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GOVERNING EQUATION

The physical descriptions in this note will be mixed vectorial and index notation. As a
convention we have z1,z9 denoting the two horizontal dimensions of a Cartesian frame
of reference with its origin at the fluid free surface while z denotes the co-ordinate
along the vertical pointing upward in that frame. Index notation will be applied where
convenient on the horizontal dimensions where the indices {i,j} € {1,2} and the usual
conventions regarding the summation of double indices apply. With these conventions
we consider the case of an incompressible, inviscid fluid and a slowly (relative to a typical
wavelength scale) varying bathymetry. Applying a deep water scaling (tanh kgh — 0(1))
a non-dimensional set may be obtained as
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In anticipation of small wave steepness we introduce a Taylor expansion around the free
surface as in
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We omit terms of higher order than O(e) yielding
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SOLUTION THROUGH WKB

We anticipate propagating (in the horizontal plane and time) wave-like solutions with
slowly varying properties in the dimensions of propagation. The rate of variation is made
explicit through the introduction of slow time and horizontal space scales {X;, 7} =
{Bx;i,yt}. Here B and -y are parameters - assumed small - denoting spatial and temporal
inhomogeneity. The bottom is taken to vary O(1) on the slow scale: h = H(X). A
general solution of the anticipated form reads
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where the p is a counter over the harmonic components. For comparison purposes with
Ardhuin and Herbers (2002) we will let the counter p coincide with a decomposition into
an orthogonal wavenumber space with equidistant wavenumber spacing in the vicinity
of an origin, X = 0 say. A local wavenumber and frequency are defined as
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In the following we will use the V; operator denoting {Jx,, 0x, }. We will keep all small
parameters explicit for ease of recognition but will assume at the outset an ordering
scheme where O(f) = O(y) = O(e).

The lowest order solution

At leading order our set (3) reduces to
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At this order we find for the potential function
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where we make use of the shorthand notation
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and T, = Shgq,/ Chg,. We will write the lowest order solution as
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thus separating the vertical structure from the amplitude function.



The first order solution

At the following order in terms of O(f3,7,€) we have

S s — KBS = —ig (2K, V185, + B, V1 K,),  VzeD (11a)
&~ P om, — _H(X) (11b)
Lpz = 7 Chg, ! “=

(v?07 + 0.) @5, = z% (2swpps ;- + swp,rp5) €X

L Z D2 s o GO G). 5 =0 (11c)
31732
. 'Y xS
Gy — iswp®], = =5 €™
+ ZRsii“’nso#so;% bt z=o  (119)
51,52

where
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Essentially at this order the set (11) describes a forcing problem in the vertical on the
potential amplitude ¢ . A general solution to such a problem of second order can be
readily found. A more natural co-ordinate in the vertical than z is @, = ky(z + H) and
written in that co-ordinate the forcing problem (governing equation) becomes
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A general solution for (14) reads
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Working out the integrals while applying the condition on Q){’pyz at @Qp = 0 yields:
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Insertion of the latter set in the boundary condition at @, = g, yields
(Y202 + wy) Ci%pe™ = ~ky [(2(V19) — 93TV 10p) - K
s Viky 2 s ixg
+o, | Vi-ky —kp- (Tp+qp(1—Tp))+2<ppkp-V1qp e'Xp
P
i € : X2
—2k25 (25wp5 ;- + swprgl) €% — 22 Z DI s JOGGI) (19

sl ,52

In the present note we will not be concerned with the nature of the non-linear terms in
(19) and since we require no verification on the non-stationary terms we reduce (19) to
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to only include terms due to medium inhomogeneity.



CROSS-LINK TO EXPRESSIONS ARDHUIN AND HERBERS

For verification purposes of the terms denoting the resonant interaction of the wave field
with the bottom we will link the expressions in This Note (TN) with those of Ardhuin
and Herbers (2002) (denoted by AH) in an improvisatory manner. In the limit X — 0
the Lagrangian definitions and quantities as used in AH will simplify and for comparison
purposes we note that
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Also we will let ¢ = 8 and simply express our spatial derivatives in the slow spatial
scales.

Comparison with (D1)

It is easy to see that (14) can be written as
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which can be manipulated to
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which - within the limitations stated above - is in correspondence with (D1) as can be
seen upon inspection.

Comparison with (D2,3,4,5,6)

The expression (18a) can be restated through minor manipulations as
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and is thus in agreement with (D2,3,4,5,and 6) apart from a different definition of the
undetermined C{,p versus @3, in AH which is merely a matter of convenience and
(naturally) of no consequence to any of the following steps nor the final solution.

Comparison with (D7)

At the free surface we find (20), which through minor manipulations and retaining only
terms due to bottom inhomogeneity can be written as
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which is essentially in the form of (D7). The (minor) differences between (25) and (D7)
are under-braced in the former.



VERIFICATION

In this part we will rewrite the secular terms in a more recognizable form as they should
sustain the conservation of energy. Essentially we seek the equation governing the slow
variation of the amplitude by equating the secular terms to zero.

1DH energy conservation of a linear and stationary wave field

In 1DH (replacing X; by X) neglecting the effects of non-stationarity and non-linearity
we essentially have
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we can use the identity (for derivation: see Appendix to note)
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Both (28) and (29) represent amplitude evolution in correspondence with energy con-
servation; clearly they are equivalents to the form
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2DH energy conservation of a linear and stationary wave field

In two horizontal dimensions the amplitude variation is governed by
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Note that we can have the identity (for 0-k = 0)
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It is then easy to see that (32) reduces to
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And can be readily transformed in the conservative form
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which concludes our argument.

CONSEQUENCES

Our verification supports believe that (25) is indeed the correct expression for the res-
onant bottom-induced (slow variations only) forcing problem, which would result in
minor corrections in (D7) of AH. Consequences for the other expressions could be sig-
nificant but are very small in fact and the final result, (D12), remains unaffected (This
is obvious since our verification states a similar conservation law). Alternatively, if we
were to recast (25) in a form similar to (D8) we would have
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which is identical to (D8) except for a factor 2 on the last term in the RHS. It can be
seen that the last two terms essentially read
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Restating (39) in terms of the energy spectrum will yield an equivalent to (D12).

CONCLUSIONS

The following can be concluded

e through comparison with AH we see that all terms found here are identical except
a minor typo in (D7) and - perhaps consequently but not consistent - in (D8) of
AH.

e through verification with (simplified) analytical expressions the derivation in this
note is supported
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