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Abstract: A finite depth version of the Discrete Interaction Approximation 
(DIA) has been developed and implemented in the SWAN model. This 
modification of the DIA makes the presently used depth-scaling obsolete. 
The capabilities of the finite depth DIA have been compared with results 
from an exact technique for the calculation of the nonlinear transfer rate. 
Firstly, the nonlinear transfer rate was computed for a JONSWAP spectrum 
in deep and shallow water. Secondly, two growth curves have been computed 
for a shallow lake with a constant depth of 5 m and 2 m. The results of the 
computations indicate that for mean kh-values larger than 1.3 no effects are 
noticeable. Only when kh<1.3 the finite depth DIA yields different results. 
This leads to small changes in wave period and spreading measures. 

 
INTRODUCTION 
 The present generation of full spectral discrete wave prediction models is based on the 
concept that each physical process can be modelled with a separate source term. In deep 
water source terms for wind input, whitecapping dissipation and nonlinear four-wave 
interactions are active. As the waves enter shallow water the source terms for bottom 
friction, depth-induced waves breaking as well as nonlinear three-wave interactions 
become important. Formulations of these source terms are often based on a combination 
of theoretical studies and analysis of field and laboratory measurements. Despite these 
efforts many different formulations for most of these source terms exist and no generally 
accepted formulation for each of these source terms exists.  
 
 The only source term for which a closed theoretical framework exists is the one 
describing the nonlinear four-wave interactions, which was proposed by Hasselmann 
(1962). The computation of the theoretical expression of the nonlinear four-wave 
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interactions is very time consuming because its formulation contains a 6-dimensional 
integral. Due to these computational requirements it is not used in operational wave 
prediction models. To overcome this obstacle, Hasselmann et al. (1985) derived an 
approximation of the full expression. This approximation is known as the Discrete 
Interaction Approximation (DIA) and it initiated the development of the present day 
third generation wave prediction models like WAM (WAMDI, 1988), WAVEWATCH 
(Tolman, 1991), SWAN (Booij et al., 1999) and TOMAWAC (Benoit et al., 1996). 
 
 Depth effects on the nonlinear transfer rate can be incorporated in the full theoretical 
expression by using the finite depth dispersion relation and the finite depth interaction 
coefficient. Theoretical and numerical studies show that finite depth affects the transfer 
rate in various ways. Firstly, the overall magnitude increases as the water becomes 
shallower. Secondly, the frequency and directional distribution of the transfer rate 
change. In the DIA, however, finite depth effects are crudely schematised using a simple 
scaling law in which only the magnitude changes while the shape remains unchanged.  
 
 The last years it has become evident that the DIA is not able to properly represent the 
nonlinear transfer function for deep and shallow water (cf. Van Vledder et al., 2000). 
Consequently, it distorts the source term balance in a wind wave spectrum. To overcome 
the shortcomings of the DIA, coefficients in the source terms for wind input and 
whitecapping dissipation in WAM-type models are heavily tuned to compensate for the 
mismatch in the DIA. This situation hampers the further development of other source 
terms as long as the DIA is used to investigate source terms with such a numerical wave 
model. 
 
 The need to replace the DIA by better approximations has been widely accepted in the 
wave modelling community and various authors have proposed extensions or 
modifications to the original DIA (cf. Hashimoto and Kawaguchi, 2001, and Van 
Vledder 2001). However, until now these efforts are only aimed at improving the deep 
water transfer rate. In this paper attention is given to improve the modelling of the 
nonlinear four-wave interactions in shallow water. To that end a finite depth version of 
the DIA has been derived. This modification makes the currently used depth scaling 
obsolete. Its basic features will be illustrated by comparisons with exact solution 
techniques for a JONSWAP spectrum and some shallow water growth curves 
experiment.  
 
NUMERICAL MODELLING OF WIND WAVES 
 The spatial and temporal evolution of the wave field is conveniently described by the 
wave action balance equation. In flux form this equation is given by: 
 

 ( ) ( ) ( ) ( ), ,g x g y k

N
c N c N c N c N S

t x y kθθ
∂ ∂ ∂ ∂ ∂+ + + + =
∂ ∂ ∂ ∂ ∂

 (1) 

 
in which N=N(σ,θ,x,y,t) is the wave action density spectrum, cg,x and cg,y are the group 
velocities in x-and y-direction, and cθ and ck are the spectral propagation velocities. The 
growth, decay and redistribution of wave action is given by the source term S . The 
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source term S is considered to be the sum of individual source terms, each representing a 
specific physical process:  
 
 4 3wind wcap nl fric brk nlS S S S S S S= + + + + +  (2) 

 
In this expression Swind is the wind input term, Swcap whitecapping dissipation, Snl4 
nonlinear four-wave interactions. In shallow water additional source terms are active; 
Sfric energy decay by bottom friction, Sbrk energy decay by breaking waves as well as Snl3 
nonlinear three-wave interactions. The nonlinear interaction terms only redistribute 
wave action within the spectrum. Descriptions of these source terms can be found in 
papers describing particular wave models like WAVEWATCH and SWAN. For the 
purposes of this paper, the basic equations of the methods for computing the nonlinear 
four-wave interactions are repeated. 
  
NONLINEAR FOUR-WAVE INTERACTIONS 
 Nonlinear wave-wave interactions between pairs of four wave components play an 
important role in the evolution of wind-generated waves (cf. Young and Van Vledder, 
1993). Hasselmann (1962) developed the theoretical framework for these interactions 
and he formulated an integral expression for the computation of these interactions, 
which is known as the Boltzmann integral for surface gravity waves. Hasselmann (1962) 
found that a set of four waves, called a quadruplet, could exchange energy when the 
following resonance conditions are satisfied: 
 
 1 2 3 4+ = +k k k k  (3) 

 1 2 3 4ω ω ω ω+ = +  (4) 

 
in which ωj the radian frequency and jk  the wave number (j=1,..,4). The linear 

dispersion relation relates the frequency and the wave number: 
 
 2 tanh( )gk khω =  (5) 
 
 Here, g is the gravitational acceleration and h the water depth. Hasselmann (1962) 
describes the nonlinear interactions between wave components in a quadruplet in terms 
of their action density ni, where n(ki)=E(ki)/ω i. The rate of change of action density at a 
wave number k1 due to all quadruplet interactions involving k1 is given by: 
 

 
( ) ( ) ( )

( ) ( )
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G
t

n n n n n n n n d d d

δ δ ω ω ω ω∂ = × + − − × + − −
∂
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∫∫∫ k k k k k k k k

k k k
 (6) 

 
where ni=n(ki) is the action density at wave number ki and G is the coupling coefficient, 
which is a complicated function of the four wave numbers involved in an interaction. 
Deep and finite depth expressions for this coefficient have been given by Hasselmann 
(1962) and Herterich and Hasselmann (1980). The delta functions in (6) ensure that 
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contributions to the integral only occur for quadruplets that satisfy the resonance 
conditions. They also ensure conservation of energy, action and momentum.  
 
 The computation of the Boltzmann integral is rather complicated and very time 
consuming since it requires the solution of a 6-dimensional integral. In the numerical 
evaluation of Eq. (6) thousands of possible wave number configurations need to be 
evaluated to determine the nonlinear transfer rate for a particular wave spectrum. 
Numerical integration techniques for the Boltzmann integral have been developed by 
Hasselmann and Hasselmann (1981), Masuda (1980) and Resio et al. (2001). The latter 
use a technique based on methods developed by Webb (1978) and Tracy and Resio 
(1982). These techniques are referred to as exact methods because they are able to solve 
the Boltzmann integral to any prescribed degree of accuracy. Because of the 
computational requirements of these methods it is (still) not feasible to include a full 
solution of the Boltzmann integral in operational wave models.  
 
THE DISCRETE INTERACTION APPROXIATION 
 In contrast to exact methods, the Discrete Interaction Approximation considers only 
one wave number configuration, and its mirror image. In this configuration the wave 
numbers k1 and k2 are equal and the other two wave numbers have different magnitude 
and direction. Their frequencies are related via the parameter λ such that their 
configuration is uniquely determined: 
 

 ( )
( )
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f f f

f f f

f f f
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−

= =

= + =

= − =

 (7) 

 
 Here, the superscripts + and – are used to emphasise the link with previously reported 
notations of the DIA. The directions of the wave numbers k3 and k4, relative to the 
direction of the wave numbers k1 and k2, follow from Eq. (7) and the resonance 
conditions (3) and (4). In the DIA proposed by Hasselmann et al. (1985) λ=0.25, leading 
to the angles θ1=θ2=0°, θ3=θ+=+11.48° and θ4=θ --=33.56°.  
 
 The DIA source term describes the rate of change of energy density in all four (in fact 
three independent) wave numbers involved in an interaction. The corresponding energy 
densities are denoted by E=E(f,θ), E+=E(f+,θ+) and E-=E(f -,θ -), and the contributions to 
the corresponding transfer rates are denoted by δSnl, δS+

nl and δS -nl. The functional form 
of the DIA source term is given by: 
 

 
( ) ( ) ( )
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−           = + −       + − −         

 (8) 

 
in which Cnl4 is a scale parameter. In the WAM and SWAN models Cnl4=3 x 107.  
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 To compute the nonlinear quadruplet source term for a discrete wave spectrum, 
equation (8) is applied to all spectral bins, taking E as the energy density at this bin. The 
positions of the other two interacting bins with energy densities E+ and E - are 
determined relative to the central bin E . In general, the locations (f+,θ+) and ( f -,θ -) of 
the wave numbers k3 and k4 in the spectral grid do not coincide with discrete spectral 
grid points. To obtain the energy density at these points one can apply bi-linear 
interpolation between the four surrounding grid points or one may take the energy 
density at the nearest grid point. In the computational procedure Eq. (8) is also applied 
to its mirror image, obtained by reversing the signs of the angles θ3 and θ4.  
 
 In the computational procedure of the DIA special attention is given to wave number 
configurations that cross the boundaries of the spectral grid. Periodicity is assumed to 
take care of the directional boundaries. Further, in the case that the frequency f- is lower 
than the lowest discrete frequency fmin, the corresponding energy density E - is set to 
zero, and in the case the frequency f + is higher than the highest discrete frequency a 
parametric decay of energy densities in the spectral tail is assumed, usually given by: 
 

 ( ) ( )max max
max

for
p

f
E f E f f f

f

 
= ≥ 

 
 (9) 

 
in which p is the power of the spectral tail. Additional quadruplets in the spectral tail 
need to be accounted for to ensure that all possible interactions between wave numbers 
in the prognostic range of the spectral grid and in the spectral tail are included. This is 
achieved by extending the spectral grid towards higher frequencies, such that the bin E- 
with frequency f- is located just at or just above the highest model frequency fmax. 
Application of Eq. (8) produces the rate of change of energy density at the interacting 
wave numbers. These rates are distributed among the four surrounding spectral bins 
using the same (interpolation) weights as used for the determination of the energy 
density at these wave numbers. 
 
 In WAMDI (1988) a simple method was proposed to include finite depth effects on 
the nonlinear transfer rate. Firstly, the nonlinear transfer rate is computed assuming deep 
water. Secondly, the resulting transfer rate is multiplied with a constant factor R. This 

factor is a function of the dimensionless water depth kh! , and constant for all spectral 
components of the spectrum. To enhance model robustness in the case of arbitrarily 
shaped spectra, the mean wave number is computed in a special way as (cf. Tolman, 
1991): 

 ( )
22

0 0

1 1
,

tot

k E f dfd
E k

π

θ θ
−∞ 

=  
 

∫ ∫!  (10) 

 
with Etot the total wave variance. The nonlinear finite depth transfer rate is computed as: 
 
 ( ) ( ) ( )4 4, ,h

nl nlS f S f R xθ θ∞= ×  (11) 
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in which 0.75x kh= !  and where the function R(x) is given by: 
 

 ( ) 5.5 6 5
1 1 exp

7 4

x x
R x

x
   = + − −   
   

 (12) 

 
 To avoid numerical instabilities, the value of R is limited to at most 5. This 
parameterisation of the depth scaling is based on an analysis of results of computations 
for JONSWAP spectra on deep and finite depth with the wave model EXACT-NL 
(Hasselmann and Hasselmann, 1981). The functional behaviour of Eq. (12) is shown in 

Figure 1. As can be seen finite depth effects are only relevant for 3kh <! , and an increase 

in magnitude of the nonlinear transfer rate only occurs when 1kh <! . 

0 1 2 3 4 5
0

1

2

3

4

5

6

x

R
(x
)

 
Fig. 1. Parameterisation of depth scaling in the DIA 

 
COMPARISONS OF NONLINEAR TRANSFER RATE FOR DEEP AND SHALLOW 
WATER 
 To illustrate some of the shortcomings of the DIA a comparison was made of the 
nonlinear transfer rate computed with an exact method and with the DIA. The exact 
nonlinear transfer rates were computed with WRT method, developed by Webb (1978), 
Tracy and Resio (1982), and Resio et al. (2001), and rewritten by the first author. To 
that end the same deep water JONSWAP spectrum was used as in Hasselmann et al. 
(1985), viz. a JONSWAP spectrum with fp=0.1 Hz, α=0.0175, γ=3.3 and a cos2(θ)-
directional spreading. The result is shown in Figure 2.  
 
 From Figure 2 it is evident that the DIA has the following deficiencies. The negative 
lobe is over-predicted. A relatively large positive lobe exists at about twice the peak 
frequency, which does not result from the exact method. Moreover, the frequency of the 
first zero-crossing of the transfer rate is much higher than the peak frequency, whereas 
the exact computation predicts its position to be located at the peak frequency. 
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Fig. 2. Comparison of nonlinear transfer rate computed with an exact method (solid 

line) and with the DIA (solid line with crosses) for a deep water JONSWAP 
spectrum with fp=0.1 Hz, α=0.0175, γ=3.3 and a cos2(θ)-directional spreading. 

 
 In shallow water finite depth effects change the magnitude and shape of the nonlinear 
transfer rate. This is illustrated in Figure 3 on the basis of exact computations for a mean 
JONSWAP spectrum with a peak frequency of 0.1 Hz in deep and shallow water with a 
depth of 10 m. This figure also shows the scaled nonlinear transfer rate for which 

0.78kh ≈! , resulting in a multiplication factor of 3.2R = .  
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Fig. 3. Nonlinear transfer rates for a deep water JONSWAP spectrum with fp=0.1 Hz, 

α=0.0175, γ=3.3 and a cos2(θ)-directional spreading. Results for deep water, 
a depth of 10 m and the scaled nonlinear transfer rate. 

 
 An important feature of finite depth effects on the nonlinear transfer rate is that the 
first positive lobe shifts towards lower frequencies and becomes wider than the scaled 
deep water transfer. This may lead to a faster shift of wave energy towards lower 
frequencies in shallow water in comparison with the scaled nonlinear transfer rate and to 
higher wave period measures.  
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THE FINITE DEPTH DISCRETE INTERACTION APPROXIMATION 
 To improve the depth behaviour of the DIA, the DIA was re-derived while keeping all 
finite depth terms in the equations. A detailed derivation of the finite depth DIA can be 
found in Van Vledder and Rasmussen (2002) and its main result is repeated here. The 
starting point for the derivation of the finite depth DIA is the principle of detailed 
balance formulated by Hasselmann (1966). This principle states that the change of wave 
action per unit time of each wave number involved in a resonant interaction is equal. To 
take advantage of this principle the Boltzmann integral is written in a symmetrical form: 
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in which P is the wave action product term P=n1n2(n3+n4)-n3n4(n1+n2). Eq. (13) has not 
the most convenient form to integrate with respect to the original wave numbers k1, k2, 
k3 and k4. Following Hasselmann and Hasselmann (1981), and Rasmussen (1995, 2002). 
Eq. (13) can be written as: 
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in which k2t is a tangential component of the wave number vector k2. J is the Jacobian of 
the transformation from Eq. (13) to Eq. (14). It is given by: 
 

 
1

2 4g gJ
−

= −c c  (15) 

 
in which cg,i is the group velocity vector of wave number vector ki. Next, a number of 
additional transformations are made to replace the change of wave action for a given 
wave number into the rate of change of energy density for a given frequency and 
direction. In addition the DIA assumption k1 = k2 is used. Details of this derivation will 
be given in Van Vledder and Rasmussen (2002). The result is the basic expression of the 
finite depth DIA: 
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 (16) 
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in which E=E(f,θ) and J' an additional Jacobian: 
  

 1 3

1 2 2

'
g g g t

k k
J

c c c
=  (17) 

 
 The main differences with the original DIA are the inclusion of the group velocities, 
frequencies and wave numbers in the product term, the explicit expression of the 
interaction coefficient G and the scaling term JJ’ arising from the Jacobian's. Another 
difference with the DIA is that the shape of the interacting wave number configuration is 
depth dependent. This latter effect is illustrated in Figure 4. The upper left panel of this 
figure shows the standard DIA configuration with λ=0.25 for a central frequency of 
0.0705 Hz, resulting in the wave numbers k1=k2=0.02 (1/m). The other panels show the 
modification of the DIA configuration with decreasing depth. The wave number 
magnitudes increases and their directions become more aligned. 

 
Fig. 4. Modification of the DIA wave number configuration with decreasing depth, for 

a central frequency of 0.0705 Hz and the water depths of 100 m, 20 m, 10 m 
and 5 m. 

 
 For deep water, all terms in Eq. (16) can be written in terms of frequencies and the 
gravitational acceleration g, such that the original DIA formulation (8) is obtained. The 
performance of the finite depth DIA is illustrated in Figure 5, in which the nonlinear 
transfer rate was computed for a mean JONSWAP spectrum with a peak frequency of 
0.1 Hz, in deep water and in shallow water with a depth of 10 m.  
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 Figure 5 shows that the finite depth DIA is able to reproduce some of the basic 
features of the changes of the nonlinear transfer rate in shallow water as inferred from 
exact computations. The overall magnitude increases, the first positive lobe shifts 
towards lower frequencies, and the first zero-crossing is closer to the peak frequency of 
the spectrum. Despite these improvements, the position of the negative lobe along the 
frequency axis is still much too high and the second positive lobe is also still too high. 
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Fig. 5. Nonlinear transfer rate computed with the finite depth DIA for a deep water 

JONSWAP spectrum with fp=0.1 Hz, α=0.0175, γ=3.3 and a cos2(θ)-
directional spreading. Results for deep water, a depth of 10 m and the scaled 

nonlinear transfer rate. 
 
IMPLICATIONS FOR WAVE MODELLING 
 To assess the implications of an improved modelling of the nonlinear four-wave 
interactions in shallow water the finite depth DIA was implemented in a test version of 
the SWAN model (Booij et al., 1999), version 40.11. Two test cases were defined, 
representing a shallow lake with a constant water depths of 5 and 2 m. These situations 
refer to typical RIZA problems (cf. Bottema et al., 2002). Wave model computations 
were made with the modified SWAN model in one-dimensional mode, a wind speed of 
25 m/s and the source terms for bottom friction and wave breaking activated. The triad 
source term was deactivated to avoid numerical problems with this version of the 
SWAN model. The growth curves for the significant wave height Hs, mean wave period 
Tm01, directional spreading σ and spectral narrowness κ for the 5 m case are shown in 
Figure 6. The results in this figure show that the explicit inclusion of shallow water 
effects in the DIA hardly affects the results. Only the frequency spectra become more 

peaked. These results are not surprising since the kh!  value at the end of the fetch is 
about 1.72 resulting in a scale factor of 0.91. Although the waves are depth limited, the 
water is not deep in terms of kh-values. The results for the 2 m case are shown in Figure 
7, indicating that the finite depth DIA gives slightly lower wave periods, narrower 
directional distributions and somewhat wider frequency spectra. Inspection of the 

numerical results showed that at the end of the fetch the kh!  value at the end of the fetch 
is about 1.21 resulting in a scale factor of 1.45. 



                Van Vledder, Bottema 11

   
 
Fig. 6. Growth curves computed with the standard DIA (solid line) and finite depth DIA 

(fDIA, dashed line) for a constant water depth of 5 m and a wind speed of 25 
m/s using the modified SWAN model. 

 

   
Fig. 7. Growth curves computed with the standard DIA (solid line) and finite depth 

DIA (fDIA, dashed line) for a constant water depth of 2 m and a wind speed 
of 25 m/s using the modified SWAN model. 

 
DISCUSSION 
 The results of the computations for the academic test spectrum indicate that the finite 
depth DIA leads to a better representation of shallow water effects on the nonlinear 
transfer rate compared to the present depth scaling. Still, a mismatch in the nonlinear 
transfer rate exists in comparison with results of exact computations. This is probably 
due to the fact that only one wave number configuration has been used in these 
computations.  
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 The results of the academic growth curves indicate that the 5 m depth shallow lake is 

not shallow in terms of kh!  values, although the growth is depth-limited in terms of Hs/h 
values. This is one of the reasons why the wave measurements described in the 
companion paper (Bottema et al., 2002) are not only interesting from an operational 
point of view, but also from a physical point of view. Only for the 2 m case depth effects 
become noticeable. The fact that the mean wave period decreases is surprising, but this 
may be due to the fact that only one wave number configuration was used. The decrease 
in directional spreading is probably due to the fact that the resonant wave number 
vectors become more aligned in shallow water, thus limiting the amount of energy 
transferred to off-wind directions. Investigation of the spectral shapes, related source 
terms and more detailed comparison with the results of exact computation are needed to 
fully understand these results. 
 
 The finite depth version of the DIA is only a first step in bridging the gap between the 
fast but inaccurate DIA and the accurate but time consuming exact methods for 
computing the nonlinear transfer rate in deep and shallow water. Two other methods are 
suggested to further improve the DIA. The first method is to include more wave number 
configurations. Such multiple DIA's have been presented by Hashimoto and Kawagushi 
(2001) and Van Vledder et al. (2000). A basic shortcoming of these methods is that only 
a limited set of wave number configurations is considered. Therefore, a more general 
extension of the DIA with generally shaped wave number configurations is needed (Van 
Vledder, 2001).  
 
CONCLUSIONS 
 The finite depth version of the DIA makes the presently used depth scaling obsolete. 
The finite depth DIA is able to account for some shallow water effects on the nonlinear 
transfer rate. Results of the computations indicate that for typical shallow lake situations 
the inclusion of finite depth effects in the DIA yields slightly different results only when 

kh!  < 1.3. Additional and more complicated tests are needed to assess the implications 
of the finite depth DIA. The potential benefits of the finite depth DIA are probably 
obscured by the mismatch in shape of the nonlinear transfer rate. This is due to the fact 
that only one wave number configuration has been used. Therefore, additional and 
arbitrarily shaped wavenumber configurations are needed to further improve the DIA.  
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