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Abstract

An overview is given of the WRT method for the computation of weakly resonant non-linear four-wave interactions in a gravity wave spectrum

and its application in discrete spectral wave models. The WRT method is based on Webb’s [Webb, D.J., 1978. Nonlinear transfer between sea

waves. Deep-Sea Res., 25, 279–298.] transformation of the Boltzmann integral and the numerical method introduced by Tracy and Resio [Tracy,

B.A., Resio, D.T., 1982. Theory and calculation of the nonlinear energy transfer between sea waves in deep water. WIS technical report 11. US

Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, USA, 47 pp.]. It is shown that Webb’s method produces an attractive set

of integrable equations. Moreover, the Jacobian term arising from the integration over the frequency delta-function in the Boltzmann integral has a

singularity well outside the energy containing part of the wave spectrum. A description is given of methods for computing the integration space for

a given discrete spectral grid, both for deep and finite depth water. Thereafter, the application of Webb’s method to discrete spectral wave models

is described, followed by a summary of techniques reducing the computational workload while retaining sufficient accuracy. Finally, some

methods are presented for the optimal inclusion of the WRT method in operational discrete spectral wave prediction models.

D 2005 Published by Elsevier B.V.
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UNCORR1. Introduction

The prediction of wind-generated waves is important for the

design and safety of many offshore and nearshore structures

and for the study of ocean surface related physical processes.

Important tools for the prediction of these waves are third

generation discrete spectral models. These models compute the

evolution of wave action density N =N (t,x,y,k,h) as a function
of time t, space x and y, wave number k and direction h. This
evolution can be described with the action balance equation

BN

Bt
þ B

Bx
cg;xN
� �

þ B

By
cg;yN
� �

þ B

Bk
ckNð Þ þ B

Bh
chð Þ ¼ Stot:

ð1Þ

The c-terms represent the rate of change of action density in

spatial or spectral space. The term Stot on the right hand side of

this equation is the source term, describing the changes in

action density at each spectral component due to various

physical processes. In present day third generation wave
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models, it is considered to be the sum of the following known

individual physical processes

Stot ¼ Sinp þ Swcap þ Snl4 þ Sfric þ Sbrk þ Snl3 þ SBragg
� �

: ð2Þ
In this equation Sinp is the generation by wind, Swcap is the

dissipation by whitecapping, Snl4 are the non-linear four-wave

interactions exchanging wave action between sets of four

waves. The terms between the brackets become important in

shallow water, where Sfric is bottom friction, Sbrk is depth-

limited wave breaking, Snl3 are non-linear interactions between

sets of three waves and SBragg is the Bragg-scattering term.

The aim of such models is to represent each physical

process in a source term as good as possible, preferably based

on first principles. This is rather difficult for many physical

processes; either because the underlying physics is poorly

understood, which is the case for the dissipation by white-

capping, or because the computational method is too time

consuming, which is the case for the non-linear four-wave

interactions. Consequently, many crude or incomplete para-

meterisations have been developed, each of which only applies

for a limited range of conditions. In general, these parameter-

isations have a simple mathematical structure and are relatively
(2005) xxx – xxx
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easy to compute. Tuning of the models generally compensates

for the deficiencies of these approximations.

The source term for non-linear four-wave interactions has a

special place among the source terms, because so far it is the

only source term that can be described by a closed set of

equations derived on the basis of first principles.

It is nowadays widely accepted that weakly resonant non-

linear four-wave interactions play an important role in the

evolution of the energy spectrum of free surface gravity waves

propagating at the ocean surface (cf. Phillips, 1981; Young and

Van Vledder, 1993). Hasselmann (1962, 1963a,b) developed the

theoretical framework for these interactions for a homogenous

sea with a constant depth. He formulated an integral expression

for the computation of these interactions, which is known as the

Boltzmann integral for surface gravity waves. A few years later

Zakharov (1968) derived an equivalent form, which is known as

the kinetic equation. Both methods consider resonant interac-

tions between sets of four wave numbers k
Y

1; k
Y

2; k
Y

3 and k
Y

4.

The computation of the Boltzmann integral is rather

complicated and very time consuming since it requires the

solution of a 3-fold integral over 3 wave number vectors.

Because of this complexity it is (still) not feasible to include the

full solution of the Boltzmann integral in operational spectral

wave prediction models. Therefore, exact methods for com-

puting the quadruplets are restricted to research models in

which computational requirements are not a critical issue.

To overcome this disadvantage of exact methods, Hassel-

mann et al. (1985) developed the Discrete Interaction

Approximation (DIA). They show that the DIA preserves a

few but important characteristics of the full solution, such as

the slow downshifting of the peak frequency and shape

stabilisation during wave growth. The development of the

DIA triggered the development of third generation wave

prediction models, like the WAM model (WAMDIG, 1988),

WaveWatch (Tolman, 1991), TOMAWAC (Benoit et al., 1996)

and the SWAN model (Booij et al., 1999). The DIA was

initially developed for deep water. The WAM group (WAM-

DIG, 1988) introduced a scaling technique to estimate the non-

linear transfer for an arbitrary water depth. This technique

contains a parameterisation of the magnitude scaling derived

by Herterich and Hasselmann (1980).

In the last few years it became evident that the DIA shows

some deficiencies (cf. Van Vledder et al., 2000). The DIA is

not able to properly represent the non-linear transfer rate in

comparison with exact solutions of the Boltzmann integral. For

example, the DIA pumps too much energy from the spectral

region near the spectral peak to higher frequencies. Van

Vledder and Bottema (2002) showed that the present depth

scaling does not include the inherent frequency dependent

scaling behaviour. These known deficiencies of the DIA

hamper the further development of source terms for third-

generation discrete spectral models. Therefore, with continuing

improvements in the description of the other processes and

improved numerics, there is a strong need for replacing present

approximate methods for the calculation of the quadruplet

wave–wave interactions with methods that are both more

accurate and computationally efficient.
ED P
ROOF

The quality of the source term for the computation of the

non-linear four-wave interactions in discrete spectral models

can be improved in various ways. One approach is to improve

the DIA by extending it with more and generally shaped

interacting wave number configurations. This approach was

already mentioned in Hasselmann et al. (1985), but not

implemented due to operational limitations. The basic frame-

work for extending the DIA is described in Van Vledder

(2001). Examples of extending the DIA with more wave

number configurations are given in Van Vledder et al. (2000),

Hashimoto and Kawaguchi (2001), and Tolman (2004). The

extension of the DIA with additional configurations is not

straightforward since no optimal procedure has yet been found

to select such configurations. A general drawback of extended

DIA’s is that a set of multiple configurations is only valid for a

limited set of discrete spectra for which the coefficients of this

set were determined, often by non-linear multi-variable

optimisation methods.

Another approach is to speed up the computational methods

for the exact computation of the non-linear transfer rate while

retaining the basic properties of the computational method.

This can be achieved by reducing the integration space in the

evaluation of the Boltzmann integral, e.g. by filtering out small

contributions or by using higher order quadrature methods.

From a theoretical point of view the second approach is the

most attractive since it does not involve tuning for a particular

set of spectra. Therefore, one of these methods is the subject of

this paper.

In literature various methods have been proposed to solve

the Boltzmann integral by rewriting this integral to remove the

d-functions and to obtain a set of integrable equations.

Hasselmann and Hasselmann (1981) were among the first to

develop such a method. They rewrote the Boltzmann integral

into a symmetric form and incorporated their method in the

EXACT-NL model (Hasselmann and Hasselmann, 1985a).

Their method explores symmetries and filtering techniques to

efficiently compute the non-linear transfer rate for similarly

shaped spectra. The first step in their method is choosing a

representative reference spectrum for which the full non-linear

transfer rate is computed. In the next step unimportant

contributions to the transfer integral are filtered out. The

filtered set of contributions can then be used to compute the

non-linear transfer rate for similarly shaped spectra. A

drawback of this method is that when a spectrum deviates

too much from the reference spectrum, a new reference

spectrum must be defined and the Boltzmann integral must

be re-computed and the contributions must be re-filtered.

Weber (1988), Van Vledder (1990) and Van Vledder and

Holthuijsen (1993) used the EXACT-NL model in various

studies of the evolution of the wave spectrum. A description of

applying this computational technique can be found in Van

Vledder and Weber (1988).

Webb (1978) presented a set of equations to solve the

Boltzmann equation. Using some analytical transformations he

was able to eliminate the d-functions in (6). Tracy and Resio

(1982) incorporated the method of Webb (1978) in a

computational method for discrete deep-water spectra. They
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noted that different parts of the integration space are related via

scaling laws, thus saving time in the preparatory phase of a

computation of the non-linear transfer rate for a given

spectrum. Resio and Perrie (1991), and Young and Van

Vledder (1993) presented further applications of this method.

Resio (1998) also developed a shallow water version of Webb’s

method, which was applied by Resio et al. (2001). This

computational method is generally known as the WRT-method

for the computation of the non-linear transfer rate due to non-

linear four-wave interactions in a discrete wave spectrum. Lin

and Perrie (1998) presented a Reduced Interaction Approxi-

mation (RIA), which is based on the WRT-method. In their

method they restrict the integration space around a central

wave number, thereby limiting the number of interacting wave

number configurations.

Masuda (1980) proposed another set of equations for

solving the Boltzmann integral for deep water. Like, Webb

(1978), he applied a number of analytical transformations to

eliminate the d-functions in the Boltzmann integral, the basic

difference between their methods being the pair of wave

numbers considered at the highest level, with Webb (1978)

using the pair k
Y

1; k
Y

3

on
and Masuda (1980) using the pair

k
Y

1; k
Y

2

on
. Hashimoto et al. (1998) extended Masuda’s method

to finite-depth water. Hashimoto et al. (2002) presented an

application of this method in the SWAN model. Polnikov

(1997) presented a modified Masuda method, whereas Lavre-

nov (2001) proposed a method that uses a combination of

analytical transformations and numerical integration techniques

to handle singularities arising from manipulations of the

Boltzmann integral. Additional information about various

computational methods can be found in Benoit (2005).

From the available methods, the one of Webb (1978) was

selected for further improvements. Not only for its attractive set

of equations, but also because the author is most familiar with

this method and its numerical implementation developed by

Tracy and Resio (1982).

The original WRT method was completely rewritten by the

author as a set of subroutines for easy implementation in any

third-generation wave prediction model and to use it as a

starting point for optimisation in operational discrete spectral

wave models. During this process, valuable theoretical and

practical insights into its workings were obtained, which were

included in a modified computational method for computing

the non-linear four-wave interactions in operational discrete

spectral wave models. This version of the WRT method has

been implemented in various third generation wave prediction

models, such as WaveWatch III (Tolman, 2002), SWAN (Booij

et al., 2004), CREST (Ardhuin et al., 2001) and PROWAM

(Monbaliu et al., 1999).

The aim of this paper is to give a comprehensive description

of the method of Webb (1978), and its implementation in a

discrete spectral wave model, to serve as a basis for further

studies to increase the applicability of the WRT method. The

remainder of this paper is divided into five parts. The first part

contains an overview of the theory of non-linear four-wave

interactions. The second part contains a detailed description of

Webb’s method for solving the Boltzmann integral. The third
ED P
ROOF

part describes how this method is applied to compute the non-

linear transfer rate in a discrete wave spectrum. The fourth part

addresses methods and associated parameter settings to

improve the computational efficiency while retaining sufficient

accuracy. Finally, the last part addresses the handling of the

WRT method in operational wave model applications, and the

treatment in areas with a varying bottom topography.

2. Theoretical background

Hasselmann (1962, 1963a,b) found that a set of four waves,

called a quadruplet, could exchange energy when the following

resonance conditions are satisfied

k
Y

1 þ k
Y

2 ¼ k
Y

3 þ k
Y

4 ð3Þ

and

x1 þ x2 ¼ x3 þ x4; ð4Þ

in which xi the radian frequency and k
Y

i the wave number

vector (i =1, ..., 4). The linear dispersion relation relates the

radian frequency x and the wave number k

x2 ¼ gk tanh khð Þ: ð5Þ

Here, g is the gravitational acceleration and h the water

depth. Hasselmann (1962, 1963a,b) describes the non-linear

interactions between wave quadruplets in terms of their action

density n, where n =E /x and E the energy density. The rate of

change of action density at a wave number k
Y

1 due to all

quadruplet configurations involving k
Y

1 is

Bn1

Bt
¼
ZZZ

G k
Y

1; k
Y

2; k
Y

3; k
Y

4

� 	

� d k
Y

1 þ k
Y

2 � k
Y

3 � k
Y

4

� 	

� d x1 þ x2 � x3 � x4ð Þ

� n1n3 n4 � n2ð Þ þ n1n4 n3 � n1ð Þ½ �d k
Y

2d k
Y

3d k
Y

4 ð6Þ

where ni ¼ n k
Y

i


 �
is the action density at wave number k

Y

i and

G is the coupling coefficient. The d-functions in (6) ensure that

contributions to the integral only occur for quadruplets

satisfying the resonance conditions. The d-functions also

ensure conservation of wave energy, wave action and wave

momentum.

The coupling coefficient G is given by

G k
Y

1; k
Y

2; k
Y

3; k
Y

4

� 	
¼

9kg2D2 k
Y

1; k
Y

2; k
Y

3; k
Y

4


 �
4q2x1x2x3x4

: ð7Þ

In this expression D k
Y

1; k
Y

2; k
Y

3; k
Y

4


 �
is the interaction

coefficient, and q is the density of water. The deep-water

expression for the interaction coefficient was first given by

Hasselmann (1962). Webb (1978) used an algebraic manipu-

lator to simplify the mathematical structure of this coefficient.

However, his expression contained some misprints. Corrected
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expressions are given in Dungey and Hui (1979). Herterich and

Hasselmann (1980) derived a finite depth version of the

interaction coefficient. Zakharov (1999) re-derived the cou-

pling coefficients for deep and finite depth water, and

expressed them in a form similar to those of Webb (1978).

Gorman (2003) provides a detailed analysis of the finite depth

interaction coefficient and he derived expressions for the

treatment of discontinuities therein.

The difference between exact methods and the DIA is best

illustrated by means of the interaction diagram proposed by

Hasselmann (1968b) to visualize the integration space. In exact

methods the integration space consists of all possible combina-

tions of resonant sets of four wave numbers. Following

Hasselmann (1968b) these sets can be grouped in pairs with

the same sum for their frequencies. For deep water, where the

dispersion relation reduces to x2=gk, the resonance conditions

(3) and (4) become

k
Y

1 þ k
Y

2 ¼ k
Y

3 þ k
Y

4 ¼
Y
k ð8Þ

ffiffiffiffiffi
k1

p
þ

ffiffiffiffiffi
k2

p
¼

ffiffiffiffiffi
k3

p
þ

ffiffiffiffiffi
k4

p
¼ c

ffiffiffi
k

p
: ð9Þ

For a fixed value of c all sets of wave numbers satisfying

the resonance conditions lie on a specific curve. A collection

of these curves is illustrated in Fig. 1. In this figure it can

be seen that moving the points P and Q independently of

one another along a curve generates many resonant wave

number configurations. This procedure can be repeated for

all other curves generating even more resonant wave number

configurations.

For the DIA, however, only one wave number configura-

tion (and its mirror image) are considered. They lie on the

curve with c ¼
ffiffiffi
2

p
. The shape of each configuration is

determined by the shape parameter k. In this configuration

k
Y

1 ¼ k
Y

2 ¼ k
Y
, k3 ¼ 1þ kð Þ2k and k4 ¼ 1� kð Þ2k, with

k =0.25 as used in the WAM model (WAMDIG, 1988).

These configurations are illustrated in Fig. 2. This implies

that the DIA uses only a subset (one point on a curve) of a

subset (one curve) of all possible wave number configurations

compared to exact methods. The typical difference in number
UN

Fig. 1. Interaction diagram for a given value of k
Y
1 þ k

Y
2 ¼ k

Y
3 þ k

Y
4 ¼ k

Y
. Each

curve is for a specific value of c (after Phillips, 1960; Hasselmann, 1963b).
340341342
343

344345346

347348

349350351
352
353
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ROof configurations in model applications is about three to four

orders of magnitude.

3. Webb’s method

3.1. Basic equations

The method of Webb is based on a number of analytical

transformations to remove the d-functions in the Boltzmann

integral. The main choice in Webb’s method is to consider the

integration space for each k
Y
1; k

Y
3


 �
combination. This implies

that (6) can be written as

Bn1

Bt
¼
Z

d k
Y

3T k
Y

1; k
Y

3


 �
ð10Þ

in which the function T is given by

T k
Y

1; k
Y

3


 �
¼
ZZ

d k
Y

2d k
Y

4 � G� d k
Y

1 þ k
Y

2



� k

Y

3 � k
Y

4

�
� d x1 þ x2 � x3 � x4ð Þ

� n1n3 n4 � n2ð Þ þ n2n4 n3 � n1ð Þ½ �: ð11Þ

In the following the product of action densities is written as

N1;2;3;4 ¼ n1n3 n4 � n2ð Þ þ n2n4 n3 � n1ð Þ½ �: ð12Þ

The d-function over the wave numbers is eliminated by

writing k
Y
4 as

k
Y

4 ¼ k
Y

1 þ k
Y

2 � k
Y

3: ð13Þ

The integral T k
Y
1; k

Y
3


 �
then becomes

T k
Y

1; k
Y

3


 �
¼
Z

d k
Y

2 � d Dx
1;2;3;k

Y
1þk

Y
2�k

Y
3


 �
� G�N1;2;3;4

ð14Þ

in which the frequency mismatch is written as

Dx
1;2;3;k

Y
1þk

Y
2�k

Y
3
¼ x1 þ x2 � x3 � x

k
Y
1þk

Y
2�k

Y
3
: ð15Þ

To eliminate the remaining d-function, it is noted that the

locations in wave number space where Dx
1;2;3;k

Y
1þk

Y
2�k

Y
3
¼ 0

trace out a closed curve, which is referred to as a locus.



T

ARTICLE IN PRESS

354

355

356

357

358

359

360

361362363

364365

366367368
369

370

371

372373374

375376

377

378379380
381
382
383
384
385
386

387

388
389
390
391
392

393

394
395
396
397
398

399

400

401402

403404405
406

407408409
410
411
412
413

414415416
417

418

419
420
421

422

423

424

425

426

427428429
430
431

432

433

434

435

436

437

438

439

440441442
443
444
445

G.P. van Vledder / Coastal Engineering xx (2005) xxx–xxx 5
UNCORREC

Following Tracy and Resio (1982) and Rasmussen (1998), the

integration vector k
Y
2 is resolved in two components such that

one is tangential to the locus k
Y
2;t and one, which is normal to

that locus k
Y
2;n. The Jacobian of this transformation is 1. Tracy

and Resio (1982) denoted this local co-ordinate system with the

components s
Y
; n
Y� �

. This transformation is convenient since it

allows making use of the following property of the d-functionZ
d f xð Þð Þdx ¼ Bf

Bx

����
����
�1

f xð Þ¼0

ð16Þ

Integration over the d-function then yields

T k
Y

1; k
Y

3


 �
¼
ZZ

d k
Y

2;td k
Y

2;n � J � G� N1;2;3;4 ð17Þ

with J the Jacobian of this transformation. It is defined as

J ¼
BDx

1;2;3;k
Y

1þk
Y

2�
Y
k 3

B k
Y
2;n

�����
�����
�1

: ð18Þ

Since BDx
1;2;3;k

Y
1þk

Y
2�k

Y
3
=B k

Y
2;t ¼ 0, the Jacobian J can be

obtained from the gradient of the frequency mismatch. Since

k
Y
1 and k

Y
3 are fixed, the gradient l

k
Y

2
Dx

1;2;3;k
Y
1þk

Y
2�k

Y
3
can be

written as

D
k
Y

2
x

1;2;3;k
Y
1þk

Y
2�k

Y
3
¼ l

k
Y

2
x2 �l

k
Y

2
x

k
Y
1þk

Y
2�k

Y
3 :

ð19Þ

Applying the chain rule for differentiation yields

l
k
Y

2
Dx

1;2;3;k
Y
1þk

Y
2�k

Y
3
¼ l

k
Y

2
x2

�l
k
Y

2
k
Y

1 þ k
Y

2 � k
Y

3


 �
l

k
Y
1þk

Y
2�k

Y
3
x

k
Y
1þk

Y
2�k

Y
3

¼ c
Y
g;2 �Ycg

k
Y
1 þk

Y
2 �k

Y
3

: ð20Þ

with c
Y
g;i the group velocity for the wave number vector k

Y
1 .

Therefore, the Jacobian J can be written as:

J ¼
���� cYg;2 �Ycg

k
Y
1 þk

Y
2 �k

Y
3

����
�1

: ð21Þ

Rasmussen (1998) was the first to obtain this elegant result.

In Tracy and Resio (1982) the Jacobian term J is referred to as

the gradient term or phase term.

From a historical point of view it is interesting to note that

Tracy and Resio (1982) derived the Jacobian term using the

Cartesian components of the wave number k
Y
2, but also that

expression (21) is hidden in their result. This equivalence is

illustrated in Appendix A.

As expressed by (21) the Jacobian J has some nice

properties; it has the same analytical form for deep and shallow

water, and it is symmetric in its components. The term J

becomes unbounded only when k
Y
2 ¼ k

Y
4, including the

singular case k
Y
1 ¼ k

Y
2 ¼ k

Y
3 ¼ k

Y
4. It is non-zero for all other

solutions of the resonance conditions.

Webb (1978) noted that for symmetry reasons the integra-

tion space in Eq. (11) can be reduced by a factor 2. Since the

Boltzmann integral is symmetric with respect to inter-changing

the variables k
Y
1 and k

Y
2, or k

Y
3 and k

Y
4, part of the integration

space can be omitted where the wave number k
Y
1 is closer to
ED P
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wave number k
Y
4 than to wave number k

Y
3. Mathematically, this

is achieved with the Heaviside function H (x):

H xð Þ ¼ 1 if x > 0

0 if x < 0

�
ð22Þ

and

x ¼ j k
Y

1 � k
Y

4j � j k
Y

1 � k
Y

3j: ð23Þ

The reduction in integration space is compensated by a

factor 2 in the integral expression. Thus

T k
Y

1; k
Y

3


 �
¼ 2

Z
d k
Y

2;tG�
���� cYg;2 �Ycg

k
Y
1
þ k
Y

2
� k
Y

3

����
�1

� H k
Y

1 � k
Y

4j � j k
Y

1 � k
Y

3


 �
�N1;2;3;4: ð24Þ

Following Tracy and Resio (1982), expression (24) can be

written as a closed line integral with the variable s along the

locus instead of the tangential component k
Y
2;t.

In the following the Heaviside function is omitted in the

formulation of the term T, unless stated otherwise

T k
Y

1; k
Y

3


 �
¼
Z
s

ds� G� J � N1;2;3;4: ð25Þ

The subscript s indicates that the integration is to be

performed around the locus as a function of the coordinate s.

3.2. The integration space

In the WRT method the integration space needs to be

determined for each combination of the wave number vectors

k
Y
2 and k

Y
3. In this section a geometric method is outlined to

find this integration space. For a given k
Y
1; k

Y
3


 �
wave number

combination all possible k
Y
2 and k

Y
4 combinations can easily be

found on the basis of geometric considerations. The purpose of

this geometric method is to find all wave number vectors k
Y
2

and k
Y
4 such that

k
Y

1 þ k
Y

2 ¼ k
Y

3 þ k
Y

4: ð26Þ
The first step of this method is to choose a wave number

magnitude k
Y
2. (Below it will be shown that only k

Y
2 values in a

certain range produce valid solutions.) Since the direction h2 of

k
Y
2 is not yet known, the end point of the sum vector k

Y
1 þ k

Y
2

forms a circle with radius k2 and centre at k
Y
1. Similarly, a circle

can be drawn for the wave number k
Y
4, with radius k4 and centre

at k
Y
3. The crossing points of the two circles are by definition

solutions of the resonance conditions. An example of this

geometric procedure is shown in Fig. 3. The radius k4 can easily

be computed from the resonance condition (4). For given radian

frequenciesx1,x2 andx3 the wave number k4 is computed from

x1 þ x2 � x3ð Þ2 ¼ gk4 tanh k4hð Þ: ð27Þ

An efficient and explicit solution technique for this

equation is given in Hunt (1979), who derived an accurate

9-point Padé approximation, which is applicable in deep and

shallow water.



T

ARTICLE IN PRESS

446

447448449
450

451

452453454
455
456

457

458459460
461

462463464
465

466467468
469
470
471

472

473

474

475

476

477

478
479
480
481
482
483
484
485

486487488
489
490
491

492

493

494

495496497
498
499

500501502

503504505

506507508
509
510
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Fig. 4. Example of a locus for a given wave number configuration k
Y

1 and k
Y

3.

G.P. van Vledder / Coastal Engineering xx (2005) xxx–xxx6
UNCORREC

The resulting system of equations equivalent to (26) is

k1;x þ k2cos h2ð Þ ¼ k3;x þ k4cos h4ð Þ
k1;y þ k2sin h2ð Þ ¼ k3;y þ k4sin h4ð Þ : ð28Þ

Following Tracy and Resio (1982) the difference vector

P
Y ¼ k

Y
1 � k

Y
3 is introduced, see Fig. 4. Using the compo-

nents of this vector and rearranging the equations gives

Px þ k2cos h2ð Þ ¼ k4cos h4ð Þ
Py þ k2sin h2ð Þ ¼ k4sin h4ð Þ : ð29Þ

Next the direction hp and magnitude P of this vector

are introduced with P
Y ¼ P cos hp

� �
; sin hp

� �� �
and P ¼ jPY j,

respectively. Squaring and summing the equations in (29)

gives after some straightforward algebraic manipulations

k24 � k22 � P2

2k2P
¼ cos h2 � hp

� �
: ð30Þ

Solving (30) for h2 gives two solutions of the resonance

conditions

h2 ¼ hpFacos
k24 � k22 � P2

2k2P

	�
: ð31Þ

Once the wave numbers k
Y

2 are known, the corresponding

solutions for the wave numbers k
Y

4 are easily computed from

k
Y

4 ¼ P
Y

þ k
Y

2: ð32Þ

The valid solutions of Eq. (31) trace out a closed curve in

wave number space, which is referred to as the locus. For a

given wave number pair k
Y
1; k

Y
3


 �
with k

Y
1 k
Y
3 the loci for the

wave numbers k
Y
2 and k

Y
4 are closed egg-shaped curves (Webb,

1978; Tracy and Resio, 1982; Young and Van Vledder, 1993).

An example of such loci for the wave numbers k
Y
2 and k

Y
4 is

given in Fig. 4. It can be seen that the wave numbers k
Y
3 and k

Y
1

lie on the loci for the wave numbers k
Y
2 and k

Y
4, respectively

since they are solutions of the resonance conditions. The locus

is symmetric around a line through the origin with direction hp.
ED P
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Eq. (31) was also derived in Van Vledder (2000), where it is

referred to as the polar method for obtaining solutions of the

resonance conditions. The geometric approach was referred to

in Khatri and Young (1999), but no equations or clear diagrams

were presented therein.

A special solution of the resonance conditions is obtained

for the case where k
Y
1 ¼ k

Y
3 but with h1mh3. Subsequently

k2=k4 and Eq. (31) reduces to

h2 ¼ hpFacos
� P

2k2

	�
: ð33Þ

Varying the wave number k2 and choosing the Fplus_ or the
Fminus_ sign produces a straight line representing a solution of

the resonance conditions. Since the wave numbers k
Y
2 and k

Y
4

are interchangeable, the solution for wave number k
Y
4 can be

found by choosing the Fminus_ or Fplus_ sign in (33). This

solution is also a straight line, parallel to the solution for k
Y
2.

The direction hs of these lines is equal to

hs ¼
1

2
h1 þ h3ð Þ: ð34Þ

An example solution is illustrated in Fig. 5. An alternative

expression for h2 is obtained by substitution of k
Y
4 ¼ k

Y
2 in

(29). Rearranging the terms gives

Px ¼ k2 cos h4ð Þ � cos h4ð Þð Þ
Py ¼ k2 sin h4ð Þ � sin h4ð Þð Þ:ð ð35Þ

This leads to

P2 ¼ 2k22 1� cos h2 � h4ð Þð Þ: ð36Þ

Since hs ¼ 1
2

h2 þ h4ð Þ, the angle h2 is given by

h2 ¼ hsF
1

2
acos 1� P2

2k22

	�
: ð37Þ

A similar procedure as above can be followed to obtain

solutions of the resonance conditions, which also consist of two

straight parallel lines.
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The main difference between the expressions (37) and (33)

is the fact that the directions hp and hs are perpendicular to one

another. In practise, no preference is given to either one of

these methods for generating these special solutions of the

resonance conditions.

3.3. Methods for computing the loci

Various methods have been proposed for the determination

of the locus for a given pair of wave numbers k
Y
1 and k

Y
3. All of

these methods are based on solving the locus equation

W k
Y

2


 �
¼ x1 þ x2 � x3 � x

k
Y
1þk

Y
2�k

Y
3
¼ 0: ð38Þ

Tracy and Resio (1982) presented a radial method for

determining points on the locus. They first determine a central

wave number k
Y
c inside the locus on the axis of symmetry. Then,
UNCORREC

Fig. 6. Example of methods for computing the locus for a given wave number combin

polar method of Van Vledder (2000), panel (c) modified polar method of Prabhaka
ED P
ROOF

starting from this point, a set of lines is projected outwards with

increasing angles using a constant angular step Dh. The

locations on these radial lines, where the locus function is zero,

are by definition points on the locus. The position of the zero-

crossings is determined by an iterative root-finding procedure

since no explicit expression exists to obtain the locations of

these zero-crossings. The number of points Nloc on the locus

and the angular step Dh are related as Nloc=2k /Dh. An

example of their method is shown in panel (a) of Fig. 6.

Tracy and Resio (1982) choose the central point as

k
Y
c ¼ � P

Y
, which is the point on the axis of symmetry where

the locus function has its maximum, both for deep and shallow

water. Van Vledder (2000) showed that in shallow water this

choice for the central point shifts to one side of the locus. This

has the disadvantage that, when used with constant Dh, the
radial method produces a highly uneven distribution of points

on the locus. To avoid this unevenness, he suggests choosing

the central point k
Y
c halfway along the crossing points of the

locus with the axis of symmetry.

Van Vledder (2000) presented a polar method to determine

discrete points on the locus. His method uses circles around the

origin with an increasing radius k2. The locations on these

circles where the locus function is zero are by definition points

on the locus. In contrast to the radial method of Tracy and

Resio (1982), the zero-crossings can be determined by an

explicit expression, viz. Eq. (31) presented above. Only values

in a certain range of k2 lead to a valid solution of (31). For deep

water Tracy and Resio (1982) and Van Vledder (2000) give
ation of k
Y

1 and k
Y

3. Panel (a) radial method of Tracy and Resio (1982), panel (b)

r and Pandurangan (2004), panel (d) polar method with equidistant spacing.
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explicit expressions for the minimum (kA) and maximum (kB)

values of k2, which lie on the axis of symmetry. They are

kA ¼ � qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P � q2

p
2

! 2

ð39Þ

and

kB ¼ � P � q2

2q

	� 2

: ð40Þ

In these equations q ¼ k
1=2
1 � k

1=2
3 . For finite depth the

values for kA and kB need to be found by iteration. See Fig. 7

for a definition sketch of these variables. Varying the wave

number k2 between these limits produces all valid solutions of

the resonance conditions.

Various methods exist of choosing intermediate k2-values

between the limits kA and kB for computing points on the locus.

The simplest one is a linear distribution of k2-values

k2;i ¼ kA þ i� 1ð ÞDk2 for i ¼ 1;Nk2 ð41Þ
in which the step size Dk2 is related to the number of points Nk2

on the symmetry axis of the locus according to

Dk2 ¼
kB � kA

Nk2 � 1
: ð42Þ

The number of points on the locus is related to the number of

k2 values on the symmetry axis according to Nloc=2(Nk2
�1).

An example of the polar method is shown in panel (b) of Fig. 6.

One may also think of using a geometric spacing of k2-values, to

better reflect the geometric spacing of commonly used geomet-

rically spaced spectral grids. In this method

k2;i ¼ ki�1kA for i ¼ 1;Nk2 ð43Þ

such that

kb ¼ kNk2
�1kA: ð44Þ

Here, the value of k is linked to the ratio of subsequent

wave numbers in the spectral grid of the discrete wave
UNC 600
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619Fig. 7. Definition sketch for properties of a locus.
ED Pspectrum such that k�ki+1 /ki. The above-mentioned argu-

ment for choosing a geometric spacing does not hold for the

points on the k4-locus. Since the distribution of points on the

k4-locus is linked with those on the k2-locus, they do not

follow the local variation of wave numbers of the spectral

grid (cf. Fig. 8).

Recently, Prabhakar and Pandurangan (2004) presented

another explicit method for obtaining the points on the locus.

For deep water and for given wave numbers k
Y
1 and k

Y
3 and a

given angle h2, they rewrote the locus Eq. (38) as a cubic

equation in the wave number k2. By varying the angle h2 with a

constant step Dh2, they obtained pairs of discrete points on the

locus. An example of results of their method is shown in panel

(c) of Fig. 6. From this figure it directly follows that the range

of h2 is limited to a small sector and that for each h2 two values

for k2 are found. A disadvantage of their method is that it has a

coarser resolution on the locus where h2 is almost equal to the

local direction on the locus.

All of the above methods produce a variable spacing of

points on the locus. To obtain a constant spacing of points on

the locus, Van Vledder (2000) proposed an adaptive technique

based on his explicit polar method. An example of this method

is shown in panel (d) of Fig. 6. The spacing and the number of

points on the locus can be obtained from an estimate of the

circumference of the locus. A good approximation of this

circumference is obtained by assuming the locus to be an

ellipse with principal semi-axes equal to 1
2
kA � kBð Þ and kW,

with kW the width of the locus at the point kM ¼ 1
2
kA þ kBð Þ

halfway the symmetry axis. See Fig. 7 for a definition sketch.

Each of these methods is able to produce a sufficiently fine

distribution of points on the locus when the number of points

exceeds, say, 50. From these methods, the explicit polar

method of Van Vledder (2000) is favoured because of its

simplicity. Further, an equidistant spacing of points is

recommended to obtain a regular distribution of points on the

loci for both the wave numbers k
Y
2 and k

Y
4.
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3.4. Computation of the special solution

For the special case k1=k3 and h1mh3, the solution of the

resonance conditions consists of two parallel lines for the wave

numbers k
Y
2 and k

Y
4. These lines have a direction hs as specified

by Eq. (34). These lines can therefore be parameterised as

k
Y

2 ¼ k
Y

0 þ l
cos hsð Þ
sin hsð Þ

	�
ð45Þ

and

k
Y

4 ¼ � k
Y

0 þ l
cos hsð Þ
sin hsð Þ

	�
: ð46Þ

In the Eqs. (45) and (46) k
Y
0 is a point on the k

Y
2-line. The

magnitude of this vector is equal to the shortest distance of the

lines to the origin. As shown in Fig. 5, geometric considera-

tions indicate that the magnitude of k
Y
0 is equal to

k0 ¼
P

2
ð47Þ

or, equivalently

k0 ¼ k1sin
1

2
h3 � h1ð Þ

� 	
: ð48Þ

The first value also follows by equating the term in the

brackets in Eq. (33), or the one in Eq. (37), to �1. The

direction of the vector k
Y
0 is perpendicular to hs. Thus

k
Y

0 ¼
P

2

� sin hsð Þ
cos hsð Þ

	�
: ð49Þ

The length of these lines should be large enough to cover

the energy containing part of the spectrum. Therefore, it is

recommended to choose the range of the parameter l at least

from �kmax to +kmax, where kmax is the maximum discrete

wave number. Considerations for choosing kmax are given in

the Next section.

4. Computational technique

4.1. Discretisation

To compute the non-linear transfer rate for a given discrete

wave spectrum, it is assumed that this wave spectrum is given

in terms of a discrete action density spectrum as a function of

the discrete wave numbers ki (for i=1,Nk) and directions

hj ( j=1,Nh) with a constant spacing Dh. Based on expression

(10) the change of action density at a certain discrete wave

number (kikl, hjkl
) is expressed as

Dn kikl ; hjkl
� �

¼
XNk

ik3¼1

XNh

jh3¼1

kik3T kikl ; hikl ; kik3 ; hjk3
� �

Dkik3Dh

for ikl ¼ 1;Nk and jh1 ¼ 1;Nh: ð50Þ

in which the factor kik3 is the Jacobian term arising from the

transformation from k
Y
3 to (k3, h). The singular point where
ED P
ROOF

k
Y
1 ¼ k

Y
3 (and k

Y
2 ¼ k

Y
4) is omitted in the evaluation of

expression (50). Herterich and Hasselmann (1980) and Gorman

(2003) suggest that ignoring this contribution leads to a

negligible contribution to the total transfer rate.

A useful property of the T-function is

T k
Y

1; k
Y

3


 �
¼ � T k

Y

3; k
Y

1


 �
: ð51Þ

This property allows computing only half of all possible

combinations in (50), since symmetric storing of the

contributions to the non-linear transfer rate can be used

according to

Dn ikl; jklð Þ ¼ T k
Y

1 ; k
Y

3


 �
kik3Dkik3Dh

Dn ik3; jk3ð Þ ¼ � T k
Y

1 ; k
Y

3


 �
kilDkiklDh:

ð52Þ

The term T k
Y

1 ; k
Y

3


 �
can be discretized as

T k
Y

1; k
Y

3


 �
¼
H
s

G sð ÞJ sð ÞN sð Þds

,
XNs

i¼1

G sið ÞJ sið ÞN sið ÞDsi:
ð53Þ

In (53) the terms G, J and N are written as functions of the

local coordinate s along the locus.

The actual computation of the non-linear transfer rate for a

given discrete spectrum consists of the integration of the

product of three functions for each locus. The functions for the

Jacobian term and the coupling coefficient are independent of

the actual spectral values. Therefore, they can be pre-

computed. The third function is the product term of the

(interpolated) action densities. These action densities cannot be

pre-computed and need to be computed for each spectrum for

which the non-linear transfer rate is computed.

4.2. Interpolation

In evaluating expression (53) one should consider that the

locus is given at discrete points. In general these points do not

coincide with the discrete spectral grid points. The position of a

k2- and a k4-locus in wave number space and its position in a

discretized polar spectral grid are visualised in Fig. 8. The

action densities at the points on the locus can be obtained by bi-

linear interpolation from the action densities nj at the

surrounding discrete spectral points

ni ¼
X4
j¼1

wjnj: ð54Þ

This procedure is visualised in Fig. 9. As shown in this

figure, bi-linear interpolation is used to obtain the values for the

action densities for the wave numbers k
Y
2 and k

Y
4. Note that no

interpolation is necessary to obtain the action densities at the

wave numbers k
Y
1 and k

Y
3. The action densities at the four wave

numbers can then be used to compute the action density

product term N1,2,3,4.
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4.3. Boundary conditions

In practise, the spectral grid is given for a set of wave numbers

from kmin to kmax. For points on the locus with a wave number

smaller than kmin it is assumed that the action density is zero. For

points on the locus with a wave number higher than kmax a

parametric decay of the action density spectrum is assumed

n k; hð Þ ¼ n kmax; hð Þ k

kmax

	� p

for k > kmax: ð55Þ

The interpolation of the action density then simplifies to

ni ¼
X2
j¼1

wjnj
ki

kmax

	� p

ð56Þ

in which the weights wi reflect interpolation in direction. In the

computational method, the term between the brackets is

assimilated in the tail parameter ti

ti ¼
ki

kmax

	� p

for ki > kmax

1 for kiVkmax

:

8<
: ð57Þ

In addition, when ki >kmax, the action density ni is equal to

the action density of the corresponding bin with k =kmax.

4.4. Pre-processing

The pre-processing of the WRT method comprises the

computation of the following information for each point on the

locus:

& the indices of the lower left corner of the bin in the spectral

grid, ik and ih;

& the interpolation weights wi, for i=1,4;

& the tail factors ti, for i=1,2;

& the local step size Dsi;
UNCO 767
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Fig. 9. Definition sketch for the bi-linear interpolation of action densities for

points on the locus.
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& the Jacobian term Ji;

& the coupling coefficient Gi.

A useful property is that the loci, Jacobians and couplings

coefficients are invariant to rotations of the generating wave

number pair k
Y
1; k

Y
3


 �
. This property allows to reduce the

amount of computations to determine the position and

associated coefficients of each point on the locus. Transfor-

mation rules of loci are described in Tracy and Resio (1982).

An example of the functions that need to be integrated along

a closed locus is shown in Fig. 10. For this example a standard

JONSWAP spectrum with a cos2s (h / 2) directional distribution
was used. It can be seen that the Jacobian term J, the coupling

coefficient G and the wave number product N1,2,3,4 are smooth

functions. Therefore, the resulting compound function is also a

smooth function.

An example of the integration of the functions along the

locus for the special case (consisting of two straight lines) is

shown in Fig. 11. This figure clearly shows that the Jacobian

term increases quadratically with wave number. As noted in

Section 2, the Jacobian term J becomes unbounded when

j cYg;2 � c
Y
g;4 jY0. For large wave numbers the increase in

Jacobian term is counteracted by the decrease of the coupling

coefficient and the action density product. The behaviour of the

latter term is due to the fact that the action density decreases

with increasing wave number according to a power law. The

final function is limited, such that the contribution of the

integral T remains bounded. Thus, the singularity in the

Jacobian term occurs well outside the energy containing part

of the spectrum.

It is noted that the contribution of the T terms for the special

case only affects the directional distribution of the non-linear

transfer rate, since energy is only exchanged between wave

numbers with equal magnitude.

4.5. Extent of the discrete wave number grid

Applying the WRT-method, and likely any other exact

computational method, to a discrete wave spectrum requires a

sufficiently large frequency (or wave number) domain to

ensure that the typical three-lobe structure of the non-linear

transfer rate is retained. As shown by Young and Van Vledder

(1993), the directionally integrated non-linear transfer rate for a

mean JONSWAP spectrum, typically consists of two positive

lobes, separated by a negative lobe that starts just above the

peak frequency of the wave spectrum. With increasing

frequency, the second positive lobe slowly decays to zero.

Various physical and numerical arguments apply to choose a

sufficiently large frequency domain, bounded by a minimum

and a maximum frequency, to ensure that the non-linear

transfer rate is properly reproduced. Experience with the WRT

method shows that for deep water the minimum frequency

should at most be equal to half the peak frequency. The

maximum frequency should be taken large enough such that

the computed non-linear transfer rate satisfies the conservation

laws for action, energy, and momentum. The precise maximum

value with respect to the peak frequency of the spectrum
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Cdepends on the peakedness of the spectrum, the required

accuracy to satisfy these laws, and the power of the parametric

tail in the host model. This implies that some trial and error is
UNCORRE

Fig. 11. Location of the loci in wave number space for the special case, and the varia

as a function of the local coordinate s.
needed to determine this limit in wave evolution studies.

Another physical argument is related to the ability of the non-

linear four-wave interactions to generate a bi-modal distribu-
tion of the interpolated action densities, coupling coefficient and Jacobian term
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tion in wave growth situations for frequencies higher than two

times the peak frequency (see Banner and Young, 1994). An

example of this behaviour is given by Van der Westhuysen et

al. (2004) who show that the WRT method is able to reproduce

this bi-modal structure as observed by Hwang et al. (2000).

Again, the choice of the upper limit depends on the

requirements of the user.

A numerical argument of choosing a sufficiently high

maximum frequency is related to cut-off effects near the upper

boundary of the frequency (or wave number) grid. As follows

from Eq. (50), the non-linear transfer rate in a certain spectral

bin depends on all interactions with higher and lower

frequencies. For the frequency bins near the maximum discrete

frequency, only a limited amount of interactions with higher

frequency bins is possible. Interactions with hypothetical bins,

i.e. those with frequencies higher than fmax are not taken into

account. This implies that the non-linear transfer rate of bins

with frequencies near the maximum discrete frequency is

inaccurate.

The magnitude of this cut-off effect is illustrated by the

results of a series of computations with the WRT method for a

discrete spectrum with increasing maximum frequency. In line

with the current wave modelling practice, the directional

resolution was 10-, and the frequency resolution was 10%,

i.e. f i+1 =1.1f i. In each subsequent computation a new

frequency was added, while keeping the previous frequencies.

In these computations the non-linear transfer rate was

computed for a JONSWAP spectrum with a peak frequency

of 1 Hz, a peak enhancement factor of 3.3, and an f�5 spectral

tail. The directional distribution was a cos2s (h / 2) distribution
with s =2. The computed directionally integrated non-linear

transfer rates are shown in Fig. 12 as a function of the

normalized frequency f / fp. The dots in this figure are the end

points of the non-linear transfer rate as computed up to a

certain normalized frequency. The solid line represents the non-

linear transfer rate as computed for a sufficiently high

maximum frequency ( fmax=10fp). The results clearly indicate
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Fig. 12. Non-linear transfer rate for a JONSWAP spectrum with c =3.3
computed with a varying maximum discrete frequency as a function of the

normalized frequency f / fp. The dots represent the computed non-linear transfer

rate at the maximum discrete frequency.
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that the cut-off effect vanishes when fmax>6fp. Computations

with other spectral shapes (not shown here) support this

conclusion. The results in Fig. 12 also imply that the non-linear

transfer rate is affected by cut-off effects for the upper 20% of

the discrete frequency range.

5. Increasing the computational efficiency

5.1. Introduction

In the previous sections the theoretical and computational

framework for the WRT method has been outlined. For many

operational applications, savings in computational require-

ments are necessary, while retaining more or less the same

accuracy. Here, a number of methods are described to reach

this goal. For some methods computations have been

performed to quantify their parameter settings and to quantify

the gain in speed. In addition, some methods are proposed that

may lead to a further speed-up of the WRT method.

5.2. Optimal number of points on the locus

To reach optimal accuracy the number of points on the locus

must be large enough to ensure that all cells in a discrete

spectrum have a few points along a locus. If a cell does not

contain a discrete grid point, the integration procedure might

miss relevant spectral information. On the other hand, too

many locus points in a cell result in an inefficient integration

procedure. Therefore, the distribution of discrete grid points

along a locus must reflect the local resolution of the spectral

grid, such that each cell contains at least one or two discrete

points of the k2-locus. Since the k2- and k4-loci are coupled, an

optimal distribution of grid points on the k2-locus is not

necessarily optimal for the k4-locus. Therefore, grid points

need to be added along both loci to satisfy the requirement of at

least one grid point in each cell.

As a first step to obtain an optimal distribution of points

along the locus, computations were carried out with an

equidistant spacing to determine the optimal number of points

(using the fourth method described in Section 3.3 as illustrated

in panel (d) of Fig. 6). In these computations the non-linear

transfer rate was computed for 5 different JONSWAP spectra,

with a=0.01, fp=0.1 Hz, an f
�5 spectral tail, and with different

peakedness factors, c =1, 2, 3, 5 and 9, and a frequency

dependent directional cos2s� distribution according to Hassel-

mann et al. (1980). For each spectrum the non-linear transfer

rate was computed with a different number of points on the

locus Nloc, varying from 10, 15,. . ., 95, 100. For each spectrum

and for each computation with a specific number of points, the

relative error was computed using the directionally integrated

non-linear transfer rates according to

e ¼
PNf

i¼1 jSBnl fið Þ � Snl fið ÞjDfiPNf

i¼1 jSBnl fið ÞjDfi
ð58Þ

in which Nf is the number of frequencies, Dfi the bandwidth per

frequency, and where Snl
B refers to the benchmark transfer rate,
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i.e. the one based on 100 points on the locus. Next, the average

relative error over all spectra was computed. The computed non-

linear transfer rate of the JONSWAP spectrum with c =2 for

various values of Nloc is shown in panel (a) of Fig. 13. Panel (b)

in this figure shows the average error (based on the results for all

5 test spectra) as a function of the number of points on the locus.

The results indicate that the results have a relative error of at

most 0.05 when the number of points exceeds 50.

5.3. Filtering

Filtering out insignificant contributions to the transfer

integral can make significant savings in computational

requirements. This technique was applied in the EXACT-NL

model (Hasselmann and Hasselmann, 1985a) using a refer-

ence spectrum to detect these small contributions and to store

the relevant contributions in a database. It is noted that the

filtering in the EXACT-NL model depends on both the

magnitude of the coupling coefficients and the actual spectral

densities.

Resio (1998) introduced a filtering technique based on the

distance in wave number space between the wave numbers k
Y
1

and k
Y
3. The reasoning behind this kind of filtering is that with

increasing separation in wave number space, the coupling

coefficient decreases, such that the contribution to the total

transfer rate also decreases. Two criteria are used to omit a

contribution of a T-term. The first criterion omits contributions

when the highest ratio of k1 /k3 or k3 /k1 of the wave numbers k1
and k3 exceeds a threshold ratio kR. The second one omits

contributions when the angular difference Dh1,3= |h1�h3|
exceeds a threshold difference hmax. Similar to the previous

analysis, computations were carried out to determine the

optimum settings for the ratio kR and angular difference hmax.

The results of this analysis are presented in the Figs. 14 and 15,

respectively. The results indicate that similar non-linear transfer

rates can be obtained by choosing kR=4 and hmax=60-. This
approach resembles the RIA method of Lin and Perrie (1998)

who used mathematical arguments to restrict the integration

space.
UNC

Fig. 13. Non-linear transfer rates for a JONSWAP spectrum with c =2, computed wi

and 45). Average relative error of computed non-linear transfer rate as a function of th

test spectra.
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The gain in speed depends on the spectral resolution. Since

the present computations were carried with a frequency

spacing of 10% (for deep water equivalent to a wave number

spacing of 21%) and a directional resolution of 10-, the gain

in speed is a factor 3, for both types of filtering. Applying

both types of filtering leads to a speedup of one order of

magnitude.

In contrast to the EXACT-NL model, this type of filtering is

independent of the spectral values. This implies that further

savings can be obtained by introducing some type of filtering

on the basis of the action densities at the wave numbers k
Y
1 and

k
Y
3.

5.4. Geometric scaling

For various reasons it is convenient to use a geometric

spacing of wave numbers in discrete spectral models, in which

ki+1=kki with k >1. Such spacing provides a higher spectral

resolution near the peak of the spectrum, and less resolution in

the high-frequency tail. For deep water it also allows using

scaling laws to derive the loci for related wave number pairs

k
Y
1
V; k

Y
3
V


 �
and k k

Y
1; k k

Y
3


 �
. As shown by Tracy and Resio

(1982) the size of the loci scales with k, the coupling

coefficient G scales with k6 and the Jacobian term J scales

with k. However, the action density product term N1,2,3,4 does

not scale.

Resio and Perrie (1991) indicated that this scaling

technique speeds up the computation of the non-linear

transfer rate by an order of magnitude compared to

integration on regular spaced grids. However, this is only

true when the loci are computed with each computation of the

non-linear transfer rate and when deep water is considered.

The gain in speed is limited because the product term of

action densities cannot be scaled and needs to be evaluated

for each locus. Common operational discrete spectral wave

models like WAM, WaveWatch, TOMAWAC and SWAN, use

a geometric spacing of the frequencies. For deep water, this

results also in a geometric spacing of wave numbers. For

finite depth however, this results in a non-geometric spacing
th different values of N loc (panel a). Thick line (Nloc=100), thin lines (Nloc=20

e number of points on the locus Nloc (panel b). Average based on results of the 5
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for the wave numbers, and scaling relations cannot be used

for the computation of the loci, associated Jacobians and

coupling coefficients.

The only advantage of using geometric scaling for deep

water is that it results in a smaller database of pre-computed

values for a discretized integration space and interpolation

coefficients, Jacobians and coupling coefficients. However,

during the actual computation of the non-linear transfer rate, all

interacting loci have to be considered and the loci and

associated coefficients need to be obtained by re-scaling and

rotating previously computed ones. Thus, the gain in compu-

tational speed is marginal.

When the integration space can be pre-computed, accuracy

becomes more important than efficiency. Moreover, the

positions of the discrete points on the locus become more

important in view of their relation with the discrete spectral

grid. This aspect is often neglected in the development of

computational methods for determining the integration space.

5.5. Symmetry condition and compacting

As indicated in Section 2, the integration space can be

reduced by a factor 2 by using the symmetry condition. This is
UN

Fig. 15. Non-linear transfer rates for a JONSWAP spectrum with c =2, computed

(hmax=31- and 61-). Relative error of computed non-linear transfer rate as a funct
ED P
RO

expressed by the function, see the Eqs. (22) and (23). The

reduction in integration space is compensated by a factor 2 in

Eq. (24). When this option is in effect, part of the function

along the locus does not contribute to the integral around the

locus because the compound function now comprises the

function H(s), which has zero-values. To avoid adding zero

contributions in the evaluation of the function, thereby omitting

the potential gain in speed, the discrete points on the locus

where H(si)=0 are identified in the pre-processing phase, and

not stored in memory. This is achieved by compacting the pre-

computed loci and associated coefficients. In this way, the

actual integration only uses contributions on each locus where

the function H is one, and a gain in speed with a factor 2 is

obtained.

5.6. Bi-linear interpolation versus nearest bin approach

Experience shows that most of the workload is spent in the

repeated bi-linear interpolation of action densities. This

interpolation is based on the assumption that the action density

varies linearly between the discrete corner points of a cell in

wave number space. Following Snyder et al. (1993) the

spectrum can also be represented as piece-wise constant, with
with different values of hmax (panel a). Thick line (hmax=180-), thin lines

ion of the threshold value hmax (panel b).
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the discrete spectral grid point in the centre of the constant

piece. This representation replaces the bi-linear interpolation

with the nearest spectral grid point approach. This approach

speeds up the computation by a factor of about 2, since the

cumbersome bi-linear interpolation is replaced by direct

retrieval of the action density at the nearest interacting wave

number. Moreover, it reduces the size of the pre-computed

integration space by 50% since the interpolation weights can be

omitted. Fig. 16 shows a comparison of the WRT method using

bi-linear interpolation and nearest-bin interpolation for a mean

JONSWAP spectrum with a peak enhancement factor of c =2.
The computed error according to (58) is 0.14.

5.7. Higher order integration

The integration of the functions around the locus is basically

the numerical integration of a tabulated function, viz. G(si)J

(si)N(si). In the present approach, a first order trapezoid rule is

used to evaluate the integrals along the locus. It is likely that

these integrals can be calculated more efficiently by using

higher-order integration methods, such as the Simpson rule, or

an n-point Gauss–Legendre quadrature method. Application of

such methods requires full control of the spacing of the points on

the locus, and a smooth behaviour of the compound function

along the locus. The first requirement can easily be met by firstly

computing a sufficiently fine (and optionally equidistant)

distribution of points on the locus, followed by linear interpo-

lation to the required spacing for these quadrature methods. In

addition, the corresponding coupling coefficients and Jacobian

terms need also be obtained by interpolation. As shown by

Gorman (2003), the coupling coefficient needs to be computed

only for exactly resonating wave numbers. Re-computation of

the coupling coefficient based on interpolated wave numbers

leads to small deviations of exact resonance, which in turn may

lead to relatively large errors in the coupling coefficient.

Therefore, no re-computation of the coupling coefficients should

be performed. The second requirement is usually met since the

action density in neighbouring spectral bins is coupled.
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Fig. 16. Non-linear transfer rates for a JONSWAP spectrum with c =2,
computed with the WRT method using bi-linear interpolation (solid line) and

nearest bin interpolation (dashed line). The relative error is 0.173.
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6. Operational handling of the WRT method

6.1. Introduction

In the previous sections the WRT method for computing the

non-linear transfer rate for a given discrete wave spectrum has

been described in detail. The computational procedure for

computing these interactions has been programmed in a set of

routines, which are available as a set of subroutines. This

allows easy implementation in any discrete spectral wave

model. In this procedure the input consists of the characteristics

of the spectral grid, the energy densities and the water depth.

The output consists of the non-linear transfer rate on the same

spectral grid. As long as this procedure is followed for a limited

set of spectra, no special computational requirements are

necessary. When applied in an operational discrete spectral

wave model, various measures are needed to achieve accept-

able computational requirements.

In this section the concepts of memory and disks are used to

make a distinction between two types of memory, viz. the

internal memory and the memory on disk, respectively. The

first one is only used during the actual program application,

and vanishes after program execution ends. The second type of

memory refers to the permanent memory, such as hard disks.

The precise wording of these types of memory may change as

computer technology progresses.

Below various methods are described for an efficient

application of the WRT method for computing the non-linear

transfer rate in an operational wave prediction model. Attention

is given to an optimal handling of pre-computed integration

spaces.

6.2. Handling of pre-computed integration spaces in shallow

water

An important property of the WRT method is that for a

given discrete spectral grid and water depth, all loci,

interpolation coefficients, coupling coefficients and Jacobian

terms can be pre-computed and stored in memory or in a

database on disk. During the actual computation of the non-

linear source term for a discrete spectrum on this spectral grid,

these pre-computed coefficients must be retrieved from

memory and used in the actual computation.

In constant-depth applications the procedure is simple since

only one integration space needs to be computed. In practise

these data can be kept in memory. In variable-depth applica-

tions the procedure is more complicated since the non-linear

transfer rate is depth dependent. Herterich and Hasselmann

(1980) made an analysis of this effect; they showed that the

magnitude of the transfer rate increases with decreasing water

depth. Inspection of computational results obtained by Hassel-

mann and Hasselmann (1985a,b) with the EXACT-NL model

shows that also the shape of the non-linear transfer rate

changes. This effect is illustrated in Fig. 17 based on

computations for a JONSWAP spectrum with fp=0.1 Hz,

a =0.0175, an f�5 spectral tail, a peak enhancement factor of

c =3.3, and a cos2 (h) directional spreading. The main features
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Fig. 17. Non-linear transfer rates for a JONSWAP spectrum with fp=0.1 Hz,

a =0.0175, c =3.3 and a cos2 (h)-directional spreading. WRT results for deep

water (solid line), shallow water with h =10 m (line with crosses), and for

shallow water with h =10 m using the WAM depth scaling (line with circles).
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are an increase of the magnitude of the positive and negative

peak values, an increase of the lower positive lobe, and a shift

of the first zero-crossing to lower frequencies. Another feature

is that the non-linear transfer rate is non-zero for frequencies

exceeding 25% of the peak frequency. This implies that the

minimum discrete frequency should be chosen accordingly.

In a typical finite-depth two-dimensional wave model

application, the source terms are computed for each grid point

in a certain countable progression. This implies that the

integration space is possibly different for each subsequent grid

point, and that it needs to be computed repeatedly. Storing all

integration spaces in the internal memory is not always

possible, due to memory restrictions.

This procedure can be simplified in a number of ways. The

first simplification concerns the depth resolution. For instance,

savings can be made to compute integration spaces only for

rounded depth values, say, with a resolution of 1 m. A second

option, not necessarily excluding the first option, is to store all

required pre-computed integration spaces on disk. This may

require the following procedure during an actual computation.

For each grid point, a check is made whether a pre-computed

integration space exists in memory for the depth in this grid

point. If not in memory, a check is made if a proper integration

space exists on disk. If this is the case, it is read in memory. If

not, it is computed, saved to disk and stored in memory. The

third simplification concerns sorting the spatial grid points with

respect to their depth. Then, the integration space needs only to

be re-computed and written to the two types of memory when a

spatial grid point with a new (rounded) water depth is

encountered in the sequence of spatial grid points.

Further savings can be made to compute the integration

space only for a selected set of water depths. For instance in a

geometric progression of, say, 1, 2, 4, . . . up to 1024 m, which

can safely be considered as deep water. The spacing of these

depths should be small enough to capture the essential changes

in magnitude and shape of the non-linear transfer rate with

depth. Then, during the actual wave model application for a

given spatial grid point with a certain (target) water depth, the
ED P
ROOF

Fnearest_ integration space is searched. A criterion to determine

the nearest integration space, is to consider the relative

differences of the target depth h with the depths for which an

integration space have been pre-computed. Given a sequence

of increasing depths, h1, h2, . . ..hN, a search is made for the

pair of depths such that hi <h <hi+1. Then, the depth with the

ratio nearest to h /hi or hi+1 /h is selected.

This procedure can be refined using the depth scaling

behaviour of the non-linear transfer rate. As noted by Herterich

and Hasselmann (1980), the magnitude of the non-linear

transfer rate scales as a function of the dimensionless water

depth kph, with kp the peak wave number. The magnitude

scaling observed by Herterich and Hasselmann (1980) was

parameterized by WAMDIG (1988) resulting in simple

function R (x) given by

R xð Þ ¼ 1þ 5:5

x
1� 6

7
x

	�
exp � 5

4
x

	�
: ð59Þ

with x =kph. To increase wave model robustness in case of

arbitrarily shaped spectra, Komen et al. (1994) replaced the

peak wave number kp by .75km, in which km is the mean wave

number defined as

km ¼

ZZ
k�

1
2E f ; hð Þdf dhZZ
E f ; hð Þdf dh

1
CCA

0
BB@

�2

: ð60Þ

The parameterisation (59) is applied in current third-

generation wave prediction models as follows: for a given

water depth the non-linear transfer rate is computed for deep

water, followed by scaling with the factor R, equal for all

spectral bins

Shnl;4 f ; hð Þ ¼ R xð ÞSVnl;4 f ; hð Þ: ð61Þ

The effect of applying (61) to a deep-water non-linear

transfer rate is also shown in Fig. 16. As noted above, it can

clearly be seen that this depth scaling does not account for

frequency dependent scaling behaviour. Despite this shortcom-

ing it can still be used to correct the magnitude of the non-

linear transfer rate of the Fnearest_ depth hN according to

Shnl;4 f ; hð Þ ¼ S
hN
nl;4 f ; hð Þ R 0:75kmhð Þ

R 0:75kmhNð Þ : ð62Þ

The combination of searching for the integration space of

the Fnearest_ depth and the WAM scaling provides an optimal

mix of shape preservation and magnitude scaling.

6.3. Symmetric spectra

In many academic studies involving the computation of the

non-linear transfer rate it is assumed that the spectrum is

symmetric around a mean direction hm. Consequently, the non-

linear transfer rate is also symmetric around this mean

direction. In practise, this implies that the directional loop in

expression (50) covers only 180-. In this way a speedup of a

factor 2 can be obtained.
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6.4. Sector grid

Another method to reduce the computational workload in

evaluating the non-linear transfer rate is to assume that the

spectrum is only defined on a sector around a mean direction,

often in combination with a symmetric spectrum. In Resio and

Perrie (1991), and Banner and Young (1994), a 1D-transect

model with a directional sector of T120- was used to study

fetch-limited wave growth. In the actual computation of the

non-linear transfer rate on a sector grid it is assumed that the

action density outside this sector is zero. This happens when a

part of the locus falls outside this sector. This allows for a

speedup of about a factor 2.

However, in operational applications, spectra are generally

not symmetric or have only energy in a certain sector. Further,

Lavrenov and Ocampo-Torres (1999) showed that even in

fetch-limited wave growth with a constant wind, energy is

transferred by the non-linear four-wave interactions to

directions opposing the wind direction. It is therefore

recommended to compute the non-linear transfer rate always

on the full circle.

6.5. The diagonal term

Various third-generation models, like WAM, WaveWatch

and TOMAWAC, use a semi-implicit integration scheme

(WAMDIG, 1988). This scheme requires a diagonal term to

estimate the source term at the new time step, defined as

K fi; hj
� �

¼
BS fi; hj
� �

BE fi; hj
� � : ð63Þ

For the WRT method this diagonal term can be computed as

K k
Y

1


 �
¼ B

Bn1
d k
Y

3

Z
dsG sð ÞJ sð ÞN sð Þ

��

¼
Z

d k

Y

3

Z
dsG sð ÞJ sð Þ B

Bn1
N sð Þ

��
:

ð64Þ

Since N =n1n3 (n4�n2)+n2n4 (n3�n1) the contributions to

the diagonal term for wave number k
Y
1 can be written as

K k
Y

1


 �
¼
Z

d k
Y

3

Z
G sð ÞJ sð Þ n3 n4 � n2ð Þ � n2n4½ �ds ð65Þ

and

K k
Y

3


 �
¼
Z

d k
Y

3

Z
G sð ÞJ sð Þ n1 n4 � n2ð Þ þ n2n4½ �ds ð66Þ

for the associated contribution of wave number k
Y

3. These

expressions have been implemented in the subroutine version

of the WRT method and are used in the WaveWatch III model.

6.6. Spectral grid resolution

The WRT method uses two spectral grids for the wave

numbers k
Y
1 and k

Y
3. These grids are usually equal to one another,

but they may also be different. The resolutions of these grids

might be different from the spectral grid of the host model. In the
ED P
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case that the resolutions differ, the wave spectrum of the host

model needs to be converted to the resolutions of the WRT

method to obtain the wave action densities n1 and n3. Similarly,

the computed non-linear transfer rate needs to be converted to

the resolution of the host model. These two-way interpolations

introduce unwanted errors and should therefore be avoided.

Experience with the WaveWatch III model (Tolman, 2002)

indicates that the resolution of the WRT method should

preferably be the same as the one of the host model. When

the host model is formulated in terms of frequencies, they need

to be converted to wave numbers, including depth dependen-

cies. Also, the directional step should be the same, preferably

on the full circle.

Choosing a lower resolution of the grid for the WRT method

might lead to instabilities because not all degrees of freedom of

the discrete wave spectrum can be accounted for. Choosing a

finer resolution for the WRT method might lead to spurious

effects because the interpolated wave spectra are piece-wise

constant. The non-linear interactions immediately reshape the

spectrum locally to obtain a smooth curved variation of the

action density. It is noted that the EXACT-NL model uses a

much finer grid for the computation of the non-linear transfer

rate than the one for the representation of the wave spectrum.

Typical examples of computational results of this model show

indeed some raggedness (cf. Hasselmann and Hasselmann,

1981).

7. Conclusions

A detailed overview is presented of the method of Webb

(1978) for the computation of the non-linear four-wave

interactions in a gravity wave spectrum. The starting point is

the Boltzmann integral presented by Hasselmann (1962,

1963a,b). The choice and order of transformations leads to

an attractive set of equations without a singularity in the energy

containing part of the wave spectrum.

Based on the pioneering work of Tracy and Resio (1982),

and Resio and Perrie (1991), a computational method is

described to compute the non-linear transfer rate for a discrete

wave spectrum. Therefore, this computational method is

generally known as the WRT method. The WRT method is

conceptually simple since it comprises the repeated integration

of smooth functions along pre-computed paths in wave number

space. Another attractive feature of Webb’s method is that the

equations and structure of the computational method are the

same for deep water and for shallow water. This simplifies the

computational procedure and the implementation in an

operational wave prediction model considerably.

A good understanding of the intricacies of the computa-

tional procedure for the evaluation of the non-linear four-wave

interactions in a discrete wave spectrum is important for the

development of optimal methods that are both accurate and

operationally attractive. The method of Webb (1978) and its

implementation by Tracy and Resio (1982) provided an

excellent starting point for developing such an optimal method.

Various methods are presented for computing the loci

making up the integration paths in wave number space. All
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of these methods are able to generate points on the locus. It is

argued that differences in computational efficiency of these

methods are not the critical issue, but that they must be able to

produce a regular or sufficiently fine distribution of points

along each locus, such that all spectral bins contain one or more

points.

To overcome the large computational requirements of the

computational method, various methods are described that may

reduce the computational workload, thereby increasing their

applicability in discrete spectral wave models. These methods

are scalable since they retain the mathematical structure of

Webb’s method. In this paper, the basic concept of each method

is described, and parameter settings are suggested. However,

further studies are recommended to determine the optimal

settings of the various criteria used in these methods. Specific

points of attention are the optimal distribution of points on the

locus, the use of higher order quadrature methods, the spectral

resolution in frequencies and directions, and filtering based on

the actual spectral densities.

Due to the strong non-linear behaviour of the source term

for the four-wave interactions, small deviations in source term

representation are no guarantee that a particular optimisation

method produces similar results in model integrations com-

pared to results obtained with the full solution. It is therefore

recommended to test the applicability of each optimisation

method in model integration runs.

An important property of the WRT method is the division of

the computational workload in a pre-processing part and the

actual integration for a given discrete wave spectrum. For a

given discrete spectral grid and water depth, the integration

space and associated interpolation coefficients, Jacobian terms

and coupling coefficients can be pre-computed and used in

subsequent computations. This technique is not only used in

the EXACT-NL model, but also in the DIA. For a deep-water

application the integration space needs to be computed only

once. For shallow water, many integration spaces need to be

pre-computed. To increase the operational efficiency in a

typical shallow water wave model application, a method has

been proposed to efficiently handle the integration spaces for

different water depths.

Despite the fact that application of these methods may lead

to considerable savings in computational requirements, no

claims are made regarding their efficiency in comparison with

other computational methods. Such claims can only be made

under controlled conditions. Moreover, the actual computa-

tional requirements strongly depend on details of the compu-

tational method and on the computer hardware.

The WRT method has been implemented in various

operational wave prediction models, such as WaveWatch III,

SWAN, CREST and PROWAM. This was achieved by

developing a set of generally applicable routines that can

be called as a subroutine from the host wave prediction model.

The WRT method has been used in various studies regarding

the source term balance in academic situations (Van Vledder

and Bottema, 2002) and in field (Van der Westhuysen et al.,

2004; Ardhuin et al., submitted for publication) yielding

improved spectral shapes and growth behaviour.
ED P
ROOF

Acknowledgements

The present paper is the result of a series of studies

regarding the modelling of the non-linear quadruplet interac-

tions in discrete wave spectra. This series started with ONR’s

Advanced Wave Prediction Program, contract N00014-98-C-

0009, followed by the SWAN physics plus project, carried out

jointly with WL|Delft Hydraulics for the Dutch Ministry of

Transport and Public Works, contract RKZ-1018A. Funding

was also obtained from the French Naval Oceanographic

Centre (SHOM) in Brest. All their support is greatly

acknowledged.

Special thanks are for Klaus and Susanne Hasselmann who

introduced me to the secrets of the DIA and the EXACT-NL

model. Don Resio and Barbary Tracy introduced me to their

computational method of solving Webb’s equations. Ian Young

is acknowledged for our discussions on the nature and

properties of the non-linear four-wave interactions.

The computational method presented in this paper was

incorporated into various operational models. This was not

possible without the help of Hendrik Tolman of NOAA/NCEP

regarding the WaveWatch model, and IJsbrand Haagsma, Leo
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Appendix A. Derivation of the Jacobian term in Cartesian

coordinates

Tracy and Resio (1982) presented expression (21) in

Cartesian coordinates

J ¼
BDx

1;2;3;k
Y
1þk

Y
2�k

Y
3

Bk2;x

	� 2
(

þ
BDx

1;2;3;k
Y
1þk

Y
2�k

Y

3

Bk2;y

! 2
9=
;

�1=2

: ðA1Þ

The partial derivatives in (A1) can be expressed as

BDx
1;2;3;k

Y
1þk

Y
2�k

Y
3

Bk2;x
¼

ffiffiffi
g

p
k2;x

2k
3=2
2

�
ffiffiffi
g

p
k4;x

2k
3=2
4

ðA2Þ

with the wave number magnitude given by ki ¼ j k
Y
i j and

likewise for the y-component (it is noted that the factor
ffiffiffi
g

p
was
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set to one in their equations). Van Vledder (2000) presented the

finite depth versions of these equations, as they appear in the

finite depth version of the WRT code of Resio (1998).

BDx
1;2;3;k

Y
1þk

Y
2�k

Y
3

Bk2;x
¼ g

2x2

k2;x

k2
tanh k2hð Þ þ k2h

cosh2 k2hð Þ

��

� g

2x4

k4;x

k4
tanh k4hð Þþ k4h

cosh2 k4hð Þ

��
ðA3Þ

and likewise for the y-component. Expression (A3) can be

simplified considerably by writing

ki;x

ki
¼ cos hið Þ ðA4Þ

and by writing the expression for the group velocity cgi of the

wave number ki as

g

2xi

tanh kihð Þ þ kih

cosh2 kihð Þ

��
¼ cg;i: ðA5Þ

Substituting the expressions (A4) and (A5) in expression

(A1) and its y-equivalent, gives after some algebraic

manipulations

J ¼ c2g;2 þ c2g;4 � 2cg;2cg;4cos h2 � h4ð Þ

 ��1=2

¼ j cYg;2 � c
Y
g;4j�1

:
ðA6Þ
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