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Estimates of Lagrangian transport by surface gravity wave
groups: The effects of finite depth and directionality

T.S. van den Bremer' and P. H. Taylor!

"Department of Engineering Science, University of Oxford, Oxford, UK

Abstract Two physical phenomena drive the Lagrangian trajectories of neutrally buoyant particles
underneath surface gravity wave groups: the Stokes drift results in a net displacement of particles in the
direction of propagation of the group, whereas the Eulerian return flow transports such particles in the
opposite direction. Generally, the Stokes drift is the larger of the two near the surface, whereas the effects
of the return flow dominate at depth. A transition depth can be defined that separates the two regimes.
Using a multiple-scales expansion, we provide leading-order estimates of the forward transport, the back-
ward transport, and the transition depth for realistic sea states. We consider the effects of both finite depth
and the directionally spread nature of the waves on our estimates. We show that from the perspective of
the return flow, almost all seas are of finite depth. In fact, many seas can be shown to be “shallow” from the
perspective of the return flow with little variation of this flow with depth. Furthermore, even small degrees
of directional spreading can considerably reduce the magnitude of the return flow and its transport.

1. Introduction

Surface gravity waves have an associated wave-induced mean flow known as the Stokes drift named after
George Gabriel Stokes, who first derived a theoretical description for this drift in 1847 [Stokes, 1847]. The
drift manifests itself as the mean horizontal velocity of fluid parcels (Lagrangian particles) that are displaced
by a finite horizontal distance over each wave cycle. During one cycle beneath a wave on deep water, at
leading order in the steepness of the wave, the particle follows a circular trajectory with the size of the circle
decreasing exponentially with depth. At the next order, it is clear these orbits do not close resulting from
the displacement of the Lagrangian particle from its initial position:

_ou
Usp= ox ox
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where the over line denotes averaging over the individual waves and the superscripts denote the order in
wave steepness. In an Eulerian framework, a surface gravity wave can be shown to have an associated net
volume flux resulting from integration of the linear horizontal velocity with depth up to the linear free sur-
face 1", known as the Stokes transport:

1 (x,1)
QST:J uV(x,z,t)dz. ()
—d
Real seas consist of a spectrum of different frequency components thus constituting a packet or group
structure. Making use of the separation of scales between the fast variation of the individual waves and the
slow variation of the group’s modulation for a quasi-monochromatic or narrow-banded group, the expres-
sions for the Stokes drift (1) and the Stokes transport (2) still hold. The averaging denoted by the overlines
is over the fast scales, the individual waves. The Stokes transport (2) for groups varies with the (square of
the) local amplitude of the group and is therefore divergent. It must induce a return flow (ugg, first described
by Longuet-Higgins and Stewart [1962] that in some sense returns the fluid deposited by the Stokes trans-
port at the group'’s leading edge to be absorbed again by the Stokes transport at its trailing edge. For suffi-
ciently deep water, a spatial separation of the two effects takes place, as illustrated in Figure 1: Stokes drift
dominates near the free surface and the return flow dominates at depth. In physical terms, the dynamic
free surface boundary condition, requiring a uniform pressure on the free surface and the satisfaction of
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u SD Bernoulli's law for energy conservation, prevent
a net deposition (extraction) of fluid at the lead-
ing (trailing) edge of the group due the horizon-
tal convergence (divergence) of the Stokes
transport. Conservation of volume then governs
the behavior of the return flow.

Broadly, two oceanographic applications of
Stokes drift can be distinguished: its effect on
u RF Lagrangian tracers such as pollutants and buoys
on the one hand and its part in the physics of
Figure 1. lllustration of the spatial separation betwee.n Stoke.s drift the ocean surface mixed |ayer on the other.
and the return flow for a surface gravity wave group in sufficient k . X
depth [see also Mcintyre, 1981, Figure 21. Regarding the first, Stokes drift plays an impor-
tant role in trajectory forecasts for search and
rescue operations, oil spill mitigation, and the interpretation of in situ observations obtained from tracking
buoys [Rohrs et al., 2013]. These authors use data to estimate the effects on Lagrangian displacement of a
submerged tracking buoy (in water depths of 220-700 m) distinguishing the effects of the Stokes drift and
the wave-induced Eulerian fluxes as well as the Coriolis-Stokes forcing.

Second, Stokes drift plays an important role in the ocean surface boundary (or “mixed”) layer, the approxi-
mately 100 m thick layer that controls the exchange of heat, momentum, and gases between the atmos-
phere and the ocean and is therefore critical in determining the role of the global ocean circulation on
climate [see Belcher et al., 2012, for a review]. With lines of constant vorticity moving with Lagrangian fluid
particles in an inviscid fluid, the sheared depth profile of the Stokes drift velocity stretches (initially vertically
orientated) vorticity into the horizontal plane [Polton et al., 2005]. Two sources of vertical vorticity can be
distinguished: the three-dimensional turbulent vorticity that give rise to Langmuir circulation and the plane-
tary vorticity that interacts with the Stokes drift and gives rise to the Stokes-Coriolis force.

With both Langmuir turbulence and the Stokes-Coriolis forcing included in oceanic general circulation mod-
els, the magnitude of the Stokes drift and its variation with depth (cf. shear) must also be included. In such
models, the individual waves are typically too small to be resolved by even the most powerful computa-
tional models and the effect of Stokes drift must be parameterized before inclusion. Such parameterizations
have only recently begun to be extended to include the nonmonochromatic or group nature of the waves
[Breivik et al., 2014]. These authors propose a deep water approximation of the Stokes drift velocity profile
as an alternative to the monochromatic profile and compare to parametric spectra and profiles under wave
spectra from the Interim ECMWF Re-Analysis (ERA-Interim) and buoy observations to reveal much better
agreement.

An important assumption is often that the sea is deep, in other words, that the product of the wave number
ko and the water depth d is large, typically taken as kod=3. Variation of the (linear) properties can then be
assumed to be exponential with depth considerably simplifying the analysis. Whereas the variation of the
linear dynamics with depth scales on the inverse of the wave number k0‘1, the return flow varies on the hor-
izontal scale of the wave group a. For the return flow to be unaffected by the bottom boundary condition,
we thus require d/a=¢kod to be large, a more restrictive assumption. For a quasi-monochromatic group,
the parameter ¢=1/(koo) is assumed to be small. A sea that is deep for a To = 10 s wave, namely d =~ 75 m
so that kod = 3, may require a much greater depth for the return flow to be unaffected by the bottom
boundary condition, namely d=3 km (taking z/ac = —20 as a criterion from Figure 4d with £=0.16), as calcu-
lations in section 3 of this paper suggest. Furthermore, the magnitudes of the return flow are expected to
reduce considerably when the spectrum is directionally spread and the group becomes spatially localized
in both horizontal directions. The return flow can then occur around the sides of the group as well as
beneath. The motivation for this paper is thus to study the behavior of the return flow and its contribution
to Lagrangian transport for realistic sea states: sea states in finite depth and with directional spreading. The
effects of the earth’s rotation are not considered herein, nor are the effects of surface tension, viscous drag
in the boundary layer or turbulent drag in the Ekman layer.

The objective of this paper is to find simple order-of-magnitude estimates of the net transport of Lagran-
gian particles as a function of depth and of the physically relevant properties of the sea state. An
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approximate transition depth is proposed, above which Lagrangian particles are transported forward and
below which the transport is in the opposite direction. The transition depth is extended to a transition curve
for directionally spread seas to indicate the region below the wave group in which particles travel forward.
In short, we set out to examine the effect of finite depth and the directional nature of the spectrum in a
three-dimensional sea on three quantities: the net horizontal transport by the Stokes drift, the net horizon-
tal transport by the return flow and the transition depth or curve that separates these two regimes.

In order to simplify the problem, we ignore the effect of dispersion, which modifies the shape of the wave
group as it translates in the space-time domain. To do so, we pursue a separation of scales expansion,
where the fast or short scales represent those associated with the individual waves and the slow or long
scales are associated with the group. The small parameter ¢=1/(koo) with ko=27n/29 denoting the wave
number of the main frequency component of the spectrum and ¢ denoting the characteristic length of the
group, in which the perturbation expansion is performed, then separates the two scales. Although the
expansion is not introduced until section 2, we discuss its physical interpretation here. At leading order in ¢,
the shape of the surface elevation of the group and, in fact, any linear wave group signal, in an unidirec-
tional problem is given by a relationship of the form n(x, t)=Re[A(s(x—c4,0t))exp (i(kox—wot))] with wq, ko,
and ¢4 denoting the wave frequency, wave number, and the group velocity of the peak of the spectrum
(or the “carrier” wave) of a quasi-monochromatic wave group. For a Gaussian spectrum, we would have A=
aoexp (—(x—cgot)?/202) or, for the surface elevation in frequency-space i (k)=/magoexp (—a2(k—ko)* /4).
At leading order in the parameter ¢, namely in a narrow-banded approximation, the net particle displace-
ment by a single wave group can thus be found by integrating the stationary (in (x— ¢4 t)) velocity field
fromt — —co tot — oc.

Frequency dispersion then acts to change the shape of the group as it translates and comes in at the next
order in &. Leading-order dispersion for a Gaussian group in deep water is described by [Kinsman, 1984]:

a0 () (g )
n(x7 t):Re e 1+55t2/a 20 e 1475t /o 20 , (3)
1+ 2t
where yo=d’w/dk?|,_, =—1/9/k3 /4 with w(k) obtained from the linear dispersion relationship. As time
progresses, the group thus becomes wider and less high due to dispersion in addition to a change in phase.
From (3), a characteristic time scale for translation Tt = ¢ /¢, 0 and a characteristic time scale for dispersion
To = 62/|y,| can be obtained. The ratio of the two time scales is then given by Tp/Tr=2/¢, a number that is
typically large for ¢ small. For ¢=0.16, a representative value obtained from fitting an idealized Gaussian
spectrum to the enhanced peak of a Jonswap spectrum [Gibbs and Taylor, 2005], we have
To/Tr=2/¢ = 12.5. In practice, the effect on particle displacement is even smaller as the reduction in height
and the widening of the group in (3) act in opposite directions. The effect of dispersion is even smaller for
finite water depth and the leading-order wave group representation becomes an effective replacement of
multichromatic wave theories such as those by Longuet-Higgins and Stewart [1962], Sharma and Dean
[1981], or Dalzell [1999], which include all orders in ¢. Most importantly, these leading-order wave group
representations are amenable to simple closed-form solutions for the net displacements pursued herein.

This paper is laid out as follows. Section 2 introduces the governing equations and boundary conditions
and formally introduces the approximation method by examining the simplest case: a two-dimensional sea
of infinite depth. Section 3 considers the effects of finite depth for two-dimensional seas, followed by a dis-
cussion of three-dimensional effects in section 4, with realistic directional distributions being considered in
section 4.3. Finally, conclusions are drawn in section 5.

2. Governing Equations and Separation of Scales Model

2.1. Governing Equations

Assuming irrotational and incompressible flow in a fluid of constant density, the governing equation V2¢=
0 can be expressed in terms of the velocity potential ¢ defined here in a three-dimensional coordinate sys-
tem (x, y, 2) with velocity components u=9d¢/dx, v=0¢/dy, and w=0¢/0z. In vector notation, we have
x = (x,y,z) and u = (u,v,w). Gravity g acts in the negative z direction and the still water level corresponds to
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z=0. The governing equation is solved subject to the linear no-flow bottom boundary condition
w(z = —d) = 0 and the kinematic and dynamic boundary conditions at the free surface z = n(x,y,t):

D
E(W(&% t)_Z)707 (4a)
dp 1

g;1+a—(f+§(vd))220atz:n7 (4b)

where D/Dt=8;,+u-V denotes a total derivative and (V¢)® = (V) - (Vp)=u2+v2+w? the inner
product.

2.2. A Leading-Order Two-Dimensional Separation of Scales Model for Deep Water
Two small parameters can be defined: the steepness a=kq|do|, the product of a characteristic wave number
ko, and the magnitude of the amplitude |ao|=||A(X)|| of the surface elevation envelope A(X), and a band-
width parameter e=1/(koa), a measure of the bandwidth of the spectrum with ¢ — 0 corresponding to a
periodic wave and ¢ an estimate of the characteristic spatial scale of the group. In the deep water limit (d
— —o0) and a two-dimensional sea, the dimensional linear signal (O(«'¢%)) is given by:

D =A(X)e/tkoxr—en0) (5a)

¢V =B(X, Z)eloze/lkoxot) (5b)

where the real part is understood. The envelopes A(X) (L) and B(X, Z) (L>T ") are functions of the slow scales:
X=¢(x—cqot), (6a)

Z=¢z, (6b)

where the linear dispersion equation wj=gko, ¢q0=dwo/dko=1/9g/ko/2, and A=i(ko/wo)B|,_, ensure the
linear (in o) parts of the boundary conditions ((4a) and (4b)) are satisfied (at zeroth and first order in ¢). The
slow depth scale Z is required to ensure that the Laplace equation is satisfied at first (and subsequent)
order(s) in &.

The Stokes drift, defined as the net horizontal velocity of a Lagrangian particle due to the linear wave
motion (1), and the Stokes transport, defined as the net depth-integrated horizontal Eulerian volume flux
associated with linear wave motion (2), are given by:

usp=wokoe®?|A(X)|?, (7a)
1
QST=§COO‘A(X)‘2. (7b)

At leading order in ¢, the return flow is forced by the divergence of the Stokes transport:

%zs% at z=0, (8)
which can be obtained from combination of (4a) and (4b), substitution of the linear solutions (5a) and (5b)
and averaging over the fast scales. The physical interpretation of (8) is that the divergence of the Stokes
transport on the right-hand side has to be balanced by a down-flowing return flow on the leading edge of
the group and a up-flowing return flow on its trailing edge. The return flow is governed by Laplace
V2¢ee =0, subject to the bottom boundary condition wgr — 0 as z — —oo and the “forcing” equation (8), to
give for the horizontal velocity:

-~ (1)0‘00'2

URr =
210

J I}f(l})e’&cos (kx)dk, 9)
0
where the hats denote nondimensional variables, k=ka, 2=z/g, X=(x—cyot)/c defined as the horizontal
coordinate centered around the middle of the wave group, and f(k) is the normalized Fourier transform of
the squared amplitude envelope:
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J |A(x)|*e~*xdx
f(k) == - (10)
alao
For a Gaussian group, A=|ao|exp (—x2/2), f(k)=+/mexp (—IA<2/4). In the far-field (|x—cgot| > 0, |z| > o or
both), we can obtain a dipole approximation to the horizontal velocity field. For a Gaussian group, we have
from (9) (see Appendix B1):

e ] wolao® x*—2*
RF Zﬁ o ()A(Z_,’_zZ)Z'

(1

At the center of the group X =0, the horizontal velocity thus decays as (z/a) % with depth.

2.2.1. Lagrangian Transport
The total Lagrangian velocity of a particle u is determined by the sum of its Stokes drift usp, a Lagrangian
phenomenon, and the Eulerian return flow field ugg:
u = usp t+ U . (12)
~~ ~~ ~~

Lagrangian  Stokesdrift ~ Eulerian

The net horizontal displacement by the Stokes drift (7) for a particle as a function of its initial vertical posi-
tion z, and for a Gaussian group is given by:

Axsp(2z0) =2+/moole*o%. (13)

The net horizontal transport by the return flow can be found by integrating the horizontal return flow veloc-
ity (9) with respect to time. For a wave group with the slow effects of dispersion ignored we obtain from (9):

2 oo 00 ~ N N
A (20)=— 2 J J kf(k)ékocos (kt)dkdt, (14)

TEko 0

—00

where the double integral on the right-hand side is nondimensional (t=c,t/a) and only a function of the
scaled initial particle depth zo=2z,/0. Explicitly, we have from numerical evaluation of the double integral
for a particle located at z, = 0 and a Gaussian group Axgg(20=0) ~ —0.113442 /ko. Comparing magnitudes,
we thus have at the surface:

Ax(20=0) ~ go*(2\/7—0.1134¢). (15)

For ¢=0.16, a representative value obtained from fitting an idealized Gaussian spectrum to the peak of a
Jonswap spectrum [Gibbs and Taylor, 2005], the contribution due to Stokes drift is a factor ~200 larger than
the contribution due to the return flow, provided the sea is two-dimensional and the depth is large relative
to both the length of the individual waves 1, and the length of the group .

2.2.2. The Transition Depth
The transition depth, below which Lagrangian particles are transported backward by the return flow and
above which such particles are transported forward by Stokes drift, is defined by:

AXL(ZO :ZT)ZAXSD(ZT)+AXRF(ZT)=O. (16)

Ignoring the generally small effects of dispersion and making use of the fact that Stokes drift decays much
faster with depth than the return flow for deep water, an approximate expression for the transition depth
Z# can be obtained. This is achieved by finding the depth at which the net horizontal Stokes drift displace-
ment (13) has decreased to the surface value (zo=0) of the return flow displacement, which can be
assumed not to decay over that same depth:

AXRF(ZOZO)J"AXSD(ZO:Z{DRF):01 (17)
which has the solution:
1
Zi ppe ~ =— (—3.442+log (¢)). (18)
? 2k0
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Derivation of (18) relies on only taking into account the leading-order (in ¢) contribution of Stokes drift and
the return flow to net horizontal particle transport. Provided the water is deep (d/g > 1), the Stokes drift
then varies much more rapidly with depth than the return flow and the assumption made to derive (18) is
justified. Comparison of (18) with finite depth solutions is made in section 3 to ascertain its range of validity.

3. The Effect of Finite Depth

It is evident from (9) that for the return flow not to feel the effect of finite depth, not only kyd needs to be
large, but so does d/a=¢kod, which is one order in ¢ smaller than the former. Without taking the d — —oco
limit, the linear solution (O(«'¢%)) in (5) becomes:

77(1) :A(X)ei(kox—wot)’ (19a)
h (ko(z+d)) kv
M=p(x.7 cosh (ko i(kox—wot) 1
¢07=8(x.2) cosh (kod) € ' (190)

where the slow scales are defined as in (6). From the linear (O(«'¢%)) free surface boundary conditions (4a)
and (4b) we have B|,_,=—igA/mo and w3 =gkotanh (kod), the linear dispersion relationship. At next order in
¢, the linear (in «) signals are defined such that the envelope travels at the group velocity cg o =dwq /dko.

From the linear signal (19), leading-order expressions for the Stokes drift and the Stokes transport can be
obtained:

_ (,Uoko cosh (2k0(d+2))

2
7 sinhl(ka) O (20a)
_ (@) 2
Qs1= Sanh (kod) A1 (20b)

It is evident then from (20) and from Figure 2a, which shows the variation of the Stokes drift with depth for
a number of different depths, that both the magnitude of the Stokes drift and that of the Stokes transport
are larger for shallower depth, the latter equal in magnitude to the depth integral of the former.

At second order in steepness, the free surface boundary conditions (4a) and (4b) can be combined to give a
“forcing” equation for the Eulerian flow field at second order:

9 1P\ 19 (02¢" (Vo)
AL v, . (uVyy -1 M4 - 21
(82 gatz)d)RF M got\ 0toz 1 2 at z=0, @1
Vi-Qst
m@ /ot

where we have used d,w=—0dku—0,v from conservation of volume and V4=(d, d;,0). Equation (21) is
referred to as the Eulerian flow forcing equation and constitutes the boundary condition subject to which
the Laplace equation has to be solved to obtain the Eulerian flow at second order. Implicitly, we only
include terms that contribute to the mean flow here. Hence, the terms on the right-hand side are averaged
over the fast scales. The forcing consists of two terms: the divergence of the Stokes transport (V- Qst) and
the variation of the slowly varying set-down of the free surface associated with the group (072 /101). We will
refer to the mean flow driven by both these effects as the return flow.

It can be readily verified from the polarization relationships of the linear wave solutions (O(a'?)), showing
the relative phases of the different linear components that only the first term of the mean flow forcing
equation (Vy - Qst) is nonzero at leading-order (O(%¢')) for deep water. In words, the mean set-down asso-
ciated with the group is too small to nonnegligibly affect the underlying mean flow field when the fluid is
deep and we assume a slowly varying wave packet. The free surface then “appears rigid to the local mean
flow,” as observed by Mcintyre [1981, p. 339] based on taking a limit of the solutions by Longuet-Higgins and
Stewart [1962]. When the fluid is of finite depth, both terms contribute and we have for the set-down
(O(e2%)) and the return flow potential at leading order (O(s2¢')):

1
@-_ 2
n 2sinh (2kod) koA, 22)
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T =Cgot

kod =0.625
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o
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“SD/(wgkU‘(LUP) kUAISD/QZ

Figure 2. (a) Depth decay of the Stokes drift velocity (20a) and (b) its associated net horizontal transport (27) for different values of the
nondimensional depth kod={cc, 2.5,1.25,0.625,0.3125} (d/o={00,0.4,0.2,0.1,0.05} for ¢=0.16) for a Gaussian group. The asymptotic
limits for infinite depth kod — o0 ((7a) and (27)) are denoted by a dashed lines. The values are correct for two-dimensional seas ((7a) and
(20a) in Figure 2a and (13) and (27) in Figure 2b) as well as for three-dimensional seas ((34a) and (46) in Figure 2a and (40) and (50) in Fig-
ure 2b) at the center of the group (y = 0). To enable comparison in Figure 2a, the wave number mg: \/gTo used in the scaling of the hori-
zontal axis is the deep water value, so not a function of depth.

99m | _ (14500 (ko)) 2%

23
0z lz=0 ox '’ @3)

where Qsy is given by (20b) and drp(kod) =c4 00/ (gsinh (2kod)). Explicitly, the term arising from the mean
set-down Jgp(kod) can be written as:
_ kodsech?(kod)+tanh (kod)

oro(kod) = 2sinh (2kod) ' @4)

In the deep water limit kod — oo, dep(kod) — 0, and we recover the deep water return flow forcing equa-
tion (8). In the limit kod — 0, drp(kod) — 1/2. The corresponding set-down for deep water is
n®=—¢koA? /4, one order higher in ¢ than (22).

Solving the boundary value problem subject to the bottom boundary condition and the new forcing equa-
tion (23), we obtain for the return flow:

cos (kx)dk, (25)

 —wolao|*(1+ ¢ (kod)) Jw kf(k)cosh (k(z+d))
Urr = )

2natanh (kod) 0 sinh (kd

where d=d /o is an additional nondimensional parameter and f (k) is defined as in (10). By taking the limit d /o
> 1 (and hence kod > 1), we recover the deep water limit (9). With ¢ small, it is however possible for the water
to be shallow with respect to the return flow which varies on the scale ¢ but of intermediate depth or even
deep with respect to the individual waves that scale on 1o=27/ko (the shallow-water limit kod — 0O is consid-
ered in Appendix A for completeness). In this limit (azd/a — 0), (25) reduces to a uniform flow:

__ @0lAX)[*(1+0¢0 (kod))

2tanh (kod)d ’ (26)

for a general spectrum. Figure 3 compares the horizontal velocity (25) for different depths with the shallow
return flow limit (26) at two different locations: at the center of the group x = ¢4t and at the trailing and
leading edge x=c4ot=V/20.

3.1. Lagrangian Transport
For the net horizontal displacement due to Stokes drift by a Gaussian group, we obtain from (20a) as a func-
tion of the initial vertical position of the particle zy:
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Figure 3. Depth decay of the return flow for (a and b) two-dimensional groups and (c and d) three-dimensional groups with equal group
widths in both directions (¢=0,=0,) (a and c) at the center of the group and (b and d) at its edges. The different lines correspond to differ-
ent depths d/6={c0,3.2,1.6,0.8,0.4,0.2} (kod={c0, 20, 10,5, 2.5, 1.25} for ¢=0.16). The deep water limit (d/c —o0) is denoted by a
dashed line and the shallow return flow limits ((26) and (49)) are denoted by dash-dotted lines.

AXSD (Zo)=2\/EOCZO'55D(k0d)COSh (Zko (CI‘|‘Zo))7 (27)
where Jsp(kod)=coth (kod)/(2kod+sinh (2kod)), so that we have dsp(kod)cosh (2ko(d+2)) — exp (2koz) as
kod — oo and we recover the deep water limit (13). Figure 2b examines the depth decay of the net dis-

placement by Stokes drift for different values of kod. The overall form is of course very similar to the Stokes
drift velocity profiles in Figure 2a.

From (25), we have for the net horizontal displacement by the return flow as a function of the initial vertical
position of the particle z:

cos (kt)dkdt, (28)

A = 2055 (ko) rc rc kf(k)cosh (k(zo+d))

w ko —0 Jo sinh (kd)
where Oge(kod)=0sp(kod)(1+dep(kod))sinh (2kod) so that dge(kod) — 1 as kod — oo and we recover (14).
Explicitly, we have for dge(kod):

2kod+3sinh (2kod) +sinh (4kod)

Ore (K =0sp(kod)(1+0rp (k inh (2kod)= . 2
re(kod) - =0so(kod)(1+ ko (kod) sinh (2ked) = 5 e oo Fsinh (2kod) (29)
If the depth is sufficiently small (d/a — 0), (28) reduces to:
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Ser (kod)
2kod

AXRF: _ZﬁO(ZO' (30)
We note that in this shallow-water regime, the net displacement is a (linear) function of o, whereas for deep
water there is no dependence on ¢ apart from through the dependence on depth Z=z/¢ (cf. (14)). In other
words, unlike in the deep water case, the net displacement by Stokes drift (27) and by the return flow (30)
scale equivalently, namely with ¢. The net displacement is evidently no longer a function of the initial verti-
cal particle position. Figure 4 shows the variation of the net horizontal displacement (28) by the return flow
as a function as a function of depth. Comparison with the shallow return flow limit (30) confirms that the
return flow can be approximated as a shallow uniform flow for all except for extremely large depths.

3.2. The Transition Depth

Although it is not possible to develop an explicit expression for the transition depth for general depth kqd,
the expression for the net transport in the limit in which the water is shallow with respect to the return flow
(30) but not with respect to the individual waves (28) gives:

€1))

Ax =2y absp (kod) <cosh (2ko(z0+d))— S Ched) (1 +5FD(k°d))> .

2kod
We can obtain a corresponding estimate of the transition depth by setting Ax, = 0:
B} 1 _; (sinh (2kod)
2 sor= 5 cosh ! <W (1+8r(kod)) ) —d. (32)

Figure 5 compares this approximate transition depth (32) to the implicit solution of Ax (zr)=0 showing the
large domain validity of the shallow return flow approximation of the transition depth (32).

Furthermore, it is evident from (23) that for sufficiently small depth, when both the Stokes drift and the
return flow start to behave like a uniform flow with depth (see Appendix A), the return flow becomes larger
than the Stokes drift. In this limit, the effect of the set-down remains. Setting z7 ;3 =0, (32) can be solved
implicitly to give kod =~ 0.53 independently of the spectrum as an approximate criterion for Axsp=—Axgr at
Zo = 0, the water depth d below which the return flow dominates the Stokes drift at all depth z. The transi-
tion depth in Figure 5 is thus only shown for kod > 0.53.

4. The Effect of Directionality

Realistic sea states are directionally spread and comparison with field measurements by Donelan et al.
[1985] and Ewans [1998] to a wrapped normal distribution gives a root-mean-square spreading parameter
of 15°-30° [Gibbs and Taylor, 2005]. Assuming the spreading angle is small, we assume the root-mean-
square spreading parameter (in radians) corresponds directly to the ratio of the two horizontal scales of the
group g and g,. We then have d3p = 0,/g,=1.6—3.3. In order to make analytical progress, we assume the
effect of directionality is sufficiently small for it to only affect the slow dynamics. Defining two small parame-
ters &,=1/(koox) and &,=1/(koay), where k, remains the wave number of the fast waves in the x direction,
we assume O(g,)=0(¢), but not necessarily & = ¢,. For root-mean-square spreading parameters toward
the lower end of the range 15°-30° this assumption is evidently supported by the data. We have
£,=0.26—0.52, setting &,=0.16. In words, the group is typically somewhat longer than it is wide, but, more
importantly, the length scales are of the same order of magnitude. To study the effect of introducing a third
dimension in the simplest possible way, sections 4.1 and 4.2 initially proceed under the assumption that
0, = oy (and 63p = 1). Section 4.3 then relaxes this assumption and examines different degrees of spreading
within the reported range. Corresponding solutions for d3p # 1 are given in Appendix C.

4.1. Infinite Depth (o, =0y)
In the deep water limit (d —oc) and a three-dimensional sea (x, y, 2), the linear signal (O(«'¢%)) is given by:

n=A(X, Y)eltkox—ot) (33a)
¢ V=B(X, Y, Z)ezellex 0ot (33b)

where we have defined an additional slow scale Y=g,y with ¢,=1/(kos,) and we have assumed the fast
carrier wave travels in the x direction without loss of generality. As for the previous section, in which we
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Figure 4. Depth decay of the net horizontal transport by the return flow for different depths for (a and b) two-dimensional groups and (c and
d) three-dimensional groups with equal group widths in both directions (7=a,=a,). The plots on the left show intermediate values of depth d/
0={3.2,1.6,0.8,0.4,0.2} (kod={20,10,5,2.5,1.25} for ¢=0.16) and the plots on the right show very large depths d/o={c, 25.6,12.8,6.4}
(kod={o0, 160, 80,40} for ¢=0.16). Also shown (dash-dotted lines) is the shallow return flow limit (30). The difference is only visible for really
large depths (right plots).

have modeled a wave group by considering the leading-order term in a separation of scales expansion
between the scales of the group and the scales of the individual waves, we only consider the leading-order
effect of directionality here. In (32), we thus have the peak of the directional and frequency spectrum with
wave number kq traveling in the x direction and consider perturbations away from this in both the direc-
tional and the frequency component of the spectrum. For unidirectional seas, we have é3p =0 (5, — ©0)
and we return to the two-dimensional solutions presented above. To simplify the analysis, we start by con-
sidering the case of a group that is as wide as it is long: ¢ = ox=0,, 63p=1, and thus e=¢,=¢,. Section 4.3
considers more realistic directional distributions.

We have for the Stokes drift and the Stokes transport per unit width at leading order:
1
l,ISD:CL)()I(()QZI(OZ|/‘\(X7 Y)‘Z7 QST: 5(1)0|A(X, Y)|27 (34)

where the only difference with the two-dimensional result (7) is the additional dependence on the slow scale
Y. We note that at leading order there is only a Stokes drift and transport in the x direction. Although the
Stokes drift and Stokes transport are unaffected at leading order in & (v() =8¢") /dy=0 at O(&?)), the return
flow is affected at leading order by the introduction of the third dimension. The “forcing” equation (8) remains
unchanged, but the governing equation has an additional dimension and we thus have for the return flow:
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2 o0 00 1200009 PR N N
URF__(USO|ZO| J J k f(k7l)e\/k2+lzi+i(ki+l}7)df(d7’ (35)
0 — — ~ -
ol Ji2 47
2 o0 oo LIe(L T 35 o . .
g 0l J J KIF(K, ) P wihs +i9) g dl 36)
820 ) oo Jono 24P
2 oo 00 "2 2, a A A
Wep= wo‘ao‘ I'kf(k,/)ev kz+Izz-%—l(kx-%—ly)dkdl7 (37)
8120 ) o)

where X=(x—c,0t)/ox, §=y/a,, 2=2/ay, and f(k,1) is now a bivariate function defined as:

[ ] 1ateypetevay
): . (72|Clo|2 7 9

f(k,1
where k=ko and I=ls. We have f(l},f):nexp(—(l}2+72)/4) for a bivariate Gaussian group
A(x,y)=aoexp (— (x*+y?)/2). Obviously, the third dimension generally reduces the magnitude of the
return flow (see Figure 3), as the mass imbalance caused by the Stokes transport can be remedied by a
return flow in three dimensions rather than one constrained to a plane.

The far-field behavior of the horizontal velocity for such a group (see Appendix B2) is given by a dipole solu-
tion in three dimensions:

_wolag]? 2% —y?-2*

4g ()?2+)72+22)5/2.
At the center of the group (x=0, y=0), the horizontal velocity decays with depth as 2>, evidently a faster
rate of decay with depth compared to the two-dimensional case (2~ 2). At the surface (2=0) and at the cen-
ter of the group (x=0), the far-field decay with the span-wise coordinate y is equivalent to the decay with
depth: y 3. The horizontal velocity generally decays faster with depth for the three-dimensional case and is
also generally smaller in magnitude.

URfr (39)

4.1.1. Lagrangian Transport
From (34), we can obtain for the total horizontal Lagrangian transport by the Stokes drift alone, as a func-
tion of the initial particle coordinates y, and zy:

Axsp (Yo, 20) =2+/maaP e e 0o/0)

where the only difference with the analogous two-dimensional result (13) is the additional dependence on
the transverse (across-group) direction y, given here for a Gaussian group. From (35), we obtain for the net
horizontal transport by the return flow as a function of the initial particle coordinates y, and z:

2 00 00 00 72007005 5 3. PO .
AXRF:_LJ J J Mev k2+’zz°+’(k"+’y0)dkdld)?. 41)
4n2k oo SRR

2

(40)

—00 J 00

At the still water level (zo = 0) and at the center of the group (y, = 0), we obtain from numerical integration of
(41): Axge = —0.010142 / ko, approximately a factor of 11.3 smaller than the two-dimensional case (cf. Axgr ~ —
0.113402 /ko for 2-D) thus illustrating the strong weakening effect of three-dimensionality on the return flow.

4.1.2. The Transition Depth and Width

Upon introducing a third dimension, one length scale, i.e., the transition depth, is no longer sufficient to
map out the transition between forward transport by Stokes drift and backward transport by the return
flow. Assuming that the return flow varies much more slowly spatially than the Stokes drift, an assumption
which was shown to be valid for the transition depth of two-dimensional seas, we obtain a parabolic rela-
tionship for the transition curve Ax, =~ Axsp(yg, z5) +Axre(0,0)=0:

1 1
kozy— Egz(koyg;)zz 5109 (¢)=2.93, (42)

which is illustrated in Figure 6a by comparing to the full (y, 2) field of Ax_ without making this assumption,
finding excellent agreement. We define the transition depth and the transition width as intersections with
the z axis and the x axis, respectively:
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0 . Z1DRE3D 2%, (log (¢)—5.86), (43a)
05+ | Y7 ore.3p=+01/5.86—log (¢). (43b)
1 Figure 7 compares these approximate
o | length scales to the full solutions demon-
.5 : strating near-perfect agreement for a broad
. . kod = 0.53 range of bandwidths.
= ol L : 4.2. Finite Depth (s, =0,)
| ThREC R Combing the effects of finite depth (section 3)
25L€ =0.32 _ and that of adding the third dimension (sec-
P ————————— tion 4.1), gives for the linear signal (O(«'°)):
I P e 0V =A(X, y)eleen, (44)
2T SRF h (ko(z+d)) ;
3.5 L L MW—B(X.Y.Z cosh (ko oilkox—wot)
10° 102 OB Y ) e hod) :
kod (45)
Figure 5. Transition depth for two-dimensional seas comparing the where the slow scales are defined as in (6) and Y
approximate transition depth for deep water (z7 pge) (18) and the approxi- =&y with g = 1 /(koﬂ'y) =g =¢ as in section

mate transition depth for a shallow return flow (z} ¢g¢) (32) to the implicit

solution of Ax, (zr)=0 for three values of e=1/(koo). 4.1. From the linear (in o) free surface boundary

conditions (4), we have B,—o=—IigA/wy and
wi=gkotanh (kod), the linear  dispersion
relationship.

From the linear signal (44) and (45), expressions for the Stokes drift and the Stokes transport can be
obtained:

_ (,()oko cosh (2k0(d+2))

2
U0 T T inh 2 (kod) AL 4

Mo

2
2tanh (kod) IAX, V)7, (47)

Qst=
where the only difference with their two-dimensional analogs is an additional dependence on y. The
leading-order Stokes drift and Stokes transport are only nonzero in the x direction. The return flow is given
by:

URr=

R [s2 2, -
_w0|a0|2(1+5FD(kod))Joo J~oo k™ f(k,I)cosh (\/ k +I (Z+d))ei('}’?+7y)d1}d7 48)
8n2tanh(kod)a oo [r2 a2 . 2 A2- ’
k™ +I"  sinh(\/ k +Id)

where k=ka, I=lg, x=(x—cg0)/7, y=y/0, 2=2/a, d=d/a, dep(kod) defined in (24) and f(k,I) in (38).

Taking the limit d/c — 0, we obtain a flow that is uniform with depth but varies spatially accord-
ing to:

2 + 0 < Cfki e Gy A A
Up=— (Uo‘ao‘ (1 6FD(k0d)) J J ki(’;(k;zl)el(kx+ly)dkdl (49)
—o0 J -0 +

8n?tanh (kod)d

4.2.1. Lagrangian Transport
The net horizontal transport by Stokes drift alone can be found from integrating (46) with respect to time
for a Gaussian group. As a function of the initial particle coordinates y, and z,, we obtain:

AX5D=2ﬁd2055D(kod)COSh (2k0(d+Zo))€Xp (_ (yo/U)z), (50)

where dsp(kod)=coth (kod)/(2kod+sinh (2kod)). The only difference with the two-dimensional solution (27)
is the additional dependence on y,=yo /0. Similarly, the net displacement by the return flow is given by:
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Figure 6. Net horizontal Lagrangian displacement by a three-dimensional wave group with ¢ = 6,=0, for ¢=0.16 and different values for depth d/o={c0,6.4,3.2,1.6,0.8,0.4,0.2,0.1,
0.05} (kod={00, 40,20, 10,5,2.5,1.25,0.625,0.3125} for £=0.16) showing the approximate transition curve ((42) and (53)) (black line). Note that the color scale saturates for positive
Ax_ Note the vertical axis is scaled differently in Figure 6a.

2 o oo oo B2e(h g 72
AXRF(YOJO):_MJ J J k f(k,I) cosh (\/ k +/ (Zo+d)) (k% +174) dkd/dX (51)

an?k e T -
T VAT sinh (VK 4T d)

with Oge(kod)=Jdsp(kod)sinh (2kod)(1+0rp(kod)) as before. We consider the shallow-water limit d/c — 0
and obtain from (51):

—00

ik +170) gk didlx (52)

Axie (vo) = ““5RF(k0dJJ” J'°° J‘” k f(i< 7)

4n2 kod o k +/

J =00

where we note that the net transport by the return flow is constant with depth, but remains a function of
the transverse coordinate y,. Figure 4 shows the variation with depth of the net displacement by the return
flow for different depths at the center of the group y = 0, whereas Figure 8 examines its variation with the
transverse coordinate y at the still water level z= 0. It is evident from these figures that the shallow return
flow approximation (52) is valid except for extremely large water depths (kod=20 for £=0.16).
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Figure 7. Approximate deep return flow (a) transition depth z; g 5p and (b) width y7 e 3 (43) (dashed lines) compared to the full solu-

tions (continuous lines) for infinite depth and in three-dimensional seas (o, = gy, d3p = 1). Note that the full solutions are indistinguishable
from the approximate solutions.

4.2.2. The Transition Depth and Width
As before, we can obtain the following approximate relationship for the transition curve: Axi ~ Axsp(y3,Z5)
+Axge (0, 0)=0 based on the shallow return flow limit (52). Explicitly, this can be rewritten as:

1 _ sinh (2kod) (1+6rp (kod L2
ZS:% (COSh 1(CSRFA3D(53D:1) (2ko ;Eq,d ro(ko ))e(yO/”) )—d), (53)
where the nondimensional constant Csgr 3p(d3p=1) is given by:
N PN
N R i N iy O A (.00 D B PPN
CSRF,3D(O3D_1 )— 472:—5/2 jioc J‘fx J‘ioo Wel( X y)dkdldX ~ 00567 (54)

with the second approximate equality holding for a Gaussian group with ¢, = g,

3D: z=0,03p =1 3D: 2=0,063p =1

koAIRF/Oé2

. -0.02 ' ' : ' '
30 -20 -10 0 10 20 30 30 -20 -10 0 10 20 30

y/o y/o

(a) (b)

Figure 8. Variation of the net horizontal transport by the return flow in the vertical plane orthogonal to the direction of propagation for
different depths. The plot on the left shows intermediate values of depth d/a={3.2,1.6,0.8,0.4,0.2} (kod={20,10,5,2.5,1.25} for
£=0.16) and the plot on the right shows very large depths d/o={00, 25.6,12.8,6.4} (kod={o0, 160, 80,40} for ¢=0.16). Also shown
(dash-dotted lines) is the shallow return flow limit (30). The difference is only visible for really large depths (right plots).
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Figure 6 illustrates the topology of the transition curve for different depths comparing the finite depth solutions
for the net Lagrangian transport Ax, with the approximate transition curve (53). It is evident from Figure 6 that
the transition “curve” is no longer a continuous curve when finite depth effects are considered. In fact, for shal-
low enough depths and sufficiently spread groups the Stokes drift dominates the return flow at all depths in
terms of its net horizontal transport underneath the center of the group. For the case d3p = 1 considered here,
this depth criterion corresponds to kod ~ 2.6 (from sinh (2kod)(1+03p)/(2kod)=1/Csgr 30(930=1)). The sepa-
ration of physical domains that is observed for deep water, in which the Stokes drift dominates near the surface
and the return flow at depth is transformed for shallow water provided the group has some directional spread-
ing. In that case, the return flow is dominant everywhere underneath the group (|y/g|=<2) and the return flow
dominates everywhere else (Jy/a|=2). Although we no longer have a parabola, we still define the vertical and
horizontal scales of the transition curve as 77 o 3p = 75 (y5 =0) and y1 sge 3p = Y5 (25=0). We find:

71 _ 1) Sinh (2kod)
cosh (CSRF<3D(53D 1) 2kod 4 for sinh (2kod) 1
Z‘T’,SRFaD: 2k0 2k0d a CSRF’3D(53[): 1) 7 (33)
» sinh (2kod) 1
2kod Csrrap(d3p=1)’
! =g, /lo . (56)
Yrsee30 \/ 9 (CSRFBD((SBD:U tanh (2kod)

4.3. Realistic Directional Spectra

Considering more realistic degrees of directional spreading, Appendix C gives the solutions for the three-
dimensional return flow field for ¢, # o, (and d5p # 1). For different degrees of directional spreading repre-
sentative of real-world seas, this section then compares the deep and shallow return flow limits of the net
displacements of a particle at the free surface and transition depths and width than can be obtained from
the velocity fields in Appendix C. We first consider the two limits in turn for d3p # 1.

4.3.1. The Deep Water Return Flow Limit
In deep water (d/c —o0), the net transport by Stokes drift and return flow associated with a directionally
spread group are given by:

2

Axsp (Yo, 20)=2+/Tox o’ exp <2k020— (i_o) >, (57)
y

2/nC d3p )2

Axae (yo=0,20=0) = — M (58)
0
where Cppe 3p(J3p) is given by:
) 00 00 120005 L L
CDRF13D(53D)= ﬁ‘[ J J Mei(kx-%—lyo)dkdldf(. (59)
T —00 -0

o[l + 021

From numerical evaluation of the numerical integral for a Gaussian group, we have for the constant Cpgr 3p
={0.032,0.0056,0.0028,0.0014,0.0010} for 63p={0,0.5, 1, 2,3} with corresponding values of Axge(yo=0,
70=0)={0.1134,0.0197,0.0101,0.0051,0.0034 }oi? / ko illustrating the dramatic effect of even small degrees

of directional spreading on the net horizontal transport by the return flow. The approximate transition curve
remains parabolic:

1
koZo - =

2
'I o
2 (i‘i’) N 5'09 (Csrr30(63p)ex) - ©0

y

Approximate transition depths and widths are:

1
Z7 DR 3D 2o (log (&) +log (Csge 30(d3p))) » (61)
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(@ °

-0.5

yr/oy

kod

Figure 9. (a) Transition depth and (b) width for three-dimensional seas with different degrees of directionality d3p=0 /0, and as a func-
tion of water depth kod. Shown are the deep return flow limit (61) and (62) (horizontal dashed lines), the shallow return flow limit (67) and
(68) (dashed lines), and the implicit solution for intermediate depth (continuous lines).

y{DRF,_:,DZGy \/"09 (CSRFABD(53D))_|09 (Sx)- (62)

4.3.2. The Shallow-Water Return Flow Limit
Under the shallow return flow approximation (d/c — 0), the net transport by Stokes drift and return flow
associated with a directionally spread group are given by:

Axsp (Yo, 20) =2+/m02 0, dsp (kod)cosh (2ko (d+2o) Jexp (— (vo/ay)°), (63)
Axpr(Y0=0,20=0)=—2/7ta,6sp (kod) (1+5rp (kod)) % Csrr3p(03D), (64)
where Cspe3p = is given by:
Csrr3p(030) = # ‘io [i Jic If;i(—(fz’ii)ze’“ dkdldx. (65)
3D

From numerical evaluation of the numerical integral for a Gaussian group, we have for the constant Csgr 3p
={1,0.11,0.056,0.028,0.019} for 63p={0, 0.5, 1, 2, 3}. The approximate transition curve is given by:

ho (sinh (2kod)

1
Zg= ——COS Yd
)

T Csrr30(d3p)€XP ((J/o/Uy)z)) —d. (66)
0

Approximate transition depths and widths are:
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Table 1. Net Horizontal Transport for Particles at the Free Surface and at the Center of the Group (zo=0, y,=0) for Different Depths
(Rows) and Different Degrees of Directional Spreading (Columns)?

orms =0 Orms =5 orms=10" orms =20 oams =30’
Location d kod [aol (M) Axsp (M) Axge (M) Axge (M) Axge (M) Axge (M) Axge (M)
Coastal 10 m 0.68 29 14.4 =119 =12 —0.62 =031 —0.21
—-11.9 -1.2 —0.62 —0.31 —0.21
—0.07 —0.01 —0.005 —0.003 —0.002
Coastal 20m 1.0 39 149 —8.0 —0.82 —0.41 —0.21 —0.14
—8.0 —0.82 —0.41 —0.21 —0.14
—0.09 —0.01 —0.007 —0.004 —0.002
S. North Sea 40 m 1.7 4.7 18.1 —54 —0.56 —0.28 —0.14 —0.09
—-5.4 —0.56 —0.28 —0.14 —0.09
—=0.11 —0.02 —0.009 —0.004 —0.003
C. North Sea 80m 3.2 5.0 21.6 =313 —0.34 —0.17 —0.09 —0.06
—-33 —0.34 —-0.17 —0.09 —0.06
—0.11 —0.02 —0.009 —0.005 —0.003
N. North Sea 160 m 6.4 5.0 220 =7/ —0.17 —0.09 —0.04 —0.03
-1.7 —-0.18 —0.09 —0.04 —0.03
—0.11 —0.02 —0.009 —0.005 —0.003
Continental Slope 500 m 20 5.0 22.0 —0.55 —0.06 —0.03 —0.01 —0.01
—0.55 —0.06 —0.03 —0.01 —0.01
—0.11 —0.02 —0.009 —0.005 —0.003
Continental Slope 1.0 km 40 5.0 220 —0.27 —0.03 —0.01 —0.007 —0.005
—0.28 —0.03 —0.02 —0.008 —0.0058
—0.11 —0.02 —0.009 —0.005 —0.003
Abyssal Plane 3.0 km 1.2 X 10? 5.0 22.0 —0.09 —0.009 —0.005 —0.002 —0.001
—0.14 —0.02 —0.01 —0.005 —0.003
—0.11 —0.02 —0.009 —0.005 —0.003
Abyssal Plane 6.0 km 2.4X10? 5.0 220 —0.05 —0.005 —0.002 —0.002 —0.0008
—0.12 —0.02 —0.009 —0.005 —0.003
—0.11 —0.02 —0.009 —0.005 —0.003
Mariana Trench 11 km 4.4 X107 5.0 22.0 —0.03 —0.003 —0.001 —0.0006 —0.0004
—0.11 —0.02 —0.009 —0.005 —0.003
—0.11 —0.02 —0.009 —0.005 —0.003

*We set T[,=10s, «=0.2, and &, =0.16. Three values are reported. The top value of Axge corresponds to the shallow-water return flow
limit, the bold value to the full finite depth solution, and the bottom value to the deep water return flow limit. The root-mean-square
spreading parameters aggus={0 ,5 ,10 ,20",30 } correspond to d3p={0,0.54,1.1,2.2,3.3}. If zr < —d, the Stokes drift dominates the
return flow at all depths below the center of the group.

cosh -1 (% (1 +5FD(k0d))CSRF,3D(53D))

71 sRF3D= 2% —d, (67)

tanh (2kod) (1 +5Fo(kod))> 68)

Y1 sre.30 =0y 1| —109 (Csrr 30(d3p)) —log ( 2kod

where the transition depth is only defined for sinh (2kod)(1+ep (kod)/(2kod) > 1/Cspe30(03p). For smaller
depths, the Stokes drift is always larger underneath the center of the group.

Figures 9a and 9b compare the transition depth, defined as the solution to Ax(yo=0,zy=2zr)=0, and the
transition width, defined as the solution to Ax(yo=yr1,20=0)=0, to the approximate scales in the deep
return flow limit (d/c —o0) (61) and (62) and the shallow return flow limit (d/c — 0) (67) and (68) for differ-
ent degrees of directional spreading. It is evident from these figures that the shallow return flow limit pro-
vides an excellent approximation except for very large depths. Unless the sea state is perfectly
unidirectional, a transition depth cannot be defined for kod=<2 with all net transport positive below the cen-
ter of the group. The kinks in Figure 9a arise because of the change in topology of the transition curve as
shown in moving from Figures 6e to 6f.

5. Conclusions

This paper has examined the Lagrangian transport by wave groups in finite depth and directionally spread
seas driven by two opposing effects: the Stokes transport transporting fluid particles in one direction and
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Table 2. Transition Depth at the Center of the Group (zo = 0, y, = 0) for Different Depths (Rows) and Different Degrees of Directional
Spreading (Columns)®

orms =0 ORMs =5 orms =10’ orms =20 oams =30’
Location d kod Z1 (m) Z7 (m) Z7 (m) Z7 (m) Z7 (m)
Coastal 10m 0.68 —1.6 <—d <—d <—d <—d
-1.6 <-d <-d <-d <-d
—38.38 —52.2 —57.2 —62.3 —65.2
Coastal 20 m 1.0 —6.4 <—d <—d <—d <—d
—6.4 <—d <—d <—-d <—-d
—50.9 —68.6 =751 —81.7 —85.6
S. North Sea 40 m 1.7 —14.1 <—d <—d <—d <—d
-14.1 <-d <—-d <—d <-d
—61.4 —82.8 —90.6 -98.7 —103
C. North Sea 80m 3.2 —23.1 =515 —60.3 —70.9 <—d
—23.1 —-51.5 —60.3 —70.9 <—d
—65.3 —88.0 —96.4 05 —110
N. North Sea 160 m 6.4 -31.8 —60.1 —68.5 =771 —82.1
—31.8 —60.1 —68.5 =771 —82.1
—65.5 —88.3 —96.7 -105 -110
Continental slope 500 m 20 —459 —74.2 —82.7 -91.3 —96.3
—45.9 —-74.2 —82.7 -91.3 —96.3
—65.5 —88.3 —96.7 —105 —110
Continental slope 1.0 km 40 —54.5 —80.9 —-91.3 —99.9 —105
—54.3 —80.3 —90.7 —99.3 —104
—65.5 —88.3 —96.7 —105 -110
Abyssal Plane 3.0 km 1.2 X 10? —68.2 —96.5 —105 =113 =119
—63.2 —87.9 —96.3 -105 -110
—65.5 —88.3 —96.7 =105 —110
Abyssal Plane 6.0 km 2.4%10° —76.8 —105 114 —122 —-127
—64.9 —88.3 —96.7 —105 -110
—65.5 —88.3 —96.7 -105 -110
Mariana Trench 11 km 4.4 x10? —65.5 —88.3 —96.7 —105 -110
—65.5 —88.3 —96.7 —105 -110

*We set T, = 10 s and &=0.16. Three values are reported. The top value of Axgr corresponds to the shallow return flow limit, the
bold value to the full finite depth solution and the bottom value to the deep return flow limit. The root-mean-square spreading parame-
ters apus={0",5,10",20",30 } correspond to d3p={0,0.54,1.1,2.2,3.3}.

the return flow opposing this by transporting fluid particles in the opposite direction. Both the effect of
finite depth and the effect of directional spreading are crucial factors in determining the magnitude and
physical importance of the net transport.

To illustrate these findings, Table 1 shows estimates of the net transport of a particle located at the still
water level for a broad range of water depths ranging from shallow coastal regions (d = 10 m) to the deep-
est point in the ocean (d =11 km). The displacements reported in Table 1 are those by one single wave
group and can be obtained from integrating the velocity field of both the Stokes drift and the return flow
from t — —oo to t — oco. Specifically, the values reported for the net displacement by the Stokes drift are
given by (50). For the net displacement by the return flow for each water depth and each degree of direc-
tional spreading, three values are reported: the top value corresponds to the shallow-water return flow limit
(64), the middle (bold) value to the general finite depth solution obtained from integration of the velocity
field corresponding to (C3) and the bottom value to the deep water limit (58). The values shown correspond
to a wave group of steepness a=kg|ag|=0.2, a bandwidth parameter of & =0.16 corresponding to the best
fit of a Gaussian to a Jonswap spectrum [Gibbs and Taylor, 2005] and a peak period of T, = 10 s. It is evident
from this table that the effects of depth on the magnitude of the transport by the return flow are large. Evi-
dently, the limits of validity of a Stokes expansion are reached for sufficiently small depth, when the ratio of
depth and wave amplitude d/|ag| is no longer large. Different authors have studied the range of validity of
Stokes theory [Dean, 1970; Hedges, 1995; Fenton, 1990; Sobey, 2012]. Typically, the shallow-water limit of
validity can be expressed in terms of the Ursell number [Ursell, 1953]:

12
_Hzg

Ur_?a

(69)

where H = 2a, is the wave height. Hedges [1995], for example, shows that U, = 40 gives a good boundary
between the validity of Stokes and Cnoidal theory. Using the small parameters in this paper, we have from
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(69): U,=8n%x/(kod)*. Therefore, U, = 40 and o = 0.2 corresponds to kod ~ 0.73 and only our estimates for
d =10 m in Table 1 are perhaps marginally outside of the domain of validity of Stokes theory. Furthermore,
by comparing estimates based on the shallow return flow limit and the deep return flow limit to the general
finite depth solution, we show that the return flow can be modeled a uniform flow with depth (the shallow
return flow limit) for water depths up to 0.5-1 km for the case considered in Table 1.

Also shown in Table 1 is the effect of directional spreading on the return flow, demonstrating the large
decreasing effect of even a small degree of directional spreading on the magnitude of the transport by the
return flow. The values of the root-mean-square spreading parameter (15°-30°) shown correspond to the
typical range observed in field measurements for storm-driven waves [Donelan et al., 1985; Ewans, 1998].

Finally, Table 2 provides an overview of estimates of the transition depth, defined as the depth at which the
Lagrangian transport by the Stokes drift and the return flow exactly balance and Ax, = 0, for a broad range
of water depths. As for Table 1, three values are shown: the shallow return flow limit (67) on top, followed
by the general finite depth solution obtained from solution of the implicit equation for Ax_. =0 in bold and
the deep water limit (61) at the bottom. Again, the effect of directional spreading is significant and for suffi-
ciently shallow water the transition depth cannot be defined, as the return flow is located around instead of
below the group.

Although the present paper has only aimed to study the particle displacement by a single wave group, its
results, namely the large dependence on depth and directionality, have implications for Stokes drift as forc-
ing of wave-driven upper ocean mixing. In line with our findings, Webb and Fox-Kemper [2015] have very
recently found a large impact of wave spreading and multidirectional waves on estimates of Stokes drift
from data also identifying depth effects. Building on from work in Breivik et al. [2014] multichromatic wave
are considered. The present study sheds light on the role of the return flow that then complements the
Stokes drift and it is clear that at least from the perspective of Lagrangian particles near the surface, its role
is small especially when the sea is directionally spread, unless the observer is in a coastal region and the
water depth is shallow.

Appendix A: The Shallow-Water Limit

A1. Two-Dimensional Shallow-Water Limit
In the shallow-water limit kod — 0, the linear signal (19) becomes:

u(1 )— g_koA(X)ei(kgxfu)ot)

; (A1a)
Wo
k )
W =—iT2 ko(d +2)A(x) ), (A1b)
0

with the linear dispersion equation wo=+/gdko and 7"V =A(X)exp (i(kox—wot)). The velocity field in (A1)
still satisfies conservation of volume. The Stokes drift and transport are given by:

AX) 2

USD:‘ (2)| %, (A2a)
AX)

Qg = A (2)‘ \/g, (A2b)

It is evident that the limit kod — 0 must be taken with great care and that, in such a limit, we must also
have o — 0. In physical terms, finite amplitude waves cannot exist on a infinitely thin fluid. From (26), we
have:

_ 3AWP g
2 2 a3

(A3)

The only net contribution to Lagrangian transport then results from the mean set-down (94 /9t) and we
have u, =usp+uge=—(|A(X)|*/4)\/g/d?, a negative uniform flow. This result is perhaps intuitive, as in the
limit of shallow depth the group and phase velocities become equal. In physical terms, individual waves
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then no longer move through the group taking particles with them and hence cannot drive the irrotational
circulation of Stokes drift and return flow associated with deep water wave groups.

A2. Three-Dimensional Shallow-Water Limit
As before, the leading-order Stokes drift and transport are readily extended to three dimensions:

AX,Y)[?

USD_—| (é )‘ —g?’, (Ada)
AX, V)

Qsr= % \/g (A4b)

Taking note of the return flow “forcing equation” (21), conservation of volume can be satisfied in a two-
dimensional (x, y) domain to give:

J MO YY) gy, A5)

1
e
" anJ-oo oo (xtx*) 2 (yye)?

where m(x*, y*) is the source strength of a distribution of sources (and sinks) located at z= 0. We have
used Jgp(kod) — 1/2 as kod — 0. Their strength is given by:

L _30Q5(¢,y") 3 [gaol’ X" e ity jo)
N =__"=2\" 7 /= (27T g ¢ A
m(X 7)/) 2 8)(* 2 d o O'e ’ (6)

where we have used a summation of dipoles to solve Laplace subject to the boundary condition at z=0
(21) (see Appendix B). The second identity in (A6) holds for a Gaussian group with ¢ = ox=g,.

Appendix B: The Deep Water Return Flow as a Summation of Sources and Sinks

B1. Two-Dimensional Summation of Sources and Sinks

From the potential of a source with strength M in a two-dimensional infinite half-space located at x = x*
and z= 0, ¢ge=(M/7)In (1/ (x—x*)>+22), we obtain for the horizontal velocity of a dipole with strength m
per unit length and its source and sink located at x = x* and x = —x*, respectively:

dx*, (B1)

dURF=— -
T (x—x*)* 422 (x+x*)’+22

m { X—x* x+x*
(

from which the return flow field can be found by integrating with respect to x* from x* = 0 to x*—oc. The

far-field limit, valid for either |x| > ¢, |z| > o or both, is:

2 X272 r‘ 1 wolao] x*-2*

Upp=——— | M X'd'=————————, B2
e+ 22)? ) ) 2V o (3P4 ®2

where we have used x=x/¢ and Z=z/¢ and the second identity holds for a Gaussian spectrum:

B2. Three-Dimensional Summation of Sources and Sinks (ox=0)

From the potential of source with strength in a three-dimensional infinite half-space located at (x*, y*), ¢ge
=—(M/(2n))/ \/(xfx*)2+(yfy*)2+zz, we obtain for the horizontal velocity of a dipole with its source
located at (x*, y*) and its sink at (—x*, y*):

X—x* X+x*

& ((X—x*)2+(y_Y*)2+ZZ>3/2 ((tx) +y =y’ +2)

duge 72 dx*dy*, (B4)

from which the return flow field can be found by integrating with respect to x* from x* = 0 to x* — oo and
with respect to y* from y* — —oo to y* — oo. The far-field limit valid for |x| > g, |y| > 0, and |z| > g is:
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_ 2X2*y2*22 Joc J~oc 2m(x*,y*)x*dx*dy*
Fo=
0

(x2+y2+22)°/2 n
2 2_c2_ 52 (B5)
_ (1)0|G()| 2)A( _y —Z
4g ()?2+y2 +22)5/2 ’
where the second identity holds for a Gaussian spectrum:
koK 3Q X*7 a X * *
o, y7)= DTS o o2y o) ®6)

Ox* o

Appendix C: Three-Dimensional Return Flow With ¢, # o,

C1. Infinite Depth (s # o))
The assumption o, = o, (and d3p = 1) has been relaxed in section 4.3 to examine the effects of realistic degrees
of directional spreading. The corresponding solution for the return flow velocity potential with d5p #1 is:

¢RF:fwo\ao\2Jx JDO kf (k1) e\/’?Z+725§02+i<ki+79)d/}d]7 )

2 A2
k™+1°62,

-0

where X=x/0,, y=y/o,, 2=z/0y, and f(l},i) is now a bivariate function defined as:

—00 5 , (C2)
0x0y|aol

j j IA(x,y) P D) dxdy
Fk,I)= 2=

where k=ka, and 7=lay. We have f(k,1)=mexp (*(I}2+72)/4) for a bivariate Gaussian group
A(x,y)=aoexp (= (x*+y*)/2).

C2. Finite Depth o # oy
For finite depth, the corresponding solution for the return flow is:

2 2. oA
iwo|do|* 1+ (kod) ‘ J kf(k,1) cosh(y/k +I b§D(Z+d))ei(kk+79)d[}d7 (3)

2
8n2tanh (kod) m sinh md)

with d=d/a,. In the shallow return flow limit, we obtain:

¢RF7

k519 gkl (C4)

_(Uo|ao|2(1+($FD(kod)) Jm JOO k f(k I)
8n2tanh (kod)d ook +/ 5
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