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[1] Large eddy simulations of the Craik-Leibovich equations are used to assess the effect
of misaligned Stokes drift and wind direction on Langmuir cells in the ocean mixed layer.
Misalignments from 0� to 135� are examined and Langmuir turbulence structures are
evident in all cases. The Stokes drift is modeled using a broadband empirical spectrum,
and cases with and without the Coriolis effect, wind waves, and an initial mixed layer are
examined. The expected scaling for the vertical velocity variance is recovered in the
aligned simulations and is adapted here to the misaligned cases. The adjusted scaling
projects the friction velocity (aligned with the wind stress) into the dominant axial direction
of the Langmuir cells. The turbulent Langmuir number is generalized through a similar
projection into the axial direction of the Langmuir cells, which reduces its value in realistic
conditions. For known Langmuir cell orientations, the strength of Langmuir turbulence
for misaligned cases can be estimated using the projected Langmuir number. A prediction
for the angle between the wind stress and cell direction is obtained using the law of the wall;
this prediction only requires the wind stress, Stokes drift, and boundary layer depth.
Conditional analyses show that, with increasing misalignment, the typically antisymmetric
Langmuir cell pairs become asymmetric. This asymmetry is due, in part, to the
advection by cross cell flow of vorticity from one vortex tube onto the other, and in part due
to an asymmetry induced by the stretching of vertical vorticity into cross cell vorticity.

Citation: Van Roekel, L. P., B. Fox-Kemper, P. P. Sullivan, P. E. Hamlington, and S. R. Haney (2012), The form and orientation
of Langmuir cells for misaligned winds and waves, J. Geophys. Res., 117, C05001, doi:10.1029/2011JC007516.

1. Introduction

[2] The ocean surface layer is the intermediary for ocean-
atmosphere fluxes of momentum and tracers. Small scale
phenomena are critical to the creation and maintenance of
this layer. Processes at submesoscale lengths and below can
have a dramatic impact on global climate [Large et al., 1997;
Fox-Kemper et al., 2011; A. Webb et al., Global climate
model sensitivity to estimated Langmuir mixing, manuscript
in preparation, 2011], and the surface wavefield impacts the
upper ocean directly through the breaking of waves and the
corresponding transfer of momentum into the surface layer
[Craig and Banner, 1994; Sullivan and McWilliams, 2010;
Cavaleri et al., 2012].
[3] Even surface waves that do not break can impact the

upper ocean. The Stokes drift associated with surface waves

tilts vertical vorticity anomalies into the horizontal. The
instability that governs this process was described by Craik
[1977], and leads to the creation of vortices called Langmuir
Cells (LC) [Langmuir, 1938]. LC are a feature of the wave-
and wind-driven turbulence of the upper ocean, which here
will be called Langmuir Turbulence (LT) [after McWilliams
et al., 1997, hereinafter MSM97]. Similar to breaking waves,
LT tends to mix the upper ocean, although mixing by LT
extends far below the surface, sometimes even deep enough
to entrain water across the mixed layer base.
[4] LT has been studied in recent years through field

campaigns [Weller and Price, 1988; Smith, 1992; D’Asaro
and Dairiki, 1997] and large eddy simulations (LES) of the
Craik-Leibovich (CL) equations [Craik, 1977; Skyllingstad
and Denbo, 1995; McWilliams et al., 1997; Noh et al., 2004;
Sullivan et al., 2004, 2007; Li et al., 2005; Polton and Belcher,
2007; Grant and Belcher, 2009]. The CL equations are
obtained by wave averaging the Navier-Stokes equations,
and the effect of the Stokes drift velocity, us, enters through
additional forcing of the momentum, turbulent kinetic energy,
and Eulerian vorticity budgets. Kukulka et al. [2009, 2010]
have shown that results from LES are in good agreement
with observations, and LES has provided substantial insights
into the governing processes of LT.
[5] Using results from LES, McWilliams and Sullivan

[2000] suggest that the ratio of mixing due to LT over that
due to ordinary shear turbulence (ST) (i.e., neglecting Stokes
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drift forcing) should scale with the turbulent Langmuir
number, Lat

2 ≡ u*/us(0). Here, u* ≡
ffiffiffiffiffiffiffiffiffiffiffijtj=rp

is the surface
friction velocity, t is the surface wind stress, r is the density,
and us(0) is the surface value of the Stokes drift velocity in
the direction of the wind stress. Scalings of the strength of
Langmuir mixing (i.e., mixing that is directly associated
with LT) have also been proposed in several other studies
[Grant and Belcher, 2009; Kukulka et al., 2010], and recent
simulations [Sullivan et al., 2004, 2007; Noh et al., 2004]
have additionally examined the impact of wave breaking on
LT and the upper ocean.
[6] Despite increasing LES complexity, most prior studies

have assumed that the Stokes drift is aligned with the surface
wind stress (i.e., that t and us point in the same direction).
The case of misaligned wind and waves is, however,
important for understanding the dynamics of LC and the
impact of LT on the mixed layer in more realistic situations.
Hanley et al. [2010] argue that seas are rarely in wind-wave
equilibrium, and that the wavefield contains both swell and
wind waves (although the implications of this result in terms
of wave age are less clear [Högström et al., 2011; Hanley
et al., 2011]). Swell waves, in particular, are susceptible to
misalignment with the wind direction [Hanley et al., 2010].
Similar scenarios may result from a change of wind (e.g.,
during a hurricane), waves propagating from one region to
another, or wave refraction. Observations from Hurricane
Gustav and Typhoon Megi, for example, show vastly dif-
ferent mixing signatures for different wind-wave orientations
(E. A. D’Asaro, personal communication, 2011).
[7] The impact of misaligned wind and waves on LC has

been studied previously, although not through full LES of the
non-linear CL equations. Gnanadesikan and Weller [1995]
suggest that LC will align with the direction of maximum
Lagrangian velocity shear, where the Lagrangian velocity
vector, uL, is defined as the sum of Eulerian, u, and Stokes
currents as uL = u + us. This result has also been confirmed
by linear stability analysis [Polonichko, 1997; Cox, 1997].
Since these studies, however, the problem has lain dormant,
and little progress has been made in understanding LT in
the misaligned case using simulations of the non-linear CL
equations.
[8] In this paper, LES of the CL equations are used to

understand the properties of LT when the wind and waves
are misaligned. The simulations use the basic problem for-
mulation outlined by MSM97, but with the wind and wave
directions decoupled. In each simulation, the wind stress and
Stokes drift are constant in space and time, but the angle
between the wind and waves, denoted qww, is varied. We
consider angles between 0� and 135�, and find that LC are
present for all qww, even for qww ≥ 90�. By 135�, the LT
characteristics are quite different from the 0� to 90� cases,
but weakly anisotropic structures resembling LC still exist.
Only in the most extreme case (i.e., qww = 180�), where the
Stokes drift directly opposes the wind stress, is there mini-
mal generation of LT. In this case, the Stokes drift shear
nearly cancels the shear induced by the wind. Following
Gnanadesikan and Weller [1995], we also examine cases
with and without the effects of rotation (Coriolis force).
[9] One of the challenges of examining LC is that in the

LT regime, disordered bunches of LC combine with other
features associated with ST. Through comparisons with

simulations in the absence of Stokes drift, we distinguish
LT/LC structures from those that are similar to structures in
ordinary ST. Harcourt and D’Asaro [2008] also argue that
the wave spectra used to force LES models can have a
dramatic impact on the scaling of LT.
[10] Many previous LES studies have used a Stokes drift

profile from monochromatic waves, but Harcourt and
D’Asaro [2008] have shown that an empirical wave spec-
trum with explicit dependence on wave age, defined as the
phase speed of the peak wave (Cp) normalized by the ten
meter wind speed (U10), should be used for more realistic
forcing. Consequently, an empirical spectrum is used here
to represent the vertical profile of the Stokes drift velocity.
To ensure robust results, additional simulations have been
carried out that include superposition of a second set of young
waves aligned with the wind, with negligible consequences.
[11] Even though there is sensitivity to the form of the

wave spectrum used in the formulation of us, Harcourt
and D’Asaro [2008] show that the bulk (i.e., mixed layer
average) value of vertical kinetic energy predicted by mono-
chromatic wave spectra collapses to the result from broad-
band empirical spectra if Lat is redefined using an average
over the surface layer.Harcourt and D’Asaro [2008] take the
depth of this layer as roughly 20% of the mixed layer depth
(HML). As a result, their generalized formulation for Lat
addresses cases with either empirical or monochromatic
wave spectra. A similar procedure is used here to formulate
an expression for Lat that addresses cases where the effects
of the Stokes drift penetrate more deeply into the mixed
layer, and where wind and Stokes drift are misaligned. It will
be shown that the relative alignment of winds and waves is
critically important in determining the strength of mixing
by LT. Thus, misalignment should be considered in studies
of the distribution of Langmuir number globally [Webb and
Fox-Kemper, 2011; S. E. Belcher et al., A global perspective
on mixing in the ocean surface boundary layer, unpublished
manuscript, 2011].
[12] The primary goals of this study are: (1) to characterize

changes in the properties of LC as a function of qww, Coriolis
force, and Stokes drift magnitude, (2) to briefly explore the
differences in energy and vorticity budgets that result from
misalignment and their effects on the resulting LC, (3) to
find a successful prediction for the orientation of the LC
relative to the directions of the wind stress and Stokes drift,
and (4) to show that by projecting the wind stress and Stokes
drift into the direction of LC, standard LT scalings are
nearly recovered. Details of the simulations are provided in
section 2, properties of the LC are given in section 3,
kinetic energy and vorticity budgets are discussed in section 4,
predictions for the orientations of LC are presented in
section 5, conditional analyses of LC are presented in
section 6, and scalings of Lat are addressed in section 8.

2. Model and Simulation Description

[13] The simulations are carried out using the LES model
developed at NCAR [Moeng, 1984], which solves the spa-
tially filtered CL equations given by [McWilliams et al.,
1997; Holm, 1996]

∂r
∂t

þ uL ⋅rr ¼ SGS; ð1Þ

VAN ROEKEL ET AL.: LANGMUIR UNDER MISALIGNED WIND AND WAVES C05001C05001

2 of 22



r⋅u ¼ 0; ð2Þ

∂u
∂t

þ wþ f ẑð Þ � uL ¼ �rp� grẑ
r0

þ SGS; ð3Þ

where the Lagrangian velocity is uL = u + us, the Eulerian
vorticity is w = r � u, f is the Coriolis parameter, g is the
acceleration due to gravity, r0 is a reference density, SGS
denotes subgrid-scale terms (here, the two-part SGS model
of Sullivan et al. [1996]), and p is an effective pressure
given by

p ¼ p

r0
þ 1

2
uLj j2

� �
: ð4Þ

The equation of state is given as r = r0(1 � bTq), where q
is the temperature and bT is the coefficient of thermal
expansion. The surface boundary conditions consist of a
slight cooling to initiate convection and a wind stress, t, to
which the x-axis is aligned.
[14] Forcing by surface waves enters the CL equation (3)

through the w � us term, the Coriolis term, f ẑ � us, and
the effective pressure in (4). The Stokes drift also contributes
to the advection of density in (1). For misaligned wind and
waves, the Stokes drift velocity, us, can be written in the
wind-based coordinates as

us zð Þ ¼ Us zð Þ cos qwwð Þx̂ þ sin qwwð Þŷ½ �; ð5Þ

where qww is the angle between the wind and waves, and
the x̂ direction is aligned with the wind. The vertical Stokes
drift profile, Us(z), is represented in the present study by a
broadband empirical spectrum, as opposed to the mono-
chromatic spectrum used in prior studies [e.g., McWilliams
et al., 1997]. Two different empirical spectra for wind and
equilibrated waves from Donelan et al. [1985] are consid-
ered here: high frequency young waves with a wave age of
Cp/U10 = 0.25 and waves in a fully developed sea with
Cp/U10 = 1.2. The resulting Us(z) from the Donelan et al.
[1985] spectra decays super-exponentially with distance from
the surface [Webb and Fox-Kemper, 2011], and thus we
expect LC to be more confined to the surface than in simu-
lations using monochromatic wavefields. Since the Donelan
et al. [1985] spectrum does not have a well-defined surface
Stokes drift value, throughout we use the Stokes drift at the
first grid point,Us(�0.3 m), as our value forUs(0). This value
most accurately represents the resolved Stokes drift shear
available for production. In the present simulations, the sur-
face shear velocity can be parameterized through the skin
friction velocity, which is given as u* = 5.27 � 10�3 ms�1.
[15] As in previous studies of aligned wind and waves

[e.g., McWilliams et al., 1997], some time is required after
the initial onset of simulated turbulence before the statistical

properties of the turbulence are reliable. The simulations of
misaligned waves and wind are not fundamentally different,
and so care is taken to analyze the spin-up and stabilization
of the results presented. The analysis window begins when
spin-up appears complete, but the continuing variations were
monitored. Cases where the coordinate system is taken as
rotating are particularly prone to difficulty as inertial oscil-
lations persist throughout the simulation. Thus, when a var-
iable is not stable, averages are carried out over part or all
of the inertial oscillation cycle.
[16] Simulations have been carried out for wind-wave

misalignments qww = 0�, 30�, 45�, 60�, 90�, and 135�. These
angles have been examined for both rotating ( f = 10�4 s�1)
and non-rotating ( f = 0 s�1) cases. Forcing parameters are the
same in all simulations (see Table 1), and the only changes
are the values of qww and f. Sensitivity to a number of addi-
tional parameters has also been examined. In particular,
aligned wind waves with Cp/U10 = 0.25 are superimposed on
misaligned waves with Cp/U10 = 1.2 (see Table 1), resulting
in a perturbed Stokes drift. Simulations have also been
carried out without an initial mixed layer, and using a
variety of different magnitudes for Us(z) in order to give a
range of values for Lat (see Tables 1 and 2).
[17] The baseline simulations are initialized with a mixed

layer that extends 33 m below the surface, with constant
stratification below this depth. The velocity field is zero
everywhere except at the surface where there is divergence-
free noise. The domain size is 320 m � 320 m � 96 m in
the x, y, and z directions respectively, with 128 � 128 �
160 computational cells. Sensitivity to grid resolution was
examined by doubling the number of points used in all
directions. While quantitative differences (≤20%) were
observed in certain statistics, for example the peak vertical
kinetic energy (VKE), the insights and trends obtained in
the present study were unchanged. The Stokes drift from the

Table 1. Parameters Used in the Simulationsa

U10 (m/s) u* (m/s) jus(0)j (m/s) w′q′ sfc (W/m2) f (s�1) HML (m) nx, ny, nz dx, dy, dz (m)

5.75 5.3 ⋅ 10�3 0.06313, +ww �5 0, 10�4 0, 33 128, 128, 160 2.5, 2.5, 0.6

aHere U10 is the 10 m simulation wind speed, u* is the surface friction velocity, us(0) is the near-surface Stokes drift, which is located at the first grid point
at �0.3 m, (+ww implies that some runs included aligned wind waves), w′q′ sfc is the cooling applied at the surface, f is the Coriolis parameter, HML is the
initial mixed layer depth, nx, ny, nz are the computational dimensions and dx, dy, dz are the grid cell widths. In the present simulations, f, HML and jus(0)j are
altered while the remaining parameters are held constant.

Table 2. Parameters Used in Simulations Examining Varying
Stokes Drift Magnitudea

qww
Preconditioning

U10 (m/s) us(0) (m/s) fp (Hz) Lat kp
�1 (m)

0, 30, 60 1.15 0.022 0.38 0.49 1.7
0, 30, 60 2.875 0.038 0.28 0.37 3.2
0, 30, 60 5.75 0.063 0.22 0.29 5.1
0, 30, 60 11.5 0.100 0.18 0.23 7.7
0, 30, 60 28.75 0.162 0.13 0.18 14.7

aHere qww is the wind-wave angle, U10 is the preconditioning wind
velocity, us(0) is the near-surface Stokes drift, fp is the peak wave
frequency, and Lat

2 = u*/jus(0)j is the turbulent Langmuir number. Note
that even though the preconditioning winds are varied, the simulation
winds are always U10 = 5.75 m/s. Also note that the vertical resolution
remains fixed, which limits the amount of Stokes shear present for the
largest fp. To elucidate, kp

�1, the e-folding depth of the peak wave, is also
included.
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highest-frequency waves are not well-represented, which is
why we choose to use the near-surface Stokes drift rather
than estimate an unresolved surface value in our scalings. In
the rotating simulations with Coriolis force, the model is
run long enough for one inertial oscillation to be completed.
[18] In examining the case of misaligned wind and waves,

there are a number of different vector quantities to consider
(see Figure 1). The three primary directions treated here are
(1) the direction of the Stokes drift (labeled us in Figure 1),
(2) the direction of the wind stress and skin friction velocity
(labeled u* in Figure 1), and (3) the dominant direction of
the Langmuir cells (labeled “LC direction” in Figure 1).
Herein, u* is used as a shorthand for u* = u*t/jtj, but the
reader should note that u* is not ordinarily a vector, only a
scaling for the vertical velocity shear (which is a vector).
Two angles completely describe the relative directions of
these three horizontal vectors: qww, which is the angle
between the wind stress and the Stokes drift, and a, which is
the direction of the LC axis relative to the wind. The angle
between the LC axis and the Stokes drift is therefore qww� a.
In all simulations, u* is assumed to be aligned with the x-axis.
[19] Allowing the LC direction to differ from the Stokes

drift and wind shear directions is crucial; in particular, it is
the dynamical balances in the LC direction that are most
closely preserved as the wind and wave forcing varies. For
this reason, a rotated coordinate system (x′ and y′ in Figure 1)
aligned with the LC will be exploited. Note that it is not
true that the Eulerian velocity, u, has the magnitude or
direction of u*; for example, in a rotating frame of reference
the Coriolis effect deflects the currents in an Ekman spiral.
In the following, the direction of the Ekman spiral at each
depth will prove to be less predictive than the three vectors
shown in Figure 1, consistent with the large Rossby number
of the LT.
[20] In many of the simulations, the equilibrium wave

direction and magnitude have been separated from the wind
stress used during the simulation. To determine a realistic
magnitude of the fully developed waves, the Stokes drift is
computed by using the magnitude of a ‘preconditioning

wind stress’ (see Table 2). To understand this approach,
consider a fully developed sea with an appropriate wavefield
(Cp/U10 = 1.2, Us(0) = 0.06313 m/s) matched to a given
preconditioning wind stress (U10 = 5.75 m/s in the direction
of us in Figure 1). After these equilibrium waves are estab-
lished, suppose that the wind changes in direction and
magnitude to align with u* in Figure 1. The situation after
the wind changes is what motivates the basic simulation
herein. Note that the preconditioning wind is only a hypo-
thetical wind used to construct a realistic Stokes drift; it is
never used to generate wind stresses during the simulation.
The winds after the change in direction and magnitude are
the ‘simulation’ winds. In reality, the simulation winds
should also generate developing wind waves superimposed
on the older waves, and the older waves should evolve
toward a swell spectrum. In most of the simulations described
here, the development of aligned wind waves and mis-
aligned swell is ignored. In section 7, a few simulations add
the aligned wind waves by superposition of a younger
Donelan wave spectrum (Cp/U10 = 0.25) aligned with the
wind. In section 8, the effects of varying the preconditioning
wind speed are presented. The simulation wind speed is,
however, always maintained at U10 = 5.75 m/s.
[21] It is important to note that many effects are neglected

in the model used here. In the real world, the evolution of the
wavefield would be simultaneous with the development of
the turbulence. The modeling framework used here does not
allow for a realistic portrayal of the evolution of the wave-
field details in response to the changing wind during the
simulation. Likewise, realistic coupling of turbulence to a
true free surface with the effects of breaking waves and
higher-order estimates of the Stokes drift are not considered.
Someday, a direct numerical simulation of the Navier-Stokes
equations rather than a LES of the CL equations will be
possible. However, the conceptual framework and results
presented here are a useful starting point against which the
effect of these more challenging modeling scenarios can be
quantified. For many purposes, such as climate model
parameterizations or construction of climatologies where
the Stokes drift is highly uncertain in any case [Webb and
Fox-Kemper, 2011], these results are likely sufficiently
accurate.

3. Langmuir Cell Properties

[22] Figure 2 shows fields of the vertical velocity fluctu-
ation, w′, for qww = 0�–135�. The fields are for the non-
rotating simulations, and are shown at z = �1.5 m, which is

the depth of maximum VKE, w′2 , for most values of qww
examined here. The average j (where j is some variable)
corresponds to an average over the x and y directions, and
is generally a function of both vertical depth, z, and time, t.
In Figure 2, the wind stress is to the right, parallel to the x-
axis, and the Stokes drift direction is given by qww, mea-
sured with respect to the x-axis. Figure 2 shows that the
angle associated with the upwelling (positive w′) and
downwelling (negative w′) regions increases with increas-
ing qww. These regions are characteristic of LC and corre-
spond to the ‘windrows’ observed by Langmuir [1938] and
many others. For all cases where qww > 0�, Figure 2 shows
that the windrows are oriented between the Stokes drift and

Figure 1. Schematic of coordinate rotation used in this
work. The blue arrows represent the wind-forcing and the
thin black line is the surface Stokes drift. All of the primed
quantities are the surface forcing seen in the rotated
framework.
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wind directions. This suggests that LC are not aligned
with the Stokes drift direction when waves and wind are
misaligned. Moreover, even though the strength of the
upwelling and downwelling regions decreases with increas-
ing qww, relatively weak windrows are still present even for
qww = 135�.

[23] This last result can be confirmed quantitatively by

considering the profiles of w′2 (VKE) shown in Figure 3. For

both rotating and non-rotating cases, Figure 3 shows that w′2

peaks near the surface and decreases with increasing depth.
Although there are only small differences between the

Figure 2. (a–f) Contours of vertical velocity, w′, at the depth of maximum vertical velocity variance
(z = �1.5 m) for non-rotating (f = 0 s�1) simulations with qww = 0�–135�. The black arrows are the
Stokes drift direction (making an angle qww with the x-axis), the dark green arrows are the LC direc-
tion from Figure 4, with angles a given in Table 3, and the light green arrows are the direction given
by the law of the wall angle, aLOW, from (18).

Figure 3. Vertical profiles of w′2 normalized by u*
2 for (a) non-rotating and (b) rotating cases. Results are

shown for qww = 0�–135� and for the shear only case.
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profiles for the rotating and non-rotating cases, the non-
rotating profiles do have slightly larger magnitudes than
those for the rotating cases. For all cases where qww ≤ 90�,
the profiles of w′2 are substantially greater than the profile

for the shear only case. The increased level of w′2 is due to
the presence of LT, and indicates that substantial turbu-
lence production by the Stokes shear occurs even for qww =
90�. As qww continues to increase, however, there is

increasingly weak production of w′2 . By qww = 135�, the
observed profiles of w′2 are only slightly different from the
profiles found in the shear only case.
[24] Due to the connection between windrows and LC,

there is an approximate correspondence between the angle
associated with the horizontal vorticity, wH = wxx̂ + wyŷ, and
the direction of the windrows. In particular, the upwelling
and downwelling regions are due to the vorticity associated
with LC, and the direction of LC can be diagnosed quanti-
tatively by calculating the most likely direction of wH in
fields such as those shown in Figure 2. The angle between
the LC and wind can be calculated from the statistics of the
local and instantaneous direction of wH, which is given by

aw ¼ tan�1 wy

wx

� �
: ð6Þ

Figure 4 shows conditional probability density functions
(pdfs), P(aw, jwHj)/P(jwHj), of aw versus the horizontal
vorticity magnitude, jwHj = [wx

2 + wy
2]1/2, for the simula-

tions without Coriolis rotation. The pdfs are calculated in

x � y planes near the depth of maximum VKE (z =
�1.5 m, see Figure 3). Both aw and jwHj in Figure 4 have
been computed with the vertical shear of the mean hori-
zontal currents included.
[25] Figure 4 shows that there is a primary peak in the

distributions of aw between qww and 0�. A much weaker
secondary peak is observed near �180� + qww. A charac-
teristic angle for the Langmuir cells can be obtained from the
location of the primary peaks in Figure 4. This angle is
calculated by averaging aw over the largest 50% of hori-
zontal vorticity magnitudes; we take this angle to be the true
direction of Langmuir cells, and call it a in the following.
Table 3 shows that a increases with qww . In particular, the
LC are oriented roughly halfway between the wind and
wave directions for this magnitude of Us(0) and u*. The
results in Table 3 also show that the inclusion of the
Coriolis force slightly reduces a, indicating a weak turning
of LC orientation in the cyclonic sense in the presence of
the Ekman spiral. The values of a from Table 3 are shown
in Figure 2, and it can be seen that there is an approximate

Figure 4. (a–f) Conditional pdfs P(aw, jwHj)/P(jwHj) calculated at z = �1.5 m in non-rotating (f = 0 s�1)
simulations for qww = 0�–135�. The dashed red lines are the values of a obtained by averaging aw over
the top 50% of jwHj values (also listed in Table 3) and the dash-dotted black lines correspond to qww and
�180� + qww. Normalization of the pdfs is carried out for aw = [�p, p].

Table 3. Mean and Standard Deviation of aw From the Conditional
pdfs in Figure 4 and From Rotating Versions of Similarly Forced
Simulations

qww Non-rotating ( f = 0 s�1) Rotating ( f = 10�4 s�1)

30� 19� � 3.2� (Figure 4b) 15� � 2.7�
45� 31� � 2.5� (Figure 4c) 25� � 2.9�
60� 37� � 2.2� (Figure 4d) 32� � 2.5�
90� 46� � 2.9� (Figure 4e) 41� � 3.6�
135� 76� � 4� (Figure 4f) 67� � 3.8�
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correspondence between a and the direction of the
windrows.
[26] Note that, for qww = 90� and 135�, the primary peaks

in Figures 4e and 4f become increasingly close to aw = 90�.
This is due in part to the decreasing strength of LT for these
cases (consistent with the VKE profiles in Figure 3) and the
increasing influence of the mean Eulerian shear in deter-
mining the direction of wH.
[27] Figure 4 indicates that the spread of aw about a also

increases with qww, consistent with a fluctuating vorticity
field. Table 3 provides error estimates of the calculated
values of a, with error bars equal to �s/

ffiffiffiffiffiffi
Nf

p
, where s is

the standard deviation of aw in the top 50% of horizontal
vorticity magnitudes, and Nf is the number of degrees of
freedom. The approximate number of LC pairs across the
domain (see Figure 2) are counted to give Nf ≈ 20. For
most values of qww, Table 3 shows that the error in the
measured value of a is approximately 2�–4�.

4. Kinetic Energy and Vorticity Budgets

4.1. Turbulence Kinetic Energy Budget

[28] Following several prior studies [e.g., Grant and
Belcher, 2009], effects leading to the creation and main-
tenance of LT can be examined through an analysis of the
turbulence kinetic energy (TKE) budget. Certain simplifi-
cations to this budget are possible due to the particular
configuration of the present problem. Since the flow is
homogeneous in the x� y plane and there is no mean vertical
velocity, ∂ū/∂z and ∂v/∂z are the only nonzero components

of the mean velocity gradient tensor. Here, (u, v, w) denote
Eulerian velocities in the x, y, and z directions, respectively.
The Stokes drift velocities, denoted (us, vs), also lie com-
pletely in the x � y plane and again vary only in the z
direction. With these simplifications, and also taking
advantage of the x � y homogeneity of all statistics, the rel-
evant form of the TKE equation is obtained from (1)–(4) as

∂e
∂t

þ ∂w′e
∂z|ffl{zffl}
TT

¼ � u′w′
∂u
∂z|fflfflffl{zfflfflffl}

SPe;u

� v′w′
∂v
∂z|fflfflffl{zfflfflffl}

SPe;v

� u′w′
∂us
∂z|fflfflfflffl{zfflfflfflffl}

SPs;u

� v′w′
∂vs
∂z|fflfflfflffl{zfflfflfflffl}

SPs;v

þ ∂w′p′
∂z|fflffl{zfflffl}
PT

þ w′b′|{z}
BP

þ SGS; ð7Þ

where e = u′ ⋅ u′/2 is the TKE and b′ = �gr′/r0 is the fluc-
tuating buoyancy. Fluctuating variables are defined as f′ ≡
f � f. In (7), TT denotes the turbulent transport of TKE,
SPe,u and SPe,v are the Eulerian shear production by the u and
v shear components, respectively, SPs,u and SPs,v are the u
and v components, respectively, of the shear production due
to the Stokes drift, PT is the pressure transport, and SGS
denotes subgrid-scale terms, including kinetic energy dis-
sipation. Buoyant production, BP, of TKE is minimal in the
simulations and is thus ignored.
[29] Figure 5 shows the shear production and SGS terms

in the TKE budgets for qww = 0�–135� in the non-rotating
case (the budgets for the rotating cases are similar). The
statistics have been averaged over two time intervals. The

Figure 5. (a–f) Vertical profiles of TKE production and SGS terms in (7) for qww = 0�–135� in the non-
rotating case. Solid lines are terms averaged over 20 time steps at the beginning of each simulation near
the time of maximum SPs,v, and dashed lines are the averages once the budget terms become stationary.
The legend is shown in Figure 5a, and the line labels correspond to the terms in (7).
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first interval is at the beginning of each run near the time of
maximum production of TKE by the Stokes drift produc-
tion in the y-direction, namely SPs,v. The second averaging
interval spans a much longer time after the turbulence sta-
tistics have become stationary. Analysis of these two inter-
vals is important, since it appears that the direction of the
Langmuir cells is set during the growth phase and that they
then persist in that direction unabated by the change in the
direction dominating the shear production. The SGS terms
have been calculated from the averages of the various terms
in (7) by assuming that ∂ē/∂t is approximately zero.
[30] Figure 5 shows that the TKE budgets undergo sig-

nificant changes as qww increases. For small qww , the pri-
mary balance is between the Stokes shear production in the
x-direction, SPs,u, and the SGS terms. As qww increases,
however, SPs,u decreases, until it is essentially 0 at qww = 90�
(Figure 5e). At the same time, the Stokes shear production
in the y-direction, SPs,v, increases weakly as qww increases.
The remaining, non-Stokes, terms in the budgets remain
relatively constant for all qww, except for qww = 135� where
all terms become small.
[31] The turbulent momentum flux u′w′ near the end of

the simulation points in a direction biased toward the
wind. That is, the turbulent momentum flux produced by
the LES model after the onset and stabilization of LT is
dominated by shear instability induced by the wind stress,
even though the LC dominate the VKE. A TKE budget
taken from near the time of maximum SPs,v compared to
near the end of the run shows that SPs,v generally decreases
after LT onset.
[32] The time-dependence of the TKE budget analysis

leaves uncertainty as to the mechanisms by which the LC are
maintained after their onset. The energy production that
results in the direction of the Langmuir cells is dominant
only during the initial growth phase of LT. After this period,
the turbulence continues to grow and TKE production
becomes increasingly dominated by the shear in the wind
direction, even though the direction of the Langmuir cells
remains unchanged.

4.2. Vorticity Budget

[33] Although the TKE budget gives insights into the
energetics associated with the creation of LT, it does not
directly allow an analysis of the dynamical processes main-
taining the orientation and strength of LC. To understand
these processes, we consider the budget equation for the
absolute vorticity, wa = w + f ẑ, which can be found from
the curl of the CL momentum equation in (3) as

∂wa

∂t
þ uL ⋅rð Þwa|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

AD

¼ wa ⋅rð ÞuL|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
TS

þrb� ẑ|fflfflffl{zfflfflffl}
BV

þ SGS; ð8Þ

where b = �gr/r0 is the buoyancy. Here, AD is vortex
advection, TS is vortex tilting/stretching, and SGS again
denotes subgrid-scale terms. The buoyancy term (BV) was
determined to be small and is ignored in the following
budgets. Note that, contrary to the transport equation for w
from the Navier-Stokes equations, the Lagrangian velocity
uL = u + us appears in the advection and vortex stretching
terms in (8).
[34] In the following, we will focus on the along-LC

vorticity, x = wa ⋅ x̂′, where x̂′ is the unit vector in the along-
LC direction, and f ẑ ⋅ x̂′ = 0 (see Figure 1). The cross-cell
vorticity components are denoted by h and z,
corresponding to the ŷ′ and ẑ directions, respectively. The
vorticity equation for x is given from (8) as [e.g., Holm,
1996]

∂x
∂t

þ uL⋅rð Þx|fflfflfflffl{zfflfflfflffl}
AD

¼ wa⋅rð Þ uL⋅ x̂′ð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
TS

þ rb� ẑð Þ⋅ x̂′|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
BV

þ SGS; ð9Þ

where the labels for each term are the same as in (8).
[35] Using the angle of the Lagrangian shear, denoted aL

(which will be discussed in more detail in section 5) to
determine the direction of x̂ ′, profiles of the terms in (9),
averaged over the full domain, are shown in Figure 6a. The

Figure 6. Budgets of along-cell vorticity, x, for qww = 0�–135� in the non-rotating case. Lines correspond
to terms in (9); �AD (solid lines), TS (dashed lines) and SGS (dash-dotted lines). (a) Budget terms aver-
aged over the full domain and (b) budget terms averaged only over points where x > 0 are shown. SGS
terms are not shown in Figure 6b.
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terms in these budgets supply the creation of LC and prove
to be revealing as to how the misaligned cases differ from
traditional, aligned LC. The SGS terms are calculated from
the domain averages of AD and TS by assuming that the
domain average of ∂x/∂t is zero. In the aligned case (qww =
0�), full domain averages of the AD, TS, and SGS terms
are all approximately zero. In this case, the positive and
negative vortices associated with each LC pair are
approximately equivalent in magnitude and size. There-
fore, when the terms are averaged over the domain (with
periodic boundary conditions), the result is nearly zero.
[36] When the waves are misaligned with the wind stress,

asymmetry is introduced and the averaged budget terms no
longer vanish. Figure 6a shows that, for qww > 0�, AD
balances the SGS terms, with TS playing a secondary role.
As qww increases, the magnitudes of the AD and SGS terms
increase. This indicates, in particular, that there is signifi-
cant cross-cell vorticity advection. This advection has two
apparent effects. First, the cross-cell Eulerian advection
transports axial vorticity from the upwind cell onto the
downwind, which introduces an asymmetry. Second, the
cross cell velocity seems to enhance a secondary along-
stream instability that leads to coherent cells that are shorter
in the along-LC direction (x′; Figure 1). These instabilities
are evident in horizontal slices of vertical velocity (see
Figure 2). As qww increases, the variability of vertical
velocity along the LC direction increases, and the anisotropy
of the velocity and vorticity statistics decreases (Figure 4).
The dependence of LC direction and strength on the cross
cell advection is in general agreement with the hypothesis
by Gnanadesikan and Weller [1995] that the LC will mini-
mize cross-cell shear while maximizing the wave-current
interaction. The AD and SGS terms continue to increase
in magnitude up to qww = 90�, before decreasing again at
qww = 135�.
[37] Note that, since LC tend to occur in pairs of

oppositely-signed vortices, there can be difficulties in using

full domain averages for vorticity budget analysis. Conse-
quently, Figure 6b shows the AD and TS terms from (9)
averaged only over points where x > 0. Again the AD terms
become larger in magnitude as qww increases (with a sub-
sequent decrease for qww = 135�), but now the TS terms are
also nonzero. These results will be examined in more detail
in section 6, where the conditional averaging procedure of
Kukulka et al. [2010] is used to analyze the vorticity budget
of a composite LC vortex pair.

5. Analysis of Langmuir Cell Orientation

[38] As a prelude to formulating a priori predictions of a
based on the Stokes drift profile and other problem para-
meters, we can consider the values of a predicted through
analyses of the TKE and vorticity budgets in the previous
section. The orientations of LC are fundamentally governed
by the dynamics of the vorticity transport equations in (8)
and (9). In particular, the mechanism for production of
along-LC vorticity is the tilting of vertical vorticity by the
Lagrangian shear [Leibovich, 1983]. The angle of the mean
Lagrangian shear, denoted aL, thus provides a natural
direction for LC and is given by

tan aLð Þ ¼ ∂vL=∂zð Þ
∂uL=∂zð Þ ¼

∂v=∂zð Þ þ ∂vs=∂zð Þ
∂u=∂zð Þ þ ∂us=∂zð Þ : ð10Þ

This angle is shown as a function of qww in Figure 7. Since
aL is generally a function of z, we show aL at z = �1.5 m,

corresponding once again to the depth of maximum w′2 .
Figure 7 shows that aL is in relatively good agreement with
a (from Table 3) for qww < 90�. At qww = 90� and 135�,
however, aL is substantially less than a. This difference is
due, in part, to the bias introduced by the mean w as the
strength of LT decreases with increasing qww. For suffi-
ciently weak LC, such as occurs for large qww, the mean w

Figure 7. Observed and predicted values of a as a function of qww for (a) non-rotating and (b) rotating
simulations. The angles shown are: the vorticity-diagnosed a from Table 3, the Lagrangian shear
angle aL from (10), the depth-averaged TKE/Lagrangian shear angle aL from (14), the depth-averaged
TKE angle aTKE from (12), the law of the wall prediction aLOW from (18), and the mean Lagrangian
velocity direction near the surface, aUL. The error bars on a are obtained from Table 3. Included in both
figures are lines showing a = qww (black dashed line) and a = qww/2 (blue dashed line).
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makes an angle of 90� with the x-axis, thus biasing a
toward larger values.
[39] The TKE budget can also be used to obtain an LC

angle similar to aL. Defining the direction of u′w′ relative to
the wind by the new angle al, an expression for al can be
obtained by assuming that the flow evolves such that the
total TKE production, SPe + SPs, is maximized. This total
production is simply the Lagrangian shear production, and
can be written in terms of al and other parameters as

u′w′ ⋅
∂uL

∂z
¼ ju′w′ j ∂u

∂z

����
����cos qe � alð Þ þ ju′w′ j ∂us

∂z

����
����cos qww � alð Þ;

ð11Þ

where qe is the angle between the Eulerian shear, ∂u/∂z, and
the wind. Finding the value of al which maximizes the
production yields

tan alð Þ ¼ ∂u=∂zj jsinqe þ ∂us=∂zj jsinqww
∂u=∂zj jcosqe þ ∂us=∂zj jcosqww : ð12Þ

The numerator is simply the cross-wind (y) component of
the Lagrangian shear, while the denominator is the corre-
sponding along-wind (x) component, and the angles aL and
al are related by

tan alð Þ ¼ ∂vL=∂zð Þ
∂uL=∂zð Þ ¼ tan aLð Þ: ð13Þ

Thus, the directions obtained from vortex stretching and
maximization of TKE production are identical.
[40] The Lagrangian shear, ∂uL/∂z, in (10) is a function of

depth, z, and thus the angle aL is also a function of z. In
order to obtain a single value for the direction of LC, we can
consider an angle averaged over some depth, Dl. We can
thus define a new, depth-averaged angle, aL, as

tan aLð Þ ¼ ∂vL=∂zh iDl

∂uL=∂zh iDl

: ð14Þ

From (12) we can also write

tan aTKEð Þ ¼
ju′w′ j ∂vL=∂zð Þ

D E
Dl

ju′w′ j ∂uL=∂zð Þ
D E

Dl

; ð15Þ

where ju′w′ j is included in (15) in order to examine the
depth-average ratio of the full x and y production terms. The
volume average 〈⋅〉Dl

to depth Dl in (14) and (15) is defined
as

fh iDl
≡

1

LxLyjDl j
Z Lx

0

Z Ly

0

Z 0

Dl

f x; y; zð Þdxdydz: ð16Þ

Here, Dl is usually taken as twice the e-folding depth of the
Stokes drift due to the peak frequency of the wave spectrum.
If Dl ≈ �6 m ≈ 0.2 HML, this depth is nearly equivalent to the
depth below which all of the TKE production terms are
negligible (see Figure 5). Figure 7 shows that, using the full
shear profile from LES, aL and aTKE are both similar to a for
angles smaller than 90�. In the following, aL is used as the
LC angle.

5.1. Predictions of Cell Direction

[41] Determining the angles discussed in the previous
section requires statistics from LES. For parameterizations
and climatologies of LT, these statistics are not available,
and so predictions for a that do not require LES results are
useful. Since the orientation of LC depends on the direction
of Lagrangian shear, it is natural to take the depth-averaged
Lagrangian shear angle in (14) as a starting point. Assuming
that the Stokes shear components of the Lagrangian shear
are known quantities from wave data or models [Webb and
Fox-Kemper, 2011], the only unknown in (14) is the direc-
tion of the Eulerian shear. In the previous section, the
Eulerian shear is measured from the LES, but we can obtain
an a priori prediction for the cell direction by assuming that
the Eulerian shear can be approximated by the law of the
wall, namely

∂u
∂z

≈� u∗
kz

⇒
∂uL

∂z
≈� u∗

kz
x̂ þ ∂us

∂z
; ð17Þ

where k is the von Kármán constant and z is a depth below
the surface. This expression assumes that the cross-wind
(y-direction) Eulerian shear is negligible, and that the
Stokes shear can be computed from wave data. The resulting
law of the wall based angle, denoted aLOW, is then given
using (14) as

tan aLOWð Þ ¼ ∂vs=∂zh iDl
u∗

kjz1�Dl j ln jDl=z1jð Þ þ ∂us=∂zh iDl

: ð18Þ

In this equation, the first term in the denominator is obtained
by integrating the law of the wall approximation for ∂ū/∂z
over the range z = [Dl, z1] using (16), where z1 is a depth
slightly below the surface (e.g., the first grid point of the
LES, or the significant wave height).
[42] Figure 7 shows aLOW from (18) calculated using

Dl = �6 m. Once again, this is the depth below which the
TKE production terms in Figure 5 are negligible. Figure 7
shows that aLOW falls within or near the error bars of a for
all qww. Interestingly, aLOW is equally accurate for both the
non-rotating and rotating cases, despite the presence of
Ekman spiral shear in the rotating cases.
[43] Overall, a, aL, aTKE, and aLOW agree for qww < 90�.

For the most extreme case (qww = 135�), however, aL
underestimates a. These underestimates are most likely

accurate, since Figure 3 shows that w′2 is close to the shear-
only result for qww = 135�, and Figure 8 shows that rescaling
with aLOW tends to overestimate the VKE in the qww = 135�
case. These results show that Langmuir mixing is very weak
when qww > 90. If there is no Langmuir mixing, then waves
are ineffective at generating LC, and the desired angle
should go to zero (turbulence alignment with wind only).
However, the result using aLOW in Figure 8 is not infinite or
poorly posed, and these nearly-antiparallel situations would
be transient in reality. Thus, we do not expect the application
of aLOW, which is accurate for all cases where qww ≤ 90�, to
be overly biased. If this is a critical concern in understanding
a particular data set, LES may be used to determine aL for
anomalous situations rather than relying on aLOW. This case
will be discussed in more detail in section 6.
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5.2. Other Predictions of Cell Direction

[44] While the predictions for the direction of LC in the
previous sections are based on analyses of the vorticity and
TKE budgets, a number of other predictions are also possible.
Perhaps the simplest prediction [Cox, 1997] assumes that LC
point in the direction of either the surface stress or Stokes
drift, depending on which is larger. A prediction of the
corresponding angle, denoted a0, can then be written as

tan a0ð Þ ¼
ty
tx

; if u∗j j ≥ us 0ð Þj j
vs 0ð Þ
us 0ð Þ ; if us 0ð Þj j > u∗j j;

8><
>: ð19Þ

where tx and ty are the wind stress components in the x- and
y-directions, respectively. In the present simulations where
the wind is always parallel to the x-direction, ty = 0 and
jus(0)j is always greater than ju*j. Moreover, the angle given
by tan�1[vs(0)/us(0)] is simply qww. Consequently, a0 = qww,
which is much larger than a for all qww (Figure 7).
[45] An attempt at improving (19) can be made by

assuming that Langmuir mixing occurs whenever a portion
of the Stokes drift and surface stress project onto a third
vector (the presumed LC direction) that lies somewhere
between these two vectors. The angle that optimizes the
projection of u* and us(0) is aB, which can be shown to be

tan aBð Þ ¼ us 0ð Þj jsin qwwð Þ
u∗ þ us 0ð Þj jcos qwwð Þ : ð20Þ

This equation gives predictions of the LC orientation for
any value of qww < 180�. However, since u*/jus(0)j is small
normally (roughly equal to 0.08, see Table 1), aB ≈ qww for
all qww. As a result, aB once again substantially over-predicts
the values of a shown in Figure 7.
[46] It is perhaps better to think of (20) as a (poor)

approximation to the surface Lagrangian velocity direction.
If the Eulerian mean velocity along the x-direction just
below the surface, which is obtained from the LES, is used in

place of u*, and the Eulerian mean velocity in the y-direction
is included in the numerator, then the resulting angle is that
of the Lagrangian velocity uL, and is denoted aUL. Figure 7
shows that, for the non-rotating cases, aUL lies within the
error bars of a for qww ≤ 30�, but under-predicts a for larger
qww. For the rotating cases, the Ekman spiral causes aUL to
severely under-predict a for all qww. Note that the crucial
difference between (20) and (18) is that the latter focuses on
the Lagrangian shear direction, which was shown above to
dominate both the direction of vortex tilting and TKE pro-
duction. The surface Lagrangian velocity is a poor approxi-
mation to the shear direction in an Ekman spiral.

6. Conditional Analysis of Langmuir Cells

[47] To gain additional insights into the vorticity balance
for LC, we use conditional averaging [see, e.g., McWilliams
et al., 1997; Kukulka et al., 2010] to develop a picture of the
flow structure near a typical LC pair. At the center of each
pair is a large vertical velocity (directed either up or down),
and here we identify pairs by searching for regions of strong
downwelling flow. We confine our search to the depth at

which w′2 1/2 is maximum, denoted zmax (see Figure 3), and

seek locations where w′ < �2(w′2 1/2)max. Searching along
rows of constant x, any cross-wind location at which this
condition is satisfied, denoted yk, is considered the center of
an LC pair. The superscript k is used to index each pair, and
there are n total pairs. We can then construct a conditional
average, denoted F con(y, z, t), as

F con y; z; tð Þ ¼ 1

n

Xn
k¼1

F xk ; y� yk ; z; t
� �

; ð21Þ

where F is an arbitrary flow quantity. The two-dimensional
planes of Fcon(y, z, t) obtained from (21) are averaged cross-
sections of the quantity F projected in the y � z plane for a
typical LC pair. These planes can be projected into the y′ � z
plane instead by noting that the y′ � z plane is perpendicular
to the cell axis, x′, and differs from the y � z plane by an

Figure 8. Vertical profiles of w′2 normalized by [u* cos(aLOW)]
2, where aLOW is given in (18), for

(a) non-rotating and (b) rotating cases. Results are shown for qww = 0�–135�, and legend is shown in
Figure 3a.
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angle determined by the Langmuir cell direction (a ≈ aL, see
Figure 1).
[48] Figure 9 shows conditionally-averaged fields of the

axial vorticity, x con(y′, z), for six values of qww in the non-
rotating simulations. In order to obtain the two-dimensional
profiles in Figure 9, we have also averaged over time. For all
qww < 90�, Figure 9 shows that the typical LC pair consists
of two counter-rotating vortices. There is strong symmetry
in the structure of the LC pair in the aligned simulation
(qww = 0� in Figure 9a).This is consistent with the negli-
gible domain-averaged terms in the x budget shown in
Figure 6; these terms average to zero due to the cancelation
caused by the symmetry of the counter-rotating pair in
Figure 9a. As qww increases, Figure 9 shows that the upwind
cell of each pair increases in magnitude, while the downwind
cell decreases in magnitude. Here, upwind (y′ > 0) and
downwind (y′ < 0) refer to the location of the cells relative
to the direction of the mean Eulerian velocity (shown at the
bottom of each profile). Figures 9e and 9f show that, after
qww exceeds 90�, vortices are no longer located by the
conditional averaging procedure. This confirms the statis-
tics from preceding sections where LC are weak or no
longer present at qww = 135�.
[49] The decrease in magnitude of the downwind cell with

increasing qww in Figure 9 is consistent with cross-cell
advection of positive x from the upwind cell. The arrows on
Figure 9, which indicate the strengths of cross-cell advection
by Eulerian and Stokes drift velocities, provide a partial
explanation of this result; as qww increases, the cross-cell

Eulerian velocity increasingly overwhelms the Stokes drift
in advecting x from the upwind cell onto the downwind cell.
However, if this were the sole mechanism acting to create
the cell asymmetry shown in Figure 9, the magnitude of x in
the upwind cell would decrease. Since this decrease is not
seen, x in the upwind cell actually increases with increasing
qww, we expect other terms in the vorticity budget to con-
tribute to the increase in x.
[50] The effect of these terms can be examined through

conditional averages of the x budget terms in (9), as shown
for qww = 0�, 45� and 90� in Figure 10. These conditional
averages are again calculated using (21); the budget terms
are computed at every grid point and then conditionally
averaged to construct characteristic y′ � z fields near LC
pairs. In addition to temporal averaging, the vertical profiles
in Figure 10 are obtained using an additional level of aver-
aging. In particular, in order to determine the budget terms
near the upwind and downwind cells, we also average the
terms over y′ for y′ > 0 (upwind) and y′ < 0 (downwind). This
gives the two sets of one-dimensional vertical profiles in
Figure 10.
[51] Figures 10a and 10b show that for the aligned case

(qww = 0�), there is a balance near the surface between the
stretching and viscous terms in each cell. Advection trans-
ports the vorticity created by tilting near the surface down-
ward. Figures 10a and 10b also show that the vorticity
budget is essentially closed over the conditionally averaged
LC. However, perfect closure is not required; conditional
averaging may result in a domain with “leaks” that are
important to the vorticity budget. In these simulations, the

Figure 9. (a–f) Conditionally averaged axial vorticity, x, in non-rotating cases for qww = 0�–135�. The
plots are in the (y′, z) plane, with the x′-axis directed out of the page, and x > 0 indicates counterclockwise
circulations (see Figure 1). At the bottom of the figures, the black arrows show us(0) ⋅ ŷ ′ and the gray
arrows show u(0) ⋅ ŷ′. The mean cross cell velocities and Stokes drift are scaled to the qww = 90� value
of u(0) ⋅ ŷ′.
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Figure 10. (a, c, and e) Conditionally averaged vorticity tendency terms in non-rotating cases averaged
over the downwind side (blue left-hand vortex in Figure 9) of the average LC pair. (b, d, and f) The
corresponding averages for the upwind half of the average LC pair (red right-hand vortex in Figure 9).
The upwind and downwind averages include the midpoint of the domain and extend outward to where
the axial vorticity (x) falls to 10% of its maximum value. Figures 10a and 10b are the aligned case,
Figures 10c and 10d are for qww = 45�, and Figures 10e and 10f are for qww = 90�. Blue is the advective
tendency from (9), red is stretching from (9), and green is the viscous effect (calculated as a residual) given
by ∂ r⋅nLESrwð Þ=∂y½ �con � ∂ r⋅nLESrvð Þ=∂z½ �con. The spread in the curves represents the temporal var-
iation of the tendency terms over the final portion of the runs.
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vorticity budget in the conditionally averaged LC is closed
for the aligned case when f = 0 s�1 and qww = 0�, but not
otherwise.
[52] As qww increases, Figures 10c and 10e show that the

magnitude of the stretching term near the surface in the
downwind portion of the LC increases slightly and pene-
trates to greater depths. The changes in penetration depth of
the viscous terms with qww are similar to the changes in the
stretching terms. The most dramatic change in Figures 10c
and 10e occurs in the vorticity advection term; this term
becomes increasingly positive as qww increases, consistent
with the decreasing negative vorticity of the downwind cell
shown in Figure 9. Moreover, the cross-cell wind follows
the direction of u ⋅ ŷ′. This wind adds a frictional surface
torque that magnifies the upwind cell vorticity and opposes
the downwind cell vorticity. This surface frictional injec-
tion of vorticity further increases the asymmetry seen in
Figure 9. As a result, a combination of viscous and advective
effects from the cross-cell wind and Eulerian current
accounts for the asymmetry in x between the two cells shown
in Figure 9 for qww > 0�.

[53] For the upwind cell (y′ > 0), Figure 10b shows that,
for qww = 0�, the signs of the vortex diffusion and stretching/
tilting terms are opposite to those in the downwind cell
(Figure 10a). Unlike the downwind cell, however, as qww
increases to 90� (Figures 10d and 10f), the stretching/tilting
and diffusion terms are no longer in approximate balance in
the upwind cell. In fact, these terms decrease in magnitude
and change signs as qww increases. At qww = 90�, the
stretching/tilting terms have a negative contribution to the
budget of x in both the upwind and downwind cells. Con-
sequently, in both cells tilting near the surface opposes
advection. The general pattern of vorticity advection in the
upwind cell is similar to that seen in the downwind cell.
Note that the approximate balance in the aligned case
(Figures 10a and 10b) is no longer seen in the non-aligned
cases. The vorticity advection term is positive in both por-
tions of the domain. This tendency continues to strengthen
with larger values of qww.
[54] Variations in the advection of x can be understood, in

part, from the profiles of uL in the along-cell and cross-cell
directions shown in Figure 11. The cross-cell profiles in the

Figure 11. Profile of mean Lagrangian velocities rotated into the LC-aligned coordinate system with
unit-length basis vectors (x̂ ′, ŷ ′). The velocities (a) uL ⋅ x̂ ′ without Coriolis, (b) uL ⋅ x̂ ′ with Coriolis,
(c) uL ⋅ ŷ′without Coriolis, and (d) uL ⋅ ŷ′with Coriolis are shown. Here uL ≡ u + us is the mean Lagrangian
velocity.
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non-rotating case (Figure 11c) become increasingly negative
as qww increases, consistent with an increasingly strong
advection of x from upwind to downwind cells. This
tendency is somewhat weaker for the Coriolis cases,
(Figure 11d), since here the cross-cell velocity is only
weakly negative near the surface, and close to zero (or even
positive) at all other depths. These differences for the
Coriolis cases are due to the Ekman spiral.
[55] Note that, taken alone, we would not expect advection

to increase x in both the upwind and downwind cells. Since
the budget terms in the upwind and downwind cells are
obtained by averaging the terms over y′ > 0 and y′ < 0,
respectively, a large positive advection near the middle of
the conditionally-averaged domain (i.e., near y′ = 0) would
increase the advection in both cells. This can be seen from
the two-dimensional cross-sections (y′ � z planes) of the
conditionally-averaged advection and tilting/stretching
terms shown in Figure 12. In particular, the similarity
between the downwind and upwind budgets for qww = 0� in
Figures 10a and 10b is now more obvious in Figures 12a and
12b. In Figure 12a,there are opposing lobes of positive and
negative total advection in the upwind and downwind cells
(y′ > 0 and y′ < 0, respectively) that yield a near vorticity
balance when summed over the LC. The same is true of the
vortex tilting terms in Figure 12b which, when summed over
the domain, yield a total contribution to x that is nearly zero
(Figure 6).
[56] For qww > 0�, profiles of the advection terms in

Figures 12c and 12e show substantial differences compared

to the aligned case in Figure 12a. For qww = 45� and 90�, the
approximate balance in Figure 12a is replaced by a strong
positive tendency in the middle of the LC pair, while
there are negative lobes further from the center (Figures 12c
and 12e). Again, this pattern of advection in the misaligned
cases is attributed to the advection of axial vorticity by the
mean Eulerian velocity overcoming the Stokes drift velocity.
The spatial structure and magnitude of the advective terms is
consistent with Figures 10c and 10e.
[57] The vortex tilting/stretching terms in Figures 12d and

12f are similar for the misaligned cases. Upon closer
inspection, however, the strong negative lobe in the tilting/
stretching term shifts upwind to greater y′ as qww increases.
This variation explains the switch in sign of the averaged
tilting term seen in Figure 10f. With a strong positive
advective tendency in the center of the domain, the tilting
terms shift in the upwind direction and combine with the
diffusion term to compensate advection.
[58] The preceding analysis has been based primarily on

results in the non-rotating cases. For the simulations with
rotation, however, the structure of the vorticity budgets vary
slightly. Figure 13 shows that the domain averaged budgets
of x for qww = 0� with Coriolis forcing are different than the
corresponding non-rotating budgets in Figure 6a. In partic-
ular, Figure 13 suggests that the advection, tilting/stretching,
and diffusion terms all have nonzero mean profiles in the
rotating case, while all three averages were approximately
zero in the non-rotating case. The shaded regions in Figure 6a
encompass half of the inertial oscillation (from the

Figure 12. Cross-sections in the (y′, z) plane of conditionally-averaged negative advection (�AD) and
tilting/stretching (TS) budget terms in the evolution of x (see (9)). (a–c) Negative advection terms are
shown in non-rotating cases for qww = 0�, 45�, and 90�, and (d–f) corresponding tilting/stretching terms
are shown. The arrows at the bottom of the figures are as in Figure 9. Advection colorbars are scaled
by 10�4 and tilting/stretching colorbars are scaled by 10�5.
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minimum v velocity magnitude to the maximum magni-
tude). For the rotating cases, a non-negligible tendency term
results from inertial oscillations. What is most intriguing
about the rotating, aligned case is the strong advective
forcing for x not seen in the non-rotating, aligned case.
Figure 11 shows that the magnitude of the cross-cell
Lagrangian velocity in the aligned, rotating case is similar
to the cross-cell advection in the misaligned, non-rotating
cases. Furthermore, the LC asymmetry in Figure 13 is similar
to that from the non-rotating case with qww = 30� (not
shown). Thus, cross-cell advection, by misaligned waves and
wind or Ekman spiral, is a primary cause of the asymmetry of
the LC.
[59] The horizontal structure of the stretching tendency

term (Figures 14c and 14f) is similar in the rotating simu-
lations, indicating that (z + f )∂uL∂z ≈ z∂uL∂z . Thus, the effective
Rossby number of the LC is large. When the misalignment
is increased to 60� (Figures 14e and 14f), the magnitudes of
the stretching tendency terms again shift upwind, as in the
non-rotating cases.

7. Effects of Forcing Parameter Variations

[60] In addition to the two basic sets of simulations dis-
cussed to this point (i.e., the rotating and non-rotating
simulations using the parameters summarized in Table 1),
additional simulations have also been carried out to deter-
mine the robustness and representativeness of the results
when the forcing parameters are varied. Two important
variations in the forcing are discussed in this section: the

Figure 14. Conditionally averaged horizontal structure of x, advection (�AD), and tilting/stretching
(TS) for rotating cases with qww = 0� and qww = 60�. The (a–c) x, �AD, and TS for qww = 0� and (d–f) x,
�AD, and TS for qww = 60� are shown. The arrows at the bottom of the figures are as in Figure 9 and
the colorbars are the same as in Figures 9 and 12.

Figure 13. Select forcing terms for the runs with Coriolis
forcing. Domain averaged vorticity forcing for the aligned
case. Blue is the advective tendency from (9), red is
stretching from (9), and green is the viscous effect (calcu-
lated as a residual) given by ∂ r⋅nLESrwð Þ=∂y½ � con �
∂ r⋅nLESrvð Þ=∂z½ �con. The spread in the curves represents
the temporal variation of the tendency terms over the final
portion of the runs.
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inclusion of wind waves in the Stokes drift profile and the
removal of the mixed layer from the initial conditions.
[61] The simulations with aligned wind waves are carried

out for both rotating and non-rotating cases and for qww =
0�–135�. The total Stokes drift for the wind-wave simula-
tions is thus the superposition of young wind waves and
older, misaligned waves based on the preconditioning
winds. We find that the inclusion of wind waves does not
substantially alter the conclusions from the preceding sec-
tions, for two reasons. First, the angle predictions discussed
in section 5 are independent of how the Stokes drift profile is
composed. That is, once the Stokes drift is established,
regardless of the type and number of superimposed wave-
fields, it can then be used to construct the various angle
predictions in section 5. Second, the frequency of the wind
waves is an order of magnitude higher than that of the mis-
aligned waves. Consequently, when the wind-wave spec-
trum is integrated, the resulting contribution to the total
Stokes drift is very small (at the surface, jus(0)j ≈ 10�8 ms�1

for the wind-waves and jus(0)j = 0.06313 ms�1 for the
misaligned waves). Situations where the Stokes drift results
from two or more equally-matched wavefields in different
directions are conceivable, but the parameter space of such
scenarios is too large to explore in depth here.
[62] Simulations with no mixed layer in the initial strati-

fication, but with all other parameters in Table 1 unchanged,
were also run for the rotating case. The motivation for these
simulations is that in the basic set of simulations with an
initial mixed layer, the LC do not penetrate strongly through
the entire mixed layer, and entrainment is therefore weak.
The along-cell vorticity, x, is only significant in the upper
few meters (as shown in section 6), and while significant
vertical velocities penetrate below the upper few meters,
VKE and subgrid TKE are weak near the mixed layer base.
Many previous simulations have deeper penetration, but use
different Stokes drift forcing [McWilliams et al., 1997; Noh
et al., 2004; Sullivan et al., 2004; Li et al., 2005; Grant
and Belcher, 2009]. Nonetheless, LT does extend below

the obvious coherent structures to result in an increased
entrainment rate relative to a pure ST simulation. Figure 15
shows the mixed layer depth and the mixing depth (or
boundary layer depth) where the critical Richardson
number (0.3) is reached. The basic cases with an initial mixed
layer show small differences between the LT and ST cases.
The cases without an initial mixed layer show profound
enhanced entrainment when Stokes drift forcing is included.
The increased entrainment is consistent with increased
mixing depth, as diagnosed by a critical Richardson number
criterion. Thus, mixing and entrainment due to LT are evi-
dent in the no initial mixed layer cases, even though near the
mixed layer base no obvious coherent LC structures appear
in the conditional averaging (not shown).
[63] In misaligned cases with no initial mixed layer, the

entrainment rate and mixing depth decrease with increasing
qww. This is consistent with the reduction in VKE as qww
increases for the initial mixed layer simulations in Figure 3.
In the no initial mixed layer cases, the final mixed layer
depth depends on qww; the mixed layer is deepest for
qww = 0�, of intermediate depth for qww = 90�, and shallowest
when the Stokes drift is not present (i.e., shear only). The
entrainment at the mixed layer base in the no initial mixed

layer cases is thus consistent with the decrease in w′2 with
qww shown in Figure 3.
[64] The no initial mixed layer cases allow us to elaborate

on the choice of averaging depth, Dl, used in section 5 as
compared to mixed layer, mixing, and wave-based depths.
Cases with no initial mixed layer strongly suggest that twice
the e-folding depth (3 m) of the peak wave, which is 5.1 m,
not 20% of the mixed layer depth, should be used for the
depth Dl in the angle predictions and TKE calculations.
Those angles are based on the mixing depth, or depth over
which the TKE production occurs. However, as shown in
Figure 15, the mixed layer depths may vary widely between
these cases while the mixing depths are quite similar.
Regardless of mixed layer depth, the layer that contains 95%
of the TKE production is roughly equivalent to a layer that
contains 90% of the peak wave Stokes shear. In more realistic
scenarios, restratification mechanisms [Fox-Kemper et al.,
2008, 2011] (e.g., solar heating or mixed layer eddies)
would reduce the mixed layer depth toward the Langmuir or
other boundary layer mixing depth where turbulence is
strong. Thus, one may expect better agreement between
DL = 0.2 HML and twice the e-folding depth of the wave
spectrum in realistic situations than in the transient, non-
equilibrium scenarios studied here.

8. Langmuir Number Scaling

[65] In prior studies of aligned winds and waves [e.g.,
McWilliams et al., 1997; McWilliams and Sullivan, 2000],
the turbulent Langmuir number, Lat, was given as the ratio
of the surface wind stress, u*, to the surface Stokes velocity
in the wind direction, us(0). For misaligned winds and
waves, however, such a straightforward definition of Lat is
no longer accurate, since the surface wind stress and Stokes
velocity have components both parallel and perpendicular
to LC. Following Belcher et al. (unpublished manuscript,
2011), among others, the Langmuir number may be defined
more generally as the ratio of the TKE production by

Figure 15. Depth where Ri ≥ 0.3, which is taken to indicate
the mixing depth (gray symbols) and mixed layer depth
(black lines with symbols) in time. Cases with an initial
mixed layer are shown by crosses (with Stokes drift) and
by squares (without Stokes drift). Cases without an initial
mixed layer are shown by circles (with Stokes drift) and by
diamonds (without Stokes drift).
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Eulerian and Stokes shears (although McWilliams et al.
[1997] argue for turbulent Langmuir number as a ratio of
terms in the momentum equation, not the energy equation),
which is written as

La2TKE ¼ u′w′⋅ ∂u=∂zð Þ
u′w′⋅ ∂us=∂zð Þ : ð22Þ

Based on the discussion of the time-dependent TKE budget
in section 4 (see also Figure 5), it is emphasized that the
Langmuir number is related to the production ratio (22)
during the onset of LT. Here we generalize Lat to the mis-
aligned cases by defining a new turbulent Langmuir number,
denoted Laproj, as the ratio of the wind stress and surface
Stokes drift velocity projected into the LC direction. The
resulting Langmuir number is then written as

La2proj ≡
ju∗jcos aLð Þ

us 0ð Þj jcos qww � aLð Þ ; ð23Þ

where we have used aL for the LC direction due to the
connection between (22) and the TKE budget in section 4.
This generalized form for Laproj in (23) reduces to Lat when
qww = 0�.
[66] Since many of the simulations discussed to this point

give aL ≈ 0.5 qww (see Figure 7), Laproj
2 ≈ Lat

2 from (23)
and we are unable to determine how misalignment influ-
ences LT mixing strength over ST. To examine the validity
of (23) over a broader range of conditions, additional
simulations with varying Stokes drift magnitude were per-
formed (as summarized in Table 2). In these simulations,
the Stokes drift magnitude was varied by equilibrating the
Donelan et al. [1985] spectra using a range of different
preconditioning wind speeds (given in Table 2). Despite
these different preconditioning wind speeds, however, the
simulation wind speed is maintained at U10 = 5.75 ms�1

for all cases. Five different values of the preconditioning
wind speed were used, and Table 2 shows that the equiv-
alent values of Lat vary by nearly a factor of 3. For each
value of Lat, three different misalignments were examined:
qww = 0�, 30�, and 60�. The value of Laproj from (23) varies
by roughly 15% for these values of qww.
[67] Previous studies [Li et al., 2005; Harcourt and

D’Asaro, 2008] have indicated that the normalized VKE
shown in Figure 3 should scale with Lat. Here we examine
the functional form given by

w′2
D E

HML

u∗ cos aLð Þ½ �2 ¼ 0:6 1:0þ c1Laxð Þ�2 þ c2Laxð Þ�4
h i

; ð24Þ

where the left-hand side is obtained by averaging the nor-
malized VKE profiles in Figure 3 over the full mixed layer
depth (using the averaging definition in (16) with Dl = HML).
The coefficients c1 and c2 in (24) are obtained from the
simulation data using a non-linear least squares routine, and
the leading coefficient on the right-hand side is obtained
from the reanalysis of Li et al. [2005] by Harcourt and
D’Asaro [2008]. This value was determined using simula-
tions that only include shear turbulence (Lat→∞) and that do
not include Coriolis forcing, giving w′2 /u*

2 = 0.64 [Li et al.,

2005]. In our shear-only simulation, we find w′2 /u*
2 = 0.55,

which is still in relatively good agreement with the leading
coefficient in (24); in the rotating cases with f = 10�4 s�1,
this coefficient decreases to 0.43.
[68] In (24), Lax represents one of three possible defini-

tions of Langmuir number: either Lat = u*/jus(0)j, Laprof
from (23), or the Langmuir number from equation (32) of
Harcourt and D’Asaro [2008]. The Langmuir number
from Harcourt and D’Asaro [2008], which we denote
LaSL, is a projected generalization of the surface layer
averaged Langmuir number, which covers both exponential
and empirical wave spectra. Note that we approximate LaSL
based on the resolved Stokes shear, rather than integration
of an analytic spectrum, which is likely to degrade our
results versus those ofHarcourt and D’Asaro [2008]. Precise
agreement is not the goal here; rather, the goal is merely to
show that the projection of LaSL is an improvement over
ignoring misalignment. Once again, for the misaligned cases,
u* and us are both projected into the LC direction. Scaling
results from the simulations are shown for each of these
three definitions of Lax in Figure 16. For Lax = Lat in
Figure 16a, the values of c1 and c2 in (24) were found to be
c1 = 3.1 and c2 = 5.7. Figure 16a shows that the resulting fit
to our simulation data is slightly different than the Harcourt
and D’Asaro [2008] fit of the Li et al. [2005] data, but if
the misaligned cases (i.e., qww ≠ 0�) are neglected, then
there is close agreement. If the 95% confidence bounds are
taken into account, which are [2.3, 4] and [3.4, 6] for c1
and c2, respectively, the fits agree with Harcourt and
D’Asaro [2008], including the misaligned cases.
[69] Although the scatter of the simulation results around

the fit line is not large in Figure 16a, it is significant and
systematically biased. In Figure 16b, Laproj from (23) is used
instead of Lat in (24), and the resulting fit matches the
simulation data more closely, with a smaller quartic coeffi-
cient. Based on the size of the uncertainty in aL , all of the
simulation values lie on the curve, and the fit cannot be
improved further. Considering the projections of u* and us
into the LC direction moves the predicted mixing strength
onto the fit line, suggesting that Laproj is the appropriate
non-dimensional number to consider for misaligned wind
and waves.
[70] Finally, fits using LaSL from Harcourt and D’Asaro

[2008] are shown in Figure 16c. Once again, projecting u*
and us into the LC direction improves the fit by shifting the
results onto the fit line. However, some of the values in
Figure 16c are still statistically different from the fit curve.
For LaSL ≤ 1, Harcourt and D’Asaro [2008] suggest a power
law scaling of the form

w′2
D E

HML

u2∗
¼ c3 þ c4La

�4=3
SL ; ð25Þ

where c3 = 0.398 and c4 = 0.48, as determined using LES
results. When all of the aligned and misaligned cases are
considered in the present simulations, we obtain c3 = 0.063
and c4 = 0.68, with 95% confidence bounds of [�0.29, 0.41]
and [0.57, 0.80], respectively. The scaling from Harcourt
and D’Asaro [2008] with their coefficients is shown as the
thin line in Figure 16c and our coefficients generate the
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dashed line. The results of Harcourt and D’Asaro [2008]
fall within our confidence bounds for c3, but not for c4.
However, uncertainty in aL and the fact that we use a
subtly different definition of LaSL (resolved Stokes values
instead of a spectral integral) likely explain why our value of

c4 differs from Harcourt and D’Asaro [2008]. The quartic
functional form used in Figures 16a and 16b is also shown in
Figure 16c with nonlinear fit coefficients for reference.
Some additional simulations suggested to us (R. R. Harcourt,
personal communication, 2011), where the depth-profile of
Stokes drift is varied, do confirm that realistic spectra are
better quantified by a turbulent Langmuir number that has
sub-surface Stokes drift information (such as LaSL) than a
surface-only version (such as Lat). Thus, the conclusion of
Harcourt and D’Asaro [2008] is confirmed despite the dif-
ferences in fit coefficients for our simulations ascribed to the
model setup above.

9. Discussion and Conclusions

[71] LES have been performed for wave spectra away
from full-development with the Stokes drift rotated and
changed in magnitude relative to a fixed wind. Simulations
with and without Coriolis forcing were conducted. Predic-
tions of the angle of the LC axial direction relative to the
wind stress, a, were compared to the results. The resulting
angle is not strongly affected by the presence or absence of
the Coriolis force. In these simulations, the optimal predic-
tion that does not require LES results is derived in section 5
using the law of the wall and is given by

tan aLOWð Þ ¼ ∂vs=∂zh iDl
u∗

kjz1�Dl j ln jDl=z1jð Þ þ ∂us=∂zh iDl

:

This formulation is sensitive to the chosen depth over which
the shear is integrated, Dl, and the shallowest depth where
the law of the wall is thought to apply (z1). Using Dl = HML,
with z1 as the first LES grid point, was found here to be
optimal, but using Dl = 0.2 HML, as suggested by Harcourt
and D’Asaro [2008], resulted in little difference. In the real
ocean, there is no first grid point, but a description of the
depth where the Stokes drift and law of the wall might first
be applied. Traditionally, the law of the wall applies just
outside of the viscous sublayer, but the Stokes drift also
depends on asymptotic assumptions regarding surface waves.
Thus, a depth where one is clearly below the viscous sublayer
and where the Stokes drift is likely to apply, such as a mul-
tiple of the significant wave height, would be a reasonable
choice [Thorpe, 2007].
[72] In the present analysis Dl was sometimes chosen as

0.2 HML, which was found to be nearly the depth where 95%
of the Stokes shear production occurred in most of our
simulations. However, in simulations where the mixed layer
depth was initially zero, the mixed layer rapidly deepened
due to the Langmuir turbulence. Analysis of these simula-
tions revealed that twice the e-folding depth of the peak

Figure 16. Scaling of normalized mixed layer averaged w′2

with three definitions of Langmuir number (see Table 2).
The curves are fit with a non-linear least squares algorithm

with a functional fit given by
w′2
	 


HML

u∗cos aLð Þð Þ2 = 0.6(1 + c1Lax
�2 +

c2Lax
�4). In this fit Lax represents one of three possible

definitions: (a) Lat
2 ≡ ju∗j

jus 0ð Þj , (b) Laproj
2 ≡ ju∗jcos aLð Þ

jus 0ð Þjcos qww�aLð Þ ,
and (c) LaSL

2 .
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wave in the empirical spectrum may be a more robust esti-
mate of Dl when the mixed layer depth is evolving. In the
equilibrated mixed layer simulations carried out here, these
two estimates were in agreement.
[73] For small misalignments (qww ≤ 30�), most reasonable

predictions of a (given in section 5) agree with each other
and the LES. As misalignment increases, only the predic-
tions based on LES statistics and aLOW remained accurate.
Some estimates of the orientation and strength of LC have
serious drawbacks. The presumption that LC requires a
portion of the Stokes drift to project onto the wind stress
(i.e., qww < 90�) does not hold, since a coherent LC structure
is seen when qww = 90�, and a weak LC-like structure is seen
at qww = 135�.
[74] For Stokes drift that differs in direction but not mag-

nitude from the fully-developed wavefield for a given wind
(Lat ≈ 0.3) the orientation of LC is nearly a ≈ 0.5 qww. When
a ≈ 0.5 qww, Laproj is equal to Lat.
[75] Scaling relationships for the strength of Langmuir

mixing have been derived. The strength of LC mixing for
misaligned wind and waves (qww ≠ 0�) follow previously

derived scalings under two conditions. First, w′2 must be
normalized by the projection of the surface stress into the
LC direction instead of the total magnitude. Second, the
turbulent Langmuir number must be reinterpreted as defined
in (23). Projecting vector quantities into the axial direction
of the LC collapses the LT statistics, mixing rate, and
entrainment onto nearly the aligned result for a wide range of
parameters. This procedure is summarized by the following:

w′2 / u2∗ → w′2 / u2∗cos
2 að Þ

La2t ¼
ju∗j
jusj → La2proj ¼

ju∗jcos að Þ
jusjcos qww � að Þ :

ð26Þ

A suitable estimate for a that does not require LES results is
a ≈ aLOW.
[76] The results of this generalization and the LES

results from sections 3 and 5 may be combined to give a
prediction for the maximum mixing due to LT based solely
upon observed values of u*, us, and qww, grouped non-
dimensionally when possible. If it is assumed that 〈∂us/∂z〉Dl

=
us(0) � us(Dl) ≈ us(0), then

w′2
D E

HML

u2∗
¼ 0:6cos2 aLOWð Þ 1:0þ 3:1Laproj

� ��2 þ 5:4Laproj
� ��4

h i
;

ð27Þ

La2proj ¼
ju∗jcos aLOWð Þ

jusjcos qww � aLOWð Þ ; ð28Þ

aLOW ≈ tan�1 sin qwwð Þ
u∗

us 0ð Þk ln jHML=z1jð Þ þ cos qwwð Þ

" #
: ð29Þ

Results using different initial mixed layer depths indicate that
care is needed when averaging over the “surface layer” as
suggested by Harcourt and D’Asaro [2008]. The e-folding
depth of the peak wave is shown to be superior hereto a frac-
tion of the mixed layer depth as an estimator of the depth of
wave production. If a boundary layer mixing depth is known
from LES or an ocean mixing parameterization, it is likely to
be a fair estimator for LaSL. However, if only wave data or a
wave model is available, the mixed layer depth may not be a
good replacement for the “surface layer”, although restratifi-
cation mechanisms not included here tend to make the dis-
tinctions between mixed layer and mixing layer much smaller.
[77] The prediction (29) converges to aLOW = qww in the

case of strong Stokes drift and aLOW = 0� in the case of
strong winds. Likewise, when qww = 0� the scalings agree
with previous results for aligned waves and wind [Harcourt
and D’Asaro, 2008].
[78] A useful set of bounds on the behavior of (29) can be

found by considering the strong wind, strong wave, and
balanced waves and winds. It begins from an identity that
holds for all q with a magnitude smaller than p

q
2
¼ tan�1 sinq

cosqþ 1
:

The bounds are based on this identity together with (26), and
are

If La2t ≥
k

ln
h

z1

� � ;
La2t

cos qwwð Þ ≥ La2proj ≥ La2t ;

Else if La2t ¼
k

ln
h

z1

� � ; La2t ¼ La2proj;

Else if La2t ≤
k

ln
h

z1

� � ; La2t cos qwwð Þ ≤ La2proj ≤ La2t :

Thus, for small Lat
2, Laproj

2 will be smaller than Lat
2 by up to

cos(qww). For large Lat
2, Laproj

2 may be larger by as much as a
factor of 1/cos(qww). The point when Lat

2 = Laproj
2 , regardless

Figure 17. Temporal and zonal median and interquartile
range of Lat and Laproj for a realistic simulation of 1994–
2002 using Wave Watch III.
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of qww, is when the middle equality holds, which is
approximately 10ju*j = jus(0)j.
[79] To appreciate the magnitude of the preceding rescal-

ings, Figure 17 compares La and Laproj in a realistic 1994–
2002 hindcast using Wave Watch III (details given by
Webb and Fox-Kemper [2011]). Laproj is calculated with
(28)–(29) using the density-criterion mixed layer depth
(Dr = 0.03 kg m�3) for h from the mixed layer depth
climatology of de Boyer Montégut et al. [2004] updated to
include ARGO float data to September 2008. The onset
depth of the law of the wall, z1, is taken as four times the
significant wave height [Thorpe, 2007]. The Stokes drift is
calculated as 0.8 D3 (notation from Webb and Fox-Kemper
[2011]) to account for spreading.
[80] The preceding scalings account for many of the dif-

ferences when waves and winds are misaligned, but condi-
tional averaging reveals subtle changes to the dominant
two-dimensional LC structures and vorticity budget with
increasing misalignment. The averaging reveals that, as the
angle between the wind and waves increases, a strong
asymmetry is introduced in the vorticity fields, so that in
the typical LC vortex pair the upwind cell strengthens and
overwhelms a weakened downwind cell. Advection of the
upwind cell on top of the downwind cell is the primary
forcing of the asymmetric pattern seen in these simulations
when qww ≠ 0�. The cross-cell advection under misalign-
ment occurs in both rotating and non-rotating simulations.
Interestingly, cross-cell advection in the misaligned, non-
rotating simulations resembles cross-cell advection by Ekman
processes in the aligned, rotating simulations.
[81] The conclusions of this study are robust. With or

without an initial mixed layer, with or without wind waves,
and doubling the resolution leave the primary results
unchanged. A number of tests could be carried out to increase
the realism of these simulations, but we have endeavored to
find behaviors likely to be understandable and independent
of situation and hence only the cleanest simulations are
studied. It is hoped that future studies may address why the
production ratio in the TKE budget is time dependent, the
case of superposition of two nearly matched wave spectra,
and what sets the depth and entrainment of LT under realistic
forcing and evolving mixed layer depth.
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