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Chapter 1

The Heat Equation

1.1 The flow of heat

The heat equation describes the flow of heat in a homogeneous isotropic
medium. In three space dimensions it is

% = KAu, AU = Ugy + Uyy + Uy (1.1)
The operator A is called the Laplacian and plays a fundamental role
in mathematical physics and in partial differential equations. The con-
stant K is determined by physical properties of the medium, and is
called the diffusion coefficient.

Throughout these notes we denote the time variable by ¢, and the
spatial variable by z. When z € R?, we write 2 = (21, 7, 73), and we
abbreviate the partial derivatives of u by

ou ou

U = — U; = —
t 3t’ J 333]-’

etc.

The heat equation models not only the flow of heat energy through a
medium, but also models diffusion processes, such as Brownian motion,
the statistical motion of very small particles suspended in a fluid. We
first derive the heat equation from the point of view of continuum
mechanics, then discuss methods of solution and some of its properties.
Later we discuss the relationship of the heat equation to Brownian
motion and diffusion processes in statistical physics.

1



2 CHAPTER 1. THE HEAT EQUATION

Let u(x,t) denote the temperature in a medium at the point = at
time ¢, and let () denote the density of heat energy. The heat energy is a
function of the temperature: @ = Q(z,u) per unit volume. We should
expect that @), > 0, and the simplest assumption that we can make
is that @) is linearly proportional to u with a fixed, positive, spatially
independent constant ¢: @ = cu. The constant ¢ > 0 is called the
specific heat. In reality the specific heat may itself depend on = and u,
but this will lead to more complicated equations; so for now we limit
the discussion to the simplest case.

If C denotes a domain (an open set) in R? then the total heat
energy in C' is given by the volume integral

/p//m

and the rate of change of heat energy inside C is

o ff v

If the temperature is not uniform the heat will flow from hotter to
colder regions. This is expressed mathematically by saying that the
heat flux across an oriented surface is opposite to the gradient of the
temperature on that surface. Denote the heat flux by a vector field F,
and think of heat as a kind of invisible fluid and F' as the flux of that
fluid per unit area in the direction of F'. Thus, the amount of heat per
unit time flowing across a surface S in space is given by the integral

//ﬁdﬁ
s

Here, dS is the oriented element of surface area dS = 7 dS, where n(x)
is the normal unit vector to the surface S and dS is the infinitesimal
area element.

Since heat energy moves from warmer to cooler regions, the flux
is in the opposite direction of the temperature gradient and can be
written

F = —k(u)Vu, Vu = (uy,us, us)
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where k(u) > 0. Let us assume our material is a simple one, with k(u)
equal to a positive constant, k.
By conservation of heat energy, the rate of increase in heat energy

inside C' is equal to the flux of energy flowing in across the boundary
of C, (denoted by 0C'). Thus

%///cud:c:—//F-dgz//kVu-d§.
C oC oC

By the divergence theorem,

//wu~d§=k///Audx,
S C

where Au = div V u. Combining these two results we find

/// cuy — kAudr =0 (1.2)
c

for any smoothly bounded domain C.

It is important to emphasize that this conservation law holds for
any domain C with a smooth boundary contained in the domain of
definition of u. For simplicity, we assume that the integrand in (1.2) is
continuous. If it is not identically zero, then it is, say, positive at some
point xg. By continuity it is positive in some small ball B containing z.
Applying the result (1.2) to the domain B we obtain a contradiction,
for the integrand is everywhere positive, yet the integral vanishes. Thus
the integrand cannot be positive anywhere; and by a similar argument,
it cannot be negative anywhere either, so it must be identically zero.

Hence we obtain the heat equation (1.1) with the diffusion constant
K=1Fk/c

1.2 The fundamental solution

We now turn to the problem of constructing a solution of the initial
value problem for the heat equation in the case of one space variable
with K = 1:

Ut = Ugg, w(z,0) = f(x). (1.3)
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Recall that the solution to a linear system of ordinary differential equa-
tions @ = Az, 2(0) = ¢ is given by z(t) = ez, where the exponential
of a matrix is defined by a power series expansion. The corresponding
formal solution to the heat equation would be u(t) = e*®uy where ug
and u(t) belong to some class of functions defined on R". The question
we want to resolve is how to interpret the formal expression e where
A denotes the Laplacian. The representation of this operator leads to
the construction of what is known as the fundamental solution of the
heat equation.

We shall show that the solution of the heat equation in R! can be
written in the form

uwt) = [ " Gl () dy.

Such an integral is called a convolution. If we denote Gy(x) = G(x,t),
then we may formally write

CtAf == Gt * f

It is immediate that the function G(z,¢) must be a solution of the
heat equation for ¢ > 0 and have the property that

[e.e]

Jim [ Gz =y, ) f(y) dy = f(2), (1.4)
at least for some large class of functions f. Moreover, since the solution
of the initial value problem with f(z) = 1is u(x,t) = 1, we should also
expect that

/ Glz—y,t)dy=1

for all z, t > 0. The function G(z,t) is the fundamental solution of
the heat equation in one dimension.

One common technique for finding special solutions of partial dif-
ferential equations is to reduce the equation to an ordinary differential
equation can be solved explicitly. We do that in the present case by
using a device that works in many cases, linear as well as nonlinear.
Suppose in the heat equation we rescale the variables by letting + — Az
and ¢t — A\%t. More explicitly, we consider the transformations of u de-
fined by

Thu(x,t) = u(Az, \*t) (1.5)
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The transformations Ty, A > 0 form a group of transformations, called
the dilation group. It is a simple exercise to show that Ty maps solutions
of the heat equation to solutions.

Let us see how the solution of the initial value problem transforms
under such a rescaling. The solution of (1.3) with initial data Ty f is
Thu. Hence

/_oo G\ —y, \*t) fly) dy = /_oo G(\z — 2), ) f(A2)\dz

_ /_ TG = 2 f (02 de,

[e.e]

and
MGz, \*t) = G(x,t). (1.6)

DEFINITION A function u(z,t), x € R, ¢t > 0 is homogeneous of
degree o with respect to the action of the dilation group if Thu = A\*u
for all A > 0: u(Az, \2t) = Au(z, t)

The argument above shows that the fundamental solution is homo-
geneous of degree -1. The following result may be proved by the same
general argument.

Theorem 1.2.1 The fundamental solution of the heat equation in n
space dimensions is homogeneous of degree —n.

Now (1.6) holds for all A > 0; in particular, for any fixed value of ¢
we may choose A = t~'/2, We then see that G has the property that

Glat) = %m‘),

where

The variable € is called a similarity variable.
We also leave it as an exercise to show that ¢ satisfies the ordinary
differential equation

1
" + 5(«5@0)’ =0, (1.7)
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Figure 1.1: The fundamental solution of the heat equation evaluated at
t=.1andt=1.

and that a solution of this equation is
o = A€ (1.8)

where A is a constant of integration. The corresponding solution of the
heat equation is
£67x2/4t'
Vit
It is a straightforward matter to check that this expression satisfies the
heat equation.
The integral of this function over the real line is constant in ¢, and
A may be chosen so that the integral is precisely 1. We then obtain

(1.9)

e—x2/4t

VAart

G(z,t) = (1.10)
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as the fundamental solution of the heat equation on the line.

Theorem 1.2.2 Let f(x) be bounded and continuous on the real line.
The solution of the initial value problem (1.3) is given by

1
Vart

Proof: We leave it as an exercise to show that (1.11) is a solution
of the heat equation, and show here that

1
lim

t10 /47t

at every point of continuity x of f. Since the fundamental solution is
normalized so that its integral over the real line is 1, we have

u(z,t) =

/OO e~ (y) dy. (1.11)

/_oo e~ @0 f () dy = fx)

Az, t) =

v~ (f(

We must show that A(z,t) — 0 ast | 0. For fixed z and any ¢ > 0,
we choose 0 > 0 so that

|f(y) — f(z)] <e forall [z—y|<d.
Then

o~ (@—v)?/4t

At = [ ()~ )y

p—
" /| U = Sy

=A(z,t) + Ag(x, t).

Now

o~ (a—v)2/4t

Ay 1)) < /| T i@l < <
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Moreover, since f is bounded, say |f(y)| < M for all y,

o—(a—y)? /at

- dy
o—yz6  VAmt

00 gmy?/4t AM [ )
:4M d —_ / 673/ d
/5 vAart Y VAT Js Y

AQ(I’, t) §2M

—0ast|0.

The above argument shows that limsup, , A(z,?) < ¢ for any
¢ > 0. Since ¢ > 0 is arbitrary, A(z,t) must tend to zero as ¢ | 0. W
The fundamental solution of the heat equation in R™ is

1 2
u(z,t) = We_’" /4 r?=zi4 ... 22 (1.12)
The proof is left as an exercise.

We now turn to a discussion of some of the properties of the solution
of the heat equation. In an appropriate sense, these properties are char-
acteristic of a more general class partial differential equations known
as second order parabolic equations. The reason for the terminology
will become apparent later.

Since the fundamental solution of the heat equation is strictly posi-
tive and has integral 1 for all £ > 0, we immediately have the following
result, known as the Strong Mazimum Principle:

Theorem 1.2.3 Let a < f(x) < b for all real x, and suppose that f is
not identically constant. Then the solution (1.11) of the heat equation
satisfies the strict inequalities a < u(z,t) < b for all t > 0.

Proof: Since the integral of the fundamental solution is identically 1

1
Vart

The integrand is non-negative and strictly positive on any interval on
which f > a; hence it can never be zero for any = or any ¢t > 0. Hence
u(z,t) > a for all t > 0. Similarly u(z,t) <bforall¢>0. B

u(z,t) —a =

/_OO eV (f(y) — a)dy.
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The strong maximum principle for the heat equation is a precise
mathematical formulation of the physical observation that heat flows
from warmer to cooler regions. In the absence of external heat sources,
the temperature cannot rise above or below the original ambient values.
In this sense the heat equation accurately reflects the physics of heat.
In another sense, however, it is an unphysical model; for, by the same
argument we used above, we can prove the following:

Proposition 1.2.4 Under the evolution of the heat equation, distur-
bances propagate infinitely fast.

The support of a function f, denoted by supp (f), is the set of
points x for which f(x) # 0. Suppose f(z) > 0 everywhere on R and
supp(f) € K, where K is a compact subset of the real line. Let u
satisfy (1.3). Then by the same argument we used to prove the strong
maximum principle,we can show that w is strictly positive for all x and
all t > 0. In other words, heat propagates infinitely fast.

This is clearly a nonphysical phenomenon. Thus, the heat equation
is not really a fundamental equation of physics; rather, it is an approx-
imate model, albeit a very good one. We will return to this later in
§1.4.

The strong maximum principle holds for more general parabolic
equations in n spatial dimensions. For example, consider the partial
differential operator

- 0%u ~ ou  Ou

L[u] = Z ajk(x,t)m + Zb](x,t)a—xj - E + c(x,t)u.
Jk=1 j=1

L is said to be uniformly parabolic in a domain @ C R™! if the coeffi-

cients a;j, satisfy the inequality

n

Z ask(z, )58k > Mijz
j=1

Jk=1

for all (z,t) € Q for some p > 0.
Let Q7 be the domain

Qr={(z,t) 1 2€Q, 0<t<T}

where ) is a bounded connected domain in R®. Then
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Theorem 1.2.5 Let ¢(x,t) <0 in Qp and suppose that u satisfies the
uniformly parabolic partial differential inequality

L >0 (.)€ Q.

Suppose that v < M in Qr and u(xg,T) = M at an interior point
2o €. Thenu= M forallx € Q and all 0 <t <.

The maximum principle also holds for nonlinear parabolic equations
as well, under appropriate conditions. For example, the coeflicients
@k, b; and c in the definition of the operator L can all depend on the
solution u and its derivatives u,, and u,,.,. A very readable account
of maximum principles for partial differential equations is given in the
book by PROTTER and WEINBERGER [15].

The heat equation does a lot of smoothing. Even if the initial data
f is only bounded and measurable, the solution of the heat equation
is real analytic in x and ¢ for ¢ > 0. By that we mean that the solution
can be expanded in a convergent Taylor series about any point xq, %
where t5 > 0. We will prove a somewhat weaker result here:

Theorem 1.2.6 Let f be a bounded measurable function on the real
line. Then the solution (1.11) is infinitely differentiable in both x and
t for allt > 0.

Proof: The fundamental solution is infinitely differentiable in both
variables, and it, together with all its derivatives in x and ¢, decay
exponentially fast as *+ — Z£oo for any ¢ > 0. Therefore we may
interchange the process of differentiation and integration in the integral
(1.11). The same argument holds for the solution in R”. B

In Figure 1.2 we see the graph of the solution of the initial value
problem for the heat equation with discontinuous initial data:

Hiz) = 0 —oco<x<( (1.13)
)1 0<z< oo '

The function H is known as the Heaviside step function.
Analyticity of the solution of the heat equation actually follows from
the analyticity of the fundamental solution.
We consider now the solution of the inhomogeneous initial value
problem
Up = Ugy + D, u(x,0)=f
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4 [:4

Figure 1.2: Solution of the heat equation on the line with initial u(x,0) =
H(x) at times ¢t = .1, 1. The solution is continuous and lies strictly between

0 and 1 for all positive time.

where f is defined on the real line, and h = h(z,t) is defined on ¢ > 0.
There is a standard method of solving inhomogeneous linear equations,
known as Duhamel’s principle. It goes like this.

Consider an abstract equation of the form u; = Au+h, u(0) = f. It
is useful to regard the heat equation as an infinite dimensional system
of ordinary differential equations, with A = d?/dz?. If A were a matrix
on a finite dimensional vector space, the solution would be given by

u(t) = e f + / t et f(s) ds. (1.14)
0

In the present case, e f is precisely the integral operator given by
(1.11). For the heat equation, (1.14) should be interpreted as

1 oo e
/ o~V f () dy
7t J_co

ulz,t) =
0= am
! (e-0)?/4(1-3)
+ — e Y “hy,s)dyds
/0 /—oo VAar(t —s) (v 5)dy
Having derived this expression formally, one can check directly that it

gives the required solution.
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1.3 Fourier series & separation of variables.

We noted above that partial differential equations are infinite dimen-
sional in character, and that, in particular, the heat equation has an
infinite number of solutions. We apply that observation now to de-
rive the solution of the initial value problem for the heat equation
on a finite interval. This problem was originally posed and solved by
J. J. FOURIER, Theorie Analytique de la Chaleur, and led to the de-
velopment of Fourier series and integrals, one of the most significant
tools of pure and applied mathematics.

Suppose we want to solve the initial value problem for the heat
equation on a finite interval. For convenience, we take scale the spatial
variable so that the interval is [0, 7]. Thus we have:

U = Uge, 0< 2z <, u(z,0) = f(x) (1.15)
together with the boundary conditions
u(0,t) = u(m,t) = 0.

Many other situations are possible; but we shall treat only this sim-
ple case. For a more extensive discussion of the method of separation
of variables, see PINSKY [14], SOMMERFELD [23], WEINBERGER. [25].
As in the problem on the infinite interval, we begin by constructing
special solutions of the homogeneous problem. We look for solutions
of u; = u,, of the form

u(z,t) = X(x)T(t).

This is the so-called process of separation of variables.
Substituting this expression into the heat equation we obtain the
relation 77X = X”T, which we write as
T/ XI/
T X
The only way such a relationship can hold for arbitrary x and ¢ is for

both ratios to be constant. For reasons that will quickly become clear,
we take this constant to be —y%. Then we have

T = —~*T, X"+ 42X =0.



1.3. FOURIER SERIES & SEPARATION OF VARIADLES. 13

The general solutions of this pair of equations are
T(t) = Toe ", X(x) = Asinyx + B cosyz.

In particular, T is a bounded, in fact, exponentially decreasing,
function of time. The constant 7 is not arbitrary, but is restricted
by the requirement that the solutions satisfy the boundary condition
X(0) = X(7) = 0. The boundary condition X(0) = 0 implies that
B = 0, while the boundary condition X (7) = 0 implies that sinyr = 0,
hence that v = n, where n is an integer. Since sin —y7m = —sin vy,
there is no loss in generality if we restrict n to be positive.

Hence we have constructed an infinite number of independent solu-
tions of the heat equation, namely

Un(z,t) = e sin na.

Since the equation is linear and homogeneous, we may form more gen-
eral solutions of the heat equation by taking a linear superposition of
such solutions:

. —-n?t _:
w(z,t) = Z an,e sinnx.

n=1

Since the exponential terms converge very rapidly to zero for ¢ > 0,
there is no problem proving this series converges and satisfies the heat
equation under very minimal restrictions on the coefficients «,,. It also
satisfies the boundary conditions.

The only remaining question is whether the a,, can be chosen so as
to satisfy the initial conditions, that is, whether the initial data f can
be represented as an infinite sine series

flz) = i a, sinnz.

This question has to do with the completeness of the family of functions
{sinnz} on the interval [0, 7]. Since a sine series automatically repre-
sents an odd, 2x periodic function, we consider the odd, 2w-periodic
extension of f. The coefficients a,, are given by (cf. exercises)

a, = %/ﬂ f(z)sin nx dz. (1.16)
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Since the method of Fourier series has been extensively discussed
elsewhere, we will not go into a great amount of detail on the method.
However, let us prove here that the Fourier sine series converges to f,
given some conditions on the regularity of f.

X / \ 2N
1 —
AN
05
)
0 |- .3.
—05k
. I
_1.5 1 1 1 Il 1 1 Il ]
) -3 2 1 0 1 2 3 4

Figure 1.3: Partial sums 51, S2, and S5 of the Fourier series for the step
function (1.18). The overshooting is known as Gibbs phenomenon.

The partial sums of the Fourier sine series of f are

I T
S r(z) == Z sin kx f(t)sin ktdt
k=1 -

1 (7 —~
== /_Wf(t);smka;smk‘tdt. (1.17)

The convergence of the Fourier series to the function is an issue
of some complexity. For differentiable functions, the Fourier series
converge uniformly to the function itself. But when the function is
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discontinuous, e.g.

0;

i (1.18)

3 IA

-1 —7a<zx
o=l e
the partial sums of the Fourier series ”overshoot” the function as shown
in Figure (1.3). The overshooting of the Fourier partial sums contrasts
with the behavior of the solution of the heat equation (Figure (1.2)),
which strictly interpolates the discontinuity, positivity of the funda-
mental solution of the heat equation.

Now
cosk(x —t) — cosk(x +t)
2

sinkrsin bkt =

We leave it as an exercise to show that

6
:—+Zcosk9_1w. (1.19)

1
sin 2(9

The function D,(#) is called Dirichlet’s kernel.
The partial sum S,, can therefore be written

Sn.pl 27r/ f@)[Dy(t — ) — Dy + )] dt.

By changing variables in the two terms and using the fact that f is
odd and 27-periodic, we can rewrite S,, as

Sus@) = 5= [ DaOlfta+0)+ fla 1)t

Since the integral of D, (t) over [—m, 7] is 7w, we have

S (@) / Do)/ (1)

F+1) + flw—1) - 2(2)

(1) = .

Now note that

(1.20)

Dn(t) =

DO | =

t
(cos nt + sin nt cot §> ;
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hence
1 [7 t .
Snp(z) — flz) = 2—/ fz(t) cosnt + f,(t) cot 3 sin nt dt.
™ —T

The first integral on the right is the Fourier cosine coefficient of the
function f,, while the second term is the Fourier sine coeflicient of

t
#(t)cot —.
Jlt) cot 5
Using this observation, we prove:

Theorem 1.3.1 Suppose that for fixed x € (—7, ) f.(t)/t is integrable
on (—m, ), i.e.

.

Then li_>m Sn(z) = f(z).

fle+6) + fle—t) = 2f(@1)
t

dt < +o00.

This criterion, due to Dini, holds if f is differentiable at z, but the
criterion is far less restrictive.

Proof: Since S, — f is expressed as the Fourier coefficients of two
integrable functions, the result follows immediately from the following
result, known as the Riemann-Lebesgue lemma for Fourier coefficients:

Lemma 1.3.2 The Fourier cocfficients of a function f € L'(—x,n)
tend to zero with n.

The Riemann-Lebesgue lemma in turn follows from Bessel’s in-
equality for orthonormal sequences, which we now prove. For functions
f, g € L*(—m,m) define

(fi9)= %/W f(x)g(z) dz,

The vector space L?(—m, 7) is a complex inner product space, with (, )
as a dot or inner product. It is an infinite dimensional complex analog
of the real Euclidean space R®. The analog of the ordinary Euclidean

distance is given by
1P = (f, )
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Dirichlet function for n=4 and n=12
14 T T T T T T T

12 {\ n=12 B

10f 8

2

Figure 1.4: The Dirichlet kernel evaluated at n = 4, 12. The oscillation in
the Dirichlet kernel gives rise to the Gibbs phenomenon.

The functions {e"**} form an orthonormal sequence on L*(—m,7)
with respect to this inner product. That is,

o 1 [~ .
(eznx’ 6me) S eznxe mmx dx — 6nm

=5 B

where 6,,.,, 1s the Kronecker delta.
Let a, = (f,e™). If || f|| < +o0, then a simple computation shows
that

0<

f _ Zanein:p
=[P =2 lanl + D lanl = [IF1F =D lanl:



18 CHAPTER 1. THE HEAT EQUATION

hence

D laal* < [I£I1
n

This is known as Bessel’s inequality. An immediate consequence of this
inequality is that the sum of the squares of the absolute values of the
Fourier coefficients of an L? function is convergent, hence

lim a, = 0.
We have given the proof here for the complex exponentials e™*, but
the proof for the sine functions is the same.
To extend the result to Fourier coefficients of L' functions, that is,
to functions f satisfying the weaker condition

/ |f| dz < +o0,

—T

we use a fact from Lebesgue integration theory that, given any function
f € L' and given ¢ > 0, f can be decomposed into the sum of a
bounded function and a function whose L! norm is less than . That
iS7 f = fl —+ f?; Where)

[ fillo = sup |fi| < +oc  and /|f2|dx<5.

The Fourier coefficients are correspondingly decomposed into a, =
ap1 + an2, corresponding to the Fourier coeflicients of f; and f; re-
spectively.

Since f; is bounded, it belongs to L?, and its Fourier coefficients,
an,1, tend to zero by the Bessel inequality. On the other hand,

1 T , 1 [7
(o] = g\ / fow)e™ d < %/ | fol)| da < e.

Hence
limsup |a,| < e
n—oc
for any € > 0, and the limit must in fact be zero. W
Dini’s test gives a simple criterion for the pointwise convergence
of the partial sums of a Fourier series. For a more comprehensive
discussion of the convergence of Fourier series, see A. ZyYGMUND [28].
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The history of Jean-Joseph Fourier (1768-1830) is a fascinating one.
‘Citizen’ Fourier served as Secretary of the Commission of Arts and
Sciences in Napolean Bonaparte’s expedition to Egypt in 1798. His tour
of duty in Egypt affected his health, and when he returned to Grenoble,
in the French Alps, “he covered himself with an excessive amount of
clothing even in the heat of summer, and . . . his preoccupation with
heat extended to the subject of heat propagation in solid bodies, heat
loss by radiation, and heat conservation.”!

Fourier’s investigations into heat culminated with the publication
of the Theorie Analytique de la Chaleur %:

There is no doubt that today this book stands as one of the most daring,
innovative, and influential works of the nineteenth century on mathematical
physics. . . . He worked with discontinuous functions when others dealt
with continuous ones . . . and talked about the convergence of a series of
functions before there was a definition of convergence. At the end of his
1811 prize essay, he even integrated ’functions’ that have value co at one
point and are zero elsewhere. . . . It was the success of Fourier's work in
applications that made necessary a redefinition of the concept of function,
the introduction of a definition of convergence, . . . the ideas of uniform
continuity and uniform convergence. It . . . was in the background of
ideas leading to measure theory, and contained the germ of the theory of
distributions.

1.4 Brownian Motion

The phenomenon of Brownian motion is named after the biologist
Robert Brown who discovered it in 1827. Tiny particles suspended
in a fluid make small irregular jumps, due to constant bombardment
by the molecules of the fluid. The phenomenon thus provides evidence
for the molecular theory of matter. Albert Einstein showed in his pa-
per in 1905 that the probability density function for Brownian motion
satisfies the heat equation.

Brownian motion is obtained formally as a continuum limit of a
random walk on a lattice. Consider a fair coin which comes down
heads or tails with probability 1/2; and consider the process of flipping
this coin successively. The tosses are independent, in the sense that
the outcome of the n** toss is independent of the outcomes of any

! GONZALEZ-VELASCO [10].
2op. cit.
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of the preceding tosses. The process is represented as a sequence of
independent random variables {X,,} such that

1
Prob (X, = +1) = 5

The distribution function of a real valued random variable X is
given by
F(z) = Prob (X < z).
The expectation y = EX and variance 0? = Var(X) of X are then
defined by the Riemann-Stieltjes integrals

p=FEX)= /Oo rdF(z), o = /Oo (z — p)*dF(z).

By the definition of distribution function, F' is non-decreasing in x. If
F is differentiable, with F’ = p, then dF(x) = p(x)dzx.
The joint distribution function of two random variables X and Y is
defined by
F(z,y) =Prob (X <z,Y <y).

The random variables X and Y are independent if
E(XY)=FEX)E(Y).

The random variables X,, corresponding to the n® coin toss are
independent and each has mean zero and variance 1. The coin tosses
generate a random walk on the integers in which a particle is displaced
to the right or left by one, according as the coin comes down head
or tails. The position of the particle after n tosses is also a random
variable,

Su=>_X;. (1.21)
j=1

Using the independence of the X, it is easily seen that S, has mean
zero and variance n. In fact,

B(S)) = B(Y Xp) = Y BX) =0,

B(s2) = B(Y. X% = 3 B(GX0) = S B(X) —n.

3,k=1 J,k=1 j=1
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A formal passage to the continuum limit is obtained by measuring
time steps in intervals of length At, and spatial steps of length Az. Let
p(z,t) be the probability that the particle is at x at time ¢, assuming
it began at the origin at ¢ = 0. The particle can be at z at time t + At
only if it were at z — Ax and moved to the right, or at * + Az and
moved to the left, at time ¢. Therefore

1
plz, t + At) = 5 (p(z — Az, t) + p(z + Ax,t)). (1.22)
We rewrite this equation as

p(x,t + At) — p(x,t)

At
— Az® p(fL’—A.T,t)—i—p(fL’—i—A.T,t) —2p(.1',t) (1 23)
T 2A¢ Ax? B
Now put
Az?
o= —_
At

and let Az and At tend to zero with o fixed. If we assume that in
the limit p(x,t) is a differentiable function, and take the limit of these
difference quotients, we obtain

op o d®p
ot 20x2
i.e. the heat equation with o /2 as the diffusion coefficient.
The constant o is a free parameter in the mathematical theory which

must be determined from physical principles. It was first determined
by A. EINSTEIN in his fundamental paper of 1905 [8] to be

RT 1

N 6rkP’

where NV is Avogadro’s number, T is the temperature in degrees Kelvin,
R is the universal constant in the gas equation, k is the coeflicient of
the viscosity of the fluid, and P is the radius of the particle (assumed
spherical). The determination of a number of fundamental constants
in the molecular theory of matter ha s been made from this formula
for the diffusion constant and experimental observations.
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The argument above is, of course, only formal, since one must pass
from a probability function defined only at discrete points to a proba-
blity density function which is defined and differentiable on all x and
t > 0. It also does not tell us which solution of the heat equation we
should take for p. As it turns out, p is precisely the fundamental solu-
tion of the heat equation. In fact, the fundamental solution of the heat
equation is the probability density function is fundamentally related to
the Central Limit Theorem of probability theory.

A random variable X is said to be Gaussian or normal if

b 1
Prob (X < b) /OO ey dy,  »y) Ner

The mean and variance of X are given by

eV dy.  (1.24)

EIX] = / ye(y)dy =0,  E[X7] =/ yie(y)dy = 1.
Theorem 1.4.1 [Central Limit Theorem|. Let X, be a sequence
of independent, identically distributed random wvariables with finite ex-
pectation p and variance o*: p = E[X,] and 0* = E[(X, — n)?]. Let
S, = Z;;l X,.. Then

_ Sp — np 1 b 2/
JLD(}OPI‘Ob (W <b) :E/Ooe Y dy.

In the case of the random walk on Z, u = 0, ¢ = 1, so the sequence
of random variables s

NGO
tends to a normal random variable. We rescale the random walk by
making the particle take jumps of size Az at time intervals of length
At. Then the position of the particle at time ¢t = nAt is given by
X; = AxS,,. Therefore,
Xt A.Z' Sn (A$)2

e
VARV~ Ay, M Y

Letting n — oo, and Az, At — 0, with o fixed, we see that
Xi

Ey
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is a Gaussian random variable. It is then a simple exercise to show
that

Prob (X, < ) _y2/2"tdy.

\/ 2mot
Hence the probability density function for Brownian motion satisfies
the heat equation with diffusion coefficient o /2.

We may think of a solution of the heat equation as a probability
density function p(z,t):

e~ @V 2ty 0 dy

T, t
p( \/ 2rot

where p(x, t) is the probability density of a particle moving randomly by
a diffusion process, given that the initial probability density function
of the particle is p(x,0). Since p is a probability density, we should
expect that p(x,t) > 0 for all £ > 0 and that

/ p(z,t)dr =1

for all positive t. As we have already seen, these two properties are
immediate consequences of the heat equation.

As a special case we may consider the situation where the particle
is originally at the origin with ifs, ands, or buts, i.e. with probability
1. Tts distribution function is then

0 =<0

1.25
1 z>0 ( )

Fy(z) = H(z) = {

where H is the Heaviside step function. The density function ¢ of such
a random variable must then have the property that

/_i&(x)da:zl

for any ¢ > 0. This property describes the Dirac delta function. The
Dirac function is a generalized function; it is an example of a distribu-
tion. Such distributions play an important role in the modern theory
of linear partial differential equations and will be discussed later.
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The delta function is obtained as the distribution limit of the fun-
damental solution of the heat equation as ¢ | 0:

e—:(:Q/Qat

lim
tlo /2ot
Thus, the Dirac delta function is the “probability density” function of a
particle which sits at the origin with probability 1, and the fundamental
solution of the heat equation is the probability density function of this

particle for ¢ > 0 as it moves about randomly by diffusion.

We close with a few remarks about the Riemann-Stieltjes integral.

For a more complete discussion, see [9], §25. Given a monotone non-
decreasing right continuous function F, the integral

b
/ f(x)dF(x) (1.26)

is defined as follows: Let P, = {a = 2o < 21 < --+ < x, = b} be any
partition of the interval of [a, b]; and let
AF; = F(z;) — F(z;-1).
Given f be defined on [a,b] and a partition P, define
M= s f(©),  my— il f(e)

x;-1<E<T; Tj1S65T;

= §(x).

We then define the upper and lower sums

U(Pu, f, F) = ZMA L(P, f,F) = ZmJAF

If
sup La,b,f = inf Ua,b,f
Pn Prn

then f is said to be integrable with respect to F' and the corresponding
Riemann-Stieltjes integral (1.26) is defined to be this common value.

We leave it as an exercise to show that for any continous function
f on the real line,

/mf@MH@%=ﬂm; (1.27)

hence, formally, the derivative of the Heaviside step function is the
Dirac delta function.
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Exercises

. Prove theorem 1.2.1. What is the probabilistic interpretation of

the formula (1.12) for the fundamental solution of the heat equa-
tion in R™?

. Find the explicit solution of the heat equation on the real line

for initial data u(x,0) = H(x), where H(z) is the Heaviside step
function (1.13).

. Let both one-sided limits f(z £ 0) = limi f(y) exist at a given
y—z

point z € R, and let f be bounded and measureable on R. Then

i [ ey = IS0,

. Show that

U,(I) t) = ﬁ%e_x2/4t

satisfies the heat equation in ¢ > 0. What is ltil%l u(z,t)?

. The total variation of a function f on the real line is given by the

norm

Al = SUPZ | (@j0) = f5)],

where the supremum is taken over all finite sequences x1 < x93 <
<o+ < x,. Show that the solution of the heat equation given by
(1.3) satisfies

[lul, )l < [[f]]e-

Moreover, show that if f € L'(R) then ||u(-,?)||, tends to zero as
t — oo, and give an estimate of the rate of decay.

. Prove (1.19).
. Compute the Fourier coefficients for the function (1.18).

. Solve the boundary-initial value problem (1.15) when the bound-

ary conditions on 0 and 7 are given by v = 0 and u, + hu = 0
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respectively, where h is a positive constant. Show the solution
can be represented as a Fourier series

oG
—~2¢ .
u(x,t) = E ane” " sin Y,
n=0

where v; < 7 < ... satisfy a transcendental equation. Show
that the corresponding functions {sin~,z} are orthogonal on the
interval [0, 7], and evaluate

w
/ sin? v,z dz.
0

State and prove an analog of the maximum principle for the differ-
ence equation (1.23). What is the analog of fundamental solution
for this difference equation?

Given any non-decreasing function F(z), define functional Ap(f)
by

Ar(f) = - / " fe)F(@)dr,

where f is continuously differentiable for x € R and f — 0 as
x — *o0o. Compute Ag, for the Heaviside step function H.

/ledF(:c),

where F' is the Cantor function.

Compute



Chapter 2

Laplace’s Equation

2.1 Conservative vector fields and potentials

Let € be a bounded domain with a smooth boundary in R”, and con-
sider the boundary-initial value problem for the heat equation

u = Au, z€ u(z,0) = ug, u‘m = f.

As t — oo the temperature will settle down (something we need to
prove mathematically) to an equilibrium solution of the heat equation:

Au =0, ’ _ 7
U an f

This is called the Dirichlet problem for Laplace’s equation. Thus,
Laplace’s equation may be viewed as the equilibrium solution of the
heat equation.

Laplace’s equation also arises in potential theory, as follows. A
vector field F is said to be conservative if the line integral

/ F.dy

is independent of the path of integration. This line integral represents
the work done in moving from x to a fixed reference point a (for exam-
ple, to infinity). In this case we define the potential energy of the field
to be the work done and we denote its value by ®. It follows that

Vo = —F.

27
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The scaler function ® is called the potential of the vector field F.

The best-known physical example of a conservative vector field is
the inverse square law governing both the (classical, or Newtonian)
gravitational field and the electric field. In both theories, the force in
R? between two point masses or charges is inversely proportional to
the square of the distance between them. Thus, the force field due to
a point source at the origin is given by

F(x)=-K (2.1)

[’
where K is a physical constant. We have chosen the minus sign here
to represent a force of attraction. In the electrostatic case (known as
Coulomb’s law) like charges repel one another, and the minus sign is

dropped. As the reader may easily verify, F is a conservative vector
field for which the potential in R? is

K
o =— r = |x|.
r

Gauss’ law of electrostatics states that for any (smoothly bounded)
domain €2,

// F - dS = sum of the charges enclosed in €. (2.2)
o0

For the case of a single point charge, the integral over the sphere B, of
radius p centered at the charge itself is easily computed. The outward
unit normal is ¥ = x/|x|, so in spherical coordinates

T 271'1
//%dSz//%-%dS:// ?pQSinﬁdegp:Zlﬂ.
0 0
B,

2l

As a simple computation shows, the divergence of the vector field
(2.1) is zero in the region excluding the origin; hence the integral (2.2)
over any smoothly bounded region containing the point source is inde-
pendent of the region. This result follows from the Gauss divergence

theorem,
// didea:://F-dS,
S S
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for any smoothly bounded region A in which F is continuously differ-
entiable. Simply let A be the region Q \ B,, where p is chosen so that
B, C Q.

The two equations

F=-Vo, divF =0
lead to Laplace’s equation for ®:
A = 0.

Solutions of Laplace’s equation are called harmonic functions and pos-
sess a number of very strong mathematical properties, which we shall
discuss in this chapter.

The function

1 (2.3)

A7y

is the fundamental solution of Laplace’s equation in R3. An easy cal-
culation (e.g. in spherical coordinates) shows that A® = 0 everywhere
except at the origin. Its gradient is the vector field F', the force field
due to a point charge.

The potential due to a sum of point charges at the points xi, X, . ..

>
e dm|x — x|

and, by analogy, the potential due to a continuous distribution of
sources with density p is

O(z) = /Q// %dy.

We shall prove that ® satisfies Poisson’s equation, A® = —p.

18

Theorem 2.1.1 Let Q be a smoothly bounded finite domain in R?, and
let u be a C? function in Q. Then we have the fundamental identity

Au 0 1 1 Ou
Q a0

where v = |z — y|, v is the outward unit normal and dS, the element
of surface area on the boundary of ).
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Proof: We begin by stating Green’s identity of multi-variable calculus:

/ [ uso - vaude - / / <ua 3“) as,  (25)

where €2 is any smoothly bounded domain in R, v denotes the outward
unit normal to the surface 9¢), and u and v are continuously differen-
tiable in the interior of 2. This identity is a direct consequence of the
Gauss divergence theorem.

Now let v = 1/4x|z —y|, Bs be the sphere of radius § centered at x,
and Qs = Q\ Bs. Both v and v being smooth inside 25, we can apply
Green’s identity. Since Ayv =0, y # x (A, denotes the Laplacian with
respect to the y variables), we have

= [ (55 o

As § — 0, the integral on the left tends to — [, Au/4r|z — y|dy,
since 1/r is locally integrable in R? and Aw is continuous. In the surface
integral over dB;s, choose spherical coordinates centered at . Then

o _ o
31/ OBg a 37“

1
r=¢ N 471'52.

(Recall that v is the outward unit normal from the interior of 25, hence
the minus sign.) Hence

ov 1
‘///u%dSy: 152 .//udSy.

OBs 0Bs

On 0Bs, dS, = 6*sinfdfdyp. Since u is continuous in (2, the surface
integral over 0B; tends to u(x) as § — 0.

On the other hand, the integral of vOu/0v over Bs tends to zero
with 4, since on that surface du/dv is bounded while v = O(571).
Letting § — 0 we obtain (2.4). W

The above calculation goes through if 1/47r is replaced by a more
general kernel .

| + h(z,y),
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where h is harmonic in y for each x. If A can be constructed so that
G(z,y) = 0 for each z € Q, and y € 09, then the representation (2.4)
would simplify to

u(z) = —/// G(z,y)Audy — //ug—gdSy; (2.6)

In that case the solution of the boundary value problem

Au = —p, x € u‘ =g,
p 50 g

would be given by

ute) = [[[ cwwowras— [[ o g—G as,
Q

o

In particular, if w is harmonic in the interior of €2 and takes values ¢
on the boundary, then

o) == [[ o 5as,

The function G is called the Green’s function for the Dirichlet problem
(on the domain ). The Green’s function G(z,y) is harmonic in y and
vanishes for y € 0f).

Theorem 2.1.2 The Green’s function for a smoothly bounded domain
Q is symmetric in © and y: G(xz,y) = G(y,z). It follows that the
Green’s function is also harmonic in x and vanishes for x € 0f).

Proof: Letting x # 2’ € Q, we apply Green’s identity to the functions
w(ly) = G(x,y) and v(y) = G(2',y). Let Bs and Bj be spheres of
radius 0 about the points z and z’, with 4 small enough that both
spheres lie in €2 and do not intersect. Since v and v are both harmonic
in Qs = Q\ (Bs U Bj), we get

// (G(m,y)LGa(i;’ Y _ G(m',y)%) ds, = 0.

A
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Since G(z,y) and G(2/,y) both vanish on 0%, the integral above re-
duces to an integral over 0Bs U 0Bj. Letting 6 — 0 and proceeding as
in the proof of Theorem 2.1.1, we obtain G(z,z') — G(2',z) =0. B

The proof of the existence of a Green’s function for a general domain
is somewhat technical, and we won’t go into that here. However, in
domains with a high degree of symmetry the Green’s function can often
be constructed explicitly. For example, the Green’s function for the half
space RY = {x : @3 > 0} can be constructed by the method of images.
Given a source at y we place an image at ¥ = (y1, Y2, —y3). Then for
x3 > 0 the function

1 1
lz — 3/ Vi — )2 + (22 — y2)? + (23 + y3)?

is a harmonic function of y in y3 > 0. The Green’s function for R? is
then

1 1 1

G@ywz( - ). (2.7)
Ar \|z =yl |z -y

This function has a fundamental singularity at z = y and vanishes on

the plane z3 = 0. We obtain a representation of the solution of the

Dirichlet problem by calculating the outward normal derivative of G

on z3 = 0. By (2.6), if v is harmonic in 23 > 0 and v = f on 3 = 0,

then
f(y1, y2) dy dye
u(z) = o3 5 (2.8)
2W4]<@y—mV+@b—mV+$®w

The solution is thus given by a convolution on x3 = 0 of the boundary
data f with the kernel

z 1

K(z,z)= o (A T 22

zeR? 2>0.

A reflection method also works to obtain the Green'’s function for
balls. If B is a ball of radius R centered at the origin, and y € B, then
the reflection of y in 0B is the point

MZE%
ly[?
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We leave it as an exercise to show that the Green’s function for the
sphere of radius R is

1 R 1
Glry) = ———— = ———————— (2.9)
Amlz —y|  |yldwle —y/|
If » is harmonic inside a sphere of radius R and continuous onto the
sphere, then in the interior u is given by the Poisson integral

R u(y) 2 2
Sr

Three fundamental properties of harmonic functions follow imme-
diately from this formula:

Theorem 2.1.3 Let u be harmonic in a domain Q. Then at every
x € 82, u is equal to its average value on any sphere B,(x) centered at
x and contained in €):

1
u(z) = I // u(y)pdw, dw = sin 8 df dy,

ly—z|=p

This is the mean value theorem for harmonic functions.
The strong maximum principle for harmonic functions follows im-
mediately from the mean value theorem.

Theorem 2.1.4 If u is harmonic in a domain € and w attains an
interior maximum or minimum in ), then u is identically constant.

Proof: Suppose m < u < M in Q and u = M at an interior point
z € Q, then choose a small sphere centered at  and contained in 2. If
u were strictly less than M anywhere on that sphere, the average value
of u over that sphere would be strictly less than A (u is continuous);
and the mean value property would be violated. Hence u must be
identically equal to M everywhere on that sphere, and so u = M on
the largest sphere containing x and lying in 2.

Now propagate this extreme value of u throughout €2, as follows.
Let M, = {z : z € Q, u(x) = M}. Clearly M, is closed, since u is
continuous; but M, is also open by the preceding argument. Therefore,
M, is either empty or the entire set 2. W

Finally, we obtain Harnack’s inequality from (2.10).
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Theorem 2.1.5 Let u be a non-negative harmonic function in a ball
Bgr of radius R. Then for x in Bg

R R—mu () < R R+|x|u
R+ z|R+|z| °~ “R—|z|R—|z|

where ug is the value of u at the center of the sphere.

Proof: Choose coordinates so that the sphere is centered at the
origin. For any |z| =r < R and all y, |y| = R we have

1 1 1
RrP o aP - (R
The Poisson kernel therefore satisfies the inequality
1 R—Jz|] 1 <R2—]x|2 1 < 1 R+|z| 1
ATtRR+|z|R+ x| = 47R |z —vy]® ~ 47rRR— |z| R — |z|

Multiplying this inequality through by u(y) > 0, integrating over the
sphere |y| = R, and applying the mean value theorem, we obtain the
result. W

All three of these theorems are valid in any dimension n > 2. The
maximum principle is valid for general second order uniformly elliptic
scalar partial differential equations with continuous coefficients. The
Harnack inequality can also be extended to more general second order
elliptic equations, but not in the generality of the case of constant
coefficients. (see Moser [13] and Serrin [20]).

A number of properties of harmonic functions follow from Harnack’s
inequality. These are left as exercises.

Let us prove the converse of the mean value theorem:

Theorem 2.1.6 Let u be a continuous function which satisfies the
mean value property on every sphere S contained in a domain §2. Then
u s harmonic in €.

Proof: Let S be any sphere contained in §2. Using the Poisson integral,
we construct a harmonic function v with v = v on 48S. Both u and v
satisfy the mean value property in the interior of S, hence w =u — v
satisfies the mean value property. Therefore w satisfies the maximum
principle inside S, and w vanishes on the boundary. Therefore w = 0
inside S, and u is harmonic inside S. This argument clearly applies
anywhere in €2, so u is harmonic in 2. W
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2.2 Polar and Spherical coordinates

The Laplacian in polar coordinates is

170 [ du 10%u

—|=r= -——| =0. 2.11

r [87’ (rar)+r892} 0 (2.11)
We look for a solution of this equation by the method of separation of
variables; thus we look for a solution of the form w(r,0) = X (r)©(8).

Substituting this into Laplace’s equation and repeating the same pro-
cedure we used for the heat equation, we obtain the pair of equations

hence
X"+ rX —4*X =0, 0" ++*0 =0.

Since © should be 27 periodic in 8, we must take v to be an integer
n. We then obtain the solutions X,, = r=" and ©,, = cos nd, sin n#,
and the two sets of solutions

%" (a,, cos nf + b, sin nd), n > 0.

The set of solutions with negative powers of r is regular at infinity and
is used when solving the Dirichlet problem in the exterior of a disk.

As in the case of the heat equation, we look for a general solution
of the boundary value problem Au =0, 0 <r < R; u(R,0) = f(0),
by the method of superposition, that is,

x>
_ % : n
u(r,0) = 5 + ,,E] (an cos nb + b, sin nd)r".
The trigonometric functions satisfy the orthogonality conditions

21
/ sin n# cos mAdf =0,
0

2 2
/ sin nf sin mé df = / cos nf cos mb df = d,,,,,7.
0 0
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The boundary condition u(R, ) = f(f) leads to a determination of the
Fourier coeflicients

1
TR®

1 27
a, = ~ / f(8)sin nb db.
0

27
0 0 do b, =
/0 f(f)cos n , T

Given these values of the Fourier coeflicients, we may write u as an
integral

o0

% + Z (%)ncos n(f — 9’)] dy'.

n=1

wrd) =+ [ o)

This series can be summed to give

R2 _ 7“2 o f(e/) !
wr,9) = 27 /0 r2 + R? — 2rRcos(f — 0') dv. (2.12)

Spherical coordinates in R? are given by
1 = rsiné cos p, Lo = rsinfsing T3 = rcosf

and the Laplacian in these coordinates is given by

Ay = ! 9 r iHQ% +2 inH% + ! @
“T 2sime lar \" T ) T ae \TM ag sinfog? )|

(2.13)
Consider the expansion of the Coulomb potential 1/|z — y| when

the coordinate system is chosen so that y lies on the x5 axis, i.e. y =
(0,0, R). Then

%2 (%)nPn(COSH) r < R;

%i (g)nP_n(COSG) r> R
" (2.14)

The functions Py, are polynomials of degree n in cosf. The poly-
nomials F,, n > 0 are called the Legendre polynomials. They satisfy
a second order ordinary differential equation which may be obtained
by substituting (2.14) into Laplace’s equation. We shall see that the
polynomials P_,, are multiples of P,_;.

1 1
|z —y N Vr2 + R2 —2rRcosf B
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The function |z —y|™! is a harmonic function of x for fixed y, hence
the sums in (2.14) are also harmonic functions of x. Substituting the
expression 1" P, (cos #) into Laplace’s equation in spherical coordinates,
we obtain the ordinary differential equation

1 d dP,
——— | sinf—" HP, =0. 2.15
5in 6 d (Sm d@)*”@” ) (2.15)
Applying the same argument to r~"P,(cos #) instead, we find that P_,
satisfies the same equation with n replaced by n — 1.

Under the change of variable z = cos# this differential equation is
transformed into

2 (1= +atm+vp =0 2.10

This equation, called Legendre’s equation, is a special case of the hy-
pergeometric equation, cf. WHITTAKER and WATSON [27].

The spherical Laplacian is the Laplacian defined on functions re-
stricted to the sphere, that is, functions which are independent of r. It
is therefore the differential operator

A _ L e 'nH@ +ﬂ L u
7 2sing |00 \M" 7 o0 dp \sinfdp )|

The eigenfunctions of the Laplacian on the sphere are non-trivial solu-
tions of the equation

o oy 1oy
Y ainp?l yvi_—— Y _q
Sin6 06 (Sme ae) TN e Y

The Legendre polynomials P, (cos ) constructed above are one set
of solutions of this equation, with eigenvalue A\, = n(n + 1). These
eigenfunctions are axisymmetric, that is, they are invariant under rota-
tions about the z—axis. We look for more general eigenfunctions of the
Laplacian of the form Y (8, ¢) = P™(cos #)e?™¥ where m is an integer.
With the substitution z = cosf that we used before, we obtain the
differential equation

d dP™ m?
—{(1=-2H—=2 A — —— | P = 0. 2.17
dz(( Z)dz>+( ’ 1—22) " (2.17)




38 CHAPTER 2. LAPLACE’S EQUATION

The eigenfunctions P7(cos6)e™™? are known as the spherical har-
monics, and the polynomials P7* are called the associated Legendre
polynomials. 1t turns out that the associated eigenvalues ), ,, are inde-
pendent of m, and are given by n(n+1). In other words, the eigenvalues
n(n + 1) are degenerate; they are of multiplicity 2n + 1, corresponding
to the 2n + 1 independent functions €™?, m = —n, ..., n.

Just as the functions {e™} form a complete orthogonal sequence
of functions for L?*(—m,7), the spherical harmonics form a complete
orthogonal basis for the Hilbert space L?(S?), where S* is the unit
sphere in R3.

2.3 Analytic function theory.

A function f = f(z), where z € C is a complex variable, is said to be
analytic in a domain €2 € C' if it is differentiable, that is, if

F&) = Flzo)

z—z20 2 — 29

exists for zg € (). By definition, this limit must be the same along any
path leading to zg; in particular, we must get the same values for the
derivative as z — zp along the paths Rz = Rzp and Sz = Iz, Writing
z =+ iy and f(z) = u(z,y) + iv(z,y) this constraint leads to the
Cauchy Riemann equations

Up = Uy, Up = —Uy. (2.18)

This is an elliptic system of partial differential equations. One may
show readily that both « and v are harmonic.

We develop some of the basic properties of analytic functions from
the viewpoint of elliptic partial differential equations. We begin by
introducing the variable z = = — 1y. We treat z, Z as independent
coordinates in the real plane. By the chain rule,

o _1(0 0
9z 2\0x oy)’

and the Cauchy Riemann equations can be written in the compact form

of _

5 0, f(z,2) = ul(z, 2) +iv(z, 2).
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The first order partial differential operator /0% is known as the 0
operator. We will show that its fundamental solution is

1
2miz

A general function in the plane can be written as a function of
the two variables z and Z. Suppose that 0f = p. We may write the
Green-Stokes theorem in complex coordinates:

nat = [ [ agmary = [ 2o nar.
foa- ffara- [

Ift=x+1iy, t =x— iy, then
dt A dt = (dz —idy) A (dz + idy) = 2idx A dy.

Now
fhd 0 f(nD)
2mi(t — z)  Of 2mi(t — 2)
Let Q. = Q\ D. where D, is the disk of radius ¢ centered at z € €.
Since 1/(t — z) is an analytic function of ¢ for ¢ # z,

o ft)  _ optd)
otomi(t —z)  2mi(t — z)’

dt N dt.

t e Q..

We orient the boundary of €1, so that the interior of €, lies to the
left of the contour of integration. Then

L [ret) L[ fRD
omi (t—z) _% t—z 2m//
o0

£

ﬁAdu

where 0D, is oriented in the counterclockwise direction. Letting ¢ =
z+ee? dt =ice?dh, we have

I, f) 1 [ f(z+ee? z2+ee™™) ~
2mi / (t — z) % gett ieetdh = f(z2),

0D

as ¢ — 0.
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We leave it to the reader to show that
lim// a df/\dt:// B it adt.
=0/ ) t—z2 JJ t—=z
N Q

We thus obtain
1 [fD . 1 //af ;
f(z,2) = dt o | t_zdt/\dt.
0

2w ] t—z
20

In particular, if f is analytic inside €2 then we have the Cauchy integral

formula . )
1C =55 ] i
o0

This is the analog of the Poisson integral for harmonic functions. It
says that a function analytic in a domain €2 is the convolution of its
boundary values with the fundamental solution of the 0 operator on
the bound ary of €.

Potential theory is used as a simple model of irrotational, incom-
pressible inviscid fluid flow. If ¥ denotes the velocity of a fluid, these
two conditions are expressed mathematically by the equations

curl v =0, irrotational

div v =0, incompressible.

If the domain is simply connected, then curl ¥ = 0 implies that ¢ is the
gradient of a scalar function ¢. Then

dive = divVe =0,

hence ¢ is harmonic. ¢ is called the velocity potential.

Since the fluid is inviscid, the only boundary condition to be sat-
isfied is that the normal velocity of the fluid vanishes on any solid
obstacle. Thus, ¢ satisfies the boundary value problem

2 I

Ay = O: - —
p=0 el v len

Such a problem is called a Neumann problem.
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In two space dimensions, if ¢ is harmonic, we may construct a
second harmonic function ¢ from the Cauchy Riemann equations: ¢, =
0y, ¥y = —z. These equations form a set of overdetermined equations
for ¢; for we cannot impose the first partial derivatives of a function
Y arbitrarily: we must have 1., = 1,,. This leads to the integrability
condition ¢z, + +¢y, = 0, which is satisfied automatically since ¢
is harmonic. The function 7 is single valued if the domain is simply
connected, since

fdw:y{wxdm%dy:fapydx—%dy:—//mpd:cdy:o.

The function 4, the conjugate harmonic function, is called the
stream function. Its gradient is orthogonal to the velocity field; and
its level curves are the streamlines of the flow, that is, the trajectories
of the fluid particles.

The function f = @ + i) is an analytic function of z = z + iy,
since the Cauchy Riemann equations are satisfied. If we write the fluid
velocity as a complex quantity, v = vy + v, then v = f/(z).

Complex variable methods can be used to construct solutions of the
Dirichlet or Neumann problem in a variety of domains in the plane by
the method of conformal mapping. We leave it as an exercise to show
that the stream function must be constant on the boundary an obstacle
in the stream. Hence a flow problem can be expressed as a Dirichlet
problem for the stream function.

As an example, consider the problem of finding the flow of an in-
compressible, irrotational fluid in the exterior of the unit disk |z| < 1.

We begin by noting that the potential ¢ for the uniform flow ¥ =
(U,0) is given by ¢ = Uz. The stream function is then given by
¥ = Uy and the complex velocity potential is f(z) = Uz. We leave it
as an exercise to show that the conformal transformation

1 1
— = - 2.1
2w 2(Z+z> (2.19)

maps the exterior of the unit disk in the z-plane one-to-one and onto
the w-plane. Tt follows that the potential

fz)=U (z + %) (2.20)
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is analytic in the exterior of the unit disk in the z plane and is asymp-
totic to Uz at infinity. The stream function, ¥ = S f(z), is easily seen
to be constant on the unit circle:

Y(1,0) = SU(e” + e ) = 32U cosf = 0.

The force on an obstacle B due to the flow around it is given by

the line integral
F=-govas,
0B
where p is the hydrodynamic pressure, and 7 is the outward normal to

B. The pressure is not obtained directly in this simple theory. Later
we shall prove Bernouilli’s law, namely that

Ly

51) +p
is constant along streamlines, where v is the speed of the fluid, in this
case |f’(2)]?. This makes it possible to calculate the lift and drag on
the unit circle due to the flow (2.20).
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2.4 Exercises

1.

Show that (2.9) is the Green’s function for the sphere in R? of
radius R: Show it is harmonic in y and vanishes on |y| = R. Find
the Poisson integral (2.10) for the sphere of radius R in R3. That
is, calculate the outward normal derivative of (2.9) on the sphere
ly| = R. (Use the diagram below.)

)

2= p+[yl* — 20|yl cos @

. Prove Weierstrass’ convergence theorem: If u, is a sequence of

harmonic functions continuous on the closure of a domain €2, and
if u,, converges uniformly on 02, then u,, converges uniformly to
a harmonic function « in the interior of 2.

. Prove: A harmonic function which is non-negative in R” is con-

stant.

. If {u, } is a monotone sequence of harmonic functions on a domain

Q, and if {u,(P)} converges for some fixed P € €, then {u,}
converges uniformly on every compact subset of {2; and the limit
function is itself harmonic.

. If {u,} is a uniformly bounded sequence of harmonic functions on

2 then the partial derivatives du/dz; arc uniformly bounded on
compact subdomains of €. Hence {u,} contains a subsequence
that converges uniformly on compact subdomains of €2.

. Prove that the Legendre polynomials P,(z) are orthogonal for

n # n’ on (—1,1). Show that this orthogonality condition, plus
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the fact that P,(z) is a polynomial of degree n, determines the
Legendre polynomials up to a multiplicative constant.

. Prove that the stream function for an incompressible, irrotational

flow is constant on a fixed boundary. Using Bernouilli’s theorem,
calculate the lift and drag on the unit circle due to the flow (2.20).

. It is possible, in a multiply connected domain, for a velocity field

to be irrotational but not have a single-valued velocity potential.
Show that the function

1 r

flz)y=-U (4 + z) + o log z, I real, (2.21)
is multiple-valued and analytic in the exterior of the unit disk,
but that it defines a single-valued velocity field. Find the stream
function and show that f(z) defines a flow in the exterior of the
unit disk; that is, that the stream function is constant on the
unit circle. Calculate the circulation for this flow. What is the
asymptotic velocity at infinity? What is the net force on the unit
disk exerted by this low?

. A function u is said to be subharmonic in € if Auw > 0. Show

that a subharmonic function cannot attain an interior maximum.
Show that if u is harmonic, then |Vu|? is subharmonic.



Chapter 3

The Wave Equation

3.1 The wave equation in 1,2,3 dimensions

The initial value problem for the wave equation in n space dimensions
is given by

Ou=0, u(x,0)=ug(x) ulz,0)=mu(zx). (3.1)

where O denotes the D’Alembertian Ou = uy — 2A w.

The solution of (3.1) in R' is due to D’ALEMBERT. It is apparent
that the one dimensional wave equation is satisfied by any function of
the form f(z 4+ ct) + g(x — ct). Any function of the variable x — ct will
appear as a wave-form travelling to the right with speed ¢; while any
function of x + ¢t will appear as a wave travelling to the left with speed
c. Thus the solution of the wave equation appears as a superposition
of waves travelling to the left and right with speed c.

The initial conditions lead to the equations

1

f+g=mu, f/_g/:;UL

We solve this pair of equations to obtain

1 1 1 1
f/:§<uf)+gu1>, 9/25(’“6—2%1)-

As solutions to this pair of equations we take

@) = guale) + ¢ [y, g(@) = gunle) = 2 [ww)dy

0 0

45
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We then obtain D’Alembert’s solution of the wave equation in one space
dimension:

z+-ct
uglx + ct) + uglx — ct 1
r—ct

We see that the solution at (x,¢) depends only on the values of ug at
x % ¢t and on the values of u;(z,0) on the interval (z — ct,z + ct). The
region in the triangle in Figure 3.1 is called the domain of dependence
of the point (z,1t).

t

N

z+ct
Figure 3.1: Domain of Dependence

The fundamental solution for the wave equation in R™ is defined
to be the solution W, of the wave equation which satisfies the initial
value problem

MW (4.0) = 6(z).

OW, =0, Wy(z,00=0, —"
(,0) o

Equivalently, the function v = W,, % f satisfies
Ov =0, v(z,0) =0, v(z,0) = f(z). (3.3)

From (3.2) we see that

z+ct

1 H
Wiat) = 5o [ o)y =

Zet

(x 4+ ct) — H(z — ct)
2¢ ’
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where H is the Heaviside step function

1 >0
H(s)=<% s=0
0 s<0

We leave it as an exercise to show that for ¢ > 0, W; can be written in
the compact form

H(*t? — %)
2c ’

Wi(z,t) = t>0. (3.4)

Figure 3.2: Forward and Backward Light Cone

The shaded area in Figure (3.2) is called the domain of influence
of the pulse. It extends forward and backward in time since the wave
equation is invariant under time reversal. Unlike the heat equation,
disturbances propagate at a finite speed.

Since the wave equation has constant coefficients, we should expect
that OW; /0t is also a solution of the wave equation. We have already
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observed that the distributional derivative of the Heaviside function is
the Dirac delta function. We leave it as an exercise to verify that

oW, Oz tct)+6(x—ct)
8t ($,O) - 9 )

(3.5)

and that the solution of (3.1) in R' can be written as u = Wy % u; +
Wl,t * Ug.

A representation of the explicit solution in R? was obtained by KIR-
CHOFF, using the method of spherical means. We verify Kirchoft’s
solution here; and later, in §3.4, we present a method for finding it
deductively. The spherical mean of a function f in R? is given by

My(z,t) = ﬁ // fly)dS

e yi=ct

For any f € C*(R?) consider the function

u(z,t) = 4ntM; = % // fly)dSs

ly—sl=ct

We write y = z+ctw and dS, = *t*dw, where w is a vector on the unit

sphere and dw denotes the element of surface area on the unit sphere.
Then

u(z,t) =t / flz + ctw) dw, (3.6)
lwl=1
and
1
//f (z + ctw) dw+c2‘//zdy]w]dw_ Z(QL—{—CW)
w|=1 |w|=1
where
[§5m-t f[3
_t//zlay] YT e &/dS
lw|=1 J ly—z|=t

It then follows that
Pu  cOW

ot ot
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By the divergence theorem,

:%///Ayf( :%///Axf(aﬂrpw)dprdp

lz—y|<ct 0 |w/=1
ct
—Axc—z///f(ﬂﬂrwp)dw%;
0 |wl=1
hence
8—‘;/ = ct’A, //f(:c + ctw) dw
w1
and
Pu_ =A, |t / flz + ctw)dw | = AAu.
o K

By (3.6), u(z,0) = 0, while

u(z,0) = //f(x)dw = 4n f(z).

lw|=1

The function v(x,t) = (tM,); also satisfies the wave equation, (pro-
vided g € C3(R?)) since the wave equation has constant coefficients. It
is clear that v(z,0) = 0; moreover,
62
v(x,t) = th = *AtM, = tc*AM,,

hence v, = 0 at t = 0. We thus see that
w(z,t) = tMy, + (tMy): (3.7)

is a solution of (3.1) in R3.
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(z,1)

R?)
|z —yl=1

Figure 3.3: Backward light cone in R?

We leave it to the reader to verify that for ¢ > 0, tM; = W3 * f,
where

S(r—ct)

WZ’)(T? t) = ) (38)

4mre
hence W is the fundamental solution of the wave equation in R3.

The fundamental property of the wave equation in three space
dimensions known as Huyghen’s principle follows immediately from
Kirchhoft’s representation. The spherical mean M¢(x,t) depends only
on the values of f on the sphere of radius ¢t centered at x; while
(tM,); depends only on the values the normal derivative of g on this
same sphere. The domain of dependence of the point (z,t) is therefore
the backward light cone |z — y| = ¢t. This means that an observer at
the origin observes a signal at time ¢ only when the source of the signal
is precisely at a distance ct away.

The situation in R? is quite different. The solution of the wave
equation in two space dimensions was originally obtained by POISSON;
but it can be obtained very quickly from the three dimensional solution
by the so-called method of descent, due to HADAMARD, as follows.

A solution of the wave equation in R? is regarded as a special case
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of the solution in three dimensions for which the initial data is inde-
pendent of one of the spatial variables, say x3 = z. The integration is
carried out in cylindrical coordinates:

Yy = pcosh, Yo = psinf, Y3 = 2 = \/C*t? — p2.

The element of surface area is

=1+ (V2)2pdpdf = \/1+ 22 pdpdf.

Since z, = —p/z, we have

2 1 t
S =1+ Zpdpds = =\/22 + pPpdpdd = Zpdpds.
zZ zZ Z

The upper and lower hemispheres make equal contributions, so tMy
reduces to the integral

/ T f(xy + pcosB, zy + psinh) ¢t pdpdd.
47T62t N

This integral is a convolution W, * f, where

1
2 _ 242
, T <t
W, = { 2rmcv/ct? —r?
0 r? > 22

It can be simplified to

1 e r
Wox f = 2—7Tc/0 F(x;r)iﬁt2 — Tzdr,

where
F(x;r) = / flz1+7cos, x4+ rsinb)dh.

Finally, we may write W5 in the compact form

1
Wy = —— = *t? —r? .
R o=c T (3.9)

where o, denotes the positive part of o, defined to be ¢ when ¢ > 0
and 0 when o < 0.
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Let us verify that the convolution integral satisfies the initial con-
ditions

(W2 £) (2,0) = (@)

Under the change of variables r = pct the integral above becomes

x; pet)d

w7

dp + O(t*) = tf(z) + O(t?),

tFxO/m

The derivative of this integral at ¢ = 0 is therefore f(x).

Note that the domain of dependence of the point (x,%) in 2 space
dimensions is the entire region |y — x| < ct! Thus, in three dimensions,
a flash of light, or a thunderclap immediately passes by the observer,
while in two dimensions, the disturbance persists forever. For example,
consider the result of dropping a stone into a calm (infinite, for the sake
of this discussion) pool of water. The ripples persist forever, although
they do decay.

3.2 Characteristic curves in the plane.
Consider the simple equation

whose general solution is u(x,t) = f(x—t). Any solution of this partial
differential equation is constant along the lines x — ¢ =constant. These
lines are called the characteristics of the equation. We see that u cannot
be specified arbitrarily along a characteristic.

Moreover, we can formally extend the notion of solution of (3.10) to
include any function of z — ¢, even a discontinuous one. For example,
we might consider the “solution” w(z,t) = H(t — x), where H is the
Heaviside step function. This solution has a jump discontinuity across
the characteristic z = ¢.

Even though the function H(t — z) is discontinuous, it satisfies
(3.10) in the following weak sense. For any given domain € in the
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plane, multiply (3.10) by a smooth function ¢ with compact support
in Q, (for example, ¢ € C}(£2)), and integrate by parts. We get

// u(py + @) dedt =0, Vo € C5(9). (3.11)

Conversely, if (3.11) holds on some domain € and u € C*() then,
integrating by parts, we find that

//(ut+ux)cpdxdt:0 Vo € C5(9).
0

It follows that u; + u, must vanish everywhere in Q, i.e. that (3.10)
holds in €.

Thus we see that the characteristics for (3.10) have the following
two properties:

e A solution cannot be specified arbitrarily along a characteristic;

e A solution may have jump discontinuities across a characteristic.

The notion of a jump discontinuity requires the concept of a weak
solution of the partial differential equation.

Theorem 3.2.1 Let f(&) be a piecewise differentiable function with a
Jump discontinuity [f] at £ =0, i.e.

/] = Jim £(&) = lim £(6).
Then u(x,t) = f(x —t) is a weak solution of (3.10); that is, it satisfies
(3.11).

Proof: Let Q be any domain in ¢ > 0. It is clear that u satisfies
(3.10) in the strong sense in either of the domains z < ¢t or x > ¢;
hence (3.11) holds whenever 2 lies on one side of the line I" := {z = t}.
Therefore, let €2 be any domain which intersects the line z = ¢, and let
Q= Qn{x <t} and Qy = QN {x > t}. We apply Green’s theorem to
each of the domains € and 0y separately. (See Figure (3.2).) In each
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Figure 3.4: Jump conditions across a characteristic.

subdomain, u satisfies (3.10) in the strong sense. Since ¢ vanishes on
08 we get

[ oo+ evante = [[ o+ twonasic = [ eifian - as).
Q

QU0 I

Since dz/dt =1 on T, the one-form dt —dz =0on . W

A non-characteristic curve is any curve I' which is never tangential
to any characteristic; in this case, the slope of I' is never equal to 1.
If u satisfies (3.10) and is specified along a non-characteristic curve I,
then u is determined uniquely everywhere in the plane.

More generally, we may consider the equation

u + ez, t)u, =0, (3.12)

in which we assume that ¢ is a C' function. In this case the character-
istics are given as solutions of the ordinary differential equation
dx
dt

Thus z(s,t) is parametrized by the time variable ¢ and the point at
which the curve intersects the z axis. Along any such curve, u is
constant, for

= ¢(z,t), z(s,0) = s.

Dufa(s,0),1) = 20 24
WS =90 T B d

7 = u; + cu, = 0.
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Now consider the wave equation in one dimension, (3.1). We have
seen that its general solution is u(z,t) = f(z—t)+g(z+t). 6mm 6mm

u(z, —x) = ui(x)

Figure 3.5: The Goursat problem

We want to solve the wave equation in the region t? > 22 with data,
specified along the characteristics x = =£t:

u(z, ) = uo(x), u(z, —x) = ui(x),

where uy and u; are given. We assume that ug and u; are C? and that
u1(0) = up(0) = ap, so that the boundary data is continuous at the
origin. Thus, we obtain

u(z,x) = f(0) + 9(27) =uo(),
u(, —z) = g(0) + f(2z) =u(2).

Setting x = 0 in these two equations, we see that we must have
F(0) +9(0) = uo(0) = u1(0) = u(0,0).
We then find

hence
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= (2,y)

= (2(s),y(5))

Figure 3.6: Conditions along a non-characteristic curve

This is called the characteristic, or Goursat problem.

We cannot, however, specify both u and u; on a characteristic, for
this would lead to an overdetermination of one of the functions f or g.
For example, if we try to specify both v and u; on the line x = ¢, we
are led to

u(z,z) = f(0) +9(2z),  w(z,z)=4(2z) - f0)

and now both ¢(2x) and ¢'(2x) are determined. This is in general
impossible.

With this example in mind, let us consider a general second order
equation in two variables:

A(x, y)Upy + 2B(2, Y) gy + C(z,y)uy, =0, (x,y) € Q.

Let T be a C? curve lying in €2, and suppose we try to specify both
u and its normal derivative u, on I'. Specifying u on I' determines
its tangential derivative u, along the curve. If I' is parametrized by
x(s), y(s), where s is the arc length along the curve, then

d
0 (8) =u(a(5).5(5)) = v+ 0
u,(s) =Vu-v=—uy + u,a,

where 2/ = dz/ds, etc, are both known functions on I'. Since s is the
arc length, the matrix
:E/ /
(—@ i)

has determinant 1 and is invertible; hence both u, and u, are uniquely
determined along I' by the values of u and u, along the curve.
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We can therefore compute the tangential derivatives of u, and u,
along I'. These, along with the partial differential equation itself, give
a set of equations for the second derivatives of u:

’ ' - du,
T Ugy + Y Ugy = i
du

/ / _ Y

T Ugy + Y Uyy = —dT

Aty + 2Bugy + Cuyy = 0.

These equations for u,,, u;, and u,, are solvable provided the deter-
minant of the 3 x 3 matrix of coefficients does not vanish. In that case
the curve I' is called non-characteristic, and v and a non-tangential
derivative can be prescribed independently along the curve.

The characteristics are determined by the vanishing of the determi-
nant of the 3 x 3 system above, that is, by the condition

Ay”? — 2Bz'y + C2? = 0.
This equation has two real solutions iff B — AC > 0. Using

dy ¢
dr o'
we can write the equation as
dy\* d d
A(YY) oY vo=0, Y opiVvBE-AC. (3.13)
dx dz dz

We thus obtain a pair of ordinary differential equations for the char-
acteristics. For example, in the case of the standard wave equation,

B =0 and AC = —1; so the characteristics are given as solutions of
the ordinary differential equations

dy

— = =+£1.

dx

It is impossible to prescribe, independently, both the function and
a non-tangential derivative along the curve, since these are in general
incompatible with the differential equation.

Second order equations in two variables with two real character-
istics are called hyperbolic equations. An equation is called elliptic if
it has no real characteristics, and parabolic if it has precisely one real
characteristic. Laplace’s is elliptic, and the heat equation is parabolic.
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3.3 Characteristic surfaces in higher dimensions.

The determination of characteristic surfaces in higher dimensions is
somewhat more complicated, but proceeds from the same notion. Con-
sider a general second order partial differential equation

n n
Liu] = Z GikUjk + Z bju; +cu =0 (3.14)
k=1 j=1
where u; = du/0z;, etc. We assume throughout the discussion that the
coefficients g;;, ... are smooth functions of z in some domain 2 € R".
A smooth hypersurface C' of codimension 1 lying in 2 is said to
be non-characteristic for L if for any solution u defined in some neigh-
borhood of C, both u and its normal derivative u, can be specified
independently on C'. Otherwise C' is said to be a characteristic surface
for the operator L.

We assume C' is given as the level set o(zy,...,z,) = 0 of some
differentiable function ¢, with V¢ # 0 in a neighborhood of C'. Given
u on C' we can compute its n — 1 independent tangential derivatives,
denoted by mu,...7,_1u, on C. These, together with u,, uniquely
determine all n first order derivatives u,, ..., u, on C.

Let us first consider the case in which ¢ = z,, and ask when z,, =0
is a characteristic surface. Write the equation as

n n—I1 n
Liu] = gnntnn + Z Z Giktik + Z bju; + cu.
j=1 k=1 =1

Since u and u,, are given on z,, = 0, the first derivatives u; and the sec-
ond order derivatives u,;, j =1,...,n—1, k =1,...,n are determined.
Hence all terms in L{u| are determined except gpn,tny,-

If gon = 0 on z, = 0, then (3.14) puts an additional constraint
on u and u,; i.e. the system is overdetermined, and u, u, cannot be
specified independently. On the other hand, if ¢,,, # 0 on z, = 0, then
u, u, can be specified independently, and wu,, can be determined from
(3.14).

Thus, the hypersurface x,, = 0 is characteristic if and only if ¢,,,, = 0
there.

We now turn to the general case. Let the surface C' be given by
¢ = 0 and make a smooth, invertible coordinate transformation

Yn = @(T1, ... Tp); yi =y(xr, ..., 2), j=1,...,n—1.
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The partial differential equation transforms as follows. Define w by
w(y) = u(z). Then

I/ 8y16ym+w 0y
7 o, T T T
and . .
Z girljr = Z GimWim +
k=1 lm=1
where ... denotes terms depending on wy,...w,, and
) g 81'] c%k

Since the coordinate transformation z — y = y(z) is invertible,
the w; may be computed as functions of the ;. Thus, the condition
that ¢ = 0 be a characteristic surface is transformed into the equation
Jnn = 0, lLe.

Theorem 3.3.1 The necessary and sufficient condition that the sur-
face p = 0 be a characteristic surface for the second order partial dif-
ferential equation (3.14) is

3 g Qo0 (3.15)

* o
T Oxn
Jk=1 ok

If ¢ = 0 s non-characteristic, then the second normal derivative u,,
can be determined from the data u, u, on C and the equation Lu] = 0
i a neighorhood of C.

In the case of Laplace’s equation, (3.15) becomes

(Vi)? =0,

which has no real non-trivial solutions. Laplace’s equation is an exam-
ple of an elliptic partial differential equation. It has no real character-
istic surfaces.

However, (3.15) for the wave equation, with variables z,y, z, ¢, is

4107? - 62(v§0)2 = O:
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and this equation has the real non-trivial solution
o =c*t* —r? =2+t + 2 (3.16)

The level surfaces of ¢ are cones in four-dimensional space-time, called
the light cones. These are the characteristic surfaces for the wave
equation.

3.4 The wave equation in R".

We saw in the first two chapters that the heat and Laplace equations
have a smoothing property, in that solutions in the interior of the do-
main are highly differentiable even though the boundary data may not
be differentiable. The situation is quite different for the wave equation,
in that the solutions of the wave equation lose regularity. Even if the
initial data for the wave equation is C?, the solution may not be differ-
entiable for £ > 0. This loss of regularity increases with dimension, and
one is forced to consider solutions in the class of distributions, even
for smooth initial data. The solution of the wave equation in higher
space dimensions leads to a class of divergent integrals whose correct
interpretation, by HADAMARD [11], was one of the factors leading to
the development of distribution theory!.

We have seen that the fundamental solution of Laplace’s equation
in n dimensions is a scalar multiple of »=". The quantity r is invariant
under the group of rotations about the origin, which also leaves the
Laplacian invariant. The wave equation is invariant under the Lorentz
transformations, the group of all linear transformations of the variables
x,y, z,t which leave the quadratic form (3.16) invariant. We therefore
look for a solution in the form W = ©(0).

We have

a " +1 /
DW_@ (2¢°t0) Zzax] 2, ):462(0'@ +n2 @).

We seek the fundamental solution of the wave equation as a solution
of the differential equation

n+1

o0" + 0'=0 (3.17)

1The results were originally presented in series of lectures at Yale University in 1921,
under the auspices of the Silliman Foundation.
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By direct integration, we obtain the solutions
O, = Ao 7.

When n = 2, this is the correct choice; however, when n = 3 we have
already seen that the fundamental solution is a delta function, so we
must be prepared to consider distribution solutions of (3.17). This is
the pattern for even and odd n. We shall see that there is a simple
recursion relation for obtaining the fundamental solutions in higher
dimensions.

A function of z € R" is said to be homogeneous of degree « if
f(Az) = A*f(zx). Differentiating this identity with respect to A and
setting A = 1, we obtain Euler’s equation

Therefore (3.17) is satisfied by functions © for which ©’ is homogeneous
of degree —(n+1)/2, and hence ©,, is homogeneous of degree (1—n)/2.
By differentiating (3.17) with respect to ¢ we obtain the equation for
O, 2. Thus, we may consider a recursion argument of the form 6,, 5 =
C, DO, for some constant C,,, where D = d/do.

The fundamental solution of the wave equation in R!, given by
(3.4), is homogeneous of degree 0, as we should expect. The following
theorem can be proved by the same argument used in the proof of
theorem 1.2.1.

Theorem 3.4.1 The fundamental solution of the wave equation in n
space dimensions is homogeneous of degree 1 —n in x1, ..., T,, t.

According to the proposed recursion argument, we should expect
W3(o) to be a multiple of W{(o). By (3.28) in the exercises below, we
have, for t > 0, (J is even)

S(r —ct)
2r
hence, by (3.8), Ws(o) = 77 'W/(0). The fundamental solution for

the wave equation in all odd dimensions n is obtained by subsequent
differentiation, and in fact, we shall see that

1d
Womi1(o) = <%£

§(o) = 6(r* — *t?) = (3.18)

" 1
) W, = s (g), m=0,1,.... (3.19)

2mme
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We shall leave 1t as exercises to show that

Womar * f __ L [(i 1)”“ r*™F(x;r) (3.20)

(2m)m2c2t | \drr

r=ct

F(x;r) :// flz + wr)dw; (3.21)

|w|=1

and that
0

5 Wemn % f)| _ = F. (3.22)

The solution of the wave equation in n = 2m+ 1 space dimensions thus
involves derivatives of the initial data at the backward light cone up to
order m — 1.

The solution of the wave equation in even space dimensions raises
some new issues. We may formally raise the dimension by one by
taking a derivative of order 1/2. The fractional derivative of order
a, 0 < a < 1, is defined by?

D = fora g [ = ) i

Observe that D'/? reduces the homogeneity of a function by 1/2. Let us
assume that the fractional derivative can be extended to distributions,
and that ©, is a distribution homogeneous of degree (1 —n)/2. Then
D'?@,, is homogeneous of degree

1—n _1-(n+1)

—1=
2 2

Thus D20, is a candidate, up to a scalar multiple, for ©,,;. In
fact, we may obtain the fundamental solution of the wave equation in

2The justification for this nomenclature is obtained by taking the Laplace transform
of this expression. Recall that if

is the Laplace transform of f then £{Df) = sL(f), provided that f(0) = 0. Using the
convolution theorem for the Laplace transform, one finds that £{D f)(s) = s*L(f)(s).
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R? by computing D'/?H (o). First note that D'/?H (o) has support on
o > 0 since H(o) does. Therefore

/ H(y 1 od o7 ody 11
2) do 2\/7_rcdc7 o Vo—y 2meJog
where o, is the positive part of o. Hence Wy(o) = 7~ /2W!(s). In
view of (3.19) we might expect that

1 d m—1 1 d m—1/2
Won=(22] Wo=(=+) W
T do T do

This is in fact true; and moreover, the results in even and odd
dimensions can be combined into a single formula.

Theorem 3.4.2 The fundamental solution for the wave equation in n
dimensions is given by

1d\"T
W, = (——) Wi (3.23)

7 do

We have already shown that the distribution in (3.23) is a solution
of the wave equation in R"; so all that is needed is to verify that this
distribution gives the correct solution to (3.1). This task has been left
as an exercise.

For n = 4 we obtain W, =

integral
(x +wr) 3
/ /// e p— 52" dr dw. (3.24)

|w|=1

3/ ? /27, which leads to the divergent

A good deal of effort was expended in the latter part of the 19 century
in trying to regularize such singular integrals. The ultimate resolution
of the issue was obtained by Hadamard. He pointed out that in some
cases such integrals can be regularized by various devices, but in the end
he comments that they would not be of interest to us, as — paradozical
as it may seem — our proposed method will consist in not avoiding them.

Hadamard thus recognized that the integrals obtained are not to
be regularized but must instead be reinterpreted. Classical mathemat-
ics had broken down for the wave equation in higher dimensions, and
the divergent integrals signified that something new was afoot; in fact,
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Hadamard’s bold solution of the problem was a major impetus in the
development of the modern theory of distributions. The wave equation
does not have classical solutions unless the initial data is sufficiently
regular. Rather, it has the property that its solutions lose regularity,
the loss of derivatives increasing with dimension. The solutions ob-
tained are distributions rather than classical functions, for which the
divergent integrals are symbols.

Hadamard introduced what he called the "finite part” of an integral
such as (3.24). To illustrate the idea with a simple example, consider
the divergent integral

/O Y fy) dy

for a smooth function f with compact support on the positive real line.
We may try to interpret this integral by replacing the lower limit by
£ > 0 and letting ¢ — 04. We have

/my*ﬂﬂwdy:/my*ﬂ@wy—ﬂmww+fmy/mywaw

- / Ty y) — F(0) dy + 2@

If |f(y) — f(0)] < Kly|*, with o« > 1/2, then the first term has a
well-defined limit as ¢ — 0+. The second term, however, is unbounded
as ¢ — 0 whenever f(0) # 0, and Hadamard simply threw this term
away, defining the integral to be given by its finite part’:

bt /0 T f () dy = /0 T yR(f () — £(0)) dy.

Hadamard constructed an elaborate calculus of such divergent inte-
grals, extending the theory to multiple dimensions, and applying it to
the wave equation.

In the modern theory of distributions, Hadamard’s device is re-
placed by writing 273/? as the derivative of —22~/2, and integrating

3Hadamard’s lectures were written in English, quite good English, as a matter of fact;
they were later translated into French by Mile J. Hadamard.
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the improper integral by parts to obtain

p.f. /Oooy‘?’”f(y) dy = /OOO YR (f(y) — f(0))dy

— 2y () - so)| 2 [ %f’(y) dy

1
0 \/ﬂ
Let us return to our discussion of the wave equation in even space

dimensions. The solution of the wave equation in 2m dimensions is
formally represented by the divergent integral

ct 1 d m—1
/ [(%%) e

As we saw above, this integral is interpreted in the sense of distributions
by formally integrating by parts and ignoring infinite terms.
For constant ¢,

=2 f'(y) dy.

F(z;r)r*™ dr.

d 1 d

- 2

do 2r dr’ (3.25)
hence the integral above is interpreted as

1 / _LdyTh L
(2m)me ), rdr o4

_ (273)% /0 ’ % [(%d%)m_l Fla: r)r2m_1] dr.  (3.26)

For initial data of class C™ ! the expression (3.26) is an ordinary im-
proper integral.

We leave it as an exercise to verify that (3.26) satisfies the appro-
priate initial conditions. The formula for the surface area of the unit
sphere in R”, denoted by w,, will be needed; it is given by

F(z;r)r*™ dr

2,”77,/2

[(n/2)

wp = A(S" ) = (3.27)
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3.5 Exercises

1. Let zp = ct, 1 = x, 20 = y, x5 = 2; we write z, = (2o, 21, T2, T3),

and z is called a 4-vector. Find a matrix ¢ such that o = ¢z ,x,.
Define an inner product of 4-vectors by = -y = ¢"*z,y,. Denote
Lorentz transformations by ' = Az, where z and 2’ are 4-vectors.
The Lorentz group is the group of all 4 x 4 matrices A which pre-
serve the inner product, i.e. z-y = 2’-9y’. Let the D’Alembertians
in the two coordinate systems be denoted by 0 and ['. Prove
that O = [O0', hence the wave equation is invariant under Lorentz
transformations.

. Prove the following statements:

(a) the delta function on the line is homogeneous of degree -1,
(b) the delta function is homogeneous of degree —n in R";

(¢) the derivative of a homogeneous function of degree « is ho-
mogeneous of degree v — 1;

() }
| @i = 350

Find the delta function in spherical coordinates in R™. Hint:
Represent the delta function as the limit

. Let f(z) be a smooth function such that f(z) = 0, f'(zo) # 0.

Show that in the vicinity of zg,

0(f(x)) = 6(z = zo) /| f'(zo)]. (3.28)
Use this result to establish (3.5) and (3.8)

. Derive (3.20) using (3.25). Verify that the solution v given by

integrals (3.20) and (3.26) satisfies the initial conditions v(x,0) =
0, ve(z,0) = f(x).
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Solution: For n = 2m + 1, first prove that

d 1
drr

Then

WZm

m—1
2mT 1/2
™ =2m —1)---3r? = (m + /)T2
\/7?
_@m)r(m+1/2) 5, 202m)™ ,
- am+1/2 - W, r

1 d1\""
w1t (2m)m2c2t <dr r) rrE(T)

r=ct

:wip(x;ct) + o),

and the result follows. For n = 2m we have

4
dr

1

m—1
) p2mel = om iy — 1)lr = 21T (m)r,
r

hence by (3.27)

1

5. Given the b

u(z,0)

prove that t

67

(z;r)dr = LF(a:, ct)+O(t%).

ct r
2" (m / —_—F
(2m)me (m) 0o Vi —r? Wam

oundary-initial value problem

wy — Au+h(u) =0, x€Q,

:f(x)v ut<$70) :g(‘r)7 u('7t>

he energy

5:///%(uf+Vu2)+H(u) dr,  H(u) :/h(s) ds

is conserved.
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6. Let u satisfy the wave equation in R® with ¢ = 1, and let

£(0) = % /// uf + (Vu)? dz Ly

le—y|=<R

1 2 2
E(t) = 3 u; + (Vu)“ dz,

le—yl+=<R

Prove that £(t) < &. Use this to prove the following uniqueness
theorem for the wave equation: If u is a C? solution of the wave
equation in R* which vanishes in the ball |z| < R at time ¢ = 0
then w vanishes identically in the solid cone |z| +t < R.

Figure 3.7: Backward ray cone in three dimensions

7. Assuming C initial data, solve the equation

ur +uu, =0
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Figure 3.8: Shock discontinuity of a nonlinear hyperbolic equation

by the method of characteristics. Show that, unless the initial
data is monotone, discontinuities in the solution must develop.
Write the equation in weak form. Suppose that a weak solution
exists which is discontinuous along a smooth curve I' in the z-t
plane given by x = x(t), as in Figure (7). Suppose the limits of
u on either side of T" are denoted by u, and v_. Show that the
speed of the ‘shock’ I' is given by

L Up U
2
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Chapter 4

Equations of Fluid and (Gas
Dynamics

4.1 Conservation Laws

We derive in this section the equations of fluid mechanics and a few of
the associated conservation laws. We focus largely on the theory of in-
viscid, irrotational flows, which forms the core of the classical theory of
fluid mechanics. The modern theory of fluid mechanics deals with the
effects of viscosity and the resulting boundary layers and turbulence
in the vicinity of the boundaries of the flow domain. For a more de-
tailed account of the subject, the reader may consult a number of texts
and monographs, e.g. BATCHELOR [5], and LANDAU and LIFSHITZ,
[12]; the treatise by SERRIN [21] offers an historical and mathematical
perspective of the subject.

The equations of gas dynamics are the expression of conservation
of mass, momentum, and energy in differential form.

Let p and u (u is a vector field) denote the mass density and velocity
of a compressible fluid. We assume these functions to be C' and we
take Q to be a domain with smooth boundary in R®. The particles
follow trajectories given by the ordinary differential equations

dz’
dt

= u;(z,t).

The particles may be labelled by their positions at some reference time,
e.g. t = 0, by £ and their positions at time ¢t by z = z(¢,£). The

71
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variables ¢ are called the material coordinates and the variables x are
called the spatial coordinates. The trajectories of the particles are
called the streamlines. The acceleration of the particles is given by the
second derivative:

Pzt du;  Ou; | Qupdr! Ouy | Ou

a2 at ot Tawat o a;w

If F(z,t) is a scalar valued function, its total or material derivative,
moving with the fluid flow, is

3 3
oF F . OF
_— - — J___
dt ot Za +]Zl“ om
The equation
ar
dt

means that F' is constant along streamlines. The conservation laws of
fluid mechanics take precisely this form.

The conservation laws are expressed in terms of rates of change of
the mass, momentum, and energy contained in a given region of the
flow domain. For example, the total mass contained in €2 is

[ff e

where dv denotes the volume element dz'dz?dz®. If ) moves with the
flow there is no mass flux across the boundary, and conservation of

mass requires that
d
— dv = 0.
at /// pee
0

Theorem 4.1.1 When Q = Q(t) moves with the flow given by i* =
u;(x,t) we have

o Grosar)
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Proof: The particle trajectories are given by 2H(t) = z(t,£), where
x'(t,0) = &. Write the integral in terms of the material variables &.
Then we must calculate

d Az, 22 %)
£ d A S
@ /Q//p‘] DTN

where () is a fixed domain parameterized by the & variables. We say
that the integral has been “pulled back” to the base manifold €2y. The
theorem follows from the fact that

J = Jdivu. (4.2)

and then transforming back to the coordinates x.
Equation (4.2) is proved as follows.

0@, 2%, 2% N Iz, 12 %) N o(x!, 2% 23)

C0(gh, 62,88 a(g, ) 0, €48

O, 2?2 N ozt u?, %) N ozt 2%, u®)

S O(€1,€2,6%)  0(eh, 62,63 (et €2,83)
By the chain rule,

J

o(ut, 22, 3) 2L gul oz, 2%, 2%) Oul

AE,E.8) 00 9(¢,&.8) o

J,

etc. The other two terms are computed in the same way. This com-
pletes the proof of (4.2) and hence the theorem. W

The equation governing the conservation of mass follows immedi-
ately. Since €2 is an arbitrary domain, we must have

dp

5 + div(pu) = 0. (4.3)

% + pdivu =

Theorem 4.1.1 and its proof (due to Euler [21]) are a template for
a much more general result, known as the transport theorem, which
is fundamental to the derivation of conservation laws. The transport
theorem provides a means to calculate the rate of change of integrals
over curves or surfaces moving with the flow. Since differential forms
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are the natural objects for integration theory in higher dimensions,
we need to calculate the action of the total derivative on differential
forms.!

A p—form is integrated over a p—dimensional manifold. For exam-
ple, the line integral of the 1-form f;dz’ over a path v gives the work
done by a force field with components f;. The integral of the 3-form
pdxt A dx® A dx® over a region € gives the total mass in 2, and the

integral of
an 8uz i i
E <0xi — &rj)dx A dx

1<j

over a surface S gives the vorticity flux through S.

These expressions, called exterior differential forms, have a number
of advantages over their vectorial cousins. The operations curl, gradi-
ent, and divergence are not invariant under coordinate transformations,
and moreover they are fundamentally tied to the metric tensor of the
manifold, whereas the corresponding operation for differential forms,
known as the exterior derivative, is defined in arbitrary dimensions, and
takes the same form in any coordinate system. Moreover, the calculus
of differential forms keeps track of the orientation of the manifolds of
integration.

In the language of tensors, p-forms are covariant antisymmetric ten-
sors of order p on a manifold M; they are denoted by A(M). The basic
rules of calculation of differential forms are extremely simple, and we
summarize them here. We restrict our discussion to three operations:
the wedge product, the exterior derivative, and the Lie derivative.

The wedge product is multilinear over scalar functions, anti-symmetric,
and associative. Thus (dz' A da?) A da® = da' A (dz? A d2z?); while

dr' A dx* = —dz? A dat, de* A fdz?* = fdo' A da?,

etc. In particular, do' A dx! = 0. The wedge
The exterior derivative d maps A, to A, ;. Its action on 0-forms
(functions), is given by
of

ox?

df dx’.

IThe total derivative of a differential form is known in geometry as the Lie derivative
with respect to the vector field u. For a more complete account, see SPIVAK [24] or
SATTINGER & WEAVER [19].
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Its action is uniquely extended to differential forms of any order by the
three rules

o > =0;
e d is a linear map from A, to A,yq;
o dlwAv)=dwAv+(—1)Pw Adv for w € A,,.

The theorems of Green, Gauss, and Stokes are subsumed under a
general theorem, known as Stokes’ theorem

é [ o= aé o, (1.4)

Here, w is a p form with differentiable coefficients, and €2 is a p + 1
dimensional manifold in R™ with smooth boundary 9€). It is possible
to relax these regularity conditions somewhat, but we shall not need
that for the present discussion.

We have already defined the total derivative relative to a vector
field @ on O-forms, i.e. functions. The total derivative is extended to
all differential forms by two simple rules:

e The Leibnitz rule:
d

=" ton ™
YT g YT

e The total derivative and the exterior derivative commute:
d dw
—dw=d| -
(%)
Note that the total derivative of a p—form is again a p—form.
For example, the action of the total derivative on a one form f;dx*
18
fz
df i

z: fl

Deta' 4 i, = fl

(dfzﬂza ) ;

% fidz' = d '+ fz da: + fidd'

d n fz 3uz
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The total derivative of the mass density 3-form is

d dp
prL pdv = (ﬁdv+p(daz Adx® Adx® 4+ dxt Adi? Adz® +dzt Adz® A diP).

Now

dit A dz? A dx? =du' A dz? A dx?

ou' ou' 8 3 .3 N 3
ou'
—%dv

etc., so

d dp .
dt( pdv) = (% + pdiv u) dv.
The transport theorem states:

Theorem 4.1.2 Let w be a p—form and 2(t) a smooth p—dimensional
manifold moving with the flow generated by the vector field u. Then

Nt

The transport theorem is proved in the same way that Theorem
4.1.1 was proved: the integral is “pulled back” to the base manifold
Qq, where Q(t) = x(t, o), and the differentiation carried out there.

Let us return to the derivation of the conservation laws. The con-
servation of linear momentum is derived by a similar argument. The
momentum density in €2 is given by the vector field pu, hence the rate
of change of the i** momentum component in the region € is?

& e o)

Since the domain moves with the fluid, there is no transport of mo-
mentum across the boundary. By Newton’s law of motion, the rate of

2This formula presupposes that momenta at different points in space can simply be
added together, a fundamental precept of Euclidean geometry; this would not be the case
in relativistic fluid mechanics, for example, if one were formulating the equations of fluid
flow in the interior of a very dense object, such as a star
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change of momentum is equal to the total force on the body. If we as-
sume there are no internal stresses in the fluid (no viscosity), then the
total force acting on the fluid particles is the sum of the hydrodynamic
pressure acting on the boundary plus the integral of any external force
(such as gravity) acting throughout the interior.

The total force on €2 in the i** direction due to the hydrodynamic

pressure is
—//pyidS:—/// ap.d’u;
oxt
aQ Q

and the ¥ component of the total force on the fluid interior to £ due

to an external force f is
[

(The factor of p is required since f denotes the force per unit mass.)
Therefore, the conservation of the i component of the momentum
for an inviscid flnid is

gpl + ,Of@) dv.

I - (-2

Since  is an arbitrary domain (with smooth boundary), we may con-
clude that

d d du; Op
P uidv=uimp U+pdt v ( 89:@+pf> v
We have already shown that the total derivative of pdv vanishes, due
to conservation of mass, hence this equation simplifies to®

Oui , 19p _

du; 1 Op — % J f;

dt  poxi Ot oxi  poxt

In terms of the total derivative, the equations of conservation of
mass and momentum are therefore

TR (4.5)

d
d—i + pdivu =0,

5We use the summation convention here: repeated indices denote summation.
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These equations are due to EULER in 1755%

The equations above are not closed, since we have only four equa-
tions in the five variables p, u, p. In order to close them we need either
a fifth equation or a relationship between p and p. If the gas is locally
in thermodynamic equilibrium, the pressure, temperature, and density
are related by an equation of state p = f(p, T). If the temperature can
be assumed to be constant throughout the flow field, then the pressure
and density are related by an equation p = h(p). In this case the flow
is said to be barentropic. For example, in the case of an ideal gas with
constant specific heats, in which the entropy is constant (isentropic
flow), the relationship between pressure and density is given by

p=Np’

for constants N and . For air, vy =7/5 = 1.4

A second case of great importance in applications is that of in-
compressible flow. Water, for example, is essentially incompressible;
but there are many applications, in geophysics for example, in which
air flow can also be considered incompressible [5]. For incompressible
flows, divid = 0 and the first of Euler’s equations implies the density is
constant. Euler’s equations for an incompressible, inviscid fluid are

dui+18p:0, 8%:
dt  poxt ozt

— 0. (4.6)

A one form f = f;dz’ is said to be exact if it is an exact differential
of a function F, i.e. fidr' = dF. In that case f; = 0F/0z", and F
is said to be the potential. In vector analysis, a vector field f is said
to be a conservative vector field if f = —VF. In the following we
use one-forms rather than vector fields; then if the external force field
is conservative, we have f = —dF (the minus sign is in keeping with
convention).

Similarly, a potential flow is one for which the velocity field is a
gradient; i.e. # = V. We shall work with the corresponding one-
forms and say that the flow is a potential flow if the one-form u,;dz® is
exact, i.e. if u;dzr® = dp.® A necessary and sufficient condition that u

41,. EULER Opera Ommia 1T 12. ¢f. SERRIN op. cit.

5We write the one-form as u;dz’ where u; are the components of the covariant tensor
obtained from the contravariant tensor u® by lowering the indices; in Cartesian coordinates,
however, u; = u’.
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be a potential flow is that the path integral

I'= /uidmi,

C

called the circulation, vanish for any closed contour C. In that case we
can construct the potential via the integral

T

olz) = / u;da’.

o

Theorem 4.1.3 The circulation around any closed curve C' moving
with the flow is conserved for barentropic flow with a conservative force
field.  Consequently, if the flow is initially a potential flow, then it
remains a potential flow.

Proof: By the transport theorem the rate of change of I' along the flow

18
. d . du; ) d :
F = — . 4 = t 4 — Z
p /uzda: / o dx +uldtdm

) dzt + u; duy

c
d d
:/——p—dF+ Zd(u?) = /——p,
p p
c C
where f; = —0F/0x'. The last integral also vanishes, since we may
write g .
P yipydp—an,  w(p) =22

P P
Therefore the circulation around any closed contour is invariant under
the flow, and I' is conserved. W
By Stokes’ theorem, I' = [[ w where w is the two form
Q

8Uj _ 0UZ
oxt  Oxd

w=du=du; Ndz' = fmcl2z (

1<j

) dx' A da? .
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The 2-form w is called the vorticity, though in classical fluid mechanics,
the vorticity is taken to be the vector field w = V x u. The flow is said
to be irrotational if the vorticity vanishes. By the calculation used in
the proof of Theorem (4.1.3) one can show that

dw

3 Y

when the external force field is conservative. Hence if the flow is initially
irrotational it remains so.

If the circulation around any closed path vanishes, then the vorticity
of the flow vanishes; but in a multiply connected domain, the vorticity
may vanish everywhere yet the circulation is non-zero. We said above
that a one form is exact if it is an exact differential. Thus the one
form u = w;dz’ is exact if u = dy; in that case the circulation always
vanishes, and the flow is a potential flow.

On the other hand, a one form is closed if its exterior derivative
vanishes. Thus u is closed if w = du = 0. In this case the flow is
irrotational. In the language of differential forms, a flow is irrotational
if u,dz’ is closed; and the flow is potential if u,dz’ is exact.

If the flow is irrotational then it can be written locally as the gra-
dient of a potential; but unless the domain is simply connected, the
potential may not be single valued. The best known example is the
planar flow given by ¢ = 8, where # = arctany/x is the angular coor-
dinate. The function 8 is a local potential for the flow

xdy —ydx sin ¢ cosf

= d dy.
2 + 12 r T r y

This flow is irrotational, since du = d?# = 0; but the circulation around
any closed curve containing the origin is

F:/d9:27r.
o

4.2 Bernoulli’s Theorem

Daniel Bernoulli derived, in 1738, an energy conservation theorem in
which the fluid velocity is treated as kinetic energy, while the hydro-
dynamic pressure is viewed as a potential energy. It sets forth the
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fundamental property of fluid flow in which variations in fluid velocity
generate pressure differentials across a surface resulting in forces on
airfoils, sails, etc.

Theorem 4.2.1 Consider a steady incompressible flow in the presence
of a conservative external force field with potential —F. Let u?® =
S ut?. Then

1

VL

2 p
is constant along streamlines.

Proof: Write the momentum equation in Lagrangian form

o [p B
o ()

Multiplying these equations by %¢ and summing, we obtain

-

4,2

d [ ab
%<Zx2 +B+F>:O.

=1 P

The result follows by replacing @ by «;. W
A similar result holds for the flow of a compressible gas, namely

1 d
—u® + / Pyr
2 p
is constant along streamlines. We leave this as an exercise.
Bernoulli’s theorem holds for any steady flow, not just potential
flows. In particular, it holds even in the presence of vorticity. A sec-

ond conservation theorem, quite similar to Bernoulli’s result, holds for
unsteady potential flows.

Theorem 4.2.2 Let i(xz,t) be an incompressible potential flow in the
presence of a conservative force field with potential —F. Let the velocity
potential be denoted by p(x,t). Then, up to an additive factor C(t) in
the velocity potential, the equation

Op 1

2, P
- YL = i 4.
o T 2(Vap) + ; + const (4.7)
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holds throughout the domain of flow.
Proof: Multiplying the momentum equation in (4.5) by dz' and

sumiming, we obtain
du; 10p OF ,
—— - ) dz' = 0.
<dt +p8:1:1+8x2) ¢

Now

du; , , d - de'  d
dr' =—u,dzt — uz% = %dgo — u;dug

g% LY g (22 L,y
_d(dt 2u>—d<8t—|—2(Vg@) :

Therefore we obtain

0 1
d(—@+—(V¢)2+§+F> = 0.

at 2

It follows that the quantity in parentheses on the left is spatially inde-
pendent, hence
d¢

1 2 D
Tz Ly FP= .
Y +2(Vg0) +p+ C(t)

Replacing the velocity potential ¢ by

¢
o+ / C'(s)ds
0

we obtain (4.7). &

Equation (4.7) plays a fundamental role in the dynamics of free
surface problems, for example, in the analysis of wave motion on the
surface of a body of water.

Using Bernoulli’s theorem, let us compute the force on an object
by a two dimensional incompressible flow whose asymptotic behavior
as r — 00 is given by

r
u~ Ui+ %(— cosf,sinf).

For large r the velocity decays like 1/r to the uniform flow (U, 0).
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For incompressible flow the density is constant, and, ignoring changes
in the external potential F', Bernoulli’s equation takes the form

12 p_l 2 Poo
2u +p—2uoo—|— r
Solving for p we obtain
= Do + B(U? — 2 48
P = poo + (U7 — ). (4.8)

The force exerted on an obstacle with finite boundary o by the
steady flow of fluid around it is

fi:—//pl/id&

where v is the outward normal. There are no forces due to the mo-
mentum, since the normal component of the velocity vanishes on o.
Let ¥ be any larger surface containing ¢ in the interior. By combining
the two equations in (4.5) we have, for steady flow in the absence of
external forces,

Op | O(pww;)

o o5 =0 i=123

Integrating this expression over the region between o and ¥, and using
the divergence theorem, we find

fi=— //pz/i ds = — //pl/i + (pus)u, dS. (4.9)

Note that u, = u -7 vanishes on ¢ but not on ¥, since the latter is not
the boundary of an object.

Take X to be the circle of radius R centered at the origin, with R so
large that o is contained within. Then v = (cosf,sin6), u, = U cos¥,
and the second integral in (4.9) becomes

27
fi= —/ (pv* + pu;U cos @) Rd6.
0
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These integrals are calculated as R — oo, using the asymptotic behav-
ior of the flow velocity given above. These considerations lead to

fi=0, fo=—pl'U

These results were obtained independently by KuTTA in 1910 and
JOUKOWSKI in 1906. In this model, the actual force on the object
is unaffected by its shape, since only the asymptotic behavior of the
flows at infinity determines the force; but the effects of viscosity have
been ignored.

Due to viscosity, the fluid must adhere to the surface of an object,
so that the flow field vanishes on the boundary. When the viscosity is
small, as it is for air and water, its effects are very small away from
the boundary, and are confined to a thin layer near the boundary,
called the boundary layer. Classical fluid mechanics deals largely with
inviscid irrotational flow, for which the powerful tool of potential theory
is applicable. The modern theory of fluid mechanics deals with the
complicated effects of viscosity and the resulting turbulence within the
boundary layer. An extensive treatment of the relation of viscosity
and boundary layer theory to potential flow is given in the text by
BATCHELOR.

The calculation above shows the fundamental importance of circula-
tion to the theory of forces applied to an airfoil or sail. In the idealized
case there is lift but no drag; but a mechanism is needed to create the
circulation, and that mechanism is the viscosity of the fluid and the
resulting boundary layer around the wing. The optimum design of an
airfoil seeks to determine a shape which will generate just the correct
amount of circulation in the flow. The correct circulation is that for
which the stagnation point sits at the trailing edge of the airfoil; this
is known as the Joukowski hypothesis of airfoil design.

The flows with finite circulation are given by (2.21) in the exterior
of the unit disk. The flow in the exterior of an airfoil is obtained from
the conformal mapping of the exterior of the unit disk to the exterior
of the airfoil. In Joukowski’s theory of the airfoil, a conformal mapping
is sought which maps the rearward stagnation point onto the trailing
cusp of the airfoil.
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4.3 D’Alembert’s Paradox

It was proposed by D’Alembert in 1768 that the force on an object
in a three dimensional flow should be zero. This result, known as
D’Alembert’s paradox,® can be proved mathematically as a conse-
quence of the fundamental difference in the asymptotic behavior of
harmonic functions in exterior domains in two and three dimensions.
In two dimensions, the irrotational flow (—y,z)r=2 decays like r~! at
infinity. It is the gradient of the multiple-valued harmonic function
0(z,y) = tan~'y/x. We have seen above that it is precisely this term
that generates the force on an object in the flow.

There is no such term, however, for flows in exterior domains in R3.
The motion of an incompressible, irrotational fluid in the exterior of
a domain ¢ in R? is obtained as the gradient of a function ¢ which is
harmonic in the exterior of ¢ and satisfies ¢, = 0 on o. In order that
the flow be asymptotic to a uniform stream with velocity Ui (here i
denotes the unit vector in the z; direction) at infinity, we again require
w ~ Uxy as r — oo. In three dimensions, however, this asymptotic

limit is approached like r—2.

Lemma 4.3.1 Let ¢ be harmonic in the exterior of o, ¢, = 0 on o,
and suppose that ¢ ~ Uxy asr — 0o. Then

o =Uz, +0(r™?), u=Ve=Ui+0@r?).

Proof: Choose coordinates so that the origin is contained within o,
and let ¥ be the sphere of radius R centered at the origin, with R large
enough that o lies within 3. In the exterior of any sphere containing
o the harmonic function ¢ has an expansion in inverse powers of r, so
that

C
QOZUCU1+?+O(T_2).

We shall show that ' = 0. Since ¢ is harmonic in the region between

5J. L. D’ALEMBERT, Opuscules Mathematiques 5 (1768). See also the discussion in
21]
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o and X, we have

o= J Sos= [ Fas— [[m-cnts oy

= —47C + O(R™),

since the integral of ¥ over any closed surface vanishes by the diver-
gence theorem. It follows that C' = 0. The decay of the velocity field
then follows by differentiation. W

It follows that p = pe + O(r=3) for flows in R3. From the integral
over ¥ in (4.9), we obtain

/ / (Do + OBV + (pUsiy + O(R™3) (U +O(R‘3)> Rdw.

Again noting that the integral of 1/* over any closed surface vanishes,
we see that the above integral behaves like R~'. Letting R — oo, we
see that the force must vanish.

The implication of D’Alembert’s paradox is that forces on an airfoil
can only be generated by two dimensional flows; this means that con-
formal mapping techniques are relevant to the discussion of forces on
objects in fluid flows, and that three dimensional effects are, to some
extent, relative — that three dimensional flows with a small aspect ratio
can be approximated by two dimensional flows.

4.4 Hyperbolic Conservation Laws

A partial differential equation is said to be in divergence form if it can
be written in the general form A; + B, = 0. Euler’s equations (4.5) for
one dimensional isentropic flow, may be rewritten in divergence form
as follows.

pr+(pu)e =0 (pu)+ (pu® +p)z = 0. (4.10)

These equations are supplemented by an equation of state p = p(p).

Such a system of equations is called a system of conservation laws.
Equations (4.10) also form a hyperbolic system, that is, they have

two real characteristics. We discussed characteristics of second order
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scalar equations in Chapter 3. The notion of characteristic for a system
is much the same. Consider a general first order system of equations

AU, + BU, +CU + D =0, (4.11)

where U is a column vector of length n, and A, ... D are n X n matrices
depending smoothly on z and ¢. For example, the system (4.10) can

be written in the form
_ U P _{p
- (02 + u? 2pu> U= (u)

(4.12)

1
AUt‘f—BUx = 0, A= ( O) s
u p
where ¢ = p/(p). The quantity c(p) is the speed of sound.
Given a curve I' in the x — ¢ plane, we ask “When are the values of
U on I' compatible with (4.11)7”. Or, to put the question another way,
when are the values of U on I' and the equation (4.11) overdetermined?
If this is the case, then we say that I' is a characteristic. To answer
this, let I' be parameterized by smooth functions z(s), #(s). If U is
specified on I', then its tangential derivative U, along I is given by
dUu
UT = — = Uxﬂfl + Utt/.
ds
Moreover, the differential equation also gives a relationship between U,

and Uy, so that we have a system of 2n equations in the 2n unknowns
Uw and Ut

AUt+BUx :f1(3)7 U:px,—i_Utt/:f%

where f; and f5 are entirely determined by the values of U on [ and
(4.11).

By definition, T' is a characteristic when these equations are not
uniquely solvable. This is equivalent to the statement that

1 t'1 U1 -0

B A Uy )
has a non-trivial solution. This reduces to the system (x’ A—t'B)Us = 0.
Thus I is a characteristic if det(B — £A) = 0.

The system (4.11) is said to be hyperbolic if det(B — AA) has n
real roots A1,..., \,. The roots are the characteristic speeds and the
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associated eigenvectors are the characteristic directions. In the simple
linear case u; +v, = 0, v; +u, = 0 the characteristics are x =t = const.

The same concepts apply in the nonlinear case when A and B are
functions of the dependent variables, as in the case of (4.10). In the
nonlinear case, however, the characteristic speeds and directions de-
pend on the solution. We leave it as an exercise to show that the
characteristic speeds of the hyperbolic system (4.12) are & = u = c.

For the first order hyperbolic system u; + v, = 0, v; + u, = 0 the
functions v + v are constant along the characteristics. For example,
differentiating v 4+ v along a curve dx/dt = 1, we find

%(u—i—v) =(u+v)+ (u—irv)xfi—f =0.

Similar invariants, called Riemann invariants, exist for nonlinear
hyperbolic systems as well. For example, in (4.10) we look for functions
of p and u which are invariant along the characteristic curves dz/dt =
u =% ¢(p). Let us denote by r(p,u) a function which is constant along
the curve dz/dt = u + c. By the chain rule

dp n dx et ) du n dx (o)
- = — = (U +c), — = U+ U — = U+ u(u+c),
di Pet P dt PrTpP i i d i

SO

d d d
7: :Tp£ + T“% =71,(pt + (u+ ¢)psy) + o (ur + (0 + ¢)uy)

=7r,((u 4 ¢)pe — (p1)e) + ru((u + c)u, — v, — %px)

c
=\{r,— —1y ) (cps — puyg).
(p p )

Thus, r = r(p, u) is constant along the characteristics & = u + ¢ if

T_pT'
u — -
CP

It is easily seen that we may take

=L (o [ 45)
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wo=3fo-f oo

is invariant along the characteristics curves © = u—c. When p = Np”,
the integrations may be carried out explicitly, and we obtain

r(p,u):;(u+7i1), S(p,u):;(u7i1>.

These are the Riemann invariants for an ideal gas.

Similarly,

4.5 Shocks

These arguments are valid whenever the solutions are in C'; but they
lead directly to the conclusion that discontinuities in the solutions may
form after a finite time, no matter how smooth the initial data. For
example, suppose the initial data are such that s(x,0) = const. on
some interval I on the x— axis. Then s is constant on the domain
of influence of I in the region ¢ > 0, so long as the solutions remain
smooth. Since the other Riemann invariant, r, is constant on the curves
T = u + ¢, both u and p are constant along these characteristics, and
they are therefore straight lines. If now u + ¢ is initially decreasing in
2 on some interval, these straight lines must intersect at some point in
the region ¢ > 0. At this point of intersection the values of p and w
must necessarily be different; hence at such a point the solutions must
have a discontinuity. Such discontinuities are called shocks, and play
a fundamental role in the analysis of the equations of gas dynamics.
We give here only a brief introduction to this very extensive subject.
For further details, the reader should see the texts by COURANT and
FRIEDRICHS [6], LANDAU and LIFSHITZ [12], SERRIN [21], SMOLLER
[22], WHITHAM [26].

Let us turn to a discussion of the hyperbolic equations (4.10) in the
class of solutions which are not C'. First consider the case where the
solutions are continuous in a domain 2, with a discontinuity in their
derivatives along a differentiable curve v, given by x = z(t). Let f(z,t)
be any function defined in a neighborhood of v, and denote the limiting
values of f and its derivatives on v from the right (z > z(t)) and left
(z < z(t)) by f5, £+, and f* respectively. If [f] = f+ — f, denotes
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the jump of f across the curve, etc, then the continuity of f across v
is equivalent to the statement that [f] = 0; while jumps in f, and f;
imply that [f.], [fi] are non zero.

The derivative of f along the curve is df (z(t),t) = fi + fo&. Since
[f] = 0 on the curve,

1= [ LD s g = ()51 = 0

Applying this jump relation to the variables p and u, we have
[o] + Elpe] = 0, [we] + &[ug] = 0.
On the other hand, from (4.5) we have

o) + [(pu).] = 0, hM+MwL#%ﬁ@A:Q

Using the jump relations we may eliminate the jumps in the time
derivatives from the equations of motion, thus obtaining

o (U]

Gow

(@ —u)lpa] = plus], (v —2)[ue] +¢

If [u,] # 0 these equations imply that the speed of the curve ~, that
is, the speed with which the discontinuity propagates, is © = u +c. As
we have seen, these are the characteristic speeds of the Euler equations.
Thus, a jump in the derivative of either u or p implies a jump in the
other, as well as a jump in the pressure gradient p,. For this reason
the discontinuity is interpreted as a sound wave.”

Now let us turn to an analysis of the equations (4.10) in a neigh-
borhood of a discontinuity in the flow variables. Recall that the Euler
equations are expressions of the basic conservation laws in differential
form. We derive the conservation laws across a shock discontinuity.

For discontinuous solutions the partial differential equations must
be reformulated in weak form

// pp1e+ pupr , dedt =0, // pu oy + (pu? + p)p2, dadt = 0.

"This derivation of the speed of sound is due to HUGONIOT in 1885-1888; see the
discussion in [21], p. 212.
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These equations are to hold for all functions ¢y, € C3(£2), where
() is an open region in the x — ¢ plane. As usual, any weak solution
which is regular in any subdomain is necessarily a strong solution in
that subdomain.

The following is used to derive the jump conditions across a shock.

Lemma 4.5.1 Suppose that F' and G are piecewise C' functions in a
domain ) in the x-t plane, with jump discontinuities across a smooth
curve I' given by x = x(t). Let Q4 denote the components of 0 on
the left and right of the curve I', oriented in the direction of increasing
time. Let F' and G satisfy

//F%JrGapxda:dt:O, Y o € C(9).
‘0
Then

where [F] and [G] denote the jumps of F' and G across T.

Proof: By the usual argument, F; + G, = 0 in each of the subdomains
Q.. By Green’s theorem,

y{ Godt — Fodr = //(Gﬁp)x + (Fo), dadt.
o0+
Qi

The line integrals are oriented so that 2, and §2_ lie on the left of the
path. Since ¢ vanishes on J€2 the only contribution to the line integrals
is along the curve I'. Adding the two equations above we get

/cp([F]da;— [G)dt) = // (Go)s + (o), dudt

r QLU
_ / / (Fi+ G.)¢ + Fy, + G, dudt.
Q

The first term in the double integral vanishes since F; + G, = 0 in Q.
and €_; and the second integral vanishes by hypothesis. Since ¢ is an
arbitrary smooth function, [G]dt — [F]dz must vanish along I', and the
lemma is proved. H
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When we apply this argument to the equations (4.10), we obtain

lpu] = [pl&,  [pu® + p] = [puld.

Letting U = u — & be the flow velocity relative to the shock, the above
equations can be rewritten in the form

[pU] = 0, [pulU + p] = 0. (4.13)

These two jump relations express conservation of mass and momentum
across a shock, just as the Euler equations express these conservation
laws in regions where the flow is regular.

Caveat: The divergence form of the conservation laws is in general
not unique (cf. exercise 8); hence one must be careful in choosing the
weak form of the equations. The various weak forms of the equations
are not equivalent, and will lead to different conservation laws across
the shocks. Hence it is essential to choose the physically correct diver-
gence form for the equations. The advantage of the weak formulation
of the equations is that it contains all the information about the solu-
tions, including the shock conditions, and remains valid even when the
shock structure is extremely complicated. An alternative derivation of
the shock conditions can be given directly by extending the transport
theorem to cases in which a shock occurs in the interior of the domain
Q.

Given the state before the shock and the speed of the shock, that
is, given p,, py, U. it is not possible to determine p_, p_, U_ from
these two equations alone, since they constitute two equations in three
unknowns. For, since we cannot assume that the entropy is constant
across the shock, we no longer know the relationship between p and p
behind the shock. Thus the resolution of the problem when there are
shocks requires the introduction of thermodynamic considerations [21].

4.6 Exercises

1. A stagnation point is a point at which the velocity vanishes. Find
the stagnation points of the flow given by (2.21) for all values of
I'/47U. Hint: The velocity in polar coordinates is given by

_9% _10¢
o o or

vy
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2. The velocity in an irrotational flow cannot attain a maximum
value in the interior of the domain of the flow; the pressure cannot
attain an interior minimum.

3. The linearized Euler equations in three dimensions for small dis-
turbances about the rest state w = 0, p = pg, p = po are obtained
by neglecting quadratic terms. By eliminating u show that the
pressure satisfies the wave equation

P = C2AP, = p/(po)v

4. Prove the following extension of the transport theorem: Let f
be a scalar quantity, v a vector field, and (¢) a domain in R?
moving with the flow generated by v. Suppose f is piecewise
differentiable in £ with jump [f] across a smooth surface I' =
['(t,s), (s=parameter) contained in Q(¢). Then

[ 1ae= [[] G [[iroms

where U = (v —I') - Or is the relative normal velocity of the fluid
across I'.

Use this form of the transport equation to derive the conservation
laws across a shock.

5. Find the characteristic speeds for Euler’s equations
P+ (pu)y =0, Py + puny + c2py = 0.

Show that for strong solutions they are equivalent to the equations
in divergence form (4.10). Show the second equation may also be
written in the divergence form

u? c?
Ut+(—+/—) =0.
2 e/ .

What is the conservation law across the shock corresponding to
this divergence form of the momentum equation?
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Chapter 5

The Maximum Principle

In this chapter we prove the strong maximum principle for second order
elliptic operators and state, but do not prove, the corresponding result
for general parabolic operators. Maximum principles provide a unique,
powerful tool, for scalar elliptic and parabolic operators of second or-
der, and we shall illustrate some of the many applications later in the
chapter.

5.1 Elliptic and parabolic inequalities

Throughout this section, we let L denote the following second order
differential operator:

n

Lu= Z ajp(@)um + Z bi(x)uy,
=1

7,k=1
where §
ou 0“u
J ’ J
ﬁxj 8.T]a$/€

The operator L is said to be uniformly elliptic in a domain §2 if there
is a positive constant p such that

n

D&z ) &, Vreq
j=1

Jk=1

We assume throughout that 2 is a connected open set in R™.
We begin by proving the weak maximum principle.

95
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Theorem 5.1.1 Assume L is uniformly elliptic and that its coeffi-
cients ajy, b; are continuous and uniformly bounded in Q. Ifu € C*(§2)
and

Lu >0, x €L,

then w cannot have an interior mazximum in ).

Proof: At an interior maximum, all the first derivatives of u vanish,
and the matrix u;; of second derivatives is non-positive. Thus, at an
interior maximum,

Lu = Trau, a = ||laxll, u = [|uill.

Since a is positive definite and u is non-positive, the trace of their
product cannot be positive, hence Lu < 0 at an interior maximum. M

We use this result to prove the following, which is known as the
strong maximum principle of E. Hopf. It generalizes the result for
Laplace’s equation to uniformly elliptic, second order equations. We
state it here as a one sided inequality; this gives a more general result.
If Lu > 0 in €2, then u cannot attain an interior maximum in €2; and if
Lu =0 in , then u cannot attain an interior extremum.

Theorem 5.1.2 Assume L is uniformly elliptic in a domain 0 and
that its coefficients aji, b; are continuous and uniformly bounded in €.
If ue C*9) and

Lu > 0, x €1,

then u cannot have an interior maximum in £ unless u is identically
constant.

Proof: Let M be the supremum of u over €2, and let
Qu={xeQ: ulz) < M}

Since u is continuous, )y, is open. We are going to show that {23, is

also closed in the relative topology of 2. That is, if B is an open ball

contained in ), and u(p) = M, where p € 0B, then p € 9. It then

follows that either £2,, is empty, in which case u = M, or 2, = ().
Let S =0B and let p € S, u(p) = M. We shall show that

%(p) > 0, (5.1)
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Figure 5.1: Proof of the boundary point lemma.

where v is the outward normal to S at p. It then follows that p € 012,
since all first order derivatives of v must vanish at an interior maximum.

Let N be the normal line to S through p, and choose a point ¢ € B
on N such that |p — q| = rg, where r( is less than the radius of S. We
take ¢ as the origin and consider the function

hr) = e " — ™78,

It is clear that h = 0 on the sphere Sy of radius ry centered at ¢, and
h > 0 in the interior of Sy. Moreover,

Lh=e°" <4a2 > agaja — 200y (ag;+ bﬂj)) ;
=1

J,k=1

so Lh > 0 in a neighborhood of ¢ for sufficiently large a.

Let S; be a sphere centered at p, and let C' be the intersection of
the interiors of Sy and 57, indicated by the shaded region in Figure
(5.1). Put v = u + h; then

Lv=Lu+eLh>¢cLh >0, rel.
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By the weak maximum principle, the maximum of v must occur on the
boundary of C. Since h = 0 on Sy, v =u on Sy, and v = M at p. The
second component of JC is a circular arc lying strictly in the interior
of S. On this arc, u is bounded away from M, so for sufficiently small
e, v=u+eh <M.

Hence the maximum of v in C is M, and this value is attained at
p, and p only. At that point we must have

ov
5 (p) 20,

where v is the outward normal to S at p. Since 0h/0v(p) < 0, (5.1)
follows. W

The key point in this proof is the inequality (5.1); this result is
called the boundary point lemma. We have shown the following:

Theorem 5.1.3 [Boundary Point Lemma| Suppose the conditions of
Theorem (5.1.2) hold on a domain . Suppose that u is not identically
constant on Q and attains its mazimum ot p € 0S). Suppose that there
is a sphere S whose interior lies in Q) and which is tangent to 0S) at p.

Then
ou

%(p) > 0, (5.2)

where v is the outward normal to ) at p.

There are several extensions of the maximum principle worth not-
ing.

Theorem 5.1.4 Let the previous assumptions on L hold, ¢ < 0 in €,
and

Lu+ cu >0, x € Q.

Then u cannot attain a non-negative interior mazimum in €} unless u
is identically constant in Q. Moreover, if u < 0 in Q and u(p) = 0 for
some point p € S at which the sphere condition holds, then (5.2) holds.

Proof: The proof of this theorem proceeds exactly as the proof of
the strong maximum principle. In this case the parameter a must
be chosen so that (L 4+ ¢)h > 0. This is certainly possible when ¢ is
bounded, since 0 < h < 1.
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Corollary 5.1.5 Let the previous assumptions on L hold, and let ¢ < 0

i Q. If
Lu+cu =0, x € (),

then w cannot attain an interior mazximum or minimum in ) unless u
1s identically constant on €.

We leave the proof of this result to the reader.

Theorem 5.1.6 Let the previous assumptions on L hold, and let ¢(x)

be a bounded function (not necessarily continuous) on Q. Suppose that
u € C*Q) and

(L+c)u >0, u <0 z €.

Then either u =0 on §2 or u < 0 wn €.
Moreover, if w < 0 in Q then (5.2) holds at any p € 02 at which
u(p) = 0 and the sphere condition is satisfied.

Note that there are no restrictions on the sign of c.
Proof: Write ¢ = cy(z) +c_(x), where c. > 0 and ¢ < 0in Q; and
write the inequality as

(L+c_)u>—ciu>0, x € Q.

Let N = {u < 0}. By the argument used in the proof of Theorem
(5.1.2), N is open by continuity of u, and closed in the relative topology
of Q2 as a consequence of the boundary point lemma. Therefore N is
either empty or all of 2. W

The maximum principle can be extended to scalar second order
parabolic operators by much the same argument. We continue to make
the same assumptions about the elliptic operator L defined above, ex-
cept that now we allow the coefficients a;; and b; to depend on = and
t. Let 0, = Q x [0, 7] for any 7 > 0.

Theorem 5.1.7 Let u(x,t) satisfy the parabolic differential inequality

ou
Lu—— >0, x,t) € Qp.
at - ( ) T
Suppose that u attains an interior maximum M at a point (p,ty), where
pE€Qand 0 <ty <T. Then u is identically equal to M in the cylinder

..
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Suppose that u attains its mazimum at a point (p,ty) for some p €
082, and that o sphere S, tangent to O0) at p can be constructed in 2.

Then
ou
Y (p) >0,

where v is the outward normal to Q at p.

Remark: The maximum of # must occur either on the sides of the
cylinder, i.e. on 99 x [0,7] or in Q at time ¢ = 0. Physically, if u
denotes the temperature and it is below freezing outside €2 and below
freezing initially, then it is never going to get above freezing inside €).

The maximum principle for parabolic operators can be extended as
follows.

Theorem 5.1.8 Let h be continuous in Qp and bounded above, and
suppose that

Lu+ hu —u; >0, (z,t) € Qr, Bu <0.

Then either u =0 oru <0 in Qr.

Proof Put u = ve™; then
Lv+(h—XNv—v >0, Bv < 0.

We may choose A so that h — X < 0 in €, since h is bounded above. If
u > 0 in the interior of ()7 then v > 0 somewhere also, and v must have
a non-negative maximum somewhere in Qr. At such a non-negative
maximum of v we have v; > 0 and Lv < 0, but

Lv—v, > (A—h)v>0.

By continuity, this inequality must hold in an open set; hence the
conclusion of the theorem follows from the strong maximum principle,
Theorem (5.1.7). W

For a full discussion of maximum principles and their applications
to partial differential equations, see the monograph by PROTTER &
WEINBERGER [15].
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5.2 Monotone methods

Maximum principles have myriad applications in partial differential
equations. Of course, they can be used to prove uniqueness theorems,
but I will begin with a simple application to semi-linear equations [17].
Consider the simple nonlinear boundary value problem

Lu+ f(x,u) =0, x €l (5.3)

Bu =g, Bu=u . (5.4)

where L is a uniformly elliptic second order operator with Hélder con-
tinuous coefficients as defined in the previous section. Remark: We

require Holder continuity of the coefficients so that the solution of the
linear equation Lu = f is smooth. We assume that 02 is smooth.

An upper solution for (5.3) (5.4) is a C? function ¥ which satisfies the
inequalities
Lo+ f(z,v) <0, Bt > g.

A lower solution v is defined by reversing the inequalities. The following
theorem was obtained by H. Amman [3] and D.H. Sattinger [17]; cf.
also [4] and [18].

Theorem 5.2.1 Let v < © be lower and upper solutions for the bound-
ary value problem (5.3), (5.4). Then there exists at least one solution
u of the nonlinear boundary value problem such that v < u < 0.

Proof: The solution is obtained by a monotone iteration scheme as
follows. Let A be a positive real number, chosen so that

falz,u) = flx,u) + Au

is an increasing function of u on the interval [minv, max#]. Let u° = ¥
and solve the linear boundary value problem

(L — Au' + fa(z,u’) =0, x € Bu' =g.
Note that
(L—A)(u' —u®) =— (L’ + f(z,u°) >0, z€Q

Bu' —u") =g — Bu’ < 0.
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Therefore, by the maximum principle, (extended to the operator L—A),
the function u' — «° cannot have a positive interior maximum. Since it
is non-positive on the boundary, u! < u® = ¥ everywhere in the interior
of by the strong maximum principle. It follows that

Lut + f(x,u') = (L — Au' + falz,u') = falz,u') — fa(z,u’) <0,

1 1

since u! < u’ and f4 is increasing. Therefore u' is also an upper
solution.
Continuing in this way we obtain a decreasing sequence of upper

solutions

-0 1 2

v=u >u >ut > ...
Similarly, starting with ug = v we obtain an increasing sequence of
lower solutions:

V=Uyg < U < Uy < ...

We leave it as an exercise to show that u; < u* for any j, k. Therefore
each of the decreasing sequence of upper solutions is bounded below
by each member of the increasing sequence of lower solutions. By the
standard regularity theory for elliptic partial differential equations, one
can show that each of these sequences converges, and that we obtain
solutions (which may be distinct)

v<u<u<uv. M

We can also use the maximum principle to investigate stability of
solutions of the initial value problem for the associated parabolic equa-
tion:

Lu+ f(z,u) —u =0, Bu =g, w(z,0) = ug(x). (5.5)
Lemma 5.2.2 Let v, © be C? functions which satisfy the inequalities

Lo+ f(z,0) — 5, <0
Ly + f(z,v) — v, >0

m the domain Qp, and
v<7v on Br,
where By = (0 x {t =0} U (09 x [0,T]). Then
vz, t) < v(z,t) (x,t) € Qp.
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Proof: Let w = v — v; then

Lw+ [f(x,v) — f(z,0)] —ws >0, (x,t) € Qp,
w <0 on By.

By the mean value theorem,
flz,v) — f(z,0) = /_ fulz, s)ds
o
:/ fulz, v + zw)wdz = F(x, w)w.
0

Therefore, w = w(x,t) satisfies the parabolic differential inequality
Lw+ Fw—w; >0, Bw > 0.

We do not know F = F(x,w) explicitly, but we may regard it
as a smooth coefficient in the above inequality. Since w is a smooth
bounded function, it follows that F' is bounded, and the lemma follows
by Theorem 5.1.8. W

Corollary 5.2.3 Let v < ug < v, where v and v are lower and upper
solutions of (5.3), (5.4), and let u satisfy the initial value problem (5.5).
Then

v <u(x,t) <7, vVt>0.

Proof: Since v and v are time independent, they satisty the parabolic
inequalities of Lemma (5.2.2), and the Corollary follows.

Theorem 5.2.4 Let v, < 7y be lower and upper solutions of (5.3),
(5.4), and let v(z,t) satisfy the initial value problem

Lo+ f(x,0) — 9, =0, o(x,0) = vo(z), Bo(-,t) = g(-).

Then ty(z,t) <0 fort > 0. If vu(z,t) satisfies the initial value problem
and v(z,0) = vy(x), then v, > 0 for t > 0. Moreover, v(z,t) < v(z,t)
for all t > 0.

The solution v(x,t) increases monotonically to a stationary solu-
tion U(x) of (5.3), (5.4); while v(x,t) decreases monotonically to a

stationary solution U(z); and U(z) < U(x).
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Proof: Let w = 7;. Then w satisfies the parabolic equation
Lw + fu(z,9)w —w; =0, Bw = 0.

Moreover,
w(z,0) = 0y(x,0) = Lo+ f(z,7) <0.

Therefore w(x,t) = ¥y(x,t) < 0 by Theorem (5.1.8).

The same argument applies to the solution of the initial value prob-
lem when the initial data is a lower solution. The inequality v(z,t) <
o(x,t) is a consequence of Theorem (5.1.8). Let w = o(x,t) — v(z, t).
By the mean value theorem, w satisfies a parabolic equation

Lw+ F(x, t,w)w —w; =0, Bw = 0.

Since w(z,0) > 0, it follows that w(x,t) > 0 for all ¢ > 0.
Since the solutions of the two initial value problems are monotone
in ¢ and bounded, their limits exist as ¢ — oo. Suppose that

Uz) = tlim o(x,t).
Let ¢ = ¢o(x) be any smooth CZ(Q) test function. Then
(L1, ) + (f (2, 0), ) — (01, ) =0,

(67 L*SO) + (f(SU,’E), @) - (ﬁtv @) :0:
where L* is the adjoint of the elliptic operator L.

We have
1 [T _
jlglgo?/() o(x, t)dt = U(x);
hence




5.2. MONOTONE METHODS 105

Hence U is a weak solution of the nonlinear boundary value problem
(5.3) (5.4):

(U,L*¢) + (f(z,U),¢) =0,  BU=g.

We have seen that weak solutions of the Dirichlet problem for the
Laplacian (L = A) are strong solutions, and the same is true of the
more general uniformly elliptic boundary value problem when the co-
efficients of I are Holder continuous. W

A point of tangency p €  for two functions u, v € C%(Q) is a point
at which the tangent planes to the graphs of the two functions coincide.
That is, u(p) = v(p) and Vu(p) = AVu(p). When p € 9Q we define
Vu(p) to be the limit of Vu(p') as p’ — p from the interior of €.

Theorem 5.2.5 Let v < ¥ be lower and upper solutions to (5.3), (5.4).
If there exists a point of tangency p € €1, then v = U throughout Q. In
particular, either v =14 or v < 7.

Proof: Let w = © — v; then w > 0 on Q and
(L — A)w+ fa(z,0) — fa(z,v) <O0.
For sufficiently large A > 0, fa(z,u) is increasing in u; and so
(L—Aw <0.

Since w > 0 on 99, it follows by Theorem (5.1.4) (applied to —w) that
either w > 0 or w = 0 in the interior. In particular, there can be no
point of tangency in the interior.

Now suppose there is a point p € 9Q at which w(p) = 0. By
the maximum principle at the boundary, Theorem (5.1.3), w,(p) < 0,
hence p cannot be a point of tangency. WM

Corollary 5.2.6 Let u; < ug be two solutions of (5.3) (5.4). Then
either uy < ug in Q0 or uy = us.

We now discuss a number of examples that show the application of
these techniques. It can be shown by a variational argument that the
nonlinear elliptic boundary value problem

Au = u?, x € Bu=10 (5.6)
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has a nontrivial solution; we denote it by w. We assume throughout
this discussion that €) is bounded and that 92 is a smooth surface in R”,
with the property that at every point p € 02 there is a sphere tangent
to 0f2 that is contained in 2. By the strong maximum principle, w < 0
in 2. Let us show that w is an unstable equilibrium for the associated
parabolic equation u; = Au — u?.

Consider the function Aw. We have

AQw) — Aw)? = AMAw — Mw?) = A1 — Nw?.

Hence Aw is a lower solution for A < 0 or A > 1 and an upper solution
if 0 < A < 1. Let uy(z,t) satisfy the initial value problem

% = Auy —u3, Buy =0, ux(z,0) = dw(x).
By Theorem (5.2.4), uy(z,t) is decreasing in time if A > 1 or A < 0
and increasing for 0 < A < 1.

When 0 < A < 1, uy(z,t) increases monotonically to a stable equi-
librium. Using Theorem (5.2.5), we prove in the next paragraph that
there can be no other equilibrium solution ws > w. Similarly, when
A < 0 the solution wuy(z,t) decreases monotonically to zero as t — oc.
Therefore, all solutions of the initial value problem for which the initial
data lies above w(x) tend to zero asymptotically as ¢ — co. We leave
it as an exercise to show that for A > 1 the solution uy(z,t) blows up
in finite time.

Now suppose that there are two solutions, 0 > wy > wq of (5.6).
By Theorem (5.2.5) the two solutions cannot have a point of tangencys;
hence wy > w; in Q. Let

A" =1inf{A : Awy > wy}.

Then A\* > 1, hence A*ws is an upper solution; while A*ws and w; must
have a point of tangency somewhere in Q. Thus Theorem (5.2.5) is
violated, and there cannot be two solutions of (5.6), one lying entirely
on one side of the other.

Now consider the nonlinear problem

(A +p)u—u® =0, Bu =0, (5.7)

where p is a parameter. We begin by showing that for g < p; the trivial
solution is a stable equilibrium for the nonlinear parabolic equation

(A + p)u —u® = uy, Bu = 0.
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As a comparison function for this problem we use the principal
eigenfunction of the Laplacian:

Aty + s = 0, By = 0.
We have

(A + p)Apy — (Aipr)? = M (e — . — X)), By =0. (58)

By the Krein-Rutman theorem, 1, > 0 in Q. For u < p, it follows
that A\, is a lower solution for A < 0 and an upper solution for A > 0.
Hence the origin (i.e. u = 0) is stable. These inequalities are reversed
when g > pq, hence the origin becomes unstable as p crosses p;.

For p < pq the only solution of (5.7) is the trivial solution. We use
the fact that the eigenvalues of the Laplacian decrase monotonically
as the domain increases. Let Q@ C Q' and let ¢, p| be the principal
eigenfunction and eigenvalue of the Laplacian on €. Then %] > 0 on
Q, and ) < pp. If u is any non-trivial solution of (5.7), put u = wy
and substitute it into the partial differential equation to get

Y Aw + 2V, - Vw + w(A + p)y) — wy? = 0.

Since 7, > 0 on 2 we can divide through by this function to get

Aw + ¢—V@Z)i SV +w(p — ) — wPE) = 0.
Since p < py we choose ' so that p < p} < pq; then the coefficient of
w in the above equation is negative, and by the maximum principle, w
and hence u vanishes identically.

We now show that a pair of solutions +w, w > 0, bifurcates from
the trivial solution as p crosses puy. From (5.8) we see that Ay is a
lower solution when g > py and 0 < A < ¢ for some 6 > 0. Applying
the same argument to ¥, we get

(A + pAg] — (M)? = My (e — i — (A))7).

Since 9] > 0 on 02 and since 0f) is compact, we can find a ¢’ > 0
such that ¥] > ¢ > 0 on 0. Therefore, for A sufficiently large, \¢] is
an upper solution. The existence of a positive solution w of (5.7) then
follows.

2
/
1
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5.3 Crash Course in Elliptic Equations

In this section we summarize some of the principle facts about second
order elliptic and parabolic boundary value problems which will be
needed.

5.3.1 Regularity theory for elliptic equations

Given a function u defined in a domain Q2 C R™ the Holder norm ||u|,
is defined by
[ulle, = sup ful + Ha(w),

where
Ha(u) = sup |u(:c) — u(y)|

0<a<l.
z,yef |z — yl® 7 -

A function u is said to be Hélder continuous with exponent « in
Qif Hy(u) < 4o00. The class of Hélder continuous functions on € is
denoted by C*(Q2). The class of functions which are Hélder continuous
along with their derivatives up to order k is denoted by C*%(Q). The
associated norm is defined by

lullka =Y [1D%l|a-

B<k

The spaces C**(Q) form a Banach algebra under the norms || -||¢.o-
That is, they form a Banach space, and in addition,

luvllra < l[ullollv]lka-

Moreover, if o/ < o then C** is compactly embedded in C**'; that is,
bounded subset in C** are compact in C**'.

We have previously introduced the Sobolev spaces WP, A gen-
eral reference is Adams, [1]. The following result is the basic Sobolev
embedding lemma:

Theorem 5.3.1 If Q) is a bounded domain with smooth boundary in
R™, andn < p < oo, then

lullinp < C(n,p, D) lul|Lp-
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In the following, we take L to be the uniformly elliptic second order
operator defined in §(5.1), and assume that the coefficients of L belong
to C%()) and that 9N is of class C**. We assume g is defined on
9 and has a C** extension into the interior of €. We denote that
extension also by g.

Theorem 5.3.2 The linear elliptic boundary value problem
Lu = h, Bu=g

has a unique smooth solution in class C*“; moreover u satisfies the a
priort estimate

I

20 < CO(|[flla + [l9ll2.0)-

The constant C depends only on 2, n, and .
The following L, estimates are also valid:

lullzp < C[flp + [l9ll2.0)-

See Agmon, Douglis, and Nirenberg [2], especially theorems 7.3 and
15.2. The same estimates hold for operators L + ¢(x), where ¢ € C*
and L + ¢ has a trivial kernel, i.e. (L + ¢)u = 0 implies u = 0.

In (5.3), (5.4) we may reduce the problem to the case g = 0, and
we do that in the following discussion. Then L is a bounded linear
operator from Cy*(Q) to C$(Q), or from W?P to LP. According to
the theorem, its inverse, which we denote by G, is a continuous linear
transformation from C* to C** or from LP to W*P. Though we shall
not prove it here, GG is an integral operator whose kernel is the Green’s
function for L.

To show convergence of the sequence of upper solutions, write the
sequence in the form

u"+1 = —GAfA(x,u”), GA = (L - A)_l.

Since " | U(x) and w™ is bounded, the sequence fa(z,u") converges
in LP(Q) for any p. Since G4 is a continuous mapping from L? to
W02 P(Q), the solutions u™ converge in W2?. For p > n the upper
solutions are in C'~™?_ by the Sobolev embedding theorem. Since G4
maps C* boundedly into C*?, the upper solutions are in C** for any
0 < a < 1. Since the upper solutions converge pointwise and are
uniformly bounded in C*? their limit U(z) € C%°.
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Let v € C?%* satisfy the nonlinear boundary value problem and
write

u=—Gf(z,u).

If fis a C*™ function of (x,u), and if the coefficients of L are C°°, then
by induction we may conclude that the solution u is C*°. Likewise, if f
is analytic in both variables, and the coefficients of L are analytic in the
interior, then it follows that any bounded solution u is a priori analytic.
This induction argument is commonly called a bootstrap argument.

A weak solution of the nonlinear boundary value problem is a func-
tion u € L] () such that

loe

(u, L*¢) + (f(z,u), ) =0 Vo € WHP(Q). (5.9)

Theorem 5.3.3 Let u € L™®(Q) satisfy (5.9), where f is Holder con-
tinuous in (z,u). Then u € C**(Q), and u satisfies the nonlinear
boundary value problem (5.3) (5.4).

Proof: Put w = —Gf(z,u). Then w € WZ*(Q) for any p > 1, and

(w,L*p) = —(Gf,L*¢) = —(f,G*L*¢) = —(f.p) Vo e C

Hence (u—w, L*) = 0 for all p € C%. Now take ¢ = G*(u—w). Then
o € W?P and we get

(u—w, L*G*(u — w) = |u — w|3 = 0.

Hence u = w a.e. and so u may be modified on a set of measure zero
so that u € WZ2P(Q). By the Sobolev embedding theorem v is Holder
continuous, and we may then repeat the bootstrap argument above.
[ |

5.3.2 The Fredholm Alternative

The Fredholm alternative for elliptic operators is fundamental to non-
linear analysis, especially in perturbation or bifurcation theory. We
state it here. Let f(z), c(z) € C*(2) and consider the elliptic bound-
ary value problem

(L+c)u=f, Bu = 0. (5.10)
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If ¢ < 0in  then by the maximum principle the homogeneous equation
(L+c)u=0, Bu=0 (5.11)

has only the trivial solution. If ¢ assumes positive values, the linear
homogeneous equation may have one or more non-trivial solutions ¢ +
1,...p,. If so, then the adjoint equation

L'u+cu=0 Bu=0 (5.12)

also has n solutions ¢7st, ...y, and by the regularity theory, these lie
in C%.

If the homogeneous equation reffellhom has only the trivial solution,
then (5.10) has a unique solution u € C*%. If the homogeneous equa-
tion has n independent solutions then the adjoint equation also has n
independent solutions ¢} € C*. In that case (5.10) has a solution u
if and only if

[fa=o =1
Q

One way to prove the Fredholm alternative is the following. Convert
(5.10) to an integral equation by applying the Green’s operator for L:

u+ Geu =Gf.

By the a priori regularity results for elliptic operators, GG is a bounded
operator from C* to C%*. It follows that Gf € C%“, and the integral
equation above holds in C%%.

A compact (or completely continuous) operator G on a Banach
space & is one that maps bounded sets into compact sets: that is, if
{u;} is a bounded sequence in &, then {Gu;} contains a convergent
subsequence. By the elliptic regularity theory, 7' = Gec is a compact
operator, since it maps C'® continuously into C>® and since C%¢ is com-
pactly embedded in C'*. The Fredholm alternative holds for functional
equations of the form

(I+T)u=f

on a Banach space £, where T is a compact operator. See Riesz
and Nagy [16] for the theory when & is a Hilbert space, Dunford and
Schwartz, volume I [7] when £ is a Banach space.
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5.3.3 The Krein-Rutman Theorem

Consider the eigenvalue problem
Lu+ c(x)u+ A =0, Bu =0.

For now, we us assume that c(x) < 0; hence 0 is not an eigenvalue of
this equation, and L + c is invertible. Denoting —(L + ¢)™' by G, we
may rewrite the eigenvalue problem as an integral equation

u = AGu,

where G is a compact integral operator on the Banach space C%.
A conein a Banach space £ is a closed subset K with the properties
that i) v, v € K imply that au + fv € K for all o, 5 > 0;

ii) u, v € K and u # 0 imply that v + v # 0. The set of non-

negative functions on ) forms a cone, which we denote by K, in C?*,
or in W*P(Q) for k > 0 and p > 1. The interior of K consists of strictly
positive functions.

An operator G is said to be strongly positive relative to K is for
each v € OK there is an integer n = n(u) such that K™u belongs to
the interior of K. We leave it as an exercise to show, using the strong
maximum principle, that —(L + ¢)~! is strongly positive with n = 1
for all u.

Theorem 5.3.4 [Krein-Rutman| Let K be a cone in a Banach space
E, and let G be strongly positive with respect to K. Then G has one and
only one eigenfunction ¢ in the interior of K, and the corresponding
ergenvalue is real and simple.

Corollary 5.3.5 Let L be a uniformly elliptic operator on a domain €2,
with Holder continuous coefficients. Then the eigenvalue with least real
part is real and simple, and the corresponding eigenfunction is strictly
positive on €2.

5.4 The method of moving planes

The method of moving planes was invented by Alexandrov to prove that
global solutions of the nonlinear elliptic equation of constant mean cur-
vature were spheres. The method was in turn extended and developed
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by Serrin, and later by Gidas, Ni, and Nirenberg to prove rotational
symmetry of solutions of solutions of the semi-linear equation

Au+ fu) =0

on R™.
Here is an example of such a result; the proof presented here is due
to J. Serrin and Henzhei Zou.

Theorem 5.4.1 Let u € C*(R™) be a positive solution of
Au+ f(u) =0, r €R™; u(z) — oo as |z| — oo, (5.13)

Suppose that f is locally Lipshitz continuous on (0,00) and is non-
increasing on (0,9) for some & > 0.

Then u is radially symmetric about some point p € R™; and, more-
over,

ou
or
Proof: For v real and fixed, define

Y, ={m <7}, P={z1=7}

< 0, r > 0.

=2y — x1,T9,. .. Ty).

We define u”(x) = u(z”), the solution reflected in the plane I'. Since
the Laplacian is invariant under reflections, u” is also a solution of
(5.13). Let w = w” = u—u". Then

Fw) = fla)

U —uY

Aw + ¢ (z)w =0, cy(x) =

Since f is Lipshitz, ¢ is bounded on bounded sets in R". Moreover,
¢y <0 when 0 < u, w” <9, since f is non-increasing on this interval.
The proof proceeds in several steps.

Step 1. There exists v such that for all v > ~y, w(x) > 0 for all
T € X,

Since u — 0 as |z| — oo, there exists a vy such that 0 < u({x) < 4 for
x1 > Y. Suppose w < 0 somewhere in ¥,. Since w — 0 as |z] — oc
and w = 0 on I'y, w must have a negative minimum at some point
y € X,. Then

u(y) —u'(y) = w(y) <0;
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hence 0 < u(y) < u”(y) < 4§, since y; > vo. Therefore ¢,(y) <0, and in
fact, ¢,(z) < 0 for all z in a neighborhood of y. By Corollary (5.1.5),
w is identically equal to a negative constant in a neighborhood of ¥, in
contradiction to the fact that w = 0 on I'y. Step 2. Suppose w > 0 in

2., for some . Then either w =0 in X, or

dw

w > 0in X,; and pr

<0onl,.

This result is a consequence of Theorem (5.1.6). Step 3. There

exists a maximal closed subinterval [u,c0) such that w > 0 in X, for
all v € [, 00).

It suffices to show there exists a v such that w¥(z) < 0 for some
x € X,. Let z € R" be fixed and choose v < 0 so large that v < z; and
0 <ufx) <u(z)forall z € ¥,. Then 27 € £, and

w(z?) =u(z") —u(z) < 0.

Step 4. Let [u,00) be the maximal closed subinterval; then w* = 0 Iin

¥,.; t.e., u is symmetric about the plane I',,.
If not, then by Step 2

Jw

w>0 on X, 8—<
T

0 on [, (5.14)

On the other hand, since [y, 00) is maximal, there is a sequence {7*}
and points zj, € X, such that

wi () <0, wi = u(z) — u(z?).

Without loss of generality we may choose x; to be the minimum of wy
in X,,.

There are three possibilities: i) |z;| — oo; ii) z — y € X,; iii)
zr — y € I'y. In the first case we find a contradiction as in Step
1. In the second case, by continuity, it follows that wg(y) = 0, which
contradicts our assumption that w > 0in ¥,,. Finally, in case iii), there
is another sequence {z;} such that z, — y € I', and

Owk
8[[’1
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Again, by continuity,
ow
~——(y) >0,
. (y) =

which contradicts the second inequality in (5.14).
Thus v is symmetric about I',. Step 5. We have now shown that in

every direction there is a hyperplane ¥, about which u is symmetric.
Choose n orthogonal hyperplanes with a common point of intersection
p € R™. Clearly Vu(p) = 0; and moreover, u attains a maximum
at p. Furthermore, any other hyperplane of symmetry must also pass
through p, since for a given direction, there is a unique maximal p
for which u is symmetric about I',. Thus u is symmetric about every
hyperplane passing through p; and therefore w is radially symmetric
about p. M

5.5 Exercises

1. Prove a uniqueness theorem for the linear boundary value problem
(L+ h)u=0, Bu=0
under the assumption that the principal eigenvalue A\; > 0. 2. Prove
that the solution to the initial value problem
uy = Au — u®, Bu =0, u(z,0) < w(z)

blows up in finite time, where w is the non-trivial solution to the time
independent problem. 3. Use the maximum principle to compare the
principal eigenvalues of the Laplacian on two domains Q2 C €Y. 4. Prove

the principle of linearized stability for solutions of (5.3) (5.4). That is, a
stationary solution w is a stable equilibrium for the associated parabolic
equation if and only if the principal eigenvalue of the linearized operator

(L+ fu(z,w)+Np=0,, Bip=0

is positive.

5. The nonlinear problem

AT +xe F/IET —¢ T
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arises in combustion theory. Prove that for some values of A the prob-
lem has three solutions. 6. The equation

F(z,u, Du, D*u) =0,

where Du denotes the first order derivatives of u and D?u the second
order derivatives, is said to be elliptic with respect to a function u €

C2(Q) if
Zau] §& >0, Q.

Formulate and prove an extension of Theorem (5.2.5) to such a fully
nonlinear elliptic equation.
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