
Proc. of the IEEE/OES Seventh Working Conference on Current Measurement Technology

1

UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES

Belinda Lipa
Codar Ocean Sensors

125 La Sandra Way, Portola Valley, CA 94028
blipa@pogo.com

Abstract – This paper describes the methods
used to derive uncertainties in SeaSonde radial
and total velocity vectors. Studies of baseline
deviations are used to illustrate/validate the
results.  Recommendations are made for
further work leading to reduction of the
uncertainties.

INTRODUCTION

A measurement is incomplete without an
estimate of its uncertainties.  SeaSonde current
vector output now includes uncertainties in both
radial and total velocity vectors.  This paper
describes how current vector uncertainties are
derived.

A single SeaSonde unit measures the component
of the velocity radial to the radar.  Most
uncertainty in these radial vectors is due to
spatial and temporal variations of the current
field and use of non-optimal analysis
parameters. Spatial uncertainty results because
there can be many different current velocities
present in the radar scatter patch due to
horizontal shear; these velocity values are
calculated during analysis and are averaged to
produce the value output for that location. The
uncertainty is estimated by calculating the
standard deviation of all the velocities that fall
on a particular location. This spatial uncertainty
usually increases with distance from the radar as
the size of the radar scatter patch increases
proportionally with range. Uncertainty can also
arise from variations in the current velocity field
over the duration of the radar measurement,
and from assumptions and simplifications that
are made during the analysis process. The
uncertainty due to these effects is estimated by
calculating the standard deviation of radial
velocities resulting from analysis of successive
short spectral averages.

 The total current vector is obtained by least-
squares fitting to the radial vectors from two or
more radar sites on a grid that extends over the
joint coverage area.  The uncertainties in the
total velocities follow from those in the radials
using standard linear error propagation, which

includes the effects of radial uncertainties as
well as the geometry.

We illustrate and validate our results using data
obtained along the baseline joining two radar
sites.  Ideally, radial velocity components from
the two sites are equal and opposite at each
point on the baseline; in practice they are not,
due to data imperfections. Baseline deviations
give a quantitative measure of the degree of
imperfection and can be used to test various
hypotheses.

The rest of the paper is structured as follows:
Section A. describes sources of radial velocity
uncertainties and their calculation. Section B
describes the derivation of the total velocities
and their uncertainties. Section C describes tests
along a baseline between two Long Island
Sound SeaSondes.

A:  UNCERTAINTIES IN  RADIAL VECTORS

ii) Sources of uncertainty
Assuming that the radar is operating correctly,
we can identify the following sources of
uncertainty in the radial velocities:

(a) Variations of the radial current component
within the radar scattering patch.

(b) Variations of the current velocity field over
the duration of the radar measurement.

(c) Errors/simplifications in the analysis.  For
example these may include the use of
incorrect antenna patterns and analysis
parameters, and errors in empirical first-
order line determination.

(d) Statistical noise in the radar spectral data.

(2) Computation of radial velocity uncertainties
The radar analysis proceeds as follows:  In the
first step, from analysis of a 10-minute voltage
spectral average, we collect all the radial vectors
falling on a given radar cell, as defined by range
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Fig. 1: Geometry of a backscatter radar

from the radar and a finite angular increment
(usually 5°) around a central azimuth angle.  We
then calculate the mean and standard deviation
of these vectors. We believe that this uncertainty
is due to mainly horizontal velocity shear within
the radar cell (Source (a) above) and will refer to
the standard deviation as the ‘spatial
uncertainty’ in what follows. Support for this
hypothesis will be given in Section C.

In step 2, successive 10-minute radial files are
merged over an hour to produce the final output
result, which consists of  the mean radial
velocity and the standard deviation of the mean,
obtained from the 10-minute radial velocities at
each location.  This uncertainty results from the
remaining sources (b) – (d) above.

The spatial uncertainty is not at present
included in the standard Seasonde output but is
available in the unmerged radial files. It is not
included because the output radial current
vectors represent the area average of  the radial
velocities over the radar scatter patch; the
corresponding uncertainty is the standard
deviation of this mean, which is calculated from
successive time samples. Thus even if the spatial
unceratinties are high, the current maps may
look much the same from time to time, as they
represent spatial averages.

SECTION B. UNCERTAINTIES IN TOTAL
VELOCITIES

Firstly, we define a rectangular grid covering the
joint coverage area with cell size typically 1.5 x
1.5 km.  In practice, all radial components that
fall within a combining circle of defined radius
(typically 2km) are combined to form a single
total current vector at the grid point.  We define

these m components as having magnitudes wi

and inclinations ξi for i=1, 2, .........m, if the
component is produced by backscatter, it is
normal to the circular range cell (see Fig. 1).   We
define a total velocity vector with  components
U and V along the x, y axes, which are

determined by minimizing the sum of weighted
deviations given by:

where the weights ∆wi  are the uncertainties in
the radial velocities.  The solutions to this
minimization are given by:

with the corresponding variances obtained from
linear error propagation (see for example
Brandt: ‘Statistical and Computational Methods
in Data Analysis’).  When a  data matrix W is
defined in terms of a parameter matrix P
through a linear transformation matrix T i.e.

                                    W = TP                                   (4)

then the covariance matrix CP  is defined in

terms of the covariance matrix of W, CW  by the
relation

In our case, P is a (2 x1) matrix with components
u, v (the components of the total velocity vector)
and W is the matrix containing the radial
velocities from the different radar sites at that
geographical location.

 Ignoring correlations between radial velocities
measured by the different radars, the variances
in U and V and their covariance are given by:
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For the case of two backscatter units along the x
axis, it follows from (7) that the variance in the
component V along the baseline between the
sites becomes infinite. This must be true because
all radial velocity components are parallel to the
baseline and therefore the input data provides
no information on the perpendicular component
of the total velocity vector.

This calculation is similar to the that termed
‘geometrical dilution of precision’. The latter
however assumes that errors in the radial
velocities are constant, which of course they are
not; see for example: K.-W. Gurgel, ‘Shipborne
measurements of surface current fields by HF
radar’, L'Onde Electrique, September-October
1994, Vol. 74, No. 5.

SECTION C:  BASELINE ANALYSES

This section describes analysis of radial
velocities measured at points along the baseline
between radar sites at Montauk and
Misquamicut. The baseline lies over about 40km
of open ocean.  The current velocity and
horizontal velocity shear increase close to
Montauk, as the current swirls around the
Montauk point. Ideally, radial vectors from the
two sites would be equal and opposite at a point
on the baseline, so the magnitude of their sum
represents a measure of imperfection in the data.
In Subsection 1) we describe the data from the
individual radars, and in Subsection 2) we give
results of tests based on baseline deviations.

1) Radial data and their uncertainties
In Fig. 2, we plot for the two sites at points along
the baseline the rms radial velocity, together

with the mean spatial uncertainty and the
standard deviation of the mean velocity.  Values
are obtained by averaging hourly data over the
period of a week. Ideally, the rms speeds from
the two sites would be identical.  Clearly
however, close to Montauk, the Montauk speed
is  much larger than for Misquamicut and the
Misquamicut spatial uncertainty becomes
almost as large as the  speed itself.  We can
explain this as follows:  (a) there is a large
horizontal velocity shear close to Montauk (b)
the radar cell size is large as it is distant from the
radar.  Therefore when the velocities from the
radar cell are averaged in the first step described
in Section A2,  there is a lot of averaging-down,
yielding a value much lower than the extreme
value.  In contrast, at this location, the Montauk
radar cell size is small, as it is close to the radar,
and there is much less averaging-down, leading
to a higher velocity value and a lower spatial
uncertainty.

2) Baseline deviations
We define the mean-square baseline deviations
at points on the baseline as

                  B = <(v1  + v2)
2 >    (9)

Where v1, v2  are the Montauk, Misquamicut
radial velocities and the average is taken over
time (in our case, the period November 11 to
November 17, 2000).   Ideally B is zero; its
magnitude provides a useful parameter to aid in
making analysis decisions.  We now give two
examples of this.

i) The effect of  spectral averaging time on
accuracy.

In Fig. 3 (upper), the rms baseline deviations
from equation (9) (√ B ) are plotted versus
distance along the baseline for 1-hour and 10-
minute spectral averages. If the baseline
deviations were due to statistical noise, one
would expect the 1-hour results to be a factor of
√ 6 lower than the 10-minute deviations.  As
these curves are almost identical, it can be
concluded that statistical noise is not a
significant contributor.  We note that the
baseline deviations increase as Montauk is
approached, corresponding to the divergence
between the velocities from the individual sites
shown in Fig. 2.
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Fig. 2:  RMS radial velocities and their uncertainties for Misquamicut (upper) and Montauk (lower)
obtained by averaging over SeaSonde hourly results obtained alone the baseline between the sites from
November 11 to November 17, 2000.  Solid line: (dark)  rms radial velocity; dashed line: (medium)
averaged spatial uncertainty; dotted line (light): averaged standard deviation in the mean velocity.

ii) Comparison of baseline deviations and
spatial uncertainties
We now show how baseline deviations can be
used to validate our uncertainty calculations.
Expanding about the ideal velocities gives:

         v1 = v1 ideal + ∆v1   ; v2 = v2 ideal + ∆v2      (10)

Substituting (10) into (9), and using the fact that
the sum of v1 ideal  and  v2 ideal  is zero, gives the
following expression for the mean-square
baseline deviation:

B = < (v1 ideal + v2 ideal  + ∆v1 + ∆v2)
2>  or

B =  σ2( v1) + σ2 (v2) +2ρ( v1 ,v2) σ (v1) σ (v2)    (11)

where σ  is the rms  value and ρ( v1,v2) is the
correlation coefficient.   Ignoring correlations

between v1 and v2, it follows the rms deviations
obey the approximate relation:

                 √ B ≈  (σ2( v1) + σ2 (v2)) 
1/2  (12) 

Fig. 3 (lower) shows the two curves representing
the right and left side of (12), v1, v2  are the
Montauk, Misquamicut radial velocities and the
average is taken over time and where spatial
uncertainties only are incuded on the right-
hand.  The good agreement between the curves
indicates that the large baseline deviations are
explained by the disparity in the sizes of the
radar cels for the two sites, together with the
large horizontal velocity shear.
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Fig. 3: BASELINE TESTS
Upper: :  Comparison of the rms baseline deviations for one-hour spectral averages (solid line)
and 10-minute spectral averages (dotted line)
Lower:  Comparison of the rms baseline deviations (solid line) and the rms sum of the spatial
uncertainties (crosses)

CONCLUSIONS
In conclusion:  we have described the
uncertainties inherent in SeaSonde current
measurements:  many of these are familiar:
statistical uncertainties, analysis errors and so
on.  There is an additional source of uncertainty
common to all systems that make polar
measurements: as the area covered by the
measurement increases with range, so does the
span of values contained within the area.  This
should be taken into consideration whenever
measurements with a different footprint are
being combined or compared.  We have shown
in this paper that large baseline deviations can
occur when velocities obtained from  large and

small  radar cells  are compared, even though
the central points of the cells coincide on the
ocean surface. Similarly errors may occur when
radial vectors corresponding to very different
cell sizes are combined to form a total velocity
vector, as the velocity from the larger cell size is
more area-averaged.  This will be significant in
regions of high current shear.

When comparing Seasonde and ADCP
measurements, it must be born in mind that the
SeaSonde gives an area measurement and the
ADCP gives a point measurement; it is only in
regions of low current shear and/or a small
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radar cell size that results from the two
instruments can be expected to  be in good
agreement.  When making such a comparison,
the  SeaSonde spatial uncertainties should be
examined – if they are high at the ADCP
location, one can not/should not expect good
agreement.

This paper presents evidence from baseline tests
that indicate that the spatial standard deviation
in SeaSonde radial velocity measurements is a
measure of the horizontal velocity shear in the
radar cell;  However, this hypothesis awaits
experimental verification, for example by
comparison with simultaneous output of two or
more ADCPs in the same radar scatter patch.

In future studies,  the effects on SeaSonde results
of reducing the angular and radial size of the
radar cell will be examined.  In addition, we will
be studying the effect of reducing the
measurement duration on the radial velocity
uncertainties.  The result is not immediately
obvious, as there is a tradeoff: reducing the
measurement time will increase the uncertainty
due to  statistical noise, and reduce the
uncertainty due to variation of the ocean current
pattern.

At present, uncertainties in the total vector
components do not include contributions from
spatial uncertainties in the radial vectors.  These
need to be included, because, as for the baseline
deviations, significant errors result when radial
vectors corresponding to radar cells of different
sizes are combined to form a total velocity
vector.

Finally, it is clear that a complete calculation of
total vector uncertainties must include the
uncertainties in the radial velocities as well as
the effects of geometry.  Calculations that
include only the latter (commonly termed
‘geometrical dilution of precision’) are
necessarily incomplete.

Recommendations for future work:

1. Verification that SeaSonde spatial
uncertainties represent horizontal current
velocity shear using ADCPs located in a
single radar cell.

2. Reduction of SeaSonde spatial uncertainties
by reducing the size of the radar scatter
patch.

3. Studies to determine whether SeaSonde
uncertainties can be reduced by decreasing
the time duration of a measurement.

4. Inclusion of spatial uncertainties in the total
vector output.
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