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On the distortion of turbulence by a progressive
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A rapid-distortion model is developed to investigate the interaction of weak turbulence
with a monochromatic irrotational surface water wave. The model is applicable when
the orbital velocity of the wave is larger than the turbulence intensity, and when
the slope of the wave is sufficiently high that the straining of the turbulence by the
wave dominates over the straining of the turbulence by itself. The turbulence suffers
two distortions. Firstly, vorticity in the turbulence is modulated by the wave orbital
motions, which leads to the streamwise Reynolds stress attaining maxima at the wave
crests and minima at the wave troughs; the Reynolds stress normal to the free surface
develops minima at the wave crests and maxima at the troughs. Secondly, over several
wave cycles the Stokes drift associated with the wave tilts vertical vorticity into the
horizontal direction, subsequently stretching it into elongated streamwise vortices,
which come to dominate the flow. These results are shown to be strikingly different
from turbulence distorted by a mean shear flow, when ‘streaky structures’ of high and
low streamwise velocity fluctuations develop. It is shown that, in the case of distortion
by a mean shear flow, the tendency for the mean shear to produce streamwise vortices
by distortion of the turbulent vorticity is largely cancelled by a distortion of the mean
vorticity by the turbulent fluctuations. This latter process is absent in distortion by
Stokes drift, since there is then no mean vorticity.

The components of the Reynolds stress and the integral length scales computed
from turbulence distorted by Stokes drift show the same behaviour as in the simu-
lations of Langmuir turbulence reported by McWilliams, Sullivan & Moeng (1997).
Hence we suggest that turbulent vorticity in the upper ocean, such as produced
by breaking waves, may help to provide the initial seeds for Langmuir circulations,
thereby complementing the shear-flow instability mechanism developed by Craik &
Leibovich (1976).

The tilting of the vertical vorticity into the horizontal by the Stokes drift tends
also to produce a shear stress that does work against the mean straining associated
with the wave orbital motions. The turbulent kinetic energy then increases at the
expense of energy in the wave. Hence the wave decays. An expression for the wave
attenuation rate is obtained by scaling the equation for the wave energy, and is found
to be broadly consistent with available laboratory data.

† Present address: Centro de Geofı́sica da Universidade de Lisboa, Rua da Escola Politécnica,
58, 1269-102 Lisbon, Portugal.
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1. Introduction

The uppermost layer of the ocean has three interacting dynamical components,
namely a wind-driven mean shear current, surface waves and turbulence. This po-
tent mixture produces a variety of intriguing phenomena that do not occur in the
atmospheric boundary layer. Observations in the ocean mixed layer by Faller & Auer
(1988) have revealed elongated streamwise vortices, identified as Langmuir circula-
tions, with a wide range of scales, which can therefore be seen as a type of turbulence,
named Langmuir turbulence by McWilliams, Sullivan & Moeng (1997). Furthermore,
recent observations show that breaking waves are a surprisingly potent source of
turbulence in the upper few metres of the mixed layer (Agrawal et al. 1992; Terray
et al. 1996). Given the complexity of this system it is helpful to consider interactions
between pairs of these components. Such idealized calculations are presented in this
paper.

Turbulence and surface waves can interact in a variety of ways. Turbulent pressure
fluctuations and turbulent shear stresses are responsible for both the initiation of
surface waves (Phillips 1957; Teixeira 2000) and their subsequent amplification by
a sheltering mechanism (Belcher & Hunt 1993, 1998). Turbulence in the water can
scatter surface waves (Phillips 1959), distort surface waves (Longuet-Higgins 1996)
and dissipate surface waves (Kitaigorodskii & Lumley 1983). Conversely, breaking
waves, often visible as whitecaps (Melville 1996), shear currents induced by the wind,
and thermal convection all generate turbulence in the ocean surface layer, which is
subsequently distorted by orbital motions associated with the surface waves (Thais
& Magnaudet 1996). More idealized interactions between waves and turbulence have
been investigated experimentally by Green, Medwin & Paquin (1972), Ölmez &
Milgram (1992), Nepf et al. (1995) and Thais & Magnaudet (1996). But a systematic
theoretical treatment of this situation is lacking.

Distortion of turbulence by surface waves is of two types: on the one hand, there
is the direct effect of the orbital motions, of first order in the wave slope, which has
a straining rate of O(awkwσw), where aw , kw and σw are, respectively, the amplitude,
wavenumber and angular frequency of the waves. This effect is relatively weak,
because the wave motions are periodic and the total strain never exceeds O(awkw),
which is small. On the other hand, there is the effect of the Stokes drift, of second
order in the wave slope, whose straining rate can be estimated as O(a2

wk
2
wσw). Although

this straining rate is even smaller, its effect is cumulative, and the total strain is of
O(a2

wk
2
wσwt), where t is time. So, this second-order effect is bound to affect turbulence

appreciably after a sufficient number of wave cycles.
Interaction between the wind-driven mean shear current and the Stokes drift is at

the heart of current explanations of the generation of Langmuir circulations in the
ocean (Leibovich 1983). Langmuir circulations are intense, elongated vortices, with
their axes of rotation roughly aligned with the wind and the dominant surface waves.
Craik & Leibovich (1976) propose two mechanisms for the production of Langmuir
circulations based on instability of the mean shear current under the action of the wave
motions. The first, known as CL1 or the direct drive mechanism, involves interaction
between the mean shear current in the water and the Stokes drift associated with
waves propagating at an angle to this mean current. The second mechanism for
production of Langmuir circulations analysed by Craik & Leibovich (1976), known
as the CL2 mechanism, involves tilting and stretching of vertical vorticity into the
horizontal by the Stokes drift associated with surface waves propagating in the same
direction as the mean shear current. In the Craik–Leibovich formulation the vertical
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vorticity is assumed to arise from infinitesimal spanwise variations in the mean shear
current.

The mechanisms for generation of Langmuir circulations developed by Craik &
Leibovich (1976) treat explicitly interactions between the mean shear flow and the
Stokes drift. The role of turbulence is represented by an eddy viscosity, thereby
relegating turbulence to a mechanism for dissipating the Langmuir circulations. But
there is evidence that turbulence may contribute to the generation of Langmuir
circulations (Nepf et al. 1995). Hence one aim of the present study is to quantify the
effects of Stokes drift on turbulence in the water flow.

We focus here on two idealized model problems that aim at clarifying the inter-
actions in the upper ocean. Firstly, the bulk of the paper is concerned with the
distortion of turbulence by the passage of a surface wave; the mean shear flow is
neglected. This distortion is traced from the periodic straining of the wave, through
to the cumulative distortion of the turbulence by the Stokes drift, to decay of waves
as energy is transferred to the turbulence. Secondly, we present results of distortion
of turbulence by a mean shear flow; the effects of the surface waves are neglected.
Comparison of the results of these two analyses graphically shows the important role
played by Stokes drift in shaping the turbulence and offers clues to an additional
source of Langmuir circulations.

The remainder of this paper is organized as follows: in § 2, the theoretical model
of wave–turbulence interaction is presented. Section 3 presents the resulting time
evolution of the Reynolds stresses and the integral length scales of the turbulence,
firstly over a single wave cycle and secondly over several wave cycles, when the Stokes
drift becomes important. These latter results are compared with turbulence distortion
by a mean shear. The overall budgets of kinetic energy in the turbulence and the
wave motions are then analysed to show how the waves decay. The paper ends with
the main conclusions, in §4.

2. Theoretical model
Consider a semi-infinite water mass bounded above by a free surface on which a

progressive, monochromatic, surface wave is propagating. The wave is irrotational
and has relatively low slope. Here we analyse how turbulence beneath the free surface
is distorted by the orbital motions associated with the wave. To tackle this idealized
problem, the rapid-distortion theory (RDT) of Batchelor & Proudman (1954) and
Hunt (1973) will be used.

The total velocity field Ui is split into a mean part, Ui, and a turbulent part, ui,
namely

Ui = Ui(x) + ui(x, t), i = 1, 2, 3. (2.1)

The mean velocity corresponds to the wave orbital motion expressed in a coordinate
system travelling with the wave crests: hence Ui is stationary. The wave is taken to
propagate in the positive x1-direction and, since the wave is also monochromatic,
Ui is slab-symmetric and does not depend on x2. The turbulence is assumed to be
statistically stationary, homogeneous and isotropic far from the surface. At the initial
time, the turbulence is assumed to be homogeneous and isotropic throughout the
depth of the water column at a particular point of the wave phase. The turbulence is
also assumed to be of a much smaller scale than the wave, so that the initial integral
length scale of the turbulence l satisfies l � λw , where λw is the wavelength of the
wave. The idea is then to analyse the evolution of the turbulence statistics following
a water parcel as the wave propagates over the turbulence.
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This idealized model approximates two physical situations: the first is a laboratory
arrangement where mechanically generated surface waves propagate over a region of
turbulence created by an oscillating grid, as in the experiments of Ölmez & Milgram
(1992) and Milgram (1998). The second situation is where turbulence is injected into
the water by breaking surface waves at a particular time and location, being then
distorted by subsequent waves. Of course, in the second case, the initial turbulence
is not perfectly homogeneous and isotropic, but it is reasonably isotropic (Rapp &
Melville 1990) and its integral length scale is generally considerably smaller than the
wavelength of the dominant waves, since wave breaking is a highly localized process.
Hence the condition l � λw is probably satisfied.

In the formulation adopted by Hunt (1973), RDT is based on the inviscid equations
of motion, linearized with respect to the turbulence. For example, the linearized
vorticity equation can be written

∂ωi

∂t
+Uj

∂ωi

∂xj
+ uj

∂Ωi

∂xj
= Ωj

∂ui

∂xj
+ ωj

∂Ui

∂xj
, (2.2)

where Ω = ∇×U is the vorticity of the mean flow and ω = ∇× u is the vorticity of
the turbulence. In the present case, Ui is the velocity associated with an irrotational
surface wave, so Ωi = 0. If u is defined as the initial root-mean-square (RMS) velocity
of the turbulence, U as the typical velocity scale of the mean flow and L as the typical
length scale over which the mean flow varies, the conditions for the validity of (2.2)
are that the turbulent velocity is sufficiently weak compared with the mean velocity,
u � U, and that the strain rate of the mean flow is higher than that associated
with the interaction of the turbulence with itself, u/l � U/L. The first condition is
immediately satisfied if, additionally to the second, l � L is also satisfied. It will be
seen later that this last condition on the length scales is convenient if the equations
of motion are to be simplified by being expressed in a curvilinear coordinate system
aligned with the mean flow (Durbin & Hunt 1980). In that case, the curvature terms
in the equations are of O(l/L) and can be neglected, i.e. the equations take at leading
order the same form as in a Cartesian coordinate system.

For the particular flow under consideration, the length scale of the mean flow is
the wavelength of the wave, λw , and the strain rate associated with the wave is of
O(awkwσw), so the conditions for which the linear RDT model is valid are

l � λw, awkw � u

lσw
. (2.3)

Hence, the turbulence has to be of relatively small scale and the steepness of the wave
cannot be too small.

Turbulence generated by a grid in laboratory experiments (Brumley & Jirka 1987;
Kit, Strang & Fernando 1997) or associated with a wind-induced shear current
(Melville, Shear & Veron 1998) generally has an integral length scale of O(1 cm) or
larger. Turbulence generated by breaking waves is likely to be even larger (see table
V of Kitaigorodskii et al. 1983). Since the transition between the gravity and capillary
regimes of surface waves occurs at a wavelength ≈ 1.7 cm, the first condition of (2.3)
is typically satisfied if the wave that distorts the turbulence is a gravity wave. Then, if
it is noted that, in the deep-water gravity wave regime, the dispersion relation gives
σw = (2πg/λw)1/2, the second equation of (2.3) may also be expressed as a condition
on the wavelength, and (2.3) takes the more compact form

l � λw � 2πg

(
l

u
awkw

)2

. (2.4)
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Taking the reasonable values l = 5 cm, u = 1 cm s−1, awkw = 0.1, and g = 9.8 m s−2,
the following estimate for the range of applicability of the model is obtained:

5 cm� λw � 15.4 m. (2.5)

This condition is easily satisfied for laboratory waves, and for an important fraction
of the gravity waves existing in the ocean. The scalings of Belcher, Harris & Street
(1994) confirm that the RDT assumption is valid in the water flow in most situations,
except very near the interface.

2.1. Mathematical formulation

In applying RDT to mean flows as complex as a progressive surface wave, it is
convenient to express the vorticity equation (2.2) in the intrinsically Lagrangian form
due to Cauchy (Batchelor & Proudman 1954),

ωi(x, t) =
∂xi

∂aj
ωj(a, 0), (2.6)

where

xi(a, t) = ai +

∫ t

0

Ui(x, t
′)dt′ (2.7)

is the position at time t of a fluid parcel with initial position ai. ∂xi/∂aj is the strain
tensor, which gives the ratio of the separations, along the three coordinate directions,
of two infinitesimally distant material particles at a given time, following the fluid
motion, and at the initial time. In (2.6), the Cauchy equation is already linearized, like
(2.2), because that is the form relevant for the present RDT problem, and Ωi = 0 has
been assumed, because the wave is irrotational. If the mean flow was not irrotational,
(2.6) would have to include Ωi as well, and the strain tensor would include the
distortion of the mean vorticity by the turbulent velocity, as pointed out recently by
Nazarenko, Kevlahan & Dubrulle (1999). This would make the calculations much
more complicated.

Given the initial turbulent velocity field ui(a, 0), the initial turbulent vorticity ω =
∇ × u is obtained by taking the curl and, once the strain tensor is known, the final
velocity field may be recovered from the final vorticity obtained from (2.6) by solving
the equation

∇2u = −∇× ω, (2.8)

which results from taking the curl of the definition of turbulent vorticity. The re-
maining problem, therefore, is determining ∂xi/∂aj as a function of the mean velocity
field.

Durbin (1978) noted that the form taken by the strain tensor is considerably simpli-
fied if the RDT problem is formulated in a streamline coordinate system. In fact, such
formulation is not only advantageous for simplifying the form taken by the equations
of motion but also for simplifying the boundary conditions, which would otherwise be
awkward to impose. Therefore, in the present model, a curvilinear coordinate system
is adopted, where x1 (the direction along which the wave propagates) is replaced by φ,
the velocity potential of the wave motion, x2 remains as the cross-stream horizontal
coordinate and x3 (the vertical coordinate) is replaced by ψ, the streamfunction. The
new curvilinear coordinates are defined by the relations

U1 =
∂φ

∂x1

=
∂ψ

∂x3

, U3 =
∂φ

∂x3

= − ∂ψ
∂x1

. (2.9)



234 M. A. C. Teixeira and S. E. Belcher

x3

x1

x1
˜

x3
˜

2aw

ã = const.

φ = const.

λw

Figure 1. Schematic diagram of the model problem in a frame of reference travelling with the
wave, showing the streamlines (solid) and lines of constant potential (dotted), and the Cartesian
and curvilinear coordinate systems.

The spatial coordinates and components of vectors in the new curvilinear system
retain the subscripts 1, 2 and 3, respectively, for the direction along the streamlines,
horizontally across the streamlines and along lines of constant potential, but are
distinguished from their Cartesian counterparts by a tilde. The infinitesimal length
element in the direction along the streamlines is Ũ−1

1 dφ, where Ũ1 = (U2
1 + U2

3 )1/2

and the length element along the lines of constant potential is Ũ−1
1 dψ. The spatial

derivatives along the three new coordinate directions are then defined as

∂

∂x̃1

= Ũ1

∂

∂φ
,

∂

∂x̃2

=
∂

∂x2

,
∂

∂x̃3

= Ũ1

∂

∂ψ
. (2.10)

The flow configuration and coordinate systems for a surface wave propagating in the
positive x1-direction are presented schematically in figure 1. Note that the orientation
of the curvilinear coordinates is approximately in the opposite direction to the
Cartesian coordinates (except for x̃2), with x̃1 pointing to the left and x̃3 pointing
downwards.

In the curvilinear coordinate system, the linearized Cauchy equation takes a form
analogous to (2.6), but the strain tensor is considerably simpler than when expressed
in a Cartesian coordinate system, namely

∂x̃

∂ã
=


Ũ1/Ũ10 0 Ũ1∂τ0/∂ã3 − Ũ10∂τ/∂x̃3

0 1 0

0 0 Ũ10/Ũ1

 , (2.11)

where the subscript 0 denotes variables evaluated at the initial time, before any
turbulence distortion has taken place, and τ is the travel time of a fluid parcel, defined
as

τ =

∫ φ dφ′

Ũ2
1

. (2.12)

For turbulence flowing around a bluff body the ‘initial position’, where the turbulence
is undistorted, is infinitely upstream of the body, so U10 is the free-stream velocity,
which is assumed constant (Hunt 1973; Durbin 1981). As a consequence, ∂τ0/∂ã3 = 0
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and (2.11) simplifies further. If the mean flow is a periodic wave, however, there is
no obvious choice for the initial position, which has to be imposed more arbitrarily.
Ũ10 and ∂τ0/∂ã3 then depend on the location of the initial position relative to the
phase of the wave and must be retained in (2.11). This dependence of the model
on the initial position will be explored in § 3. In the case of turbulence generated
by a breaking wave, it is perhaps to be expected that the turbulence is injected at
the forward slope of the wave (Rapp & Melville 1990), and as a result, most of the
calculations presented in § 3 use this as the initial position.

2.2. The mean velocity field

The mean velocity field considered in the present model is that associated with a
relatively small-amplitude, monochromatic surface wave, expressed in a frame of
reference travelling with the phase velocity of the wave cw = σw/kw . Following
Longuet-Higgins (1984), the wave motion is expressed here as a function of the
curvilinear coordinates φ and ψ, but only the first term in the corresponding series
expansion (his equation (4.4)) is considered. This is a good approximation for low
wave slopes. The horizontal and vertical velocity components are

U1 = cw(awkwe−kwψ/cw cos(kwφ/cw)− 1),

U3 = −cwawkwe−kwψ/cw sin(kwφ/cw),

}
(2.13)

which satisfy continuity and irrotationality, and lead to

Ũ1 = cw
(
1 + a2

wk
2
we−2kwψ/cw − 2awkwe−kwψ/cw cos(kwφ/cw)

)1/2
. (2.14)

The advantage of this peculiar formulation of the wave motion is that it enables an
analytical evaluation of the travel time function τ. On performing the integration over
φ′ in (2.12), the result is

τ(φ, ψ) =
2

cwkw

1

1− a2
wk

2
we−2kwψ/cw

[
arctan

(
1 + awkwe−kwψ/cw

1− awkwe−kwψ/cw
tan

(
kwφ

2cw

))
+πInt

(
kwφ/cw + π

2π

)]
+ f(ψ), (2.15)

where f is an arbitrary function and Int denotes ‘integer part’. The second term
between square brackets has to be introduced in order for τ to be a monotonically
increasing function of the velocity potential, because the arctan function is limited to
take values in the interval (−π/2, π/2). It can be shown from (2.15) that the travel
time function is approximately equal to φ/c2

w + f(ψ) for very low wave slopes, but
deviates systematically towards higher values for larger awkw . This is a manifestation
of the Stokes drift of the wave. The connection between the Stokes drift of a surface
wave and the so-called ‘Darwin drift’ (which is closely related to the travel time
function) has been noted recently by Eames & McIntyre (1999), although they did
not calculate τ explicitly.

From (2.11), (2.14) and (2.15), it follows that the strain tensor is specified completely
as a function of φ and ψ, φ0 and ψ0. Therefore, to obtain the evolution of the
turbulence along the wave profile, values for φ0 and ψ0 must be chosen to specify the
initial position, and then the relevant turbulent quantities may be calculated along
a streamline (ψ = ψ0), for different values of φ (this is done below). However, it
would be convenient to express the results as a function of more physically significant
variables like time or space. A rigorous relation between the Cartesian and the
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curvilinear coordinates requires the numerical resolution of implicit equations, but a
simple approximation, valid for low wave slopes, is readily available. Equations (2.9)
and (2.13) show that, to zeroth order in the wave slope, φ ≈ −cwx1 and φ0 ≈ −cwa1.
Now, to the same order of approximation, it follows from (2.7) that x1 ≈ a1 − cwt.
Then, subtracting the initial from the final potential, φ−φ0 = −cw(x1 − a1) = c2

wt, so
that finally

t ≈ (φ− φ0)/c
2
w. (2.16)

This shows that the Eulerian time can be approximately related to the potential
function. When the turbulence statistics are plotted as a function of time, in §3, t will
always be defined according to (2.16), so it must be recalled, when interpreting the
results, that (2.16) is only an approximate equality.

2.3. Solution in terms of Fourier modes

Far from the free surface, the turbulence is not affected by the wave nor directly by the
boundary, and remains homogeneous, isotropic and stationary. Now, by assumption
the scale over which the motion associated with the wave varies, λw , is much larger
than the initial integral length scale of the turbulence (see the first equation of (2.3)),
and so at distances from the free surface in the range l < x̃3 < λw , the turbulence
is distorted by the wave motion but not directly by the boundary. In this region the
turbulence is locally homogeneous, in the sense that it varies over a length scale that
is much larger than its integral scale l. So, for depths greater than l, it is justified to
represent the turbulent velocity as a three-dimensional Fourier integral, with space-
and time-dependent wavenumbers that vary over the length scale λw , in order to
account for the slight inhomogeneity of the mean flow. This is the slow-variation
approximation, also used by Durbin (1981). In the curvilinear coordinate system, the
turbulent velocity is thus

ũ
(H)
i (x̃, t) =

∫∫∫
ˆ̃u(H)
i (k̃, x̃, t)eik̃·x̃dk̃1dk̃2dk̃3, (2.17)

where k̃(x̃, t) = (k̃1, k̃2, k̃3) is the wavenumber vector, and the spatial coordinates in
the plane of the wave motion can be approximated locally as x̃1 = φ/Ũ1, x̃3 = ψ/Ũ1.
The vorticity of the turbulence may be expressed in a formally similar way:

ω̃
(H)
i (x̃, t) =

∫∫∫
ˆ̃ω

(H)

i (k̃, x̃, t)eik̃·x̃dk̃1dk̃2dk̃3. (2.18)

Invoking the slow-variation approximation, it is now possible to relate the Fourier
amplitudes of the turbulent velocity and of the turbulent vorticity through an algebraic
relation, in exactly the same way as in a Cartesian coordinate system, namely

ˆ̃ω
(H)

i = εijkik̃j ˆ̃u
(H)
k , (2.19)

where terms of higher order in the parameter (l/λw) have been ignored. Taking
the external product of the wavenumber vector with this expression, an equation
equivalent to (2.8) in the spectral domain is obtained,

ˆ̃u(H)
i = εijki

k̃j

k2
ˆ̃ω

(H)

k , (2.20)

where k = (k̃2
1 + k̃2

2 + k̃2
3)1/2 is the wavenumber magnitude.

The Cauchy equation can be expressed in terms of Fourier amplitudes by using
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(2.6) (with tildes in the curvilinear coordinate system) and (2.18), yielding

ˆ̃ω
(H)

i (k̃, x̃, t) =
∂x̃i

∂ãj
ei(k̃0·ã−k̃·x̃) ˆ̃ω

(H)

j (k̃0, ã, 0),

k̃i(x̃, t) =
∂ãj

∂x̃i
k̃0j ,

 (2.21)

where k̃0 = (k̃01, k̃02, k̃03) = k̃(ã, 0) is the wavenumber vector at the initial time. These
two equations give the Lagrangian temporal evolution of, respectively, the Fourier
amplitude of the turbulent vorticity and the wavenumber vector. Applying (2.19) to
obtain the initial vorticity amplitude in (2.21) as a function of the velocity amplitude
and inserting the final vorticity amplitude given by (2.21) into (2.20) yields

ˆ̃u(H)
i (k̃, x̃, t) = −εijkεlmn k̃j k̃0m

k2

∂x̃k

∂ãl
ei(k̃0·ã−k̃·x̃) ˆ̃u(H)

n (k̃0, ã, 0), (2.22)

which, together with (2.11), the second equation of (2.21) and (2.17), completely defines
the final distorted turbulent velocity field as a function of the initial undistorted
turbulent velocity field.

2.4. Blocking effect of the boundary

At distances from the free surface of O(l) or shorter, the turbulence is no longer locally
homogeneous, since it is forced to adjust to the boundary. For the turbulence with low
Froude and Weber numbers considered here, the effect of the boundary is primarily
blocking (Brocchini & Peregrine 2001), so that the normal velocity component reduces
to zero at the boundary. This effect is included in the model by adding an irrotational
correction to the turbulent velocity field (Hunt & Graham 1978). Equation (2.2)
ensures that, for an irrotational mean flow, an initially irrotational velocity remains
irrotational at all subsequent times. The total velocity field thus becomes

ũi = ũ
(H)
i +

∂φ(S)

∂x̃i
, i = 1, 2, 3, (2.23)

where φ(S)(x̃, t) is a velocity potential satisfying

∇2φ(S) = 0, (2.24)

subject to boundary conditions that ensure that the turbulent velocity is zero at the
boundary and vanishes far from it:

∂φ(S)

∂x̃3

(x̃3 = 0) = −ũ(H)
3 (x̃3 = 0) and φ(S)(x̃3 →∞) = 0. (2.25)

Although the velocity potential φ(S) decays rapidly to zero for x̃3 > l, it remains
locally homogeneous along the other two coordinate directions, so it can be expressed
as a two-dimensional Fourier integral as follows:

φ(S)(x̃, t) =

∫∫
φ̂(S)(k̃1, k̃2, x̃, t)e

i(k̃1x̃1+k̃2x̃2)dk̃1dk̃2. (2.26)

Invoking again the slow-variation approximation, the solution of (2.24), which can be
expressed in the form (2.26) and satisfies the boundary conditions (2.25), is formally
identical to that found by Hunt & Graham (1978) for turbulence near a flat wall,
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namely

φ̂(S)(k̃1, k̃2, x̃, t) =

∫ ˆ̃u(H)
3 (k̃, x̃, t)

k̃12

e−k̃12x̃3dk̃3, (2.27)

where k̃12 = (k̃2
1 + k̃2

2)1/2. This expression differs only from the solution obtained by
Hunt & Graham in that the turbulence is not perfectly homogeneous along the x̃1-
and x̃2-directions, because the straining by the wave motion varies with x̃1 and x̃2, so
that both the wavenumber k̃ and ˆ̃u(H)

3 vary slowly in space and time.

2.5. Complete solution

From (2.17), (2.23) and (2.26), it follows that the total turbulent velocity field must
be given by a two-dimensional Fourier integral in the form

ũi(x̃, t) =

∫∫
ˆ̃ui(k̃1, k̃2, x̃, t)e

i(k̃1x̃1+k̃2x̃2)dk̃1dk̃2, (2.28)

where the Fourier amplitude is defined by

ˆ̃ui =

∫
ˆ̃u(H)
i eik̃3x̃3dk̃3 + ik̃iφ̂

(S), i = 1, 2,

ˆ̃u3 =

∫
ˆ̃u(H)

3 eik̃3x̃3dk̃3 +
∂φ̂(S)

∂x̃3

.

 (2.29)

Taking into account (2.22), (2.27) and (2.29), the Fourier amplitude of the total
distorted turbulent velocity (including the effects of distortion by the wave and by the
boundary) may be related to the initial undistorted amplitude through

ˆ̃ui(k̃1, k̃2, x̃, t) =

∫
M̃ij(k̃, x̃, t) ˆ̃u(H)

j (k̃0, ã, 0)dk̃3, (2.30)

where the elements of the matrix M̃ij can be seen as ‘transfer functions’ (Hunt 1973).
As was just seen, the blocking effect of the boundary may be taken into account by
applying the changes due to blocking to the wave-distorted turbulence. Hence the
functions M̃ij may be decomposed as

M̃ij(k̃, x̃, t) = B̃ik(k̃, x̃, t)W̃kj(k̃, x̃, t), (2.31)

where the matrix B̃ik accounts for blocking and the matrix W̃ik accounts for distortion
by the wave.

The effect of the wave is deduced from (2.22), and leads to

W̃in = −εijkεlmn k̃j k̃0m

k2

∂x̃k

∂ãl
ei(k̃0·ã−k̃·x̃), (2.32)

while the effect of blocking is deduced from (2.27) and (2.29), yielding

B̃ii = eik̃3x̃3 , B̃i3 = i
k̃i

k̃12

e−k̃12x̃3 (i = 1, 2), B̃33 = eik̃3x̃3 − e−k̃12x̃3 , (2.33)

with the remaining elements of B̃ij being equal to zero.
The turbulent velocity distorted by both the wave orbital motion and by the

boundary is thus completely defined as a function of the undistorted turbulent
velocity. It remains to prescribe the characteristics of the undistorted turbulence and
to calculate statistics of the turbulence at various stages of distortion.
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2.6. Statistics of the turbulent velocity field

In order to analyse the structure of the turbulence, statistics of the turbulent velocity
field are required. The intensity and correlation of the velocity fluctuations are
characterized by the Reynolds stresses. These may be calculated from the Fourier
amplitudes of the turbulent velocity using

ũiũj =

∫∫∫∫
ˆ̃u∗i (k̃1, k̃2) ˆ̃uj(k̃

′
1, k̃
′
2)dk̃1dk̃2dk̃

′
1dk̃

′
2, (2.34)

where the asterisk denotes complex conjugation and the overbar denotes ensemble
averaging. Equation (2.30) implies that

ˆ̃u∗i (k̃1, k̃2) ˆ̃uj(k̃
′
1, k̃
′
2) =

∫∫
M̃∗

ik(k̃)M̃jl(k̃
′
) ˆ̃u(H)∗
k (k̃0) ˆ̃u(H)

l (k̃
′
0)dk̃3dk̃

′
3. (2.35)

Now, the three-dimensional spectrum of the initial undistorted turbulent velocity,
Φ̃

(H)
ij , is defined as

ˆ̃u(H)∗
i (k̃0) ˆ̃u(H)

j (k̃
′
0) = Φ̃

(H)
ij (k̃0)δ(k̃0 − k̃′0), (2.36)

hence (2.34) and (2.35) can be used to obtain a simplified expression for the Reynolds
stresses:

ũiũj =

∫∫∫
M̃∗

ikM̃jlΦ̃
(H)
kl dk̃1dk̃2dk̃3. (2.37)

The spatial structure of the turbulent velocity fluctuations is characterized by the
integral length scales of the turbulence. For the velocity fluctuations ũi and ũj and
along the direction x̃l these are defined by

L̃
(l)
ij = π

Θ̃
(l)
ij (k̃l = 0)

ũiũj
, (2.38)

where Θ̃(l)
ij is the one-dimensional wavenumber spectrum, along the x̃l-direction, of the

velocity fluctuations ũi and ũj . Hence L̃(l)
ij is interpreted as the length over which the ũi

and the ũj velocity fluctuations are correlated in the direction x̃l . The one-dimensional

spectrum along x̃1 is defined in terms of Φ̃(H)
kl as

Θ̃
(1)
ij (k̃1, x̃3, t) =

∫∫
M̃∗

ikM̃jlΦ̃
(H)
kl dk̃2dk̃3, (2.39)

and an analogous definition is valid for the spectrum along x̃2.
The undistorted turbulence is assumed to be isotropic, so its three-dimensional

spectrum is related to the energy spectrum in the following way:

Φ̃
(H)
ij (k̃0) =

(
δij − k̃0ik̃0j

k2
0

)
E(k0)

4πk2
0

, (2.40)

where E(k0) is the energy spectrum and k0 = (k̃2
01+k̃2

02+k̃2
03)

1/2 is the initial wavenumber
magnitude. Following Hunt & Graham (1978), the well-known von Kármán energy
spectrum, which mimics an inertial subrange at high wavenumbers, is adopted here,

E(k0) = u2l
g2(k0l)

4

(g1 + (k0l)2)17/6
, (2.41)

where g1 = 0.558 and g2 = 1.196 are dimensionless constants. In this equation and
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hereafter, the length scale of the turbulence l is defined as the initial longitudinal
integral length scale of any velocity component, i.e. l = L̃

(i)
ii (t = 0), for i = 1, 2, 3.

All the statistics derived in this subsection are expressed in the curvilinear coordinate
system aligned with the streamlines. However, these can readily be compared with
statistics measured in a Cartesian coordinate system, because the two coordinate
systems are approximately equivalent for waves of low slope, and in fact coincide
exactly at the wave crests and at the wave troughs.

2.7. Important parameters

There are seven basic variables controlling the behaviour of the present model: three
of them are determined by the mean flow, in this case a surface wave. They are
the amplitude aw , wavenumber kw and phase velocity cw of the wave. Two further
variables characterize the turbulence: the initial RMS turbulent velocity u and the
initial integral length scale l. The remaining two variables are introduced by the
initial conditions and the duration of the interaction between the turbulence and
the wave: they are, respectively, the initial position relative to the wave phase, ã1,
which may be approximated as ã1 ≈ φ0/cw , and time t, which as was seen in § 2.2
is t ≈ (φ − φ0)/c

2
w . From these variables, it is possible to construct five independent

dimensionless parameters:

awkw, kwã1, kwcwt = σwt, u/cw, kwl. (2.42)

It turns out that the statistics of the velocity field do not depend on parameter u/cw .
This ratio only influences the speed of the distortion of the turbulence by the wave,
which determines, for example, the pressure. So, in the following section, the sensitivity
of the model results to the four remaining parameters will be tested. Graphs of the
normalized Reynolds stresses ũiũj/u

2 and integral length scales L̃(k)
ij /l will be plotted

as functions of t/T , where T = 2π/σw is the wave period, for different values of awkw ,
kwã1 and kwl. A few profiles of the Reynolds stresses as a function of x̃3/l will also
be presented, for chosen values of awkw , kwã1, kwl and t/T .

3. Results
Results for the distortion of turbulence during a single wave cycle will be shown in
§ 3.1 and § 3.2. In § 3.3, the distortion of the turbulence by the Stokes drift of the wave
will be addressed, with the presentation of results for the Reynolds stresses, turbulent
kinetic energy and integral length scales of the turbulence. In both subsections, the
blocking effect of the boundary is ignored. This would correspond in practice to
taking measurements at a depth x̃3 ≈ l. In § 3.4, the blocking effect of the boundary
is briefly examined, and found to lead to changes to the results similar to those
predicted by Hunt & Graham (1978). In § 3.5, some results for turbulence distorted
by a uniform shear are reproduced, and compared with the results obtained for
turbulence distorted by a wave. Finally, in § 3.6 and § 3.7, scaling analyses of the
energy equations are performed, in order to estimate the energy transfer taking place
between the wave and the turbulence, and its effect on each component of the flow.
This allows quantification of the wave attenuation process due to turbulence first
identified by Phillips (1959).

3.1. Turbulence modulation in a wave cycle

Figures 2–5 show graphs of the diagonal components of the Reynolds stress tensor
(velocity variances), as a function of time normalized by the wave period, for different
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Figure 2. Modulation of the Reynolds stresses during a wave cycle, for turbulence initially at the
forward slope of the wave, for x̃3 = 0, kwl = 0.6. Solid line: awkw = 0.05, dotted line: awkw = 0.1,
dashed line: awkw = 0.15, dash-dotted line: awkw = 0.2, hatched profile: shape of the distorting wave
(arbitrary scale). (a) Streamwise component, (b) spanwise component, (c) normal component.

initial positions and different wave slopes. In figure 2, the initial position is at the
forward slope of the wave, in figure 3, it is at the wave crest, in figure 4, it is at the
backward slope of the wave and in figure 5 it is at the wave trough.

Figures 2–5 show that the modulation of the Reynolds stresses by the wave
intensifies as the wave steepness increases, as would be expected. This modulation
is approximately sinusoidal at the lowest slopes, but becomes more asymmetric as
awkw increases. This is partly due to the curvilinear coordinate system used because
φ varies faster at the wave troughs than at the wave crests and the definition of t is
based on φ (see (2.16)). For the highest slopes considered, the values of the Reynolds
stresses do not repeat themselves after one complete cycle. This is a manifestation of
the irreversible part of the distortion, which is caused by the Stokes drift, and will be
treated in § 3.3.

The Reynolds stress tangential to the free surface in the streamwise direction, ũ2
1,

attains a maximum approximately at the wave crest and a minimum at the wave

trough. The Reynolds stress normal to the free surface, ũ2
3, attains a maximum at the

wave trough and a minimum at the wave crest. The tangential Reynolds stress in the

cross-stream or spanwise direction, ũ2
2, first increases and then decreases, attaining a
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Figure 3. Same as figure 2, but for turbulence initially at the wave crest.

maximum approximately in the middle of the wave cycle, independent of the initial
position.

Experimental and theoretical support for an increase in the intensity of the
vertical velocity fluctuations and a decrease in the intensity of the streamwise ve-
locity fluctuations at a hill crest (here equivalent to a wave trough) is provided by the
work of Britter, Hunt & Richards (1981) (their equation (3.3) and their figure 4b).
Further experimental support for the predicted Reynolds stress modulation can be
found in figure 10 of Thais & Magnaudet (1996), where the streamwise Reynolds
stress is greater than the vertical stress at the wave crest, while the reverse happens
at the wave trough.

The modulation of the streamwise and normal Reynolds stresses has a peak-to-peak
amplitude of ≈ 0.2 for a wave slope of awkw = 0.1 and ≈ 0.4 for awkw = 0.2, whereas
the modulation of the spanwise Reynolds stress has smaller amplitude, perhaps ≈ 0.1
for awkw = 0.1 and ≈ 0.2 for awkw = 0.2. Although the data of Thais & Magnaudet
(1996) are affected by a stronger turbulence intensity at the wave trough, where the
fixed probe almost touches the free surface, it is possible to estimate the peak-to-peak
modulations of the streamwise and vertical Reynolds stresses from their figure 10 by
determining the value by which the streamwise stress exceeds the vertical stress at the
wave crest and the vertical stress exceeds the streamwise stress at the wave trough.
From visual inspection, this is estimated as ≈ 0.2–0.3, for a wave slope of ≈ 0.1, and
is therefore consistent with the present results. These results will now be explained
using a simplified model.
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Figure 4. Same as figure 2, but for turbulence initially at the backward slope of the wave.

3.2. Simplified model for distortion over a wave cycle

To first order in the wave slope, the distorting effect of a progressive surface wave on
turbulence can be understood if the wave is described in a fixed Cartesian coordinate
system, where the orbital motion can be written

U1(x1, x3) = cwawkwekwx3 cos(kwx1 − σwt),
U3(x1, x3) = cwawkwekwx3 sin(kwx1 − σwt)

}
(3.1)

for a surface elevation

ζ = aw cos(kwx1 − σwt). (3.2)

If (2.7) is differentiated with respect to the initial position, it is found that

∂xi

∂aj
= δij +

∫ t

0

∂Ui

∂xk

∂xk

∂aj
dt′. (3.3)

When the wave slope is sufficiently low, the distortion is relatively weak and the
strain tensor inside the integral may be approximated as ∂xk/∂aj ≈ δkj . On the other
hand, the integration in time may be changed from an integration following the fluid
parcels to a time integration at a fixed point. Then, differentiating the expressions
(3.1) and inserting them into the integrals of (3.3), it is found after integration that,
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Figure 5. Same as figure 2, but for turbulence initially at the wave trough.

for small awkw , the following expressions are approximately valid:

∂x1

∂a1

= 1− awkwekwx3 [cos(kwx1 − σwt)− cos(kwx1)],

∂x1

∂a3

=
∂x3

∂a1

= −awkwekwx3 [sin(kwx1 − σwt)− sin(kwx1)],

∂x3

∂a3

= 1 + awkwekwx3 [cos(kwx1 − σwt)− cos(kwx1)],

∂x1

∂a2

=
∂x2

∂a1

=
∂x2

∂a3

=
∂x3

∂a2

= 0,
∂x2

∂a2

= 1.


(3.4)

These expressions show that ∂x1/∂a1 is in phase opposition to the surface elevation
and thus attains a maximum at the wave troughs and a minimum at the wave crests.
This is best understood in the coordinate system travelling with the wave as being
the result of the acceleration that the fluid suffers as it moves from crest to trough.
∂x3/∂a3, on the other hand, is in phase with the surface elevation and attains a
maximum at the crests and a minimum at the troughs. This result follows from the
previous one by continuity: a fluid parcel that is stretched in one direction, must
contract in the other.

The effect of this distortion on the vorticity is shown schematically in figure 6. At the
wave crests, the fluid parcels are stretched vertically and compressed in the streamwise
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Figure 6. Schematic diagram showing the vorticity stretching and compression induced by the
orbital motion at the crest and at the trough of a surface wave, in a frame of reference travelling
with the wave.

direction, leading to an intensification of the vertical vorticity and a weakening of the
streamwise vorticity. Conversely, at the wave troughs the fluid parcels are stretched in
the streamwise direction and compressed in the vertical, leading to an amplification
of the streamwise vorticity and a weakening of the vertical vorticity.

The streamwise vorticity has contributions from the spanwise and vertical velocity
components and the vertical vorticity has contributions from the streamwise and
spanwise velocity. Therefore, at the wave crests, the streamwise turbulence intensity
should increase and the vertical turbulence intensity should decrease, while at the
troughs, the streamwise turbulence intensity should decrease and the vertical tur-
bulence intensity should increase. This reasoning seems to explain the qualitative

behaviour of ũ2
1 and ũ2

3 over one wave cycle.
It can also be seen from (3.4) that ∂x1/∂a3 and ∂x3/∂a1 are both out of phase by

π/2 relative to the surface elevation, attaining maxima at the backward slope of the
wave and minima at the forward slope. These components of the strain tensor lead to
additional irrotational tilting and stretching of vorticity; their effects on the Reynolds
stresses are not as obvious as those associated with the diagonal components.

The diagonal components of the strain tensor are the extensions suffered by the
fluid in the three coordinate directions, defined as ei = ∂xi/∂ai. For a slab-symmetric
straining flow in the (x1, x3)-plane with the principal axes aligned with the Cartesian
coordinate system (Townsend 1976), these extensions have to satisfy

e1 = β, e2 = 1, e3 = β−1 (3.5)

due to continuity. In the present case, it follows from (3.4) that

β ≈ 1− awkwekwx3 [cos(kwx1 − σwt)− cos(kwx1)]. (3.6)

It is then possible to use equation (3.11.9) of Townsend (1976) to estimate the
magnitude of the Reynolds stress modulation attributable to the extensions in the
wave velocity field. Townsend’s expressions state that, for β sufficiently close to 1,

u2
1

u2
= 1− 4

5

β − β−1

β + β−1
,

u2
2

u2
= 1 +

8

35
(β − β−1)2,

u2
3

u2
= 1 +

4

5

β − β−1

β + β−1
. (3.7)

Substituting β using (3.6) and truncating to the lowest order with respect to the
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perturbation (in this case awkw), (3.7) becomes

u2
1

u2
= 1 +

4

5
awkwekwx3 [cos(kwx1 − σwt)− cos(kwx1)],

u2
2

u2
= 1 +

32

35
a2
wk

2
we2kwx3 [cos(kwx1 − σwt)− cos(kwx1)]

2,

u2
3

u2
= 1− 4

5
awkwekwx3 [cos(kwx1 − σwt)− cos(kwx1)].


(3.8)

This confirms that the existence of a maximum in the streamwise Reynolds stress
at the crest and a maximum in the normal Reynolds stress at the trough are due
primarily to the extension and compression of the fluid parcels. Equation (3.8) also
explains why the spanwise Reynolds stress always takes values above 1, independent
of the initial position relative to the wave phase.

It is clear from (3.8) that both u2
1/u

2 and u2
3/u

2 are predicted to undergo oscilla-
tions of peak-to-peak amplitude (8/5)(awkw). For a wave slope of awkw = 0.2, this

corresponds to ≈ 0.32. On the other hand, u2
2/u

2 is predicted to undergo oscillations
of peak-to-peak amplitude (32/35)(awkw)2 or (128/35)(awkw)2 depending on the initial
position relative to the wave phase. For a wave slope of 0.2, this corresponds to ≈ 0.04
and 0.15 respectively. These results are roughly consistent with what is observed in
figures 2–5.

The differences between the predictions of this simplified model and those from
the full model are due to two factors: the neglect of the non-diagonal components of
the strain tensor at all wave slopes, and the neglect of the Stokes drift, particularly
at the higher slopes.

Equation (3.8) also helps in understanding how the behaviour of the Reynolds
stresses depends on the initial conditions. Due to the way in which the streamwise
and normal Reynolds stresses are modulated, when the initial position is, for example,
at a crest (figure 3a), the streamwise Reynolds stress departs from a maximum value,
which cannot be exceeded during its oscillation, whereas the normal Reynolds stress
departs from a minimum (figure 3c). This corresponds to setting kwx1 = 0 in (3.8),

which implies indeed that u2
1/u

2 is never larger than 1 and u2
3/u

2 is never smaller than
1. When the initial position is at a trough (kwx1 = π), exactly the reverse occurs, as
can be confirmed in figure 5(a, c).

Given the assumption of initial isotropy of the RDT model, it would seem that the
most ‘natural’ initial positions are those in between crests and troughs, because at
those positions both the streamwise and normal Reynolds stresses are in the middle
of their oscillations, and the flow appears as little distorted as possible. However, the

same is still not true for the spanwise Reynolds stress, u2
2, since this stress always

departs from a minimum. The problem, which is clear from inspecting (3.4), is that
there is no region in a monochromatic surface wave where the flow can be considered
naturally undistorted. Any possible choice of initial position kwx1 in (3.4) leads
either the diagonal or the off-diagonal components of the strain tensor to oscillate
asymmetrically with respect to the initial state.

3.3. Effect of the Stokes drift

The distortion of the turbulence by the Stokes drift becomes clear after a considerable
number of wave cycles.

Figure 7 shows the evolution of the diagonal components of the Reynolds stress
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Figure 7. Evolution of the Reynolds stresses over 10 wave cycles, for x̃3 = 0, kwl = 0.6, awkw = 0.2.
Solid line: streamwise component, dotted line: spanwise component, dashed line: normal component,
hatched profile: shape of the distorting wave (arbitrary scale). Turbulence initially at: (a) forward
slope of wave, (b) wave crest, (c) backward slope of wave, (d ) wave trough.

tensor during 10 wave cycles, for a wave slope of 0.2 and different initial positions.

The streamwise Reynolds stress, ũ2
1, attains maxima at the wave crests; the normal

Reynolds stress, ũ2
3, attains maxima at the wave troughs. The spanwise Reynolds

stress, ũ2
2, always increases initially irrespective of the phase relation to the wave,

as observed in figures 2(b), 3(b), 4(b) and 5(b). After a few periods it becomes
phase-locked to the normal stress, attaining maxima at the wave troughs.

More importantly, the magnitude of the streamwise Reynolds stress progressively
decreases, while the magnitudes of both the spanwise and the normal Reynolds stress

progressively increase at a common rate. For the slope considered (awkw = 0.2), ũ2
1

reaches approximately half of its initial value after 10 wave cycles, while ũ2
2 and ũ2

3

increase by a factor of about 4. This means that the turbulence becomes much more
intense in the directions perpendicular to the direction of wave propagation. In other
words: the turbulence becomes dominated by vortices with their axes of rotation
aligned with the streamwise direction, as is the case in Langmuir circulations.

These results should be compared with those presented in figure 6 of McWilliams
et al. (1997), from large-eddy simulations (LES) of turbulent flow in the ocean surface
layer. Their figure shows profiles of the Reynolds stresses for turbulence in a shear
current (without the effect of a Stokes drift) and when both shear and a Stokes drift
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Figure 8. Schematic diagram showing the tilting and stretching of the vertical vorticity carried out
by the Stokes drift of a surface wave over a number of wave cycles, in a fixed frame of reference.

are present, with the Stokes drift presumably having the dominant role (Langmuir
turbulence). In the case of Langmuir turbulence, the spanwise and normal components
of the Reynolds stress are distinctly larger than the streamwise component. This is
consistent with the results of figure 7.

The physical mechanism for the intensification of the streamwise vortices in the
present model is the same as mechanism CL2 of Craik & Leibovich (1976) for the
generation of Langmuir circulations. It involves the tilting of vertical vorticity by
the Stokes drift of the wave and its amplification as streamwise vorticity (figure 8).
The difference is that the Craik–Leibovich formulation departs from an infinitesimal
vertical vorticity perturbation arising from transverse variations of the wind-induced
shear current, whereas in the present model, there is initially a finite and isotropic
distribution of vorticity, associated with the turbulence. In both cases, the Stokes drift
selectively amplifies the vertical vorticity component as streamwise vorticity.

Figure 9 shows the time evolution of the Reynolds shear stress, ũ1ũ3, during 10 wave
cycles, for the same conditions as figure 7. Since the turbulence is initially isotropic,
the shear stress is initially zero. However, as the turbulence evolves, the shear stress
attains a negative value, stabilizing at ≈ −0.7u2. Like the velocity variances, the shear
stress also oscillates during a wave cycle. At initial stages in the turbulence evolution,
shear stress maxima (in absolute value) coincide with the backward slopes of the
waves, and shear stress minima with the forward slopes. After 10 wave cycles, as
the shear stress appears to attain a stable mean value, the maxima occur instead at
the wave crests and the minima occur at the wave troughs.

Physically, the existence of a non-zero shear stress in the turbulence is due to the
skewing of the velocity fluctuations carried out by the Stokes drift. As the vorticity
is tilted from the vertical to an orientation sloping along the direction of wave
propagation, it is at the same time amplified. Then, positive streamwise velocity
fluctuations tend to be associated with negative normal velocity fluctuations, thereby
making ũ1ũ3 negative (see figure 8). The existence of a non-zero shear stress has
important consequences for the energy balance of the turbulence, as will be seen in
§ 3.6.

Figure 10 shows the time evolution of the turbulent kinetic energy (TKE), defined

as EK = (1/2)(ũ2
1 + ũ2

2 + ũ2
3), during 10 wave cycles, for the same conditions as
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Figure 9. Evolution of the Reynolds stresses over 10 wave cycles, for x̃3 = 0, kwl = 0.6, awkw = 0.2.
Solid line: shear stress, hatched profile: shape of the distorting wave (arbitrary scale). Turbulence
initially at: (a) forward slope of wave, (b) wave crest, (c) backward slope of wave, (d ) wave trough.

figure 7. It can be seen that the TKE is also modulated by the waves, displaying an
oscillatory behaviour, and tends to become dominated by the spanwise and normal
Reynolds stresses as time advances. The TKE progressively increases and attains
a value approximately 3 times higher than initially after 10 wave cycles, again cf.
McWilliams et al. (1997).

Figures 2–5 have shown that the modulation of the turbulence in a wave cycle
is sensitive to the initial conditions. Figures 7, 9 and 10 now show that not only
the oscillatory behaviour but also the overall growth rate of the Reynolds stresses
due to the Stokes drift depends on the initial conditions. For example, it is clear in
figure 9 that the shear stress is largest when the initial position is at the wave trough
(figure 9d ) and smallest when it is at the wave crest (figure 9b). Correspondingly, the
TKE growth rate is fastest when the initial position is at the wave trough (figure 10d )
and slowest when it is at the wave crest (figure 10b). The remaining plots of figures 9
and 10 show the same trend, suggesting a link between TKE growth and the shear
stress. This link will be confirmed and further explored in § 3.6.

The behaviour of the Reynolds stresses over several wave cycles is different for
different initial conditions because the average values of the Reynolds stresses, over
the first wave cycle, are also different. On a time scale longer than a wave cycle,
varying the initial position of the turbulence relative to the wave phase is thus
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approximately equivalent to varying the initial turbulence intensity slightly. However,
the importance of the initial conditions is limited, because, as was seen in § 3.2, the
fractional variation of the Reynolds stresses due to varying the initial position is, at
most, of O(awkw), which is small. That explains why the four graphs of figures 7, 9
and 10 closely resemble each other. For definiteness, all future results will consider
an initial position at the forward slope of the wave.

The intensity of the turbulent velocity fluctuations has been characterized in detail
for turbulence distorted by a surface wave. The spatial structure of the turbulent
velocity fluctuations can now be characterized by the integral length scales of the
turbulence. These length scales are modulated over a wave cycle, like the Reynolds
stresses, but their evolution over several wave cycles is of greater interest.

Figure 11 presents the time evolution of the streamwise and spanwise integral
length scales during 10 wave cycles, for a wave slope awkw = 0.2. First of all, it should
be noted that, at t = 0 the turbulence is isotropic, so the longitudinal integral length
scales, L(1)

11 and L(2)
22 , are 2 times larger than the transverse integral length scales, L(2)

11 ,

L
(1)
22 , L(1)

33 and L
(2)
33 . This is typical of isotropic turbulence. Therefore the anisotropy

of the turbulent flow structure can be evaluated by how much and in what way the
integral length scales depart from these relative magnitudes.
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In figure 11(a), it can be seen that all the streamwise length scales increase in time.
The streamwise length scale of the ũ1 velocity fluctuations, L̃(1)

11 , becomes ≈ 2.5 times
larger than initially after 10 wave cycles, while the corresponding amplification factors
for the integral length scales of ũ2 and ũ3, L̃

(1)
22 and L̃(1)

33 , are ≈ 2 and ≈ 6, respectively.
Figure 11(b) shows the time evolution of the spanwise integral length scales. It can be
seen that only the integral length scale for the ũ1 velocity component, L̃(2)

11 , increases

in time, while the length scales for both ũ2 and ũ3, L̃
(2)
22 and L̃

(2)
33 , decrease in time.

After 10 wave cycles, L̃(2)
11 , L̃(2)

22 and L̃(2)
33 become respectively ≈ 2.5, ≈ 0.25 and ≈ 0.25

times their initial values.
These results imply that the anisotropy of the streamwise velocity fluctuations

remains small, whereas the spanwise and normal velocity fluctuations become elon-
gated in the streamwise direction, with this elongation being especially pronounced
for the normal velocity fluctuations. Hence, the streamwise vortices induced by the
Stokes drift in the present model not only have their axes of rotation aligned with the
streamwise direction (as shown by the Reynolds stresses), but they are also elongated
in that direction, a feature which is commonly observed in Langmuir circulations
(Faller & Auer 1988).

These results should be compared with figure 12(b–d ) of McWilliams et al. (1997),
where horizontal cross-sections of the instantaneous velocity field near the surface are
displayed. While, in these figures, the streamwise velocity fluctuations display no ap-
preciable elongation in their structure, the spanwise and normal velocity components
(shown in figure 12b, c) have contours that are clearly elongated in the streamwise
direction, with this elongation being more pronounced for the normal velocity. This
is consistent with the results of figure 11, and provides evidence that Langmuir tur-
bulence in the simulations of McWilliams et al. (1997) resembles turbulence rapidly
distorted by a surface wave in the present model.

The results presented until now have been calculated without taking into account
the effect of blocking by the boundary on the turbulence. That effect will be considered
briefly next.
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3.4. Blocking effect of the boundary

As noted in § 2.4, if at the initial time when the turbulence is undistorted by the wave
the blocking effect of the free surface is described by the theory of Hunt & Graham
(1978), this blocking effect remains purely kinematic at all subsequent times, and does
not substantially alter the results obtained in the preceding subsections (which are
essentially linked with vorticity distortion).

Since Hunt & Graham’s theory can be applied directly to the turbulence distorted
by the wave, with the completely undistorted turbulence that formerly served as input
being simply replaced by slowly varying turbulence, many of their conclusions remain
valid, albeit with slight alterations. For example, the result which states that the
TKE at the boundary has the same value as the TKE far from the boundary is now
reformulated as

(ũ2
1 + ũ2

2)(x̃3 = 0) = (ũ2
1 + ũ2

2 + ũ2
3)(x̃3 →∞) when l → 0, λw →∞. (3.9)

This means that the TKE value at the boundary taking blocking into account is equal
to the TKE value that would exist at the boundary if there were no blocking or,
alternatively, approximately equal to the TKE immediately outside the layer directly
influenced by blocking.

Figure 12 shows the time evolution of the streamwise and spanwise Reynolds

stresses, ũ2
1 and ũ2

2, during 10 wave cycles, with and without blocking. The curves
relative to the blocked and non-blocked cases only differ in magnitude, and there are
no appreciable differences in shape. The factor by which the curves with blocking
exceed those without blocking increases from 1.5 at the initial time (as predicted by
Hunt & Graham 1978) to a higher value later. This is due to the fact that, in the

blocked case, both ũ2
2(l � x̃3 � λw) and ũ2

3(l � x̃3 � λw) increase due to the Stokes

drift, but only ũ2
1(x̃3 = 0) and ũ2

2(x̃3 = 0) are not zero at the boundary (of which

ũ2
1(x̃3 = 0) decreases in time).
Figure 13 presents profiles of the Reynolds stresses with and without blocking, at

t/T = 5, for different values of the dimensionless wavenumber kwl. It is found that
kwl only influences the shape of the Reynolds stresses in between the surface and the
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region far from the surface, leading to a faster or slower decay of the profiles due to
the distorting effect of the wave. Obviously, the longer the wavelength (i.e. the smaller
kwl), the deeper the distorting effect of the wave can penetrate. However, the value of
the Reynolds stresses exactly at the boundary does not depend on kwl, either when
blocking is considered or when it is not. This justifies a posteriori why the parameter
kwl has not been varied in previous tests.

Figure 13(a, b) shows that, in the blocked case, ũ2
1 and ũ2

2 are amplified at the
boundary by a factor greater than 1.5 relative to the unblocked case, consistent
with figure 12. The distortion caused by the wave counteracts this amplification in

figure 13(a), so that ũ2
1 at the boundary is only slightly larger than far from the

boundary, whereas in figure 13(b), the distortion caused by the wave reinforces the

amplification of ũ2
2 due to blocking. In figure 13(c), it can be seen that ũ2

3 is forced
to decay to zero towards the boundary over a length scale l, as expected, retaining
nevertheless a value greater than 1 in the region l � x̃3 � λw . When blocking is
considered, the shear stress, ũ1ũ3, also has to decay to zero towards the boundary as
ũ3 decays to zero (figure 13d ).

3.5. Comparison with turbulence distortion by a mean shear flow

From a Lagrangian perspective, the shear current induced by the wind in the ocean
surface layer and the Stokes drift of a wave appear at first to be rather similar,
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since both flows are characterized by a transport that has a maximum at the surface
and decays with depth. These two types of flow might be expected to affect the
turbulence in a similar way. However, their fundamental dynamics are quite different,
as the numerical simulations of McWilliams et al. (1997) have made clear. One aim
of the present subsection is to examine the extent to which linear processes that are
accounted for in RDT explain these differences.

To a first approximation, the interaction between turbulence and a shear current
can be understood by using a model similar to that formulated by Durbin (1978) as
an extension of the original RDT model of Townsend (1970). This model incorporates
the effects of a mean shear with a constant shear rate and of a rigid boundary, and
assumes initially homogeneous and isotropic turbulence far from the boundary. Lee
& Hunt (1989) and Mann (1994) have shown that this type of model is able to
describe qualitatively the turbulence structure in turbulent boundary layers. Detailed
technical descriptions of the model can be found in Durbin (1978) and Mann (1994).

Durbin’s model is used in this subsection to explain the differences between turbu-
lence distortion by a shear current and turbulence distortion by a Stokes drift. Only
the behaviour of the turbulence far from a boundary, which is assumed to exist at
x3 = 0, is examined, for a shear flow aligned with the x1-direction, having a shear
rate Γ .

Figure 14 shows the time evolution of the diagonal components of the Reynolds
stress tensor induced by mean shear far from the boundary. This figure should be
compared with figure 7, which shows similar quantities (albeit in the curvilinear
coordinate system) for turbulence distorted by a surface wave. The behaviour of the
stresses differs markedly between the two cases. While in turbulence distorted by a
wave, the streamwise stress decreases and the spanwise and normal stresses increase
over a number of wave periods, in turbulence distorted by a shear the streamwise and

spanwise stresses, u2
1 and u2

2, increase and the normal stress, u2
3, decreases. And while

in turbulence distorted by a wave the spanwise and normal stresses become much

larger than the streamwise stress, in turbulence distorted by a shear u2
1 becomes larger
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Figure 15. Schematic diagram showing the interaction between the mean and the turbulent vorticity
in turbulence distorted by a shear flow. The induced circulations lead to a tilting of the mean vorticity
and of the vertical turbulent vorticity that favour a partial cancellation of the spanwise and normal
velocity fluctuations (on the right).

than u2
2, which in turn becomes larger than u2

3. Physically, this behaviour is due to
the existence of vorticity in the shear flow, that does not exist in the Stokes drift. The
circulations induced by the tilting of vorticity of the mean flow by the turbulence,
in the case of the shear flow, counteract the circulations induced by the tilting of

turbulent vorticity by the mean flow, so that u2
2 and u2

3 are prevented from becoming
dominant (see figure 15).

Figure 14 should also be compared with figure 6 of McWilliams et al. (1997),
where profiles of the Reynolds stresses in turbulence embedded in a shear current
(without a Stokes drift) are denoted by the solid curves. These curves show that the
streamwise stress is larger than the spanwise stress, which in turn is larger than the
normal stress, near the surface. Hence, the present constant-shear model is able to
explain the anisotropy of the turbulent velocity fluctuations in a shear current.

Figure 16 displays the time evolution of the integral length scales of turbulence
distorted by a mean shear. Both the streamwise and the spanwise integral length
scales of u2, L

(1)
22 and L(2)

22 , decrease in time, and both the streamwise and the spanwise

integral length scales of u3, L
(1)
33 and L

(2)
33 , increase in time. Hence the structure

of these two velocity components remains approximately isotropic. However, the
streamwise integral length scale of u1, L

(1)
11 , increases in time, while the spanwise

length scale of the same velocity component, L(2)
11 , decreases in time. This means that

the streamwise velocity fluctuations become elongated in the streamwise direction.
Elongated structures in the streamwise turbulent velocity field are a well-known
feature of turbulent shear flows, where they are often called streaky structures (Kline
et al. 1967). Good examples of streaky structures produced in a turbulent boundary
layer by DNS can be found, for example, in figures 5, 7 and 9 of Lee, Kim & Moin
(1990), where horizontal cross-sections of the streamwise turbulent velocity are shown.

These results are in striking contrast with those presented for turbulence distorted
by a surface wave: compare figure 16 with figure 11. In figure 11 the structure of the
ũ2 and ũ3 velocity fluctuations, as described by the integral length scales, becomes
elongated, whereas in figure 16, it is the structure of u1 that becomes elongated. Hence
the present calculations explain the two basic flow regimes observed in the LES of
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McWilliams et al. (1997): shear turbulence and Langmuir turbulence. Although, in
McWilliams et al.’s simulations of Langmuir turbulence, shear is also present, this
shear appears to be sufficiently weak for the wave–turbulence interaction to dominate.

3.6. Estimation of the turbulent kinetic energy growth

In the preceding subsections, rigorous RDT calculations have been carried out.
The final part of this paper is concerned instead with order-of-magnitude estimates
relevant to the problems of streamwise vortex generation and surface wave decay.
Nevertheless, the rigorous results obtained before will prove to be useful in guiding
these estimates.

In § 3.3, it was found that an increase in the TKE is predicted by the present model
of turbulence distortion by a wave, which is related to the straining of the turbulence
by the Stokes drift of the wave. In order to estimate this increase, it is necessary to
derive an equation for the TKE compatible with the assumptions of the model. The
TKE equation is here derived in a Cartesian coordinate system, for simplicity. But
when the terms in that equation are estimated, the results of the preceding sections,
which were found in the curvilinear coordinate system, will be used directly, since the
behaviour of the statistics, in either coordinate system, is approximately equal.

The linearized momentum equation consistent with (2.2) is

∂ui

∂t
+Uj

∂ui

∂xj
+ uj

∂Ui

∂xj
= −1

ρ

∂p

∂xi
, (3.10)

where ρ is the density and p is the turbulent pressure. The required TKE equation
may be obtained by multiplying (3.10) by ui, adding all the expressions for i = 1, 2, 3
and ensemble averaging. This yields

dEK
dt

= (u2
3 − u2

1)
∂U1

∂x1

− 2u1u3

∂U1

∂x3

− 1

ρ

∂

∂xj
(puj). (3.11)

The last term in (3.11) appears in flux form and is associated with the redistribution
of energy between different regions of the turbulent flow through pressure forces.
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In turbulence that is slowly varying in space, as considered here, this term has little
importance, and so is neglected in the following. The first two terms on the right-hand
side are production of turbulence by the mean flow, here the surface wave. It is the
correlation between the wave strain rate and the Reynolds stresses in these terms
that generates TKE. This correlation is calculated most naturally in a Lagrangian
framework, that is, following the fluid parcels. Hence this effect can be estimated by
studying the evolution of the TKE along a streamline.

Now, the material time derivative on the left-hand side of (3.11) is equivalent to
a derivative with respect to the travel time τ, which (2.12) shows is defined in terms
of the velocity potential, and so in the frame of reference travelling with the wave,
(3.11) may be expressed as

Ũ2
1

∂EK

∂φ
≈ (u2

3 − u2
1)
∂U1

∂x1

− 2u1u3

∂U1

∂x3

. (3.12)

The Eulerian time, t, is related approximately to the wave potential by (2.16), and so
the Eulerian time variation of the TKE in a fixed frame of reference can be written

∂EK

∂t
≈ (u2

3 − u2
1)

c2
w

U2
1 +U2

3

∂U1

∂x1

− 2u1u3

c2
w

U2
1 +U2

3

∂U1

∂x3

, (3.13)

where the definition Ũ1 = (U2
1 +U2

3 )1/2 has been used.
Using (2.13) and (2.9), the wave strain rates in (3.13) become, to leading order in

the wave slope,

c2
w

U2
1 +U2

3

∂U1

∂x1

≈ σwawkwe−kwψ/cw sin(kwφ/cw),

c2
w

U2
1 +U2

3

∂U1

∂x3

≈ σwawkwe−kwψ/cw [cos(kwφ/cw) + awkwe−kwψ/cw ].

 (3.14)

Both strain rates oscillate, the first with zero average and the second with positive
average. Their time-averaged correlation with the oscillating Reynolds stress yields
net TKE generation. The dominant contribution comes from c2

w/(U
2
1 +U2

3 )∂U1/∂x3.
Its mean value can be estimated from the second contribution in (3.14), namely

c2
w

U2
1 +U2

3

∂U1

∂x3

≈ (awkw)2σwe−2kwψ/cw =
1

2

dus
dx3

, (3.15)

where the Stokes drift velocity, us, is defined in an analogous way to the definition
given in Cartesian coordinates, see equation (3.3.8) of Phillips (1977).

Now, the shear stress u1u3 is negative, and so −2u1u3(c
2
w/(U

2
1 + U2

3 ))∂U1/∂x3 gen-
erates TKE. Having in mind the estimates (3.14) and (3.15), the generation of TKE
can be estimated by

∂EK

∂t
≈ −2u1u3a

2
wk

2
wσw ≈ −u1u3

dus
dx3

(x3 = 0). (3.16)

This estimate of TKE production has a similar form to the term involving the Stokes
drift in the TKE equation (5.1) of McWilliams et al. (1997). It is as if there were a
Stokes drift ‘shear’ that generates TKE.

The quantitative accuracy of this reasoning is tested by comparing the TKE growth
rate from this estimate with the growth rate calculated from the full RDT model. To
compare this estimate more easily with the dimensionless growth rates available in
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figure 10, it should be noted that ∂/∂t = (σw/2π)∂/∂(t/T ), hence (3.16) becomes

∂EK

∂(t/T )
≈ −4π

u1u3

u2
a2
wk

2
w. (3.17)

Taking awkw = 0.2 and −u1u3/u
2 ≈ 0.7, as suggested by the final portions of figure 9,

it follows that (∂/∂(t/T ))(EK/u
2) = 0.35. This is in remarkable agreement with the

value that can be extracted directly by inspection from the slopes of the final portions
of the curves in figure 10. It thus appears that the estimates made above and the
connection established between the TKE increase and the Reynolds shear stress are
well founded.

To obtain an idea of the time scales involved in the development of the streamwise
vortices in the present model, a still rougher estimate may be carried out. Noting that
ui = O(u) and −u1u3 = O(u2), (3.16) may be scaled as

u2

Td
= u2a2

wk
2
wσw, (3.18)

where Td is the development time scale. With minor rearranging, (3.18) becomes

Td =
1

a2
wk

2
wσw

. (3.19)

Taking reasonable values for the variables, like awkw = 0.1 and σw = 10 s−1, it is
found that Td = 10 s. Hence the streamwise vortices that contain most of the TKE
grow relatively fast.

3.7. Estimation of turbulence-induced wave decay

The previous results have established how the TKE of turbulence beneath a surface
wave increases due to the distortion of the turbulence by the Stokes drift. Although
in the RDT model developed here the turbulent flow has no feedback on the mean
flow, which is taken as fixed, in real situations that is not the case. If a mean flow
and a turbulent flow coexist in a fluid and the energy of the turbulent flow increases,
that energy has to come from the mean flow, which correspondingly weakens. In the
present case, the mean flow is associated with a surface wave, so the energy transfer
taking place to the turbulence as the wave distorts the turbulence is necessarily linked
with a decay of the wave. A mechanism of wave decay due to the straining of
turbulence by the Stokes drift was first referred in the Introduction of Phillips (1959),
who called it ‘eddy-viscosity interaction’. Although Phillips (1959) did not establish a
connection between the generation of streamwise vortices (which were in fact almost
unknown at the time) and wave decay, that connection is implicit in his qualitative
arguments involving vorticity stretching. It will be shown in this subsection that the
energy transfer from the waves to the turbulence through this interaction can indeed
account for the turbulence-induced wave decay observed in the experimental studies
of Ölmez & Milgram (1992) and Green et al. (1972).

Consider the momentum equation for the mean flow in a Cartesian coordinate
system, now taking into account the Reynolds stresses:

∂Ui

∂t
+Uj

∂Ui

∂xj
= −1

ρ

∂P

∂xi
− ∂

∂xj
(uiuj), (3.20)

where P is the mean pressure. If this equation is multiplied by Ui and the resulting
expressions for i = 1 and 3 are added (noting that the i = 2 component is zero for
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the monochromatic wave under consideration), an equation for the kinetic energy of
the wave is obtained:

d

dt

(
U2

1 +U2
3

2

)
= (u2

1 − u2
3)
∂U1

∂x1

+ 2u1u3

∂U1

∂x3

− ∂

∂xj

(
Ukujuk +

1

ρ
PUj

)
. (3.21)

The last term on the right-hand side appears in flux form and is related to transport
processes, which do not change the total kinetic energy. The first two terms are
identical to those found on the right-hand side of the TKE budget (3.11), albeit with
with the opposite signs. Clearly these terms are associated with the energy transfer
from the wave motion to the turbulent motion.

Since the growth rate of the TKE was estimated accurately assuming it to be solely
determined by the production by ‘Stokes drift shear’, it is reasonable to estimate the
decay of the kinetic energy of the wave by the same process, which yields

d

dt

(
U2

1 +U2
3

2

)
≈ u1u3

dus
dx3

. (3.22)

It remains to apply the same scaling ideas leading to (3.18) to the right-hand side of
(3.22), and to note that the kinetic energy of the wave is (U2

1 + U2
3 )/2 = O(a2

wk
2
wc

2
w).

Then, (3.22) may be scaled as

d

dt
(a2
wk

2
wc

2
w) ≈ −u2a2

wk
2
wσw ⇒ 1

a2
w

da2
w

dt
≈ − u

2

c2
w

σw, (3.23)

which implies that the wave amplitude decays exponentially in time due to the
turbulence, with an attenuation rate

βt = a

(
u

cw

)2

σw, (3.24)

where a is a dimensionless constant of O(1).

The attenuation of surface waves due to turbulence has been investigated, for
example, by Skoda (1972), Green et al. (1972), van Hoften & Karaki (1976) and
Kitaigorodskii & Lumley (1983). In their theoretical study, Kitaigorodskii & Lumley
identified a wave decay mechanism involving the transport of wave energy away from
the surface by the turbulent velocity field, and parameterized that process in terms of
the friction velocity of the turbulence. However, they emphasized that this process is
only significant in a random wave field, and not for a periodic wave, because it requires
a non-zero correlation between the turbulent and the wave motions. Note how, in
(3.22), what is necessary for the wave energy to decrease is a correlation between
the wave velocity and the turbulent shear stress. The existence of this correlation is
provided by the modulation of the shear stress over the wave cycle. Hence the present
mechanism complements the mechanism proposed by Kitaigorodskii & Lumley.

Skoda (1972), Green et al. (1972) and van Hoften & Karaki (1976) performed ex-
periments where they measured the decay of approximately monochromatic, mechan-
ically generated waves, due to turbulence induced by rotating paddles, an oscillating
grid and channel bottom friction, respectively. Ölmez & Milgram (1992) studied the
decay of periodic waves due to grid-generated turbulence, and re-analysed the data of
Skoda (1972). They present an extensive list of the parameters of these experiments,
including the intensity and length scale of the turbulence. They suggest an empirical
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Figure 17. Comparison with experimental data of the temporal wave attenuation rate predicted
by theory. Solid line: equation (3.24) with a = 0.6, squares: data from Ölmez & Milgram (1992),
crosses: data from Skoda (1972) (taken from Ölmez & Milgram 1992).

formula for the temporal attenuation rate, which in the present notation is

βOMt = 0.103
u

l
1/3
λ

2/3
w

. (3.25)

They adjusted the constant 0.103 to fit their experimental data. We note that the
integral length scale of the turbulence, l, which appears in (3.25) does not appear
in the RDT scaling (3.24) because, according to the RDT model developed here,
the integral length scale does not affect the distortion by the Stokes drift, only the
blocking of the turbulence by the boundary.

Figure 17 shows experimental data from Ölmez & Milgram (1992) and Skoda
(1972) for the temporal attenuation rate of surface waves plotted as a function of
(u/cw)2σw . The straight line corresponds to the formula (3.24) with a best fit value
of a = 0.6. Figure 17 contains two data points from Skoda, corresponding to the
highest decay rates, that do not appear in figure 11 of Ölmez & Milgram (1992).
We know of no reason to reject these points so they are included here, although
they add considerably to the scatter. The large scatter in the data is not surprising
since measured values of the attenuation rate due to turbulence are calculated as a
residue of the wave decay due to other processes (e.g. geometric spreading in Ölmez &
Milgram’s axisymmetric experiments, or channel wall friction in Skoda’s experiments),
and are thus subject to a large measurement error.

Another possible cause for the scatter is that the data of Ölmez & Milgram and of
Skoda do not satisfy strictly the assumptions of RDT on which the present scaling
is based. These assumptions are that the wavelength is larger than the length scale
of the turbulence and that the strain associated with the wave is larger than the
strain by the turbulence itself, as expressed mathematically in (2.3). Except for one
extreme measurement (which has awkwσwl/u = 0.399), the data measured by Ölmez
& Milgram (1992) have

4.36 <
λw

l
< 7.10, 0.583 <

awkwσw

u/l
< 2.663. (3.26)

Hence the turbulence in the experiments is small scale, but the straining by the wave
is not always much larger than the straining of the turbulence by itself. The data of
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Skoda (1972) yield

1.57 <
λw

l
< 10.296, (3.27)

which probably satisfies the condition that the turbulence be small scale. We were
unable to obtain values of wave slope for Skoda’s data.

Notwithstanding these uncertainties, the great majority of the data points (40 in
total) roughly align with the theoretical line. The scatter here is large, but is certainly
no worse than in figure 11 of Ölmez & Milgram (1992). This gives some support for
the theoretical RDT scaling developed here and its variation with properties of both
the turbulence and the surface wave, which both vary in the data shown in figure 17.

We now further compare the theoretical scaling (3.24) with the data of Green et al.
(1972), who passed surface waves of varying wavelengths over grid-generated turbu-
lence and measured the spatial attenuation of the wave amplitude. This comparison
focuses then on the variation of wave damping rate with the surface wave properties.

To compare the RDT scaling with these data, the spatial attenuation rate is obtained
from the temporal attenuation rate using the group velocity, cg = dσw/dkw , to give

βx = βt/cg. (3.28)

Using (3.28), (3.24) and the dispersion relation of free-surface gravity waves, σ2
w = gkw ,

the spatial attenuation rate takes the form

βx = 2a
u2

g3
σ4
w = 2(2π)4a

u2

g3
f4
w, (3.29)

where fw = 1/T = σw/2π is the frequency of the waves (in Hz). Hence, according to
(3.29), the spatial decay rate is proportional to the fourth power of the frequency of
gravity waves. We note that the empirical correlation suggested by Ölmez & Milgram,

given in (3.25), yields βx ∝ f
7/3
w , a very different dependence on wave frequency.

We estimate that for the Green et al. experiments the turbulent RMS velocity
took the value u = 1.2 cm s−1. This value was chosen because it is mentioned at the
beginning of Green et al.’s paper that the grid that generates the turbulence oscillates
at a frequency of ≈ 1 Hz and produces eddies of ≈ 1 cm size. Figure 3 of Green
et al. (1972) would suggest a much higher value of u, but that figure is probably
in error, since Green et al. refer ‘serious problems associated with variations of the
probe sensitivity with flow direction’. A value u = O(1 cm s−1) is corroborated by
other experiments using similar configurations of oscillating grids (e.g. Brumley &
Jirka 1987; Ölmez & Milgram 1992; Kit et al. 1997).

Finally, the numerical values of the damping rates plotted in figure 4 of Green et al.
(1972) are two orders of magnitude higher than the more recent results of Milgram
(1998). This observation suggests that the axis label in figure 4 of Green et al. is in
error and should be measured in m−1 instead of the cm−1 written on the figure. This
mistake has been corrected in replotting their data in figure 18.

Figure 18 compares the RDT scaling (3.29) and the data of Green et al. (1972).
Green et al. considered the decay of three wave types. Firstly, they performed ex-
periments with no wind and measured the attenuation of paddle-generated waves,
consisting of a fundamental mode and bound harmonics. Secondly, they measured the
spatial attenuation of wind-generated waves. The data from the fundamental modes
of paddle-generated waves, which are denoted by filled circles in figure 18, are closest
to the conditions of the model developed here. Indeed the agreement between the
RDT scaling with the same value of a = 0.6 and these data is encouraging. We note
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Figure 18. Comparison with experimental data of the spatial wave attenuation rate predicted
by theory. Solid line: equation (3.29) with a = 0.6 and u = 1.2 cm s−1, circles: paddle-generated
fundamentals, crosses: second harmonics, triangles: wind-generated waves.

that the empirical correlation of Ölmez & Milgram (1992), (3.25), yields a spatial

attenuation that varies as f
7/3
w , which does not agree well with the data in figure 18.

The data obtained by Green et al. for the bound harmonics and the wind-generated
waves are also shown for completeness as crosses and triangles, despite the obvious
complications associated with these data. These data too agree in order of magnitude
with the RDT scaling. We conclude that the RDT scaling shows a variation with
wave properties that is consistent with available data.

How does the magnitude of the present wave decay mechanism compare with
the rate of growth due to wind forcing, which has roughly the same form? These
mechanisms have been studied extensively by Miles (1957), van Duin & Janssen
(1992) and Belcher & Hunt (1993), among others, and can be encapsulated in the
formula of Plant (1982), which when written in terms of the growth rate of wave
amplitude gives

γ = 16
ρa

ρw

(
u∗a
cw

)2

σw, (3.30)

where ρa is the density of air, ρw is the density of water and u∗a is the friction velocity
in the air. Often it is the growth of wave energy that is quoted, which has a growth
rate twice that given in (3.30). It should be noted that, since it was obtained from the
rate of change of wave amplitude with time, (3.30) not only reflects the positive input
of energy into the waves due to the wind, but also any dissipative processes present.

In order to compare (3.24) with (3.30), it is necessary to relate the turbulence
intensity in the water, u, to the friction velocity in the air. Experiments by Magnaudet
& Masbernat (1990) and Thais & Magnaudet (1996) suggest that the turbulent RMS
velocity in water containing turbulence and surface waves is u ≈ 3u∗w near the surface.
On the other hand, Thais & Magnaudet (1996) and Belcher et al. (1994) have noted
that the friction velocity in the water is related to the friction velocity in the air by
ρau

2∗a = ρwu
2∗w due to continuity of the turbulent stress at the interface. With these
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two relations, and using also a = 0.6, (3.24) yields

βt ≈ 5.4
ρa

ρw

(
u∗a
cw

)2

σw, (3.31)

showing, by comparison with (3.30), that the decay rate due to turbulence in the
water is approximately a factor of 3 smaller than the amplitude growth rate due to
forcing by the wind. In their model of coupled turbulent air–water flow, Belcher et
al. (1994) evaluated the effect of turbulence in the water on the growth of surface
waves, concluding that the growth rate could be reduced by a factor of about 2. They
considered only the part of the flow within an ‘inner region’, where the turbulence is
in a local equilibrium (very near the boundary). The present calculation shows that
the ‘outer’ part of the flow, where the turbulence is rapidly distorted, contributes to a
non-negligible reduction of the wave growth rate.

Finally, the wave decay mechanism estimated in this subsection is only important
at wavenumbers for which viscous dissipation does not dominate. Bearing in mind
that the wave attenuation rate due to viscous dissipation is 2νk2

w (Lamb 1932), where
ν is the kinematic viscosity of the water, the present mechanism is relevant when

a
u2

c2
w

σw � 2νk2
w ⇒ u� (2νσw/a)

1/2. (3.32)

Taking σw = 1 s−1 and noting that ν = 1 × 10−6 m2 s−1 and a = 0.6, it is concluded
that u must be considerably larger than 2 mm s−1 (not a difficult condition to satisfy
in the ocean). Alternatively, if u = 2 cm s−1 is assumed, σw � 100 s−1, corresponding
approximately to λw � 1.5 cm. Wavelengths outside this range would be excluded
anyway because of the condition requiring the scale of the wave to be much larger
than the scale of the turbulence (first equation of (2.3)). The mechanism addressed
here is therefore primarily a wave attenuation mechanism for gravity waves.

4. Conclusions
Previous scaling arguments, developed by Belcher et al. (1994), have shown that

turbulence below a thin ‘inner region’ in the ocean surface layer is subjected to
rapid distortion by a surface wave. Hence in this paper we have developed a rapid-
distortion model to investigate the interactions between initially homogeneous, shear-
free turbulence and a progressive, irrotational surface wave. The model is applicable
when the integral length scale of the turbulence is much smaller than the wavelength
of the wave and the slope of the wave is sufficiently high that the straining of the
turbulence by the wave is stronger than the straining of the turbulence by itself.

The periodic orbital motion of the wave modulates the turbulence over a wave
cycle such that the streamwise Reynolds stress attains maxima at the wave crests
and minima at the wave troughs, and the normal Reynolds stress attains maxima
at the wave troughs and minima at the crests. This behaviour is consistent with the
experimental results of Thais & Magnaudet (1996).

Over several wave cycles the turbulence is made strongly anisotropic as the Stokes
drift associated with the wave tilts the vertical component of the turbulent vorticity
into the horizontal, and subsequently amplifies it as streamwise vorticity. As this pro-
cess occurs the streamwise Reynolds stress decreases, while the spanwise and normal
Reynolds stresses increase over time at roughly the same rate. The integral length
scales of the turbulence indicate the structures that develop under the progressive
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Stokes drift Shear flow
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(1)
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<
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33

L
(1)
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L
(2)
11

� L
(1)
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L
(2)
22

≈ L
(1)
33

L
(2)
33

u2
1 � u2

2 ≈ u2
3 u2

1 > u2
2 > u2

3

streamwise vortices streaky structures

Table 1. Measures of the anisotropy of the flow structure in turbulence distorted by the Stokes
drift of a wave and turbulence distorted by a mean shear flow.

action of the Stokes drift. The streamwise velocity fluctuations remain isotropic when
viewed in horizontal planes parallel to the surface, whereas normal velocity fluctu-
ations become elongated in the streamwise direction and so too do the spanwise
velocity fluctuations, although to a lesser extent than the normal fluctuations. These
properties are summarized in table 1. We interpret these results as the statistical
signature of elongated streamwise vortices in the flow.

These results for turbulence distorted by Stokes drift are strikingly different to the
corresponding results for turbulence distorted by a mean shear current (see table 1).
When turbulence is distorted by a mean shear the streamwise Reynolds stress becomes
the largest of the stresses and the structure of the streamwise velocity fluctuations
becomes elongated in the streamwise direction. These are the statistical signatures of
‘streaky structures’ which have been identified in, for example, the DNS of Lee et
al. (1990). We attribute the striking differences between the two sets of results to the
absence of mean vorticity in the distortion by Stokes drift. The mean shear flow has
spanwise mean vorticity which is distorted by turbulent velocity fluctuations, which
then largely cancels the streamwise vorticity generated by stretching turbulent vorticity
by the mean shear flow. These two processes thus cancel any tendency to produce
streamwise vortices in the shear flow (see figure 15). When the turbulence is distorted
by Stokes drift, however, there is no such cancellation and streamwise vortices emerge.
This cancellation idea probably explains why, in their LES simulations, McWilliams et
al. (1997) observe a continuous progression from shear turbulence to fully developed
Langmuir turbulence: as the Stokes drift is increased the mean shear is less and less
able to cancel the tendency to produce streawise vortices.

It is interesting to compare these results from linear rapid-distortion theory with
results obtained from fully nonlinear computations, such as the LES of ‘Langmuir
turbulence’ performed by McWilliams et al. (1997). It was perhaps intuitively clear
that homogeneous turbulence distorted by Stokes drift yields streamwise vortices (as
discussed in the introduction to McWilliams et al. 1997). The detailed calculations
confirm this expectation, but also give quantitative information. In particular, the
RDT model produces the ordering of the components of the Reynolds stress and
integral length scales, which are summarized in table 1. It is noteworthy that the or-
dering of both the components of the Reynolds stress and the indicators of anisotropy
in the velocity fluctuations all agree with the orderings inferred from the LES cal-
culations of McWilliams et al. (1997). This suggests that in Langmuir turbulence, as
simulated by McWilliams et al., the wave–turbulence interaction dominates over the
shear effects.

The generation of streamwise vortices by distortion of the turbulence by the Stokes
drift also generates a negative shear stress in the turbulence. This shear stress does
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work against the fluctuating strain associated with the wave orbital motions leading
to growth of the TKE. The time scale for this growth, found from scaling the TKE
budget, is of O(1/(a2

wk
2
wσw)). The energy going into the TKE is lost at precisely the

same rate by the wave, which therefore decays in time. The amplitude of the waves
decays exponentially with a temporal attenuation rate

βt = 0.6

(
u

cw

)2

σw. (4.1)

The decay of wave energy would be twice this value for the amplitude decay. This
decay rate was found to be consistent with the laboratory data of Ölmez & Milgram
(1992) and Green et al. (1972). Hence we have established a definite connection
between decay of waves and growth of turbulence.

This work raises the possibility that subsurface turbulence in the ocean, generated
by breaking waves or shear instability, provides the vertical vorticity from which
Stokes drift generates streamwise vortices, i.e. Langmuir circulations. This possibility
complements the CL2 instability mechanism (Craik & Leibovich 1976), where the
initial vertical vorticity is provided by spanwise variations in the mean shear current.
LES, which can resolve all three components of the flow, namely the mean shear
flow, turbulence and Stokes drift, offers probably the best vehicle for establishing the
relative contributions of these two processes.
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