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IMPROVED MODELLING OF NONLINEAR FOUR-WAVE
INTERACTIONS IN SHALLOW WATER

Gerbrant Ph. van Vledder!, and Marcel Bottema’®

Abstract: A finite depth version of the Discrete Interaction Approximation
(DIA) has been developed and implemented in the SWAN model. This
modification of the DIA makes the presently used depth-scaling obsolete.
The capabilities of the finite depth DIA have been compared with results
from an exact technique for the calculation of the nonlinear transfer rate.
Firstly, the nonlinear transfer rate was computed for a JONSWAP spectrum
in deep and shallow water. Secondly, two growth curves have been computed
for a shallow lake with a constant depth of 5 m and 2 m. The results of the
computations indicate that for mean kh-values larger than 1.3 no effects are
noticeable. Only when kh<1.3 the finite depth DIA yields different results.
This leads to small changesin wave period and spreading measures.

INTRODUCTION

The present generation of full spectral discrete wave prediction modelsisbased onthe
concept that each physical process can be modelled with aseparate source term. In deep
water source terms for wind input, whitecapping dissipation and nonlinear four-wave
interactions are active. As the waves enter shallow water the source terms for bottom
friction, depth-induced waves breaking as well as nonlinear three-wave interactions
become important. Formulations of these source termsare often based on acombination
of theoretical studiesand analysis of field and laboratory measurements. Despite these
efforts many different formulationsfor most of these source termsexist and no generally
accepted formulation for each of these source terms exists.

The only source term for which a closed theoretical framework exists is the one
describing the nonlinear four-wave interactions, which was proposed by Hasselmann
(1962). The computation of the theoretical expression of the nonlinear four-wave
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interactions is very time consuming because its formulation contains a 6-dimensional
integral. Due to these computational requirements it is not used in operational wave
prediction models. To overcome this obstacle, Hasselmann et al. (1985) derived an
approximation of the full expression. This approximation is known as the Discrete
Interaction Approximation (DIA) and it initiated the development of the present day
third generation wave prediction modelslike WAM (WAMDI, 1988), WAVEWATCH
(Tolman, 1991), SWAN (Booij et a., 1999) and TOMAWAC (Benoit et a., 1996).

Depth effects on the nonlinear transfer rate can be incorporated in thefull theoretical
expression by using the finite depth dispersion relation and the finite depth interaction
coefficient. Theoretical and numerical studiesshow that finite depth affectsthe transfer
rate in various ways. Firstly, the overall magnitude increases as the water becomes
shallower. Secondly, the frequency and directional distribution of the transfer rate
change. Inthe DIA, however, finite depth effectsare crudely schematised using asimple
scaling law in which only the magnitude changes while the shape remains unchanged.

Thelast yearsit has become evident that the DIA isnot ableto properly represent the
nonlinear transfer function for deep and shallow water (cf. Van Vledder et a., 2000).
Consequently, it distorts the source term balancein awind wave spectrum. To overcome
the shortcomings of the DIA, coefficients in the source terms for wind input and
whitecapping dissipation in WAM-type model s are heavily tuned to compensatefor the
mismatch in the DIA. This situation hampers the further devel opment of other source
termsaslong asthe DIA isused to investigate source termswith such anumerical wave
model.

Theneed to replacethe DIA by better approximations has been widely accepted inthe
wave modelling community and various authors have proposed extensions or
modifications to the original DIA (cf. Hashimoto and Kawaguchi, 2001, and Van
Vledder 2001). However, until now these efforts are only aimed at improving the deep
water transfer rate. In this paper attention is given to improve the modelling of the
nonlinear four-wave interactionsin shallow water. To that end afinite depth version of
the DIA has been derived. This modification makes the currently used depth scaling
obsolete. Its basic features will be illustrated by comparisons with exact solution
techniques for a JONSWAP spectrum and some shallow water growth curves
experiment.

NUMERICAL MODELLING OF WIND WAVES
The spatial and temporal evolution of thewavefield is conveniently described by the
wave action balance equation. In flux form this equation is given by:

oN 0 0
E-I-&(CQVXN) +6_y( g,yN) *
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in which N=N(o,0,x,y.t) is the wave action density spectrum, ¢y and ¢y, are the group
velocitiesin x-and y-direction, and ¢, and ¢ are the spectral propagation velocities. The
growth, decay and redistribution of wave action is given by the source term S. The
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sourceterm Sis considered to be the sum of individual sourceterms, each representinga
specific physical process:

S=Sind ¥ Sueep TSiatShic TSk Sis (2

In this expression Sying iS the wind input term, Sucap Whitecapping dissipation, Sy
nonlinear four-wave interactions. In shallow water additional source terms are active;
Sric energy decay by bottom friction, S,k energy decay by breaking wavesaswell as Sy3
nonlinear three-wave interactions. The nonlinear interaction terms only redistribute
wave action within the spectrum. Descriptions of these source terms can be found in
papers describing particular wave models like WAVEWATCH and SWAN. For the
purposes of this paper, the basic equations of the methods for computing the nonlinear
four-wave interactions are repeated.

NONLINEAR FOUR-WAVE INTERACTIONS

Nonlinear wave-wave interactions between pairs of four wave components play an
important role in the evolution of wind-generated waves (cf. Y oung and Van Vledder,
1993). Hasselmann (1962) developed the theoretical framework for these interactions
and he formulated an integral expression for the computation of these interactions,
whichisknown asthe Boltzmannintegral for surface gravity waves. Hasselmann (1962)
found that a set of four waves, caled a quadruplet, could exchange energy when the
following resonance conditions are satisfied:

k, +k, =k; +k, ©)
Wtw=u+q (4)

in which @ the radian frequency and k; the wave number (j=1,..,4). The linear
dispersion relation relates the frequency and the wave number:

«w’ = gk tanh(kh) (5)
Here, g isthe gravitational acceleration and h the water depth. Hasselmann (1962)
describesthe nonlinear interactions between wave componentsin aquadrupl et in terms

of thelir action density n;, where n(k))=E(k;)/ w;. Therate of change of action density at a
wave number k; dueto al quadruplet interactions involving k; is given by:

0
0= I ko) <0+, ) x8( @+ - =)

x[nn, (n, +n,) =(n, +n,) n,n, | dk,dk,dk,

(6)

where ni=n(k;) isthe action density at wave number k; and G isthe coupling coefficient,
which is a complicated function of the four wave numbersinvolved in an interaction.
Deep and finite depth expressions for this coefficient have been given by Hasselmann
(1962) and Herterich and Hasselmann (1980). The delta functions in (6) ensure that
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contributions to the integral only occur for quadruplets that satisfy the resonance
conditions. They also ensure conservation of energy, action and momentum.

The computation of the Boltzmann integral is rather complicated and very time
consuming since it requires the solution of a 6-dimensional integral. In the numerical
evaluation of Eq. (6) thousands of possible wave number configurations need to be
evauated to determine the nonlinear transfer rate for a particular wave spectrum.
Numerical integration techniques for the Boltzmann integral have been devel oped by
Hasselmann and Hasselmann (1981), Masuda (1980) and Resio et al. (2001). Thelatter
use a technique based on methods developed by Webb (1978) and Tracy and Resio
(1982). Thesetechniques arereferred to as exact methods because they are ableto solve
the Boltzmann integral to any prescribed degree of accuracy. Because of the
computational requirements of these methods it is (still) not feasible to include a full
solution of the Boltzmann integral in operational wave models.

THE DISCRETE INTERACTION APPROXIATION

In contrast to exact methods, the Discrete Interaction Approximation considers only
one wave number configuration, and its mirror image. In this configuration the wave
numbersk; and k; are equal and the other two wave numbers have different magnitude
and direction. Their frequencies are related via the parameter 1 such that their
configuration is uniquely determined:

I |
—h

( = (7
(1- )=

Here, the superscripts + and — are used to emphasise the link with previoudly reported
notations of the DIA. The directions of the wave numbers ks and k4, relative to the
direction of the wave numbers k; and k», follow from EqQ. (7) and the resonance
conditions(3) and (4). Inthe DIA proposed by Hasselmann et a. (1985) 1=0.25, leading
to the angles 8= 6=0°, &= =+11.48° and 4=  =33.56°.

v

f;
fs
f

TheDIA sourceterm describestherate of change of energy density inall four (infact
threeindependent) wave numbersinvolved in an interaction. The corresponding energy
densitiesare denoted by E=E(f,0), E'=E(f",0") and E=E(f ",0 "), and the contributionsto
the corresponding transfer rates are denoted by S, 6S™y and 6S . Thefunctional form
of the DIA sourcetermis given by:

531| —2 + _ e
5, |=| 1 |c.7 e E{ =4 E 4]—2E == ®
o) i ETNE ey

inwhich C4 is a scale parameter. In the WAM and SWAN models C4=3 x 10’
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To compute the nonlinear quadruplet source term for a discrete wave spectrum,
equation (8) isapplied to all spectral bins, taking E asthe energy density at thishin. The
positions of the other two interacting bins with energy densities E* and E ~ are
determined relative to the central bin E . In general, thelocations (f*,6") and (7,0 ) of
the wave numbers k3 and k4 in the spectral grid do not coincide with discrete spectral
grid points. To obtain the energy density at these points one can apply bi-linear
interpolation between the four surrounding grid points or one may take the energy
density at the nearest grid point. In the computational procedure Eq. (8) isalso applied
to its mirror image, obtained by reversing the signs of the angles 65 and 6..

In the computational procedure of the DIA special attention isgiven to wave number
configurations that cross the boundaries of the spectral grid. Periodicity is assumed to
take care of the directional boundaries. Further, in the casethat the frequency f islower
than the lowest discrete frequency fmin, the corresponding energy density E ™ is set to
zero, and in the case the frequency f * is higher than the highest discrete frequency a
parametric decay of energy densitiesin the spectral tail is assumed, usually given by:

E(f):E(fmax)[f—} for f=f, 9)

in which p is the power of the spectra tail. Additional quadruplets in the spectral tail
need to be accounted for to ensure that all possible interactions between wave numbers
in the prognostic range of the spectral grid and in the spectral tail areincluded. Thisis
achieved by extending the spectral grid towards higher frequencies, such that thebin E
with frequency f is located just at or just above the highest model frequency fmax

Application of Eq. (8) produces the rate of change of energy density at the interacting
wave numbers. These rates are distributed among the four surrounding spectral bins
using the same (interpolation) weights as used for the determination of the energy
density at these wave numbers.

In WAMDI (1988) a simple method was proposed to include finite depth effects on
the nonlinear transfer rate. Firstly, the nonlinear transfer rateis computed assuming deep
water. Secondly, the resulting transfer rate is multiplied with a constant factor R. This

factor isafunction of the dimensionless water depth kh, and constant for all spectral
components of the spectrum. To enhance model robustness in the case of arbitrarily
shaped spectra, the mean wave number is computed in a special way as (cf. Tolman,

1991):
( zﬁs (f.,0) dde] (10)

otOO

with Eq the total wave variance. The nonlinear finite depth transfer rateiscomputed as:

Sh(£.6) =S5, (f.6)xR(x) (12)
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in which x =0.75kh and where the function R(X) is given by:

R(x) :1+5;:(1—%)exp(—57:) (12)

To avoid numerical instabilities, the value of R is limited to a most 5. This
parameterisation of the depth scaling is based on an analysis of results of computations
for JONSWAP spectra on deep and finite depth with the wave model EXACT-NL
(Hasselmann and Hasselmann, 1981). The functional behaviour of Eq. (12) isshownin
Figure 1. Ascan be seen finite depth effects are only relevant for kh < 3, and anincrease

in magnitude of the nonlinear transfer rate only occurs when kh<1.

5

Fig. 1. Parameterisation of depth scaling in the DIA

COMPARISONS OF NONLINEAR TRANSFER RATE FOR DEEP AND SHALLOW
WATER

To illustrate some of the shortcomings of the DIA a comparison was made of the
nonlinear transfer rate computed with an exact method and with the DIA. The exact
nonlinear transfer rates were computed with WRT method, devel oped by Webb (1978),
Tracy and Resio (1982), and Resio et al. (2001), and rewritten by the first author. To
that end the same deep water JONSWAP spectrum was used as in Hasselmann et al.
(1985), viz. a JONSWAP spectrum with f,=0.1 Hz, a=0.0175, )=3.3 and a cos’()-
directional spreading. The result is shown in Figure 2.

From Figure 2 it isevident that the DIA hasthe following deficiencies. The negative
lobe is over-predicted. A relatively large positive lobe exists at about twice the peak
frequency, which does not result from the exact method. M oreover, thefrequency of the
first zero-crossing of the transfer rate is much higher than the peak frequency, whereas
the exact computation predictsits position to be located at the peak frequency.
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Fig. 2. Comparison of nonlinear transfer rate computed with an exact method (solid
line) and with the DIA (solid line with crosses) for a deep water JONSWAP
spectrum with £,=0.1 Hz, a=0.0175, )=3.3 and a cos’(8-directional spreading.

In shallow water finite depth effects change the magnitude and shape of the nonlinear
transfer rate. Thisisillustrated in Figure 3 on the basis of exact computationsfor amean
JONSWAP spectrum with apeak frequency of 0.1 Hz in deep and shallow water with a
depth of 10 m. This figure also shows the scaled nonlinear transfer rate for which

kh=0.78, resulting in amultiplication factor of R=3.2.
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Fig. 3. Nonlinear transfer rates for a deep water JONSWAP spectrum with f,=0.1 Hz,
a=0.0175, )=3.3 and a cos’(@-directional spreading. Results for deep water,
a depth of 10 m and the scaled nonlinear transfer rate.

An important feature of finite depth effects on the nonlinear transfer rate is that the
first positive lobe shifts towards lower frequencies and becomes wider than the scaled
deep water transfer. This may lead to a faster shift of wave energy towards lower
frequenciesin shallow water in comparison with the scaled nonlinear transfer rateand to
higher wave period measures.

7 Van Vledder, Bottema



THE FINITE DEPTH DISCRETE INTERACTION APPROXIMATION
Toimprovethe depth behaviour of the DIA, the DIA wasre-derived while keeping all
finite depth termsin the equations. A detailed derivation of the finite depth DIA can be
found in Van Vledder and Rasmussen (2002) and its main result is repeated here. The
starting point for the derivation of the finite depth DIA is the principle of detailed
balance formulated by Hasselmann (1966). This principle statesthat the change of wave
action per unit time of each wave number involved in aresonant interactionisequal. To
take advantage of this principlethe Boltzmann integral iswritteninasymmetrica form:

An -1
An, -1|G
= —5(kl +K, =K, —k4) 5(@ tw —w- cg) Pdk,dk,dk,dk, & (13)
An, 1|4
An, 1

inwhich P isthewave action product term P=n;ny(nz+ ny)-nzna(ns+ny). Eq. (13) hasnot
the most convenient form to integrate with respect to the original wave numbersk;, ko,
ks and k4. Following Hasselmann and Hassel mann (1981), and Rasmussen (1995, 2002).
Eq. (13) can be written as:

An, -1
An -1
2= E|J| Pk, dk.,, dk At (14)
An, 14
An, 1

inwhich ky isatangential component of the wave number vector k. Jisthe Jacobian of
the transformation from Eq. (13) to Eq. (14). It isgiven by:
-1
J =[c,, —Cyf (15)
in which cg; isthe group velocity vector of wave number vector k;. Next, a number of
additional transformations are made to replace the change of wave action for a given
wave number into the rate of change of energy density for a given frequency and
direction. In addition the DIA assumption k; =k, isused. Details of thisderivation will
begiveninVan Vledder and Rasmussen (2002). Theresult isthe basic expression of the
finite depth DIA:

oS, (-2
dS; |=| 1 |C,,G|a3|f3x
oS, 1 (16)

(s
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in which E=E(f,6) and J' an additional Jacobian:

gr=—Xk (17

Cg 1Cg 2 Cg 2t

Themain differences with the original DIA aretheinclusion of the group velocities,
frequencies and wave numbers in the product term, the explicit expression of the
interaction coefficient G and the scaling term JJ' arising from the Jacobian's. Another
difference with the DIA isthat the shape of theinteracting wave number configurationis
depth dependent. Thislatter effect isillustrated in Figure 4. The upper |eft panel of this
figure shows the standard DIA configuration with 1=0.25 for a central frequency of
0.0705 Hz, resulting in the wave numbers k;=k,=0.02 (1/m). The other panels show the
modification of the DIA configuration with decreasing depth. The wave number
magnitudes increases and their directions become more aligned.

Depth = 100 {m) Depth = 20 {m)
- .04
LX) 7 .
0z
EEE.//"-\‘ !_= i
= - e I"_--—'_".--:..'.- " E 3
A0
.02
.02
o 002 004 006 0Oo08 0 002 004 006 008 04
ke (1m] b (1m]
Depth = 10 {m) Depth = § {m)
0,04 i
0,04
—. 102 _ "
; o TRt [ e s
— " | — (1] = -
- = - -
o e
0,02
-0
.04 1. 13
i .05 &1 0 .05 0.1 iR E]
k, (1A ki, (1A

Fig. 4. Modification of the DIA wave number configuration with decreasing depth, for
a central frequency of 0.0705 Hz and the water depths of 100 m, 20 m, 10 m
and 5 m.

For deep water, all termsin Eqg. (16) can be written in terms of frequencies and the
gravitational acceleration g, such that the original DIA formulation (8) isobtained. The
performance of the finite depth DIA isillustrated in Figure 5, in which the nonlinear
transfer rate was computed for a mean JONSWAP spectrum with a peak frequency of
0.1 Hz, in deep water and in shallow water with a depth of 10 m.
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Figure 5 shows that the finite depth DIA is able to reproduce some of the basic
features of the changes of the nonlinear transfer rate in shallow water asinferred from
exact computations. The overall magnitude increases, the first positive lobe shifts
towardslower frequencies, and thefirst zero-crossing is closer to the peak frequency of
the spectrum. Despite these improvements, the position of the negative |obe along the
frequency axisis till much too high and the second positive lobe is also still too high.
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Fig. 5. Nonlinear transfer rate computed with the finite depth DIA for a deep water
JONSWAP spectrum with f,=0.1 Hz, =0.0175, )=3.3 and a cos?(9-
directional spreading. Results for deep water, a depth of 10 m and the scaled
nonlinear transfer rate.

IMPLICATIONS FOR WAVE MODELLING

To assess the implications of an improved modelling of the nonlinear four-wave
interactionsin shallow water the finite depth DIA wasimplemented in atest version of
the SWAN model (Booij et al., 1999), version 40.11. Two test cases were defined,
representing a shallow lake with aconstant water depths of 5 and 2 m. These situations
refer to typical RIZA problems (cf. Bottema et a., 2002). Wave model computations
were made with the modified SWAN model in one-dimensional mode, awind speed of
25 m/s and the source termsfor bottom friction and wave breaking activated. The triad
source term was deactivated to avoid numerical problems with this version of the
SWAN model. Thegrowth curvesfor the significant wave height Hs, mean wave period
Tmo1, directional spreading o and spectral narrowness « for the 5 m case are shown in
Figure 6. The results in this figure show that the explicit inclusion of shallow water
effectsin the DIA hardly affects the results. Only the frequency spectra become more
peaked. These results are not surprising since the kh value at the end of the fetch is
about 1.72 resulting in ascale factor of 0.91. Although the waves are depth limited, the
water isnot deep in terms of kh-values. Theresultsfor the2 m caseare shownin Figure
7, indicating that the finite depth DIA gives dightly lower wave periods, narrower
directional distributions and somewhat wider frequency spectra. Inspection of the
numerical results showed that at the end of the fetch the kh valueat theend of thefetch
isabout 1.21 resulting in ascale factor of 1.45.
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Fig. 6. Growth curves computed with the standard DIA (solid line) and finite depth DIA
(fDIA, dashed line) for a constant water depth of 5 m and a wind speed of 25
m/s using the modified SWAN model.
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Fig. 7. Growth curves computed with the standard DIA (solid line) and finite depth
DIA (fDIA, dashed line) for a constant water depth of 2 m and a wind speed
of 25 m/s using the modified SWAN model.

DISCUSSION

Theresults of the computationsfor the academic test spectrum indicate that thefinite

depth DIA leads to a better representation of shallow water effects on the nonlinear
transfer rate compared to the present depth scaling. Still, a mismatch in the nonlinear
transfer rate exists in comparison with results of exact computations. Thisis probably
due to the fact that only one wave number configuration has been used in these
computations.
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Theresults of the academic growth curvesindicate that the 5 m depth shallow lakeis

not shallow intermsof kh values, although the growth is depth-limited in terms of Hgh
values. This is one of the reasons why the wave measurements described in the
companion paper (Bottema et al., 2002) are not only interesting from an operational
point of view, but also from aphysical point of view. Only for the 2 m case depth effects
become noticeable. The fact that the mean wave period decreasesis surprising, but this
may be dueto thefact that only one wave number configuration was used. The decrease
in directional spreading is probably due to the fact that the resonant wave number
vectors become more aligned in shallow water, thus limiting the amount of energy
transferred to off-wind directions. Investigation of the spectral shapes, related source
terms and more detail ed comparison with the results of exact computation are needed to
fully understand these results.

Thefinite depth version of the DIA isonly afirst step in bridging the gap between the
fast but inaccurate DIA and the accurate but time consuming exact methods for
computing the nonlinear transfer ratein deep and shallow water. Two other methodsare
suggested to further improvethe DIA. Thefirst method isto include more wave number
configurations. Such multiple DIA's have been presented by Hashimoto and Kawagushi
(2001) and Van Vledder et al. (2000). A basic shortcoming of these methodsisthat only
alimited set of wave number configurations is considered. Therefore, a more general
extension of the DIA with generally shaped wave number configurationsisneeded (Van
Vledder, 2001).

CONCLUSIONS

Thefinite depth version of the DIA makes the presently used depth scaling obsol ete.
Thefinite depth DIA isableto account for some shallow water effects on the nonlinear
transfer rate. Results of the computationsindicatethat for typica shallow lake situations
theinclusion of finite depth effectsinthe DIA yields slightly different resultsonly when

kh < 1.3. Additional and more complicated tests are needed to assess the implications
of the finite depth DIA. The potential benefits of the finite depth DIA are probably
obscured by the mismatch in shape of the nonlinear transfer rate. Thisisdueto the fact
that only one wave number configuration has been used. Therefore, additional and
arbitrarily shaped wavenumber configurations are needed to further improve the DIA.
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