselmann (1963) and Szelwis (1982) already made some order of magnitude estimates of the microseism
generated by realistic wave spectra, the first attempt using a numerical wave model was performed by Kedar
et al. (2008).

For a seismic frequency fs = 0.15 Hz, the maximum of C̃ corresponds to a depth D ' 2300 m. This explains
why oceanic ridges are generally stronger sources of microseisms at that frequency (figure 21.16).

21.6.1 Rayleigh wave propagation in a non-homogeneous medium

Les variation de profondeur d’eau ont une importance considerable sur les vitesses de phase et de groupe des
ondes sismiques (figure 21.7). On peut donc s’attendre to d’importants phenomenes de refraction des ondes
sismique, en particulier au passage du talus continental. En effect, avec une variation du milieu homogene dans
la direction y, la propagation d’ondes ne peut se faire entre l’ocean et le continent que pour des angles d’incidences
inferieurs to l’angle critique arcsin(Co/Cc) avec Co et Cc les vitesses de phase dans les deux milieux. Pour une
frequence sismique de 0.15 Hz par 3000 m de fond (fsh/αs = 0.3) la vitesse de phase n’est que Co = 2000 m/s,
to comparer to la vitesse sur le continent Cc = 2570m/s. L’angle critique est donc dejto de 51◦ et il tombe to
40◦ pour h = 5000 m. Pour prendre en compte ce phenomene on peut utiliser une technique de trace de rayons,
comme pour les vagues, mais sa validite, generalement to des echelles plus grande que la longueur d’onde, sera
plus limitee du fait de la grande longueur d’onde des ondes sismiques qui peut atteindre 20 km.

Besides, the amplitude of the vertical ground motion δ at the top of the crust is related to the energy flux.
Without dissipation and neglecting reflections and lateral variations along direction y, the evolution of δ along
the x direction between an ocean with a water depth h and the continent is given by

U(h1)TEδ(h1)δ2(h1) = U(0)TEδ(0)δ2(0). (21.113)
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Figure 21.16: Averaged microseism sources averaged over the year 2008 at global scales over the seismic
frequency band 0–0.34 Hz, based on a numerical wave model (Ardhuin et al., 2011a). The top panel
shows the average wave-induced pressure spectral density Fp2D(kx = 0, ky = 0) =

∫
Fp3D(kx = 0, ky =

0, fs)dfs. The middle panel shows the seismic source, which combines the wave-induced pressure and the
local amplification factor that varies with water depth SDF (fs). The bottom panel shows the contribution
of coastal reflections only given as the difference of the model run with reflection and the model run
without reflection. For reference, without scattering or dissipation a constant source of 10×10−18 over a
square with side length of 330 km gives an average amplitude δ2

rms = 1µm2 at a distance of 1000 km.
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Figure 21.17: Coefficient d’amplification de la variance du deplacement vertical du sommet de la crust ter-
restre, entre l’ocean et le continent, pour un incidence normale et en fonction de la profondeur oceanique.

avec V (h1) et V (0) les vitesses de groupe en domaine oceanique et continental, tandis que TEδ(h1) et TEδ(0) sont
les coefficient donnant l’energie sismique to partir du deplacement du sommet de la crust.

Hence, just like waves propagating from deep to shallow waters, the variance of the displacement δ2/2 is
amplified by a factor U(h1)TEδ(h1)/(V (0)TEδ(0)) that can be of the order of XX (figure 21.17). Ainsi le mode 0
oceanique se transforme graduellement en une onde de Rayleigh continentale.

Pour les modes superieurs, leur propagation ne peut avoir lieu lorsque la profondeur diminue en dessous de la
valeur critique hc where il disparaissent. Il est possible que ces modes excitent des modes inferieurs jusqu’to finir
par transmettre leur energie au mode 0. On remarque que leur structure verticale pour les profondeurs critiques
hc ne presente aucun mouvement dans la crust. Au voinage de hc ce sont donc des modes purement acoustiques.

Pour un calcul precis du bruit il conviendrait donc de

• prendre en compte la refraction

• utiliser le coefficient d’amplification VoMo/(VcMc)

• estimer la transmission des ondes pour les modes superieurs to 0.

Dans un premier temps nous negligerons ces trois aspects.

21.6.2 Validation of modeled microseism

Les ondes sismiques generees sont attenuees par la dispersion angulaire et par la dissipation et diffusion des ondes
sismiques. Ainsi, pour une station sismique to terre, les sources les plus proches donnent un signal qui, toutes
choses egales par ailleurs, est plus fort que les sources lointaines. En negligeant les effet de refraction et des ondes
sismique, le seul effet de la propagation sur la sphere terrestre est l’attenuation que l’on supposera constante.
Ainsi le spectre du deplacement vertical observe to la longitude λ et latitude φ est donne par la somme des sources
sur l’ensemble de l’ocean,

Fδ(λ, φ, fs) =

∫ π/2

−π/2

∫ 2π

0

SDF (fs)

RE sinα
e−2πfsαRE/(V Q)(R2

E sinφ′dλ′dφ′)

La vitesse de groupe sismique V et le facteur de qualite Q dans (21.114) definissent l’attenuation des ondes
sismiques. Pour V = 1.8 km s−1 et Q = 150, l’energie des ondes sismique de frequence fs = 0.15 Hz est diminuee
de moitie tous les 200 km. Ces deux parametres dependent de la structure et des non-homogeneites de la croute
terrestre. En particulier Q peut varier fortement avec la frequence et le long de la surface terrestre.

En France on a un bon accord entre les spectres sismiques observes et modelises pour Q ' 130 aux frequences
proches de fs = 0.14 Hz (figure 21.18.b) alors que pour certaines stations en Californie il faut reduire Q to pres
de 45 (figure 21.18.a). De faibles valeurs de Q impliquent que l’essentiel du bruit sismique vient de regions tres
proches de la station de mesure, les sources plus lointaines ayant ete fortement attenuees. En Europe de l’ouest
on estime que le bruit sismique est tout autant cause par les vagues qui passent sur la dorsale medio-Atlantique
que par l’effet des reflections sur les coast Atlantiques. Les vagues en Mediterranee peuvent aussi be une source
significative (figure 21.18.c).

Parce qu’il faut des vagues de same frequence mais de directions opposees pour generer du bruit sismique, les
sources sont associees to des houles opposees la mer du vent, ou to la reflexion des vagues, to la coast ou par des
icebergs. Avec un modele assez simple de la reflexion to la coast on peut simuler le bruit sismique de facon tres
realiste. La principale inconnue etant l’attenuation des ondes sismiques lors de leur propagation.

La figure 21.19 montre la variation au cours de l’annee 2008 de l’amplitude du deplacement sismique vertical
δrms observe et modelise par l’equation (21.114) pour les stations SSB et BKS.



21.6. MODELING OF SEISMIC SPECTRA USING A NUMERICAL WAVE MODEL 215

observations
model R(f)

model R=0

model R=0.1

seismic frequency f (Hz)

a
ve
ra
g
e
 P
.S
.D
. 
<
F δ
(f
s)
>
 (
µ
m
2
/ 
H
z)

0.08 0.12 0.16 0.2 0.24 0.28 0.32

(a) BKS,
California

0

0.5

1

1.5

2

Q= 060 , r= 0.67
Q= 090 , r= 0.76
Q= 110 , r= 0.81

Q= 140 , r= 0.85
Q= 150 , r= 0.85
Q= 160 , r= 0.86

Q= 130 , r= 0.84

0

0.5

1

1.5 (b) SSB,
France

SSB
BKS

(c)
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2008, pour les stations de Berkeley (BKS) et de Saint Sauveur en Rue (SSB), au sud de Saint-Etienne.
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Figure 21.19: Relation entre signal sismique et houle coastal.
Series temporelles du deplacement sismique vertical δrms observe et modelise par l’equation (21.114) pour
les stations (a) SSB et (b) BKS. (c) et (d) En bas, serie temporelle de hauteurs significatives et periode
moyenne des vagues mesurees to 46013 et reconstruite to partir du signal sismique to BKS.
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21.7 Measuring waves from microseisms

Microseisms are now widely used to fortomographic analysis of the solid Earth structure (Shapiro et al., 2005),
and the monitoring of solid Earth properties. Microseisms can also be used to estimate ocean wave properties.
Cette application fut envisagee des les annees 1930 et son utilisation pratique fut mise en oeuvre sur dans les
annees 1970 sur la coast ouest des Etats-Unis (Zopf et al., 1976). A cette epoque la technologie de mesure par
des bouees en mer n’etait pas encore au point et il n’y avait pas d’autre moyen de mesure fiable.

Cette possibilite d’inverser le signal sismique pour en deduire le spectre des vagues n’est toutefois pas uni-
verselle et certains types d’etat de mer peuvent causer d’importantes erreurs. En effet, la relation d’inversion
to partir du bruit est typiquement bien calibree pour les situations dans lesquelles la reflexion to la coast est la
source principale du bruit. Or une houle opposee to une mer du vent, ou deux houles se faisant face, peuvent
aussi generer un tres fort bruit (Obrebski et al., 2012). Dans ce cas la hauteur des vagues pourra be fortement
surestimee. Cette source d’erreur dejto discutee par Zopf et al. (1976) est mise en evidence sur la figure 21.19.c
pour l’estimation des vagues to partir de la station BKS. Ainsi, le 26 janvier 2008, une situation meteorologique
particuliere produit un fort bruit dont on deduit une hauteur significative qui depasse 12 m, soit plus que la
hauteur centennale, alors que en realite, la hauteur des vagues n’a pas depasse 5.5 m ce jour lto dans la sone
coastal (figure 21.20).

Il convient donc d’ameliorer sensiblement la methode pour arriver to une estimation robuste des parametres
d’etat de mer to partir du bruit sismique. Dans le cas de stations sismiques sensibles to une vaste zone de l’ocean
l’interpretation quantitative du signal n’est pas simple mais il y a une correlation entre la hauteur des vagues
sur l’ensemble de l’Atlantique nord-est et l’intensite du bruit sismique en Europe de l’ouest. Une modelisation
numerique des vagues et du bruit peut permettre de filtrer les evenements anormaux (Ardhuin et al., 2012).
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Figure 21.20: Map of the wave-induced second order surface pressure variance, integrated across frequen-
cies (couleurs), on 26 January 2008 at 12:00 UTC, off the California coast. Cette situation correspond to
de une forte houle du nord-ouest et une depression (L) centree en 32◦ N 132◦ W. Les parametres d’etat
de mer sont symbolises pour trois positions (carres), avec la mer du vent (groups of three arrows, and
heights Hs0), et les houles quand elles existent (dotted arrows and heights Hs1 and Hs2). La depression
produit des vents depassant les 25 m/s, ce qui, to l’ouest amplifiela houle incidente en mer forte (Hs

jusqu’to 8 m). A l’est de la depression, des mers agitees (4 m) se transforment en houle au nord du front
atmospherique (ligne avec triangles). Tous ces champs de vauges produisent deux maxima de pression
qui generent des microseismes. Le plus fort (2600 hPa2m2) s’etend le long du front froid autour du point
A, il est cause par la mer du vent qui s’oppose to la houle de nord-ouest. Le second maximum, au point
B, vient de l’interaction des deux houles. Enfin on notr que en C, les pressions induites par les vagues
sont faibles (200 hPa2m2) car il n’y a pas de houle opposee to la mer du vent qui pourrait donner une
forte valeur de I(f) (eq. 21.24). Si I(f) en C etait aussi fort qu’en A, alors la source microsismique y
serait 200 fois plus forte.
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Chapter 22

Generation of waves by the wind

22.1 Effects of air viscosity on swell attenuation

Before discussing the generation of wave by the wind, we will look into the opposite and presumably simpler
problem of wind generation by waves, or more generally the adjustment of air flow to the water motion taking
into account the finite viscosity of the air. This problem was first solved by Dore (1978).

22.2 From air-side turbulence to wave energy: a first theory by
Phillips

En supposant que la turbulence du vent est advectée sans modification par un vent moyen U (uniforme sur la
verticale et dans la direction de l’axe des x pour simplifier), Pa est de la forme Pa (x− Ut) (c’est l’hypothèse de
G. I. Taylor, la turbulence est ”gelée”). Cela correspond à σ′′ = k · U .

Pour une pression atmosphérique dont le spectre turbulent est continu,

Pa =
∑
ka

Πka cos [ka (x− Ut) + αka ] , (22.1)

ζ est donné par la superposition de solutions de la forme de (22.33) déphasées de αka . Cette superposition est
dominée par les composantes qui sont proches de la résonance. L’énergie de chaque composante crôıt initialement
comme t2, mais la largeur de la bande de fréquence pour laquelle cette croissance a lieu diminue en 1/t. Le calcul
montre que l’énergie des vagues augmente linéairement avec t (eq. 22.36).

On peut alors ajouter des variations suivant y de la fluctuation de pression Pa. Dans ce cas des modes
propres de la surface sont excités avec des nombres d’onde ky non-nuls: ces vagues se propagent dans une
direction différente de la direction du vent, donné par la condition de résonance

σ/kx = U, (22.2)

qui exprime l’égalité de la composante σ/kx, suivant l’axe des x, de la vitesse de phase des vagues et de la vitesse
du vent U . Phillips a aussi ajouté les effets de la tension de surface dans sa théorie, en utilisant la relation de
dispersion des vagues de gravité-capillarité. Malheureusement, les valeurs mesurées du spectre des fluctuations
de pression turbulente sont insuffisante pour expliquer la croissance des vagues.

22.3 Couplage vent-vagues

Si la croissance linéaire de l’énergie des vagues donnée par la théorie de Phillips (1957) peut expliquer le début
de la croissance des vagues, au bout d’un certain temps on ne peut plus supposer que le vent est uniforme car il
est modifié par la présence des vagues, au moins au voisinage de la surface. Miles (1957) a mis en evidence un
mécanisme de croissance des vagues qui découle de cette modification. Cette théorie a été étendue par la suite par
Fabrikant (1976) et appliquée par Janssen (1991). La théorie apparâıt bien vérifiée, au moins qualitativement,
pour les vagues telles que C > U10/3. Pour les vagues plus lentes, il est probable que l’effet d’abri proposé par
Jeffreys, en particulier en cas de décollement de l’écoulement d’air, soit important (Giovanangeli et coll. 1999).
Belcher et Hunt (1993) ont montré qu’un effet comparable peut aussi se produire en absence de décollement, sous
l’effet des variations des propriétés turbulentes.

Dans tous les cas le couplage vent-vagues fait intervenir une modification induite par les vagues de la pression
et/ou de la tension de cisaillement dans l’air, de la forme dPa = ρwgβdZ. (voir eq. 5.2).
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Figure 22.1: Ecoulement dans l’air et niveau critique: mesures de Hristov et coll. (2003).
A gauche, une photo de la plateforme de recherche FLIP et un schéma de l’écoulement de l’air au dessus
des vagues, dans un référentiel fixe. A droite, solutions numériques de l’équation de Orr-Sommerferld
et observations des variations de l’amplitude et de la phase des vitesses pour des vagues de fréquence
environ 0.7 fp: la vitesse des composantes dont les propriétés sont mesurées est indiquée sur le spectre
en bas à droite ( c©Nature Publishing Group).

22.3.1 Equation de Orr-Sommerfeld ou de Rayleigh

La vorticité inhérente au cisaillement vertical du vent oblige à généraliser l’équation de Laplace. Le même
problème se pose dans l’étude des ondes internes, avec des applications très importantes en météorologie pour le
paramétrage du ralentissement des vents au dessus du relief. En considérant d’abord le cas ou le vent et les vagues
sont dans la même direction, on utilise la propriété de divergence nulle pour définir une fonction de courant ψ
pour la vitesse induite par les vagues, telle que u = −∂ψ/∂z et w = ∂ψ/∂x. En suivant Miles (1957) on se fixe
le profil de vitesse U(z) du vent moyen, uniforme en x, et on note ses dérivées premières et secondes U ′ et U ′′.
En supposant que |u,w| � U , on peut négliger les termes quadratiques en u et w, y compris les tenseurs de
Reynolds, et on a l’équation du mouvement,

ρa

(
∂u

∂t
+ U

∂u

∂x
+ wU ′

)
= − ∂p

∂x
(22.3)

ρa

(
∂w

∂t
+ U

∂w

∂x

)
= −∂p

∂z
. (22.4)

La gravité n’apparait pas: il suffit de redéfinir la pression comme la pression moins la pression hydrostatique.
En utilisant la fonction de courant et en cherchant une solution qui se propage à la vitesse C comme l’élévation

de la surface ζ = aeik(x−Ct). On a donc ψ = ψ̂eik(x−Ct)

ρa

[
(U − C)

∂ψ̂

∂y
− U ′ψ̂

]
= p (22.5)

ρak
2 (U − C) ψ̂ =

∂p

∂z
. (22.6)

(22.7)

Classiquement on élimine la pression et on trouve l’équation de Rayleigh, aussi appelée équation de Orr-
Sommerfeld,

ψ̂′′ − k2ψ̂ − U ′′

U − C ψ̂ = 0 (22.8)

L’équation de Rayleigh décrit la propagation horizontale d’une onde dans un milieu cisaillé verticalement.
Elle sera ainsi utilisée pour étudier l’effet d’un courant variant sur la verticale, et elle est aussi appliquée pour les
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ondes internes. On remarque qu’elle diffère de l’équation de Helmholz (2.17) par son dernier terme qui présente
une sigularité pour U = C. Pour un vent variant logarithmiquement U = u?/κ ln(z/z0) jusqu’à atteindre U∞
au niveau z∞ , il existe, pour C < U∞ un niveau ”critique” zc tel que U(zc) = C où l’équation de Rayleigh est
singulière.

Afin de déterminer le taux de croissance adimensionnel β, il suffit de se rendre compte que (22.5) nous donne
une perturbation de pression qui peut être mise sous la forme de l’équation (5.1) et de reconnâıtre que β est
donné par la partie imaginaire de (22.5).

Miles (1957) a montré que β s’obtenait par intégration verticale de ψ̂ donné par l’équation de Rayleigh. Cette
intégrale est alors dominée par la singularité au niveau critique zc et il obtient une expression approchée, en
supposant que ψ̂ décroit comme e−kz,

β = −π U
′′(zc)

U ′3(zc)
k2

(∫ ∞
zc

e−kz

(U − C)2
dz

)2

. (22.9)

La croissance des vagues est donc largement déterminée par la forme du profil du vent U(z) au voisinage du niveau
critique zc défini par U(zc) = C. L’équation (22.9) permet de calculer le taux de croissance β si on connâıt le
profil du vent.

22.3.2 Interprétation de Lighthill: Force de vortex

Si le mécanisme de départ est assez clair (les fluctuations de pression en surface), les calculs aboutissant à une
valeur de β obscurcissent un peu comment cette corrélation pression-pente des vagues apparâıt. Lighthill (1962)
a proposé une inteprétation relativement simple du résultat de Miles (1957). Le vent a un profil vertical de vitesse
U (z) tel qu’à la surface, il est égal à la vitesse oscillante des vagues. En négligeant la diffusion (turbulente ou
visqueuse), la vorticité de l’écoulement bidimensionnel,

Σ =
∂U

∂z
− ∂w

∂x
, (22.10)

est conservée par toute particule. On peut écrire l’accélération dans les équations d’Euler come la somme d’un
gradient de pression totale

ptot = p+
1

2
ρ
(
U2 + w2) (22.11)

et d’une force de vortex (−ρΣw, ρΣU):

ρ
∂U

∂t
= −ρΣw − ∂ptot

∂x
(22.12)

ρ
∂w

∂t
= ρΣu− ∂ptot

∂z
(22.13)

En moyenne sur une longueur d’onde (notée 〈·〉), (22.12) donne

ρ
∂ 〈U〉
∂t

= −ρ 〈Σw〉 . (22.14)

La vorticité Σ est simplement égale à U ′ (z) pour un écoulement non-perturbé par les vagues, et sa valeur diminue
avec z si l’on suppose, avec Miles (1957), U ′′ (z) < 0. En présence de vagues qui perturbent l’écoulement par un
déplacement des lignes de courant, les variations de Σ sont donc essentiellement dues à une variation de l’altitude
des particules. Si on fait un développement en série de Σ autour de z0, avec h = z − z0 on a

Σ = U ′ (z0) + hU ′′ (z0) +O
(
h2) (22.15)

et donc

ρ
∂ 〈U〉
∂t

= −ρU ′′ (z0) 〈hw〉 . (22.16)

Puisque la circulation de l’air résultant de la présence des vagues est advectée avec la vitesse de phase C, l’air
à tous les niveaux, excepté le niveau ”critique” z = zc où U = C, est déplacé de manière à peu près sinusöıdale
avec une fréquence

U (z)− C
L

, (22.17)

où L est la longueur d’onde des vagues. Pour de telles oscillations sinusöıdales, le déplacement vertical h et la
vitesse verticale w sont en quadrature et la moyenne de leur produit est nul. Pour des vents plus rapides (en
altitude, où l’on peut négliger l’effet des vagues) que la vitesse de phase C des vagues il existe donc un niveau
”critique” zc où U (zc) = C. Juste au dessus de z = zc, une particule d’air qui se trouve à la verticale d’une crête
de vague la dépasse, mais avant de se retrouver au dessus du creux de vague suivant son altitude diminue pour se
trouver légèrement en dessous de z = zc car les lignes de courant sont perturbées par la présence des vagues. Du
coup, la particule d’air est lentement rattrapée par la crête de vague qu’elle vient de doubler et se retrouve à sa
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position initiale par rapport au train de vagues. Mais à z = zc une particule d’air se déplace à la même vitesse
que les vagues, si bien qu’une particule qui monte continue de monter et inversement et 〈hw〉 est non-nul. w est
de la forme

w = w0 (z) cos

(
2π
U (z)− C

L
t

)
, (22.18)

h est donc

h =
w0 (z)L

2π [U (z)− C]
sin

(
2π
U (z)− C

L
t

)
, (22.19)

et (22.16) devient

ρ
∂ 〈U〉
∂t

=
π

4
ρLU ′′ (zc)w

2
0 (zc) δ (z − zc) , (22.20)

où on a utilisé

lim
t→0

sinσt

σ
= πδ (σ) . (22.21)

Pour U ′′ (zc) < 0, la quantité de mouvement est perdue par l’air, au profit des vagues, et correspond à un gain
d’énergie Sin (”in” pour ”wind INput”) égal à C fois cette perte:

Sin =
π

4
ρCLU ′′ (zc)w

2
0 (zc) , (22.22)

ce qui est une autre manière d’écrire (22.9). Il ne reste plus qu’á déterminer w0 qui est la perturbation de la vitesse
verticale dans l’air, induite par les vagues. Lighthill obtient la valeur de w0 en calculant d’abord la pression, qui
est en équilibre avec la force centrifuge ρa |u,w|2 /R. Le rayon de courbure des lignes de courant, R, estimé en
supposant que ces lignes de courant suivent la surface à la surface et deviennent progressivement horizontale au
fur et à mesure qu’on s’élève (R ∝ e−kz). Ensuite il exprime l’équilibre entre le gradient de pression et la force
de vortex qui fait intervenir w et obtient une expression pour w0. On trouve que w0 (zc) est proportionnel à
l’amplitude a des vagues. Le terme de source est donc proportionnel à l’énergie des vagues, et la croissance des
vagues est exponentielle.

22.4 Effet d’abri sans décollement

Hristov et coll. (2003) montrent clairement que la perturbation induite par les vagues a une structure très proche
de la théorie du niveau critique (figure 22.1). De plus, l’extension de la théorie de Miles (1957) par Janssen (1991)
semble donner un bon accord avec les variation de pression au dessus des vagues mesurés par Snyder et al. (1981,
figure 5.2). Cependant ces observations ne couvrent que les vagues proche du pic spectral. A haute fréquence le
niveau critique est très près de la surface, dans une région ou la turbulence est importante et la vitesse moyenne
du vent U est du même ordre que les fluctuations induites par les vagues ou la turbulence.

Afin de représenter l’écoulement sur des vagues lentes, Belcher et Hunt (1993) ont étudié la turbulence près
de la surface et sa déformation par les vagues. Leur théorie fait en particulier intervenir un raccordement entre
une couche interne, et une couche externe. Dans la couche interne proche de la surface, la turbulence peut être
modélisée avec un modèle de type k-l et une longueur de mélange augmentant linéairement avec l’altitude au
dessus de la surface (l = κu?ξ3), comme en écoulement permanent: on a un comportement de type visqueux.
Dans la couche externe la turbulence est composée de grands tourbillons, rapidement déformé par les vagues,
sans que les tourbillons ait le temps de transporter de la quantité de mouvement à l’échelle de la période des
vagues: on a un comportement élastique (Miles 1996). La séparation entre ces deux couches se fait au niveau
ou le temps caractéristique des tourbillons (”eddy turn-over time” en anglais) est égal au temps d’advection par
le vent sur une longueur d’onde (voir Janssen 2004 pour une correction de la théorie de Belcher et Hunt 1993).
Belcher et Hunt on montré que l’intensification de la turbulence du côté des crêtes de vagues abrité par le vent
induit un gradient du tenseur de Reynolds qui est équilibré par une variation de la pression. En même temps les
lignes de courant s’écartent un peu plus de la surface du côté abrité. Cette variation de pression est partiellement
en phase avec la pente des vagues et donc contribue à la croissance des vagues et à la tension de vent. Le même
mécanisme explique très bien la trâınée observée pour un vent au dessus de collines. Il s’agit en quelque sorte
du même mécanisme que Jeffreys (1925) avait proposé, sans avoir besoin d’un décollement de l’écoulement d’air
derrière la crête.

La théorie de Belcher et Hunt (1993) est bien vérifiée par le modèle numérique de Mastenbroek (1996, voir
aussi Mastenbroek et al. 1996). Le modèle de Mastenbroek utilise une cloture turbulente au second ordre et
donc ne fait pas l’hypothèse d’une viscosité turbulente. Il met clairement en évidence le fait qu’une viscosité
turbulente n’est pas adapté à la couche externe.

Des décollements sont toutefois observés, en particulier lorsque les vagues déferlement, ce qui augmente
d’autant leur croissance, et la trâınée. Ces effet, ainsi que les modulations de la tension de vent sont probablement
à l’origine de la sous estimation du taux de croissance pour les vagues jeunes (C/u? élevé, figure 5.2, voir
Giovanageli et al. 1999). Par ailleurs, pour des vagues très jeunes, le décolement peut littéralement déconnecter
l’écoulement d’air du profil des vagues: le point de rattachement de l’air sur la vague étant près de la crête
suivante. Ce phénomène est probablement à l’origine de la réduction de la rugosité de l’océan, et du coefficient
de trâınée, pour les vents très forts (Powell et coll. 2003, Donelan et coll. 2006).
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22.5 Pression dans l’air et croissance des vagues

Les mesures de pression faites près de la surface montrent que pour les vagues moins rapides que le vent les
fluctuations de pression sont plus importantes que celles des tensions de cisaillement.

En ajoutant la pression atmosphérique pa, variable, dans l’équation de Bernoulli linéarisée pour z = ζ on a

∂φ

∂t
= −p

ρ
− gζ − 1

ρ
pa, sur z = 0, (22.23)

En prenant la transformée de Fourier spatiale, une forme générique des fluctuations de pression est

pa(t) = R
[
iP̂aei(k·x)

]
, (22.24)

avec R qui représente la partie réelle, P̂a(t) une fonction réelle, et iP̂a(t) l’amplitude complexe. En posant

Θ = (k · x) on a pa(t) = −P̂a(t) sin Θ.
Puisque l’équation de Laplace et la condition à la limite au fond sont inchangées, φ est encore de la forme,

φ = R
(
ΦeiΘ

)
cosh(kz + kh)/ cosh(KD). On peut ainsi dériver (22.23) par rapport au temps puis remplacer

φ via la condition cinématique en surface linéarisée, Φ = −igZ/σ, pour obtenir une équation d’évolution pour
l’amplitude Z définie par ζ = R

(
ZeiΘ

)
. Il s’agit de l’équation d’un oscillateur forcé (Phillips 1957, eq. 2.11),

∂2Z

∂t2
+ σ2dZ = − iσ

ρwg

∂P̂a
∂t

, (22.25)

avec σ2 = gk tanh(kD).
Il s’agit donc de déterminer la forme des fluctuations de pression dPa(t) et de calculer la réponse de l’océan

à ce forçage. On peut tout d’abord prendre une forme générique des fluctuations de pression,

pa(t) = R
[
iPaeiΘ′

]
, (22.26)

avec Θ′ = (k · x− σ′t) et Pa une constante.

22.5.1 Pression sinusöıdale résonante

Dans le cas σ′ = sσ, avec s = ±1, la solution générale de (22.25) est la somme d’une solution particulière et de
la solution générale sans second membre, soit

Z(t) = − Pa
2ρwg

sσt cos Θ′ +A sin Θ1 +B sin Θ2 + C cos Θ1 +D cos Θ2. (22.27)

avec σ2 = gk tanh(KD), Θ1 = (k · x − σt), Θ1 = (k · x + σt). A, B, C et D sont des constantes que l’on peut
déterminer en se donnant les conditions initiales.

En prenant ζ = 0 et ∂ζ/∂t = 0 pour t = 0, on trouve C = D = 0, et, pour s= 1, A = −Pa/ (2ρwg), B = 0.
On remarque que l’amplitude des vagues crôıt linéairement, et que le terme croissant de l’élévation de la

pression est en quadrature de phase avec la pression. La densité spectrale d’énergie1 est E(k) = |dZ|2 /dk, et on
peut relier sa variation à celle de la densité spectrale de pression Π(k) = |dPa|2 /dk. Ainsi, le flux d’énergie entre
l’air et l’eau est, en négligeant le terme venant de A ou B,

ρwg
∂E(k)

∂t
=
σ2tΠ(k)

2ρwg
, (22.28)

qui s’exprime en Watts pour les unités du système international, de telle sorte que l’intégrale sur l’ensemble des
nombres d’ondes est bien un flux en Watts par mètre carré. Ce flux est logiquement égal au travail des forces de
pression sur la surface, produit de la vitesse normale à la surface (normale rentrante) par la pression. Pour des
pentes faibles la normale est quasiment verticale, et seule la vitesse verticale w(ζ) = ∂ζ/∂t travaille,

ρwg
∂E(k)

∂t
= −

〈
∂dZ

∂t
dPa/dk

〉
. (22.29)

Ainsi le décalage de phase entre la pression et l’élévation permet justement à l’atmosphère d’appuyer vers le bas
là où la surface descend, et à aspirer la ou la surface monte, ce qui donne un flux net d’énergie. De la même
manière la quantité de mouvement des vagues kρwgE(k)/σ augmente elle aussi, avec un flux égal à la force
moyenne exercée sur la surface. Cette force est la force de pression projetée sur l’horizontale, donc le produite
entre la pression et la pente de la surface R(ikdZ),

ρwgk

σ

∂E(k)

∂t
= k

〈
i
dZdPa

dk

〉
. (22.30)

1La notation dZ renvoie à la transformée de Fourier-Stieltjes. |dZ|2 /dk est équivalent à la variance comprise dans un
intervalle ∆k autour de k, divisée par la surface ∆k de cet intervalle, dans la limite où cette surface tend vers 0.
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U10

k1 = (kx,ky)

k2 = (kx,-ky)
résonnance:

|k1|=|k2|=σ2/[g tanh(kD)] 

kx=kax
ky=kay
σ = σa

Figure 22.2: Génération de vagues obliques
Dans tous les cas, les vagues répondent aux nombres d’ondes k et fréquences σ imposés par le forçage
atmosphérique. Il n’y a résonance que si le couple (k, σ) est relié par la relation de dispersion (le forçage
correspond à un mode propre). Le vent génère donc des vagues dans toutes les directions car le spectre
de pression contient de l’énergie pour tous les nombres d’ondes, mais les fréquences sont en général telles
que σa/kax < U10: dans la direction du vent, les perturbations de pression ne se propagent pas plus vite
que le vent.

22.5.2 Pression sinusöıdale non-résonante

De la même manière, dans le cas σ′2 6= σ2, la solution générale de (22.25) est de la forme

ζ(t) = − Pa
ρwg

σ2

σ2 − σ′2 sin Θ′ +A sin Θ1 +B sin Θ2 + C cos Θ1 +D cos Θ2. (22.31)

En prenant ζ = 0 et ∂ζ/∂t = 0 pour t = 0, on trouve C = D = 0, A = (dPaσ)/ [ρwg(σ − σ′)], B =
(dPaσ)/ [ρwg(σ + σ′)], ce qui donne,

ζ(t) =
dPa
ρwg

σ

σ + σ′

[
σ

sin Θ− sin Θ′

σ − σ′ +
1

2
(sin Θ1 − sin Θ2)

]
. (22.32)

On remarque que l’amplitude peut être forte pour σ proche de σ′ (figure 22.3). En posant ∆ = σ−σ′, Θ = Θ′−t∆,
et on peut faire le développement limité suivant, sin Θ = sin Θ′(1+O(t∆)2)−sin(t∆) cos Θ′, valable pour t∆� 1.
Ainsi pour t∆� 1, on a

ζ(t) =
dPa
ρwg

σ

σ + σ′

[
σt

sin t∆

t∆
cos Θ′ +O(t2σ∆) +

1

2
(sin Θ1 − sin Θ2)

]
. (22.33)

Cette solution correspond à une croissance linéaire de l’amplitude qui se prolonge tant que t∆� 1 (le premier
terme est dominant). La bande de fréquence σ −∆0 < σ′ < σ + ∆0 pour laquelle la croissance reste importante
se réduit, avec ∆0 ∝ 1/t.

22.5.3 Pression aléatoire de spectre continu

Dans le cas général, la pression dPa peut prendre n’importe quelle forme,

dPa =

∫
dP̂a(σ′′)eiσ′′tdσ′′ (22.34)

les cas précédemment étudiés correspondant à dP̂a = δ(σ′′−σ′) avec δ la distribution de Dirac. Il nous faut donc
intégrer sur σ′′ en remplaçant σ′ par σ′′ dans les résultats précédents. Les modes résonants σ′′ = ±σ représentent
un ensemble de mesure nulle dans l’espace des σ′′, leur contribution peut donc être négligée dans le cas où le
spectre est continu. On se retrouve donc avec une intégrale du type suivant, où l’égalité est valable pour toute
fonction A qui est analytique,∫ ∞

0

A(σ′)
sin2 [(σ − σ′) t] +O (σ − σ′)

(σ − σ′)2 dσ′ = 2πtA(σ), (22.35)

avec dans notre cas A(σ′) = σ4
∣∣∣dP̂a∣∣∣2 /[dσ′(ρwg(σ + σ′))2], ce qui donne in fine,

E(k) = σ2t
π

2

Π(k, σk)

(ρwg)2
, (22.36)

avec Π(k, σk) le spectre tridimensionnel de la pression atmosphérique à la surface, où σk =
√
gk tanh(kD).

Ainsi, parmi l’infinité des modes d’oscillations forcés par la pression atmosphérique, les seuls capable d’extraire
une quantité significative d’énergie du vent sont les modes propres que sont les ondes libres déterminées au chapitre
1.
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Figure 22.3: Croissance des vagues sous l’effet d’un vent turbulent
Elévation normalisée de la surface, pour un vent U = 5 m s−1, et trois longueurs d’onde différentes pour
les perturbations turbulentes (L = 2π/k) en profondeur infinie. En suivant l’hypothèse de Phillips, la
pulsation de la pression est σ′ = kU . Dans ce cas la longueur d’onde résonante est L = 16, 03 m, telle
que σ = σ′ soit k = g/U2.
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Chapter 23

Wave breaking and dissipation

De nombreux mécanismes contribuent à la dissipation de l’énergie des vagues, ou plutôt au transfert d’énergie
mécanique vers d’autres formes de mouvement, en particulier la turbulence. En effet la seule dissipation en
chaleur est due à la viscosité.

23.1 Effet de la viscosité dans l’eau

Nous l’avions négligée jusque là, il est temps de savoir pourquoi. La conversion d’énergie mécanique en chaleur
par unité de surface océanique est donnée par le travail des contraintes visqueuses sur les vitesses orbitales soit,
d’après tout bon cours de mécanique des milieux continus (par exemple article 287 dans Lamb 1932),

∂E

∂t
= −

∫ +∞

−∞
2µ

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2
]

+µ

[(
∂u

∂z
+
∂w

∂x

)2

+

(
∂v

∂z
+
∂w

∂y

)2

+

(
∂u

∂y
+
∂v

∂x

)2
]

dz (23.1)

On remarque que cette expression ne fait intervenir que des carrés de différents termes. Grâce au théorème de
Parseval on peut donc disséquer cette dissipation en un terme pour chaque composante du spectre. Avec un peu
de calcul on arrive à la formule donnée par Lamb (1932), valable pour des vagues de gravité au second ordre en
pente des vagues, et quelle que soit la profondeur,

∂

∂t
E (f, θ) = −4νwk

2E (f, θ) (23.2)

avec νw la viscosité cinématique de l’eau (environ 3× 10−6m2 s−1 à 20◦C, et beaucoup plus pour des eaux très
froides). En pratique cette dissipation est très faible pour les ondes de gravité, et pour des vagues de période
supérieure à 1.3 s, l’effet de la viscosité de l’air est plus important (cf. eq. ??). Par contre l’effet de la viscosité
de l’eau est un terme dominant pour les ondes capillaires (longueurs d’ondes inférieures à 2 cm), et peut donc
avoir un effet significatif, via les interactions non-linéaires, sur les ondes mixtes de gravité-capillarité. Dans ces
cas il faut aussi, en général, prendre en compte la tension de surface.

23.2 Effets de la turbulence dans l’eau

La turbulence, des plus petites aux plus grandes échelles peut avoir divers effets sur les vagues (Phillips 1961). En
particulier les tourbillons et les variations de courant à petite échelle peuvent partiellement réfléchir les vagues
(Rayevskiy 1983), tandis que les variations à des échelles plus grandes que la longueur d’onde entrâınent une
réfraction des vagues (chapitre ??). Dans tous les cas le transfert d’énergie entre les vagues et la turbulence peut
se calculer en considérant l’équation d’évolution de l’énergie cinétique turbulente (ECT, ou TKE en anglais, voir
par exemple Phillips 1977). Le taux local de production d’ECT par le mouvement des vagues est,

Pws = ρ
∑
i,j

u′iu
′
j

∂ui
∂xj

, (23.3)

qui s’exprime en Watts par mètre cube dans le système international. ui est la composante i de la vitesse
induite par les vagues, et u′iu

′
j est le tenseur des flux turbulents ou tenseur de Reynolds. En supposant que ces

flux turbulents sont constants par rapport à la phase des vagues, ce qui peut être une première approximation,

227
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Ardhuin et Jenkins (2006) ont montré que Pws se simplifie. En supposant de plus que le flux ρ(u′w′, v′w′) est
uniforme et égal (dans l’eau) à la tension de vent τa = ρau

2
?, on a

Pws = τa ·
∂Us

∂z
, (23.4)

avec Us la dérive de Stokes. On peut aussi exprimer cette production comme un terme de source pour l’énergie
des vagues,

∂

∂t
E (f, θ) = Sturb = − ρa

ρw
u2
?σk cos (θ? − θ)

cosh(2kD)

sinh2(kD)
E (f, θ) (23.5)

qui devient

Sturb = −2
ρa
ρw
u2
?σk cos (θ? − θ)E (f, θ) (23.6)

en eau profonde. Teixeira et Belcher (2002) étaient déjà arrivés à la même expression en faisant l’hypothèse
d’une distorsion rapide de la turbulence par le mouvement des vagues. Cette hypothèse est très proche de notre
hypothèse de non-corrélation de la turbulence avec la phase des vagues. En pratique cette expression donne
probablement un ordre de grandeur raisonnable pour l’interaction des vagues avec la turbulence dans la couche
de mélange océanique. Elle donne une expression pour la source d’énergie des principaux mouvements turbulents
que sont, dans ce cas, les circulations de Langmuir (chapitre ??) dont le mouvement est effectivement assez lent
pour considérer qu’il s’agit d’une distorsion rapide par les vagues. Par ailleurs cette expression indique que les
vagues gagnent de l’énergie lorsqu’elles se propagent contre le vent. Il reste à voir si dans ce cas l’hypothèse de
non-corrélation est toujours valable. Ce terme est généralement négligeable pour les houles longues, par rapport
au frottement à la surface (même s’il est visqueux). Par contre ce terme peut représenter environ 10% de la
dissipation de la mer du vent et c’est aussi la source d’énergie probable des circulations de Langmuir, dont le rôle
est dominant dans le mélange près de la surface.

23.3 Déferlement

23.4 Paramétrage de la dissipation par déferlement

23.4.1 Approche énergétique globale: compléments du 5.3.2

Parce que les mesures de vitesse orbitale à la crête sont très rares, (Battjes and Janssen, 1978) on redéfini le
seuil en vitesse orbitale sous forme de seuil en hauteur de vague, afin de s’appuyer sur la distribution de Rayleigh
correspondant assez bien aux observations

p (H) =
2H

H2
rms

e−(H/Hrms)
2

(23.7)

Ils ont alors utilisé une relation empirique assez bien vérifiée: la hauteur maximale des vagues par petits fonds
est proportionnelle à profondeur avec un seuil γD, où γ est de l’ordre de 0.3 à 0.8. En prenant γ constant,
ce seuil correspond à la limite quand kD tend vers zéro du seuil Hmax/L = 0.14 tanh(kD) de Miche, soit
Hmax = 0.14 ∗ 2πD. Les travaux récents de Ruessink et coll. (2003) montrent d’ailleurs que γ est une fonction
de kD. Battjes et Janssen (1978) ont obtenu le taux de dissipation des vagues en modifiant la distribution p
en imposant que toutes les vagues qui auraient eu une hauteur supérieure à γD sont limitées à γD et donc la
probabilité de déferlement pB est donnée par la fraction des vagues qui ont cette hauteur.

Ensuite le taux de dissipation par unité de longueur de crête ε est donné par analogie avec un ressaut
hydraulique (figure 23.1).

Conditions de saut et dissipation locale: première approche

Dans un ressaut hydraulique classique, l’écoulement et permanent et le fond est plat, avec des hauteurs d’eau
D1 et D2 de part et d’autre du ressaut. Dans le référentiel en translation avec le ressaut l’écoulement moyen
est permanent et les vitesses U1 et U2 sont uniformes sur la verticale avec un débit liquide à travers le ressaut
donné par Q = U1D1 = U2D2. En faisant un bilan des flux dans un volume de contrôle autour du ressaut et en
supposant que, assez loin du ressaut, l’écoulement est hydrostatique, la conservation de la quantité de mouvement
donne

D1U
2
1 + 0.5gD2

1 = D2U
2
2 + 0.5gD2

2. (23.8)

On peut déjà éliminer U1 et U2 pour obtenir

U1 =

√
gD2 (D1 +D2)

2D1
+ ∆U (23.9)

U2 =

√
gD1 (D1 +D2)

2D2
+ ∆U (23.10)
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Figure 23.1: Analogie entre un ressaut hydraulique (en haut) une vague déferlante par petits fonds (au
milieu) et une vague déferlante par grand fond (en bas).

La constante ∆U ne peut pas être déterminée
On calcule alors ε1, la perte d’énergie mécanique par unité de temps et par unité de longueur du ressaut, qui,

conditions stationnaires oblige, est égale au flux entrant dans le volume de contrôle compris entre les sections
verticales en 1 et 2. Ce flux se décompose en flux advectif d’énergie cinétique ρwU

3D/2, flux advectif d’énergie
potentielle ρwg

∫
zdz = ρwgD

2/2 et le travail des contraintes sur les bords du volume de contrôle, qui se réduisent
ici aux forces de pression, soit

∫
pUdz =

∫
ρg(D− z)dzU = ρwgD

2/2. Il suffit donc de remplacer les vitesses par
(23.9) et (23.10) pour obtenir,

ε1(D1, D2) =
ρwU1D1

2

(
U2

1 − U2
2

)
+ ρwgU1D1 (D2 −D1) =

1

4
ρwg

(D2 −D1)3

D1D2
U1D1. (23.11)

L’analogie entre les vagues et le ressaut consiste à remplacer D2−D1 par la hauteur de la vague H, égaler la
profondeur D1 et D2 de part et d’autre du ressaut avec profondeur moyenne D, H. Il reste à paramétrer le débit
Q = U1D1. En suivant Hwang and Divoky (1970), on considère que le flux net à vers la côte est nul, et donc,
dans le référentiel qui suit la crête de la vague, la vitesse moyenne est la vitesse de phase C, le débit est donc
égal à la hauteur d’eau moyenne que multiplie cette vitesse, soit U1D1 = CD. En eau pu profonde C '

√
gD et

la dissipation par unité de surface est donc,

ε(H,D, T ) ' 1

L
ε1(D −H/2, D +H/2) ≈ 1

4
ρg

(BH)3

DT
(23.12)

où B un facteur d’ajustement voisin de 1: nous avons quitté la géophysique pour aller dans le génie côtier, il faut
bien des facteurs de calibration empirique pour arriver à un résultat précis!

23.4.2 Approche spectrale

Si l’on veut maintenant décomposer la dissipation totale εtot sur le spectre on peut utiliser une approche empirique
en redistribuant la dissipation sur toutes les composantes de façon proportionnelle à l’énergie ou à l’énergie que
multiplie un facteur de forme spectrale (par exemple f2 pour dissiper plus les hautes fréquences). Ce type
d’approche est généralement utilisé par petits fonds car du fait de la non-dispersivité des vagues, la distinction
des différentes composantes a peu de sens.

Mais de façon plus générale, on veut pouvoir découpler le déferlement des différentes composantes qui ont
des longueurs d’ondes ou directions très différentes. Ce type d’approche permet d’exploiter les observations de
probabilités de déferlement par Banner et al. (2000), de manière rationnelle.

Une première étape est de déterminer la probabilité de déferlement par ”échelle”: ces échelles sont des
voisinages spectraux au sein desquels la séparation des nombres d’onde n’a pas de sens physique car on peut
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considérer une vagues comme la somme de composantes dont les nombres d’ondes sont proches. Ainsi on relie
les probabilités de déferlement à B qui, en choisissant p = 2 est une variance de vitesse orbitale adimensionnelle.

Il faut ensuite déconvoluer cette probabilité de déferlement en la distribuant sur les composantes spectrales.
Le taux de dissipation spectral associé au déferlement spontané des vagues est ainsi

Sdis,s (k) =

∫
k

h(k′ − k)p
(
B(k′)

)
q
(
B′(k′)

)
dk′E (k) . (23.13)

où l’intégrale sur k′ exprime la déconvolution des échelles vers les composantes spectrales avec filtre h, et où p est
la probabilité de déferlement par échelle et q est le taux de dissipation par longueur de crête. La formalisation
complète de cette démarche est en cours (Filipot et coll. 2008).

Actuellement des approches semi-empiriques (van der Westhuysen et coll. 2007, Ardhuin et al. 2008c) ont
abouti a des termes de dissipation par déferlement, qui combine un déferlement spontané Sdis,s avec un déferlement
induit par les vagues plus longues, Sdis,c, sous la forme,

Sds(f, θ) = σCds

[
max

{
B (f, θ)

Br
− 1, 0

}]2

F (f, θ) + Sds,c(f, θ). (23.14)

avec

B (f, θ) = 2π

∫ θ+π

θ−πθ
k3cos2 (θ − θ′)F (f, θ′)/Cgdθ

′, (23.15)

et un seuil Br = 0.0009 cohérent avec le seuil mesuré par Banner et coll. (2000). Le second terme, Sds,c

représente la dissipation induite par le déferlement de vagues de plus grande longueur d’onde qui ”lissent” la
surface et entrâıne une dissipation des vagues les plus courtes. En première approximation on peut exprimer ce
terme à partir de la fonction Λ, en estimant qu’une vague de période au moins M fois plus grande que la vague
courte considérée induit une dissipation totale de l’énergie de la vague courte. Il suffit donc de calculer le nombre
de vagues longues qui dépassent la vague courte par unité de temps, c’est l’intégrale de |C−C′|Λ(C)dC,

Sds,c(f, θ) =

∫ f/M

0

∣∣C−C′
∣∣Λ(f ′, θ′)df ′dθ′F (f, θ), (23.16)

où on a considéré que la vitesse de phase C′ correspondant aux vagues de fréquence f ′ et de direction θ′.
La plupart des codes de calcul de l’état de mer utilise encore actuellement des formulations empiriques

ajustées pour que les modèles reproduisent les observations de croissance des vagues sous l’effet du vent, et le
développement complet de l’état de la mer. De ce fait, ces paramétrages ne sont pas faits pour fonctionner en
eau peu profonde ou en présence de forts gradients de courant, et il est d’usage de leur ajouter un terme de
déferlement ‘bathymétrique’ afin de dissiper correctement l’énergie des vagues s’approchant des plages.

Les travaux en cours au SHOM visent justement à aboutir à un paramétrage physique de PB(H,T ) pour
éviter la distinction assez difficile et arbitraire entre le ‘déferlement bathymétrique’ et le ‘moutonnement’. Ainsi,
Filipot et al. (2010a) ont ajusté un paramétrage commun de la fonction W (H,T ) aux observations de Thornton
and Guza (1983) et à celles de Banner et al. (2000). On définit d’abord des hauteurs de vagues dans un voisinage
spectral autour de la fréquence fc = 1/T ,

H(fc) =

∫ fmax

0

U(fc, f)E(f ′)df ′, (23.17)

avec U une fenêtre spectrale centrée sur fc et de largeur proportionnelle à fc. Une largeur de 0.7 à 1.3 fc est
cohérente avec l’analyse de Banner et al. (2000) et permet de trouver, pour les vagues dominantes, des hauteurs
proche de celles données par une analyse vague par vague classique. Filipot et al. (2010a) ont montré que l’on
pouvait exprimer une fonction W à partir de vitesses orbitales adimensionnelles,

β =
k(fc)H(fc)

tanh(k(fc)D
(23.18)

sous la forme

WFAB(H) = a

[
β

β̃

]2{
1− exp

[
−
(
β

β̃

)p]}
, (23.19)

donnait de bon résultats avec a = 1.5 et p = 4, comme indiqué en figures 23.2 et 23.3. La constante β̃ joue le
rôle de γ dans le modèle de Thornton and Guza (1983), et elle est ici définie comme une fraction de βmax, valeur
de β correspondant aux vagues d’amplitude maximale pour une période T fixée. On obtient alors une répartition
en fréquence de la dissipation Sds(f) en utilisant le taux de dissipation (5.29), et en redistribuant la dissipation
des vagues de fréquence centrée en fc sur l’intervalle de fréquence qui contribue à H(fc).

La répartition en direction pourrait être faite de la même façon en définissant un H(fc, θc) au lieu de H(fc).
Malheureusement il n’y a pas encore assez de mesures directionnelles du déferlement pour valider et calibrer cette
approche.
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Figure 23.2: Paramétrage des probabilités de déferlement
Illustration de la capacité du paramétrage de W donné par (23.19) à reproduire les observations de
déferlement réalisées dans le lac George en Australie, pour des profondeurs intermédiaires, avec kpD de
l’ordre de 1 (tiré de Filipot et al. (2010a)). Chaque figure correspond à une bande de fréquence. Les
barres indiquent les observations de p(H) en clair et pB(H) en foncé, et les courbes sont les paramétrages
données par pR (Rayleigh, pointillés bleus) et W (H)PR(H) pour (a = 1.5, p = 4) (trait mixte rose) et
(a = 1, p = 2) (trait plein rouge) .

Figure 23.3: Paramétrage des probabilités de déferlement
Illustration de la capacité du paramétrage de W donné par (23.19) à reproduire les observations de
déferlement pour les vagues dominantes par grands fonds.
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Chapter 24

Wave-current interactions in three
dimensions

24.1 Introduction

Parce que la surface monte et descend, faire une moyenne de l’écoulement près de la surface n’a pas beaucoup de
sens, sauf pour des mesures car on n’a pas toujours le choix. Du point de vue de la modélisation il est intéressant
de résoudre les gradients en surface et donc de séparer clairement l’air et l’eau. Pour cela il faut tranformer au
moins la coordonnée verticale. L’approche proposée ici suit celle de Ardhuin et al. (2008c) qui est détaillée dans
Delpey (2012) et dans une version simplifiée dans Bennis et al. (2011).

Un jeu d’équation a été obtenu par Mellor (2003) à partir d’un simple changement de coordonnée verticale.
La nouvelle coordonnée verticale ς est définie implicitement par,

z = s (x, ς, t) = ζ̂ + ςD + s̃, (24.1)

de telle sorte que z = ζ̂ + ζ̃, la position instantanée de la surface libre, pour ς = 0, et z = −h, la position du
fond, pour ς = −1. on rapelle que D = h+ ζ̂.

Les équations du mouvement ont été ainsi transformées et moyennées sur la phase des vagues par Mellor
(2003), pour des vagues monochromatiques. On peut appliquer le même principe à des vagues aléatoires (Ardhuin
et coll. 2004) en prenant, à l’ordre 1 en pente des vagues,

s̃ =
∑
k,s1

sinh(kz + kD)

sinh(kD)
Zs11,ke

iψ
s1
1,k . (24.2)

Avec cette nouvelle coordonnée, les surfaces où ς est constant sont aussi des lignes de courant pour le mouvement
des vagues. Il n’y a donc plus de vitesse verticale induite par les vagues dans ces coordonnées.

Malheureusement Mellor (2003) a négligé la modification des vitesses orbitales par la pente du fond et vari-
ations horizontales du champ de vagues. En effet, dans ces cas (2.25)–(2.28) ne sont pas solution exacte de
l’équation de Laplace. Or ces effets contribuent des termes du même ordre que les termes retenus par Mellor
(Ardhuin et al., 2008b). Or, ces termes relativement complexes n’agissent que sur la pseudo-quantité de mouve-
ment car ils représentent le déplacement vertical de PQDM Us. Il est donc inutile d’introduire cette complexité
si l’on s’intéresse à l’autre partie de la QDM, û = U − Us, la QDM du courant moyen.

Il apparâıt donc avantageux de déterminer des équations pour û directement. Or ce travail a déjà été fait par
Andrews et McIntyre (1978), il suffit donc de le transcrire en utilisant le mouvement connu des vagues (Ardhuin
et coll. 2007b).

En définissant alors X comme la divergence du tenseur de Reynolds, on peut appliquer la moyenne GLM aux
équations de Navier-Stokes en moyenne de Reynolds (RANS). Les équations ci-dessus sont donc une approxima-
tion au second ordre en cambrure de la moyenne GLM des équations RANS, elles sont donc baptisées équations
”glm2-RANS”.

24.2 Mouvements Lagrangiens et Eulériens

Nous avons vu au chapitre 1 que le mouvement orbital des vagues induit une dérive dans le sens de propagation,
la dérive de Stokes Us. Cette dérive est intimement liée aux oscillations verticales et horizontales induites par le
mouvement orbital. On peut ainsi séparer le mouvement de dérive d’une particuler en une dérive de Stokes et
un courant Eulérien û qu’on appellera simplement ”courant”. La dérive de Stokes peut être assez importante.
Au large, elle peut dépasser 1.6% de la vitesse du vent en surface, en particulier pour les vents forts (Ardhuin et
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al. 2008b). Près de la côte la dérive est amplifiée quand la profondeur diminue et peut atteindre 0.5 m/s dans
la zone de déferlement. Pour des vagues de cambrure maximale, Longuet-Higgins (1979) a calculé, en négligeant
la viscosité, que la dérive pouvait atteindre 27% de la vitesse de phase. Enfin, le déferlement des vagues peut
induire des vitesses importantes, en surface, dans le front déferlant (Melville and Rapp, 1988). Ces deux effets
seront négligés dans ce qui suit.

24.2.1 Flux de masse et de quantité de mouvement

On peut définir le flux de masse (aussi appelé transport) moyen Mw =
(
Mw
x ,M

w
y

)
associé aux vagues par la

différence entre le transport total M et le transport du courant Eulérien moyen, M̂,

Mw
α = Mα − M̂α =

∫ ζ

−h
ρw (ûα + ũα) dz −

∫ ζ̂

−h
ρûαdz. (24.3)

Avec cette définition, le transport induit par les vagues est égal, en absence de courant, au transport total. En
utilisant les vitesses issues de la théorie linéaire, on trouve, au second ordre en pente des vagues,

Mw
α =

∫ ζ

0

ρuαdz, (24.4)

= ρwg
E

C

kα
k
, (24.5)

On remarque que le flux de masse associé à la propagation des vagues est 1/C fois le flux d’énergie.
Si l’on considère que ce flux est la somme des flux entre des niveaux fixes z et z + dz, des vagues monochro-

matiques ont un flux de profil parabolique, concentré dans la région −a < z < a avec a l’amplitude de ces vagues.
Pour des vagues aléatoires le flux sera compris entre le creux le plus bas et la crête la plus haute. C’est le point
de vue Eulérien sur la dérive de Stokes.

24.2.2 Moyenne Lagrangienne généralisée

Toutefois cette description ne correspond pas à la dérive de particules en suspension qui suivent la dérive de
Stokes telle que définie au chapitre 1 avec le point de vue Lagrangien. La vitesse de dérive d’une particule dans le
cas général est la vitesse Lagrangienne U = û + Us. Intégrées sur la verticale les deux expressions du transport
Mw sont indentiques.

En trois dimensions les points de vue Eulériens et Lagrangiens sont tout à fait différents et pour certaines
applications (comme le transport de matière en suspension ou l’étude de propriétés près de la surface) il peut être
avantageux d’adopter un point de vue Lagrangien. De part les changements de coordonnées qu’elle impose, cette
idée peut faire frémir les habitués de la mécanique des fluides. Les vagues permettent toutefois une simplification
de taille: les déplacements sont quasi-périodiques. On peut alors définir des changements de coordonnées rela-
tivement simples qui aboutissent à des équations tout à fait maniables. En particulier, Andrews and McIntyre
(1978a) ont défini une moyenne Lagrangienne généralisée.

Pour tout champ scalaire φ, on définit le champ φξ à la position moyenne x, par

φξ (x, t) = φ (x + ξ(x, t), t) (24.6)

On peut définir la moyenne Lagrangienne généralisée si la fonction Ξ telle que Ξ(x) = x + ξ(x, t) est bijective.
Dans ce cas il existe un champ de vitesse unique v(x, t) tel que quand le point x se déplace à la vitesse v, alors
le point matériel x + ξ se déplace à la vitesse du fluide uξ (figure 24.1), ce qui s’écrit mathématiquement,(

∂

∂t
+ v · ∇

)
Ξ = uξ (24.7)

Pour tout opérateur de moyenne Eulérienne, on note φ (x, t) la moyenne de φ (x, t) (ce peut être une moyenne
sur des phases, des réalisations, une moyenne temporelle ou spatiale). Alors on obtient la définition de la moyenne
Lagragienne généralisée (GLM) en imposant

ξ (x, t) = 0 (24.8)

v (x, t) = v (x, t) . (24.9)

La vitesse en moyenne GLM est uL = v, et on peut ainsi définir les moyennes de n’importe quelle variable.
Ainsi la moyenne GLM est différente de la moyenne Eulérienne. La différence entre ces deux moyennes est la
correction de Stokes (Andrews et McIntyre 1978). La correction de Stokes de la vitesse est, par définition, la
vitesse de Stokes

Us = uL − u. (24.10)



24.2. MOUVEMENTS LAGRANGIENS ET EULÉRIENS 235
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Figure 24.1: Schéma de principe de la moyenne Lagrangienne généralisée

uL s’interprète simplement comme la vitesse de dérive moyenne des particules d’eau. De manière plus générale,
pour un champ continuement différentiable φ, la correction de Stokes est donnée par (Andrews et McIntyre 1978a,
équation 2.27)

φ
L

= φ+ ξj
∂φ

∂xj
+

1

2
ξjξk

∂2φ

∂ξj∂ξk
+O(ε3

1) (24.11)

On peut, par exemple, appliquer cette relation pour calculer les gradients moyens de vitesse en présence de
vagues (Ardhuin et Jenkins 2006). Pour des vagues monochromatiques, au-dessus d’un fond en pente faible, on
rappelle les champs de pression et de vitesse donnés par la théorie d’Airy (1841)

p̃ = ρwga [FCC cos(kx1 − ωt)O(ε1) +O(ε2)] (24.12)

ũ1 = aσ

[
k1

k
FCS cos(kx1 − ωt) +O(ε1) +O(ε2)

]
(24.13)

ũ2 = aσ

[
k2

k
FCS cos(kx1 − ωt) +O(ε1) +O(ε2)

]
(24.14)

ũ3 = aσ [FSS sin(kx1 − ωt) +O(ε1) +O(ε2)] (24.15)

avec k = (k2
1 + k2

2)1/2 et ω le nombre d’onde et la pulsation, k = (k1, k2) le vecteur d’onde, et σ défini par
σ2 = gk tanh(kD), où g est l’accélération de la gravité et D la profondeur d’eau moyenne. Les notation FCS =
cosh(kz + kD)/ sinh(kD) et FSS = sinh(kz + kD)/ sinh(kD) ont été utilisées.

En intégrant dans le temps on trouve le déplacement des particules fluides,

ξ1 = −a
[
k1

k
FCS sin(kx1 − ωt) +O(ε1) +O(ε2)

]
, (24.16)

ξ2 = a

[
k2

k
FCS sin(kx1 − ωt) +O(ε1) +O(ε2)

]
, (24.17)

ξ3 = a [FSS cos(kx1 − ωt) +O(ε1) +O(ε2)] . (24.18)

Pour simplifier les notations, on choisit la direction 1 dans le sens de propagation des vagues. Les corrections
de Stokes (24.11) des cisaillements sont alors,

∂ũ

∂z

L

= ξ1
∂2ũ

∂x∂z
+ ξ3

∂2ũ

∂z2
=
a2

2
k2σFCSFSS (24.19)

∂w̃

∂x

L

= ξ3
∂2w̃

∂x∂z
+ ξ1

∂2w̃

∂x2
=
a2

2
k2σFCSFSS . (24.20)

Ces expressions se généralisent aux vagues aléatoires car les termes de second ordre sont le résultat de corrélations
entre termes de premier ordre (voir par exemple Kenyon 1969 pour une discussion similaire). Ainsi, les deux
cisaillements moyens sont chacun égaux à la moitié du gradient vertical de la dérive de Stokes Us,

∂ũ

∂z

L

=
∂w̃

∂x

L

=
1

2

∂Us
∂z

, (24.21)

avec u = u1, w = u3, x = x1 and z = x3.
Le changement de coordonnée implicitement associé à la moyenne GLM par la fonction Ξ conserve le volume

au premier ordre en ε1, les moyennes obtenues sont donc, en première approximation, des moyennes sur un volume

(Jenkins et Ardhuin 2004). On retrouve que la vorticité du mouvement est nulle (∂w̃/∂x
L
− ∂ũ/∂z

L
= 0), ce qui



236 CHAPTER 24. WAVE-CURRENT INTERACTIONS IN THREE DIMENSIONS

Wave breaking

Langmuir
 circulations

Wave velocities 

thermocline

Reynolds 
stress τ

Mean sea surface

z
y

x
     Actual sea surface

Figure 24.2: Vitesse induite par les vagues (flèches fines) et processus de mélange dans l’océan superfi-
ciel. Les flux d’énergie cinétique turbulente entre l’atmosphère et l’océan sont largement supportés par
le déferlement d’ondes courtes (e.g. Donelan 1998) et sont en partie transmis par les circulations de
Langmuir qui sont un ensemble de tourbillons d’échelles multiples alignés dans la direction du vent et
brassant l’ensemble de la couche de mélange. Dans la limite des petites pentes pour les grandes vagues,
ces processus ne sont pas modifiés en moyenne et le cisaillement moyen induit par les grandes vagues
est donné par (24.21). La production d’énergie cinétique turbulente par interaction des vagues et de la
turbulence est donc le flux turbulent vertical de quantité de mouvement horizontale (flèches épaisses)
multiplié par la moyenne en volume du cisaillement induit par les vagues. Cette moyenne en volume
donne plus de poids aux crêtes par rapport aux creux.

est normal puisque (24.13)–(24.18) ont été déterminées pour un mouvement irrotationnel. Par contre, la vitesse
résiduelle Us est bel et bien rotationnelle1. La moyenne non-nulle de ∂w/∂x pourrait, par erreur, être interprétée
comme conduisant à une valeur infinie de w quand x tend vers l’infini, ce qui n’est pas le cas. Cette moyenne
correspond plutôt au fait qu’il y a plus d’eau sous les crêtes que sous les creux des vagues, les crêtes contribuent
donc plus à la moyenne (figure 24.2). Ces propriétés permettent de calculer la production ou destruction d’énergie
cinétique turbulente (ECT) par le cisaillement des vagues. En supposant que la turbulence n’est pas corrélée avec
la phase des vagues et en utilisant les hypothèse usuelles d’uniformité horizontale de la couche limite océanique,
cette production d’ECT se fait au taux,

Pws = ρwu′1u
′
3

L

(
∂ũ

∂z

L

+
∂w̃

∂x

L
)

= ρwu′1u
′
3

L ∂Us
∂z

, (24.22)

comme si la dérive de Stokes était un courant verticalement cisaillé.

24.2.3 Equations glm2-RANS pour ∂û/∂z = 0

Afin de simplifier la discussion, nous utiliserons ici la forme des équations GLM donnée par Groeneweg (Groeneweg
1999, eq. 3.12) pour ρw constant, ce qui supprime, entre autres, les termes liés à la thermodynamique du fluide,

D
L
(
uLi − Pi

)
+ εi3jf3u

L
j +

1

ρw

∂pL

∂xi
−XL

i + gz =
∂

∂xi

[
1

2
ulju

l
j

]
+ Pj

∂uLj
∂xi

, (24.23)

où la dérivée Langragienne DL est une dérivée en suivant le fluide à la vitesse Langragienne moyenne uL.

Pi = A−xiξj,i
(
ulj + εjikΩjξk

)
' A−xiξj,iulj (24.24)

est la composante suivant i de la pseudo quantité de mouvement des vagues, soit, dans un langage plus familier,
et de manière exacte aux ordres ε2

1 et ε0
2, Pi = Usi. On négligera ici le cisaillement vertical du courant, qui est

pris en compte par Ardhuin et al. (2007b). On peut alors utiliser les vitesses et déplacements données par la
théorie d’Airy (chapitre 1).

On remarque que les termes quadratiques dans (24.23) et (24.24) ne sont pas affectés par les corrections de
premier ordre en ε2, car ces corrections sont en quadrature avec les termes d’ordre ε0

2. Il s’agit là d’un grande

1Ceci montre la non-commutation de l’opérateur GLM avec l’opérateur rotationnel. L’opérateur GLM commute cepen-
dant avec la dérivée Lagrangienne, c’est d’ailleurs l’intérêt principal du GLM (voir Andrews et McIntyre 1978a).
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simplification par rapport au calcul à partir de la GLM alternative. Par contre, le cisaillement vertical du courant
introduit des termes correctifs qui sont en phase avec les termes d’ordre ε0

2 (MRL04). Le cisaillement vertical

induit donc une modification de ulju
l
j et P que nous négligerons dans un premier temps.

Nous allons calculer les différents termes induits par les vagues, d’abord pour une onde monochromatique
dont la variance de l’élévation est varζ = a2/2. On fera ensuite la superposition des composantes. Considérons
d’abord le terme de pression. En utilisant le fait que ũαũα − w̃2 = σ2 (FCSFCS − FSSFSS) est indépendant de z
à l’ordre ε2

1, on peut ajouter 0.5∂(ũαũα − w̃w̃)/∂z à l’équation sur la verticale (24.23) pour obtenir, toujours à
l’ordre ε2

1,

∂ŵ

∂t
+ ŵ

∂ŵ

∂z
+ P3

∂ŵ

∂z
+ (ûβ + Pβ)

∂ŵ

∂xβ
+

1

ρw

∂pL

∂z
+ g

=
∂

∂z

[(
ũαũα + w̃2

)
/2 +K2

]
+ Pβ

∂

∂z
(ûβ + Pβ) + P3

∂

∂z
(û3 + P3) , (24.25)

qui se transforme en

1

ρw

∂

∂z

[
pL + ρwgz − ρw

σ2E

2

(
F 2
CS + F 2

SS

)
− ρwK2

]
= −∂ŵ

∂t
− ŵ ∂ŵ

∂z

− (ûβ + Pβ)
∂ŵ

∂xβ
+ Pβ

∂

∂z
(ûβ + Pβ) + P3

∂

∂z
(ŵ + P3) . (24.26)

On ajoute alors le terme uniforme sur la verticale −σ2E
(
F 2
CC − F 2

SS

)
/2, et en négligeant les trois premiers

termes (hypothèse hydrostatique), l’intégration sur z donne

p(z)
L

ρw
= −g [(z − zs)− kEFCCFCS ] +K2 +K1 −

gkE

4 sinh(2kD)
(24.27)

La force K1 est définie par

K1 = −
∫ ζ

L

z

Pβ
∂

∂z′
(ûβ + Pβ) dz′ +

∫ ζ
L

z

P3
∂

∂xβ
(Pβ) dz′, (24.28)

où l’on a utilisé la relation, qui peut se prouver dans la limite des faibles cambrures,

P3 = −Pα(−h)
∂h

∂xα
−
∫ z

−h

∂Pα(z′)

∂xα
dz′. (24.29)

La constante d’intégration de la pression est donnée par la condition à la surface,

p(ζ)
L

= −ρwg
(
ζ
L − zs − kEFCCFCS −K2(ζ

L
)/g
)

= pa. (24.30)

L’équation (24.41) donne

zs = ζ + pa/(ρwg)−K2((ζ)
L

)/g (24.31)

et (24.27) devient
pL

ρw
=
pH

ρw
+ gkEFCCFCS +K1 +K2 −K2(ζ

L
), (24.32)

où pH est la pression hydrostatique, pH = ρwg(ζ − z) + pa.
Au moins sous les creux des vagues, la correction de Stokes pour la pression (24.11) donne la pression

Eulérienne moyenne
p = pL − ρwgkvarζ (FCSFCC + FSSFSC) . (24.33)

Ainsi l’equation (24.27) donne une relation, valable sous les creux des vagues et à l’ordre ε2
1, entre la pression

Eulérienne moyenne p et la pression GLM pL,

p = pH − ρwgvarζkFSSFSC . (24.34)

Par ailleurs, (24.12)–(24.18) donne, aux ordres ε2
1 et ε2,

1

2

(
ulju

l
j

)
=

1

2

[
F 2
CS + F 2

SS

]
σ2varζ =

gkvarζ
2

[FCCFCS + FSCFSS ] . (24.35)

En notant la vitesse quasi-Eulérienne û = U
L −P, l’équation (24.23) devient, pour la vitesse horizontale,

∂ûα
∂t

+ (ûβ + Usβ)
∂ûα
∂xβ

+ ŵ
∂ûα
∂z

+ εα3βf3u
L
α +

1

ρw

∂pH

∂xα
' −∂S

J

∂xα
+ Usβ

∂ûβ
∂xα

− P3
∂ûα
∂z

X
L
α, (24.36)

où SJ est défini par (7.50).
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L’équation (24.36) peut se transformer en

∂ûα
∂t

+ ûβ
∂ûα
∂xβ

+ ŵ
∂ûα
∂z

+ εα3β [f3ûα + (f3 + ω3)Usβ ] +
1

ρw

∂pH

∂xα
= − ∂

∂xα

SJ

ρwD
− P3

∂ûα
∂z

+X
L
α. (24.37)

Un paramétrage possible de la source de quantité de mouvement provenant des mouvements diabatiques est

X
L
α =

∂Rαβ
∂xβ

+
∂

∂z

(
Kz

∂ûα
∂z

)
− Twc

α − T turb, (24.38)

avec Rαβ le tenseur de Reynolds turbulent horizontal, tandis que les deux derniers termes correspondent au flux
de quantité de mouvement des vagues vers la circulation moyenne.

24.2.4 Transformation de coordonnée implicite associée au GLM

La moyenne des positions des particule aboutit à donner plus de poids là où les particules passent plus de temps
(par exemple sur les crêtes des vagues), malgré un déplacement moyen nul pour chaque particule. Ainsi le

domaine de validité de l’équation (24.37) est −h < z < ζ
L

, au lieu de −h < z < ζ. Il faut donc faire attention
en transformant les coordonnées, par exemple pour utiliser une coordonnée ς. On fait ici la démonstration pour
une onde monochromatique dont la variance d’élévation de la surface est varζ . Cette démonstration ne faisant
intervenir que des quantités d’ordre 2 en ε1, proportionnelles au spectre de variance de l’élévation de surface
E(k), elle se transpose à des vagues alaétoires par simple sommation sur les composantes. Le Jacobien J de la
transformation entre coordonnées Eulériennes et GLM est égal à 1 plus une quantité J2 qui est de second ordre
en ε1,

J = 1 + J2 +O(ε3
1) (24.39)

J2 = −kA
3D

σ
= −k2varζ

cosh [2k(z + h)]

sinh2(kD)
, (24.40)

Parce que le GLM n’induit pas d’étirement des coordonnées horizontales, une distance verticale dz′ = Jdz en
GLM correspond à une distance Cartésienne dz. Puisque J < 1, alors dz′ > dz. Ainsi, la position verticale
en GLM est partout plus grande que la moyenne Eulérienne de la position des mêmes particules (voir aussi
la discussion de cet effet par McIntyre 1988). Cela peut s’interpréter par le fait que les particules sont plus
nombreuses dans les crêtes que dans les creux (figure 24.1). Au second ordre en ε1, la position GLM moyenne de
la surface est donnée par (24.11)

ζ
L

= ζ + ζ
S

= ζ + ξα(z = 0)
∂ζ

∂xα
= ζ + varζ

k

tanh kD
, (24.41)

En intégrant sur la profondeur, on définit

sG2 (x, z, t) = −
∫ z

−h
J2(z′)dz′ = kvarζ

sinh [2k(z + h)]

2 sinh2(kD)
. (24.42)

et on a bien ∫ ζ
L

−h
Jdz = ζ

L
+D − sG2 (0) = D. (24.43)

Par analogie avec (24.1) on définit implicitement une nouvelle transformation de coordonnée verticale

s2 = ςD + sG2 + ζ. (24.44)

Tout champ scalaire φ(x1, x2, z, t) se transforme en φ?(x?1, x
?
2, ς, t

?), avec les relations

∂φ

∂t
=

∂φ?

∂t?
− s2,t

s2,ς

∂φ?

∂ς
(24.45)

∂φ

∂xα
=

∂φ?

∂x?α
− s2,α

s2,ς

∂φ?

∂ς
(24.46)

∂φ

∂z
=

1

s2,ς

∂φ?

∂ς
(24.47)

avec s2,t, s2,ς et s2,α les dérivés partielles de s2 par rapport à t, ς et xα, respectivement. Nous avons par ailleurs
l’identité remarquable

s2,ςJ = D
[
1 +O(ε3

1

)
]. (24.48)

On peut enfin transformer l’ équation (24.37) en coordonnée ς en utilisant (24.45)–(24.47). Tout d’abord la
conservation de la masse en GLM s’écrit (Andrews et McIntyre 1978a),

∂ (ρwJ)

∂t
+
∂
(
ρwJu

L
α

)
∂xα

+
∂
(
ρwJw

L
)

∂z
= 0 (24.49)
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ce qui donne, dans les nouvelles coordonnées,

∂
(
ρw ζ̂

)
∂t

+
∂ (DρwUα)

∂xα
+
∂ (ρwW )

∂ς
= 0, (24.50)

avec la vitesse ”verticale”,

W = J
[
wL − uLαs2,α − s2,t

]
, (24.51)

qui est définie exactement par le transport Lagrangien à travers les surfaces iso-ς.
La multiplication de (24.37) par ρws2,ςJ donne, sous une de ses formes,

ρwD
∂ûα
∂t

+ ρwDûβ
∂ûα
∂xβ

+ ρwŵ
∂ûα
∂ς

+ ρwDεα3β [f3ûα + (f3 + ω3)Usβ ]

+ D
∂pH

∂xα
− ρwgDJs2,α = −∂S

J

∂xα
+
JSJ

D

∂

∂ς
(s2,α) +X

L
α,

avec
ŵ = J

[
wL − ûαs2,α + s2,t

]
= W + JÛsαs2,α, (24.52)

la vitesse quasi-Eulérienne à travers les surfaces iso-ς.

L’équation (24.37) est valable de z = −h à z = ζ
L

ce qui couvre toute la colonne d’eau en GLM.

24.2.5 Comparaison avec les équations 2D

L’équation correspondant à la quantité de mouvement intégrée sur la verticale est obtenue en multipliant (24.37)

par le Jacobien J avant d’intégrer de z = −h à z = ζ
L

. Pour les termes qui sont déjà d’ordre ε2
1, comme la force

de vortex, cela revient, à l’ordre ε2
1, à intégrer simplement (24.37) de −h à z = ζ. Enfin, pour les termes uniformes

sur la verticale (e.g. ∂pH/∂xα = ∂ζ/∂xα), l’introduction du Jacobien compense exactement la continuation de

l’intégrale entre ζ et ζ
L

. Ainsi

−
∫ ζ

L

−h
J

∂

∂xα

(
SJ

D

)
dz = − ∂

∂xα

[
ρwgE

(
Cg/C −

1

2

)]
+
SJ

D

(
∂ζ

∂xα
+

∂h

∂xα

)
= − ∂

∂xα

[
ρwgE

(
Cg/C −

1

2

)]
+
SJ

D

∂D

∂xα
, (24.53)

ce qui correspond au deuxième terme du membre de droite de (7.55). L’intégration verticale des équations 3D
donne donc les équations 2D connues.

Le terme adiabatique SJ dans l’équation du mouvement moyen (24.37) est uniforme sur la verticale.
A première vue, tout cela peut parâıtre très compliqué. Toutefois, on a maintenant explicité la contribution

des vagues qui se cachait dans les mystérieux tenseurs de Reynolds: la bôıte noire des tenseurs de Reynolds est
devenue un peu plus grise, et c’est, pour certains, moins joli. Mais on s’est donné des outils qui sont parmi les
plus simples pour manipuler la vitesse juste en surface, et nous en verrons une application assez simple. Dans
leur pleine généralité ces équations devraient permettre des simulations 3D réalistes de la zone de déferlement où
la circulation est sensible aux profils des tensions de dissipation Twc

α + T turb.
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Chapter 25

Interactions of waves and sea ice

Ice in the ocean is part of the ocean. In the case of sea ice it comes from sea water that freezes as it is cooled
by a cold atmosphere, with some addition of snow accumulating on the top. In the case of icebergs, it generally
comes from glaciers that feeds the ocean with pieces of ice that is compacted snow that has fallen on continents,
and contains no salt.

The interaction of waves and ice is a subject that is very complex. It is made more difficult by the paucity of
available measurements. Fortunately, research efforts have been amplified since 2010, in an area where much is
still to be discovered. These efforts are motivated by the rapid evolution and poor climate projections of the sea
ice cover, in particular in the Arctic. Sea ice has an important role in isolating the ocean from the atmosphere
and solar radiation, effectively shutting off heat and gas fluxes and increasing the ocean albedo. As a result,
the effects of waves, pushing the ice or enhancing ice formation and melting, are important for understanding
the ice edge dynamics and air-sea interaction from weather forecasting to climate projections. Another reason
for studying waves in ice, is that the emerging Arctic ocean is a place of increased human activities, with new
shipping routes and increasing exploitation of natural resources. As a result, any activity there requires the
development of wave forecasting capabilities, in particular around the ice edge.

This chapter discusses several key processes of wave-ice interactions, starting with sea ice and finishing with
icebergs which is made special by its very large thickness. In all of these processes , one obvious aspect is that
ice is a solid that floats, but a solid that can take many shapes and forms. Ice also deforms, and can break into
pieces under the strain caused by ocean waves. Although we start with an account of frazil and pancake ice, it
should be remembered that these are probably not the most common ice form. Still, it is estimated that 50% of
the Antarctic ice (Gow et al., 1982), and less so in the Arctic, is initially grown as frazil and pancakes. Hence,
this early stage of development is a very important one.

Without going in too many details about the physical properties of ice and its consequences for sea ice (see
Weeks, 2010), it is important to note that sea water freezing results in the formation of cristals of pure ice that
then confine salt to brine pockets and a few other cristals involving, among other carbonates. Also, the freezing
of water with salinity above 25 PSU produces sea ice with low salinity (typically 10–20 PSU, made up of ice
cristals and brine) and increases the salinity of the surrounding water. That more saline water is denser and will
thus lead to some convection in the upper ocean mixed layer. If the original water is brackish (defined here with
a salinity under 25 PSU) then the more salty water is less dense, and will be stably floating on less salty water,
so that ice formation can develop in a very thin surface layer (Weeks, 2010, p. 48). Here we will not discuss these
brackish conditions that are specific to large Arctic estuaries.

When the water is very calm it freezes from the surface as columnar ice crystals, forming large slabs of
congelation ice. The wave-induced perturbation facilitates the nucleation of ice cristals that grow into a suspension
of small platelets of ice, known as frazil ice. Due to their buoyancy, these frazil cristals concentrate at the sea
surface, like a snowstorm flipped upside down.

25.1 From water to pancakes

25.1.1 Suspensions of frazil cristals and effective viscosity

Knowledge on frazil properties mostly come from laboratory experiments, such as those performed by Martin and
Kauffman (1981), in which sea water in a wave tank is cooled. As sea water approaches the freezing temperature,
around -2◦ C for a salinity of 35 PSS, disk-shaped ice cristals form with diameters 1–3 mm and thickness of 1 to
10 micrometers, as shown in figure 25.1.a. The volume concentration φ of this suspension may vary in the range
0.15 < φ < 0.45 depending on the confinement of the water. In particular, the dissipation of waves by the ice
induces a compression force due to the convergence of the wave momentum flux. This wave-induced force tends
to increase the concentration at the ice edge exposed to the waves.
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Figure 25.1: From frazil to pancakes.
(a) vertical plane view of frazil cristals viewed with polarized light, and their aggregation (copyright
Elsevier, taken from McFarlane et al. (1982). (b) accumulation of frazil in a surface layer under waves.
(c) Formation of an ice edge in frazil ice (From Martin and Kauffman, 1981, , copyright Cambridge
University Press). (d) Field of pancakes in a storm as recorded by E. Rogers on October 12, 2015 in the
Beaufort sea (Rogers et al., 2016). (e) Ice floes resulting from the agregation of pancakes, Beaufort sea,
November 1, 2015, picture by H. Shen.

Such a concentration of solid particles enhances the effective kinematic viscosity ν1 of the suspension compared
to that of the fluid component only which, at the freezing point is νw ' 1.83× 10−6 m2 s−1. The ratio ν1/νw for
a concentrated solution of solid glass spheres is expected to vary like (Mooney, 1951)

ν1

νw
= exp [2.5φ/(1− 1.43φ)] . (25.1)

This equation gives a factor 2 at φ = 0.2 and a factor 23 at φ = 0.45.
Representing the ocean as a two layer system with different viscosities, ν1 for the top layer of thickness h1, and

νw for the underlying and deep layer, wave attenuation is exponential. A first approximate solution was given by
Weber (1987) with a very large viscosity in the surface layer gave a dissipation dominated by the viscosity of the
underlying water, independently of the top layer viscosity and thickness, identical to the solution by Dore (1978)
for the viscous friction at the air-sea interface. The general solution, including finite depth of the underlying
layer is given by Keller (1998). The resulting dissipation can be very strong for waves relatively short compared
to the frazil layer, which explains the strong attenuation of waves in figure 25.1.c. However, longer waves are not
much attenuated once their wavelength is much larger than h1.

Now, the empirical coefficient 1.43 in Mooney’s eq. (25.1) is strongly dependent on the solid material that is
in suspension. Besides, the frazil cristals are not spherical and, for smaller wave amplitudes, these disks tend to
stick together (Martin and Kauffman, 1981).

The problem of flat ellipsoids in suspension, instead of spheres, was addressed by de Carolis et al. (2005),
who give an effective viscosity in the form of a power law

ν1

νw
= (1− φ)K . (25.2)

Interpreting the wave attenuations measured by Martin and Kauffman (1981), de Carolis et al. (2005) find that
the exponent K is of the order of 15 to 20 to explain the effective viscosities in the range 0.002–0.01 m2 s−1.
They conclude that such high values can only be explained by a dominance of solid-solid interactions, including
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collisions, friction and some sticking, and these all very sensitive to strain rate. It is thus expected that the
effective viscosity is generally a non-linear function of the strain rate and volume concentration.

As pointed out by Martin and Kauffman (1981), the thickness and concentration of grease ice is modulated
by wave-generated roll structures known as Langmuir circulations (see chapter 10). The ice collects in the surface
convergence zone of these rolls. Garrett (1976) had envisaged that a localized wave dissipation in the convergence
zone, in his case due to wave breaking over the stronger current, could reinforce the rolls. The stronger dissipation
due to thicker grease ice could play the same role. These effects may be relevant for the enhancement of air-sea
fluxes in leads (Esau, 2007).

25.1.2 Pancake ice

Natural grease does not remain a suspension of ice fragments of similar sizes and shapes. Instead, grease ice
evolves to the formation of pancakes. These are agglomerations of frazil that weld together. Once a pancake has
started forming, it can grow by the washing of frazil ice over the top of the pancake and its subsequent freezing
(Doble et al., 2003). The raised rim of the pancakes, clearly visible as a white skirt in figure 25.1.c, come from
their mutual collisions. Pancakes typically grow to diameters of the order of 1 m, and the ocean can be covered
by a few layers of a pancakes. Shen et al. (2001) discussed that the maximum diameter of the pancakes observed
in the laboratory is generally of the order of 1% of the the dominant wavelength, possibly due to break-up by
bending or stretching if the pancakes get larger. This scaling of the pancake diameter with the wavelength was
also confirmed by Roach et al. (2018) with video acquired in the Beaufort Sea, but they could not conclude if
bending or stretching was the main mechanism that limits the size of pancakes.

Pancakes have thicknesses that rarely exceed a few centimeters, so that they easily raft and form a an ice
layer with several pancakes irregularly stacked. The dissipation of energy in this ice layer is certainly dominated
by ice-ice friction and collisions. Even though the local surface motions is consistent with orbital wave motion
without ice (the ratio of horizontal to vertical motions recorded by buoys is very close to 1), there is a very strong
dissipation of short wave components. Several models have been proposed to represent this dissipation, ranging
from the viscous layer model of Keller (1998), to more complex visco-elastic models (Wang and Shen, 2010; Rogers
et al., 2016). These latter models include different modes of motion and Mosig et al. (2015) show that some of
these are often similar to what is predicted by a viscous thin beam model. Unfortunately, all these models are
highly empirical, and there is no method for determining a priori the viscosity and elasticity parameters from
large scale environmental conditions.

25.2 Dissipation for solid floes: basal friction

When freezing persists, pancakes weld together, leading to a single and continuous layer of ice. The agitation due
to waves that has led to the formation of pancakes results in a thicker layer of ice compared to freezing conditions
without agitation that produces columnar ice in which the heat is lost to the atmosphere by diffusion through
the ice layer.

With such a single ice layer heaving up and down with the wave motion but constrained in its horizontal
displacement, the dissipation energy can occur in the boundary layer below the ice. This oscillatory boundary
layer is similar to the air-side boundary layer discussed in section 22.1, and the bottom boundary layer discussed in
chapter 14. For the case of ice, the problem was treated by Liu and Mollo-Christensen (1988), with the additional
effect of ice inertia that we neglect here. Here we consider the finite viscosity of seawater at the freezing point,
νw ' 1.83× 10−6 m2 s−1. For monochromatic waves of radian frequency σ, a boundary layer of thickness

√
νwσ

develops in the laminar case, and the attenuation rate of the wave energy in time is

βice,bfr,v = −k
√
νwσ/2. (25.3)

This is the same dissipation rate that was found by Phillips (1977) for waves under an inextensible layer of oil
(see also Weber, 1987). For a smooth under-ice surface, if we accept the similarity with the bottom boundary
layer, this laminar regime is expected to occur for Reynolds numbers Re = σa2/ν < Rec, with Rec = 1.5 × 105

(Jensen et al., 1989). Above this value the boundary layer transitions into a turbulent regime. In that case the
dissipation rate becomes quadratic,

βice,bfr,t = −feuorb/g, (25.4)

where uorb is is the significant orbital velocity amplitude at the water-ice interface. The dissipation factor fe is
obtained from the under-ice roughness in the same way that it was obtained in the turbulent bottom boundary
layer in chapter 14.

For random waves, neglecting the effects of the ice layer on the water motion, we use the solution given in
chapter 2,

uorb = 2

√∫ ∞
0

σ2

tanh2(kD)
E(f)df, (25.5)
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with a significant horizontal displacement

aorb = 2

√∫ ∞
0

1

tanh2(kD)
E(f)df, (25.6)

and we use this definition of the Reynolds number, Re = uorbaorb/ν.
Because the superposition of linear waves gives a Rayleigh distribution of the amplitudes, the transition

between laminar and turbulent can happen only for the highest waves, giving a smooth transition of the average
dissipation rate βc. In practive, considering a Rayleigh distribution gives a value of βc that is very close to the
following approximation

βc = (1− w)βice,bfr,v + wβice,bfr,t, (25.7)

as shown in figure 25.2, where we have used a weight w = 0.5 [1 + tanh((Re− Rec)/∆Re], and ∆Re = 2× 105.
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Figure 25.2: Top: schematic of velocities and boundary layer below an ice layer (light blue). Bottom:
expected decay distance X1/2 = Cg ln(2)/βc as a function of wave period T , for an under-ice roughness of
0.1 mm, and wave heights ranging from 0.5 to 5 m. The ‘combined Rayleigh’ solution uses a combination
of βice,bfr,v and βice,bfr,t with a weighting depending on a Rayleigh distribution of wave amplitudes, and
the ‘combined smooth’ solution is given by eq. (25.7). Adapted from Stopa et al. (2016c).

It should be noted that even the laminar dissipation is relatively strong, with half-decay distances under
400 km for periods shorter than 10 s, and 30 km under 5 s. This viscous dissipation is larger than what was
estimated from buoys in pancake ice in recent experiments (Ardhuin et al., 2018). Rogers et al. (2016) reported
imaginary wavenumbers ki = 2 ln(2)/X1/2 of the order of 2 × 10−5 for a period T = 5 s, which corresponds to
X1/2 = 140 km, 4 times larger than due to molecular viscosity under an inextensible surface ice sheet. This is
possible because the pancakes actually move horizontally and raft to form multiple layers, so that the present
theory for βc gives an overestimate of the wave dissipation in pancake ice. In the case of densely packed thick
floes, rafting does not occur and the horizontal ice motion is much weaker than the vertical motion (Fox and
Haskell, 2001), in which case the above expression for βc should be applicable.
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25.3 Dissipation for solid floes: flexure and the importance of
ice break-up

In other cases, under-ice friction appears insufficient to explain the observed attenuation. This is particularly
the case for the large-scale attenuation of swells with periods 18 to 33 s reported by Ardhuin et al. (2016), and
illustrated in figure 25.3. In that study of waves measured in the pack, 1500 km from the ice edge, the constant
dissipation rate needed to obtain a reasonable agreement with the data corresponds to a spatial decay of the
energy, α = β/Cg, ranging from α ' 4 × 10−6 m−1 at T = 20 s, to α ' 2 × 10−6 m−1 at T = 25 s. These are
12 times the effect of viscous friction below a smooth ice plate as given by eq. (25.3). That seems impossible to
explain by the ice morphology alone, with complicated keel structures, often exceeding 10 m below the mean ice
level (Doble et al., 2011).
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Figure 25.3: Left: Spectrogram of surface elevation and width σ2 of the directional wave spectrum
estimated from second moments a2 and b2. The black rectangle highlights the time and frequency range
of the spectral peak on February 12 at 18:00 UTC, showing that the directional spreading is around 10◦

or less when the energy is maximum. Right: model snapshot giving some context to the measured data.
The two swell events are due to two distinct storms. Adapted from Ardhuin et al. (2016).

Also, dissipation by basal friction leads to unrealistic high values of swell heights, of a few centimeters, crossing
the Arctic from Fram Strait to Alaska (Ardhuin et al., 2016).

25.4 Dispersion relations

Whereas the condition of zero pressure at the free surface and the horizontal momentum balance gives the usual
ice-free dispersion relation σ2 = gk tanh(kD), the presence of ice clearly modifies these two conditions and thus
the dispersion relation. A first effect, when ice is not broken in floes shorter than the wavelength, is the resistance
to stretching of the sea surface. This same effect is similar to the effect of surface tension, and thus also leads to
an increase of the phase speed for the shorter waves. (Fox and Haskell, 2001)

25.5 Scattering of waves by sea ice

25.6 Feedbacks of sea ice formation and melt

Sutherland and Dumont (2018), Stopa et al. (2018)

25.7 Waves and icebergs

Either at large ice shelves around Antarctica or from smaller glaciers around Greenland, icebergs are formed by
the calving of ice streams reaching the oceans.
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25.7.1 Floating breakwaters

Ardhuin et al. (2011b)

25.7.2 Iceberg break-up and erosion caused by waves

Wagner et al. (2018)
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Y = X tanh(X) X Y = X tanh(X) X Y = X tanh(X) X
0.05 0.2255 1.30 1.4511 2.55 2.5795
0.10 0.3216 1.35 1.4934 2.60 2.6273
0.15 0.3973 1.40 1.5360 2.65 2.6753
0.20 0.4627 1.45 1.5788 2.70 2.7234
0.25 0.5218 1.50 1.6218 2.75 2.7716
0.30 0.5767 1.55 1.6651 2.80 2.8200
0.35 0.6284 1.60 1.7085 2.85 2.8684
0.40 0.6778 1.65 1.7523 2.90 2.9170
0.45 0.7255 1.70 1.7962 2.95 2.9657
0.50 0.7717 1.75 1.8405 3.00 3.0145
0.55 0.8168 1.80 1.8850 3.05 3.0634
0.60 0.8611 1.85 1.9297 3.10 3.1123
0.65 0.9046 1.90 1.9747 3.15 3.1613
0.70 0.9476 1.95 2.0199 3.20 3.2104
0.75 0.9902 2.00 2.0653 3.25 3.2596
0.80 1.0324 2.05 2.1110 3.30 3.3088
0.85 1.0744 2.10 2.1570 3.35 3.3581
0.90 1.1163 2.15 2.2031 3.40 3.4075
0.95 1.1580 2.20 2.2495 3.45 3.4569
1.00 1.1997 2.25 2.2961 3.50 3.5063
1.05 1.2414 2.30 2.3428
1.10 1.2831 2.35 2.3898
1.15 1.3249 2.40 2.4370
1.20 1.3668 2.45 2.4843
1.25 1.4088 2.50 2.5318

Table A.1: Table of the inverse function of X tanhX. Defining Y = σ2D/g it gives k = X/D, which
allows to invert the dispersion relation in the absence of current. For Y < 0.05 one should use X =

√
Y ,

and for Y > 3.5 one should use X = Y .

Figure A.1: The Beaufort scale for sea states
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Boussinesq, J., 1872: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal,
en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J.
Math. Pures Appl., 17, 55–108.

Bowen, A. J., D. L. Inman, and V. P. Simmons, 1968: Wave ”set-down” and wave ”set-up”. J. Geophys. Res.,
73, 2569–2577.

Bragg, W. L., 1913: The structure of some crystals as indicated by their diffraction of x-rays. Proc. Roy. Soc.
Lond. A, 89, 248–277.

Bretherton, F. P. and C. J. R. Garrett, 1968: Wavetrains in inhomogeneous moving media. Proc. Roy. Soc. of
London, A302, 529–554.

Broche, P., J. C. de Maistre, and P. Forget, 1983: Mesure par radar décamétrique cohérent des courants superfi-
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Sénéchal, N., H. Dupuis, and P. Bonneton, 2003: Field experiment on secondary wave generation on a barred

beach and the consequent evolution of energy dissipation on the beach face. Coastal Eng., 46, 233–247.
Shapiro, N. M., M. Campillo, L. Stehly, and M. H. Ritzwoller, 2005: High-resolution surface-wave tomography

from ambient seismic noise. Science, 307, 1615–1617. doi:10.1111/j.1365-246X.2006.03240.x.
Shen, H. H., S. F. Ackley, and M. A. Hopkins, 2001: A conceptual model for pancake ice formation in a wave

field. Annales Geophysicae, 33, 361–367. doi:10.3189/172756401781818239.
Sheremet, A., T. Staples, F. Ardhuin, S. Suanez, and B. Fichaut, 2014: Observations of large infragravity-wave

run-up at Banneg island, France. Geophys. Res. Lett., 41.
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