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ABSTRACT

To select a wind wave model as the basis for developing a coupled wind wave—current model for coastal
dynamics, the numerical schemes used in state-of-the-art wind wave models are examined analytically. The
schemes used in the existing models contain serious numerical aliases leading to dissipation and dispersion.
These numerical aliases could mistakenly be interpreted as part of the physical phenomena. To alleviate these
shortcomings, a fourth-order semi-implicit scheme for transport-type models and a second-order semi-implicit
scheme with a gradient-dependent directional filter for the conservation-type models are proposed. The traditional
difficuity of a hyperbolic conservation law is surmounted by this directional filter. These new schemes and the
new filter are insensitive to the sizes of the time step and spatial grid and the magnitude of the group velocity;
therefore, aliasing of the physical phenomena will not occur. Furthermore, the numerical dissipation and the
dispersion of the new method are practically zero. Even though each computation step of these new schemes
requires greater computing time, the total computing time is still considerably shorter than that in previous
models because the time steps of the new schemes can be an order of magnitude greater than those used
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previously.

1. Introduction

Ever since Gelci et al. (1957) first tried to model
wind-generated surface waves, many improved models
have been developed (e.g., SWAMP Group 1985;
SWIM Group 1985; WAMDI Group 1988). The state-
of-the-art model is WAM (Giinther et al. 1993). Al-
most all of the models have been designed for open
oceans; the coastal region has been treated only cur-
sorily. Surface gravity waves, whether generated lo-
cally by coastal weather or propagating onto the shelf
as swell from distance storms, can greatly influence the
wind stress distribution (Reider et al. 1994), which, in
turn, can affect the nearshore flows and fundamentally
modify the coastal dynamics. Furthermore, the wind is
also very efficient in driving strong coastal currents
near topographic features. These wind-driven currents
can exert a strong influence on the surface gravity wave
field, and they are very efficient in adjusting the mass
field and surface temperature patterns. Due to the pres-
ence of the coast, the waves (as the drag causing rough-
ness elements) are never homogeneous. Therefore,
both the waves and the wind-driven currents can influ-
ence the atmospheric forcing. The coupling between
atmospheric forcing, surface gravity waves, and wind-
driven currents is a unique feature complicating study
of the coastal region. To address the problems inherent
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to this coupled system, we have to develop a wind
wave—current coupled coastal dynamics model.

As the first step, we need a workable coastal wind
wave model, for the wind waves serve as the interme-
diary for the transfer of energy and momentum across
the air—sea interface (e.g., see Phillips 1977). Since
none of the existing models can fulfill this role, we
decided to develop a new Goddard Coastal Wave
Model (GCWM) for our purpose. As part of our effort,
we have examined the state-of-the-art wind wave mod-
els critically by separating each component of the sys-
tem and made the necessary changes for these models
to work in the coastal region. In this paper we report
our results concerning the design of new numerical
schemes. To emphasize the effects of the numerics, we
will discuss wave propagation only, and set the source
function identically zero for the present.

The importance of the numerics in modeling is ob-
vious. It can introduce computational dispersion and
dissipation, which, if not properly accounted for, could
be misinterpreted as part of the physical processes. Cur-
rently, there are two different approaches used in third-
generation wave modeling: The first approach (e.g.,
WAM) uses the transport equation and employs the
classic first-order Euler upstream scheme for swell
propagation; the second approach (e.g., Tolman
1992a) uses the conservation equation and employs the
ICN (iterative approximation of the Crank—Nicholson
scheme)-center-space scheme. Neither of these two
computing schemes is entirely satisfactory. Tolman
(1992b) recently pointed out the problems with the nu-
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merics of the WAM but offered no remedy. He ran the
WAM model with different time steps and found dif-
fering results. These symptoms are precisely what
should be expected: Since the waves are dispersive, the
group velocity is a function of the frequency, the bot-
tom topography, the current velocity, and even the local
wave energy density N. Furthermore, since a wave
model must deal with wideband spectra, it follows that
the numerical dissipation and dispersion rates for dif-
ferent frequencies differ and their variation should be
carefully monitored. The errors of wave propagation
depend on the time step, grid size, and group velocity.
These numerical errors can mix with the true physical
phenomena and lead to false interpretations of the wave
generation or evolution processes.

In this paper, we first examine analytically the prob-
lems associated with the presently used numerical
schemes. Our results show that the first-order Euler up-
stream scheme for the transport equation, in the worst
case, can transport only 20% of the initial energy den-
sity after one time step depending on the wavenumber,
time step size, grid size, and location. As a result, when
one changes the time step from 5 to 2 minutes main-
taining the same grid size (Ax), the numerical solu-
tions for some wave components can decrease 50%.
We will also show analytically that the numerical so-
lution of the ICN scheme is unconditionally computa-
tionally unstable for the conservation equation. There-
fore, it not only grows exponentially with time but also
generates a sizable numerical tail, which can reach
about 40% of the original solution. Additionally, the
oscillating computational mode can mix with the phys-
ical mode, thus rendering the purely physical mode dif-
ficult to interpret. The most serious problem with these
numerical errors is that they differ for different wave
components. With the extensive tuning used in the
present models, these nonuniform variations of numer-
ical dissipation and dispersion with respect to wave-
numbers are impossible to separate from the conse-
quences of real physical processes.

To alleviate all these difficulties, we propose a
fourth-order semi-implicit scheme for the transport-
type wind wave model and a second-order semi-im-

plicit scheme with a gradient-dependent directional fil-

ter for the conservation-type wind wave model. This
special directional filter guarantees the conservation of
the propagating quantities. The new schemes provide
several advantages: First, the inevitable numerical er-
rors of whatever size are independent of the time step,
grid size, and the group velocities. In other words, the
numerical errors are uniform for all wave components;
therefore, the differences between the numerical pro-
cesses and the true physical processes can be easily
separated. Second, the numerical dissipation and dis-
persion are practically nonexistent, and the propagating
quantity is truly conserved. Finally, the time step in
these new methods can be at least four times greater
than in the previous schemes; therefore, the new
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method is about three times faster than the older meth-
ods. We will present all of these results analytically.
Without loss of generality, however, we will present
the analyses only for the ohe-dimensional case in this

paper.

2. The numerical methods

In order to discuss the computational error quanti-
tatively and analytically, we introduce two standard
measuring parameters: the normalized solution, also
known as the computational stability parameter [A],
and the normalized propagational velocity, also known
as the computational dispersion parameter, (¢, + u)*/
(¢, + u), in which c, is the group velocity and u is the
current. The computational stability parameter is de-
fined as

[A] = [N"'/N"], (1)

where N is the quantity to be computed and the super-
script n or n + 1 is the number of the time step. When
|A| < 1, the numerical scheme is computationally sta-
ble but damped (dissipative); when |A| = 1, the nu-
merical scheme is computationally neutrally stable
(nondissipative); when | A| > 1, the numerical scheme
is computationally unstable. We will further use A
as the stability parameter of the true solutions with
| A | always equal to 1.

The computational dispersion parameter is defined
as '

(cg + u)*/(c, + u), (2)

where (¢, + u)* is the computational velocity and (c,
+ u) is the true velocity. To obtain (¢, + u)*, we must
introduce a computational phase error * as

—0* = tan"'(— A;/A,), 3)

where A; is the imaginary part and A, is the real part
of A.

Another important computational parameter, the
CFL conditjon i, is defined as

1= (cg + u)At/Ax, 4)

in which At is the time step and Ax is the grid size.
This parameter will appear in many of the analytic ex-
pressions of the computational analysis.

a. Transport equation

Since WAM uses the transport equation, we will ex-
amine that scheme first. Let N be the energy density
spectrum; ¢ the time; x, y the horizontal coordinates; ¢
the propagation angle; fthe frequency; and S the sum
of all the source functions. Furthermore, let ¢, + u, c,,
+ v, ¢g9, and ¢, be the propagation velocities of the
energy density spectrum component in x, y, 6, and f
space, respectively, in which u and v are the ambient
current velocities and c,, and c,, are the group velocities
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in the x and y directions, respectively. Thus, we have
the basic transport equation for the energy spectrum of
the wave field as

-—-aN+( + )@I--}-(C +v)a—N
or e T Wy & dy
oN oN
+Cg9?9‘+cgfb7=S. (5)

We will set S = 0 identically in this paper. Furthermore,
we also assume that N = N(x, t); therefore, Eq. (5)
will be simplified to a one-dimensional transport equa-
tion. However, the numerical results apply to the full
multidimensional cases.

1) THE CLASSIC EULER UPSTREAM SCHEME ( FIRST
ORDER )

The classic Euler upstream scheme is the straight-
forward conversion of a differential equation to the dif-
ference format, in which the temporal and spatial dif-
ferences are related as follows:

n+l n n n

N N v, X2l (6
At Ax
where n is the number of the time step and j is
the number of the grid point. To facilitate quan-
titative analysis of the numerical scheme, we as-
sume N; = N, explik(jAx — v;2)], where Ny is
the value of the arbitrary gauging function at the
boundary (x = 0), k is the wavenumber in space,
and v; = (¢, + u);. There is no loss of generality in
adopting this form for N, for an arbitrary function
can be expressed as its Fourier expansion. The im-
portant quantities here are the propagation speed
and direction. With these substitutions, Eq. (6) be-
comes

Nj*' — N7 = [p;(coskAx — 1) — iy; sinkAx]N7.
(7)

In terms of the measuring parameters introduced above,
Eq. (7) yields

n+1

A= I\JI,'-’ = exp(—ikv;At)
=1+ p(coskAx — 1) — iy; sinkAx; (8)
therefore, the computational stability parameter is
[A]; =11 = 24(1 — )(1 — coskAx)]"2,  (9)
the computational phase error is
—0} = —phase(A) = kv At
— tan—t — MASIRAX ka0 L (10)

1 + pi(coskAx — 1)
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and the computational velocity is

— 80 kax0
(cg+u)}"=ﬁ’7 - (11)

Thus, we obtain the analytic expression for the com-
putational stability parameter in terms of kAx and ;.

Figure 1a shows how |A| varies with kAx for dif-
ferent y;. Line A represents the true solution (Ag.),
lines B, C, D, E, F, G, H, I represent the numerical
results for  equal 0.2, 0.4,0.707,0.87,1.,,1.1,1.2, 1.5
respectively. When y; = O or 1, |A| = Ay = 1. Other
than these two trivial values, whenever y; > 1, |A}
> 1, computational instability will occur. These situ-
ations should be avoided, for the solution will grow
with time to infinity. Whenever u; < 1, |A| < 1, com-
putational dissipation will occur. For a fixed y, when
u; < 1, the relative minima of |A| occur at kAx = (2]
+ 1), while the relative maxima of |A| occur at kAx
=2lmr,withl=0,1,2,3, ---.

If kAx equals (2] + 1), the absolute minimum of
|A] = 0.2 occurs when y; equals V2/3. This is the worst
case, where the numerical solution of the classic Euler
upstream scheme will be only 20% of the true solution
after one time step. To avoid these pitfalls, one may be
able to control Az and Ax in the computation; however,
for a finite bandwidth spectrum, one cannot control the
wavenumber k, which, in turn, determines the group
velocity through the dispersion relationship. Therefore,
the classic Euler upstream scheme used in the WAM
model may encounter serious nonuniform dissipative
problems. With this interpretation, it becomes obvious
why Tolman (1992b) found that the WAM gives dif-
ferent results for different At.

We can illustrate the above discussion with a simple
example involving the propagation of a positive defi-
nite spectrum function given by a Gaussian pulse, N©
= exp{ —k[x — (¢, + u)t,]*}, where k = 0.2 and ¢,
= 10. The results are computed based on the following
values: (¢, + u) = ¢; + ¢;[1 + cos(jAx)], where c;
and ¢, equal 0.6 and 0.2 respectively; A¢; = 0.25, At,
= 0.5; n; = 400, n, = 200; Ax = 0.5. The maxima of
Wix and uf,, are 0.5 and 1.0 respectively; and the min-
ima of p(, and pf,, are 0.3 and 0.6 respectively.

Figure 1b shows the distribution of N when ¢ = 100.
Line A represents the true solution, while lines B and C
represent the numerical solutions of the classic Euler up-
stream scheme for ' and y?, respectively. The amplitudes
of the numerical solutions are only 33% of the true solution
for u' and 28% of the true solution for 1. These results,
though poor, are far from the worst case. Examples that
are computationally unstable are not shown, for the solu-
tions simply blow up. One may consider increasing the
order of the Euler scheme to control the numerical errors.
This approach is not viable, as will be shown presently.

(cg + u);.

2) HIGHER-ORDER SCHEMES

The properties of any higher, mth, order Euler up-
stream scheme can be derived as follows. First we have
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Nt =3 ayNi;., (12)
I

in which a; are constant coefficients to be determined
by the normalization condition given later.

Using the Taylor expansions for N/*' and a;N%,;,
we then obtain

ON”  (Ar)? 9°N?
B NP AL g S 13
N JHAE T (13)
and
o ONZ
a;Nj,; = ajr[N}’ + (j'Ax) —(;
9°N*"
+ (A —t+ -], (14
(J'Ax) Fye ] (14)

By substituting Egs. (13) and (14) into (12) and using
ON"/9t = —(c, + u)(3dN"/0x), we have

ON7?
(1= Za)Nj + (~p = Na)Ax Lt oo
J’ ' X
Ax™ d"N?
+ _am amy 22X ;
(= ;,ajj ] o ———axm

+ O(Ax)"™ 1 =0. (15)

The higher-order computational parameters (a;, j’
=1, 2,3, ---, m) can be derived for any order m
provided that they satisfy the following necessary con-
ditions:

Ya=1 and (—w)" =Y aj"
i 2

m=12,-,m.

(16)

We will not show the details of the higher-order nu-
merical solutions here. Qur analysis, however, leads
us to the following general conclusions. Simply in-
creasing the order of a numerical scheme will
not yield a better solution. Although higher-order
schemes decrease numerical errors, numerical dissi-
pation and dispersion continue to exist for any finite
order. The rule is that dissipation dominates when m
is odd and dispersion dominates when m is even.
When m is greater than 2, the boundary condition
becomes increasingly more complicated. The key to
limiting numerical errors in any order of the Euler-
upstream scheme is to use very small Az, which un-
fortunately requires enormous amounts of computer
time.

For wave research, there is another more serious
shortcoming of the classic Euler upstream scheme,
for we have to deal with problems with finite spec-
tral bandwidth. In the finite bandwidth problem, the
dissipation and dispersion will be nonuniform for
different wave components. Such effects are impos-
sible to separate from other real physical processes
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expressed in the various source functions, which are
all wavenumber and frequency dependent. Based on
these considerations, it becomes obvious that al-
though the classic Euler upstream scheme was pop-
ular in earlier numerical studies of fluid mechanics
problems, it no longer offers a viable choice, as
shown by Press et al. (1989).

3) A NEW FOURTH-ORDER SEMI-IMPLICIT SCHEME

The idea of this new scheme is to use it implicitly to
increase the accuracy of the computation instead of re-
ducing the size of the gridpoint interval in space or
time. To obtain an implicit scheme, we begin with the

expression
ntl _ N7 n n+l
N; Nj E)N,+6)N, . an
Ox ox

At

1 —
= —-E(cg+u)}”(

where () means averaging in Ax;, and At at ¢
= nAt. Therefore, d(c, + u)"19x = 0. We are able
to do so because Eq. (17) is the transport equation that
does not include d(c, + u)/dx. Using the Taylor ex-
pansion, we have

IN" A2 9°N"
n+1 — n + R R——
N =N A o
At® 3°N”"
+——t - 18
31 93 > (18)
and
aNn+1 Atz aZNn+1
[ - n+tl __ e
N N At Ey + ) i
At3 a3Nn+I
—_——_— + LI
31 9 (19)
Subtracting Eq. (19) from Eq. (18), we obtain
At { ON"  ON"*!
n+l __ n _ T
N N 2 ( ot N ot )
ﬂf aZNn 3 aZNn-H
4 ar? at?
At3 63Nn 63Nn+1
+ — — . (20
12 < ar? a3 ) (20)
From Eq. (5), we may write
oN" S\ _ aF"
o =(c, +u) o L (21a)
B2N”_é _6F" __i dF"
orr ot ox ) ox\ or
0 | ——-wm ,ON"
—ax{[<cg+ uy"] ax}, (21b)
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where F" = (¢, + u)  N". Similarly,

aNn+l aNn+l aFn+l
= _ + xn = —
ot (e +u)" 5 x (2
aZNn+! a Nn+l
F I {[(c w12 } (22b)

where F**! = (¢, + u) N"*!. Substituting Egs. (21b)
and (22b) into the third-order term of Eq. (20), we
obtain
3°N" +

ar? at?

SN" o 9

aNn aNn+1
X [ o + EY ]} (23a)
Recalling the first-order term of Eq. (20),
g aNn N aNn+1
2\ ot ot )’

Nn+1 — Nn —

and substituting it into Eq. (23a), we arrive at the fol-

lowing equation:
3°N"  9°3N*! 9 ——— 2 O
o o _ax{[(cg+”) %

_2_ n+l __ n
X[At(N N)]}. (23b)

Now, substituting Eqs. (21), (22), and (23) into
(20), we obtain the new semi-implicit scheme as

{1+é(—c~ﬁ""a
ox

VS REen—— ) [
IR ax}N
At — 0
—{1—?(cg+u) Ew

Az 2 n
+ 2 (G F T }N (24)

Because the transport equation does not include d(c,
+ u)/dx, we can assume that

ji j+1/2
(cg + u)ﬂl = (¢, +u) Grizm

(G—H2)n +hHn

= (¢ + u) =i(cg+u)

Y ORI M e R

3 [ e N
ax{[(cgﬂtu) 1 Ox}

=[(c; + u) 1[Ny + Noy — 2N;1/(Ax)?, (25)
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———m N :
( + ) a - (C + u) [Nj+1 - Nj_l]/(ZAx).
(26)
Therefore, Eq. (24) can be rewritten as
) M, m
It K (n+1) | H M (n+1)
—{—/—+1)N; — -
U (5o e (s

(n)2 (n) (n)
' (1 S )N _ {”T (“T - 1)}N§i’1

(n) (n) (n)2
+ £ (“ + 1)N}ﬁ{ + (1 - "——)N}”). (27)

4 3 6

To analyze the computational errors, we substitute the
same Fourier mode exp(ikjAx) into Eq. (27) and ob-
tain

{1 + % (“("))Z[eikAx + e—ikAx _ 2]

1 ikDx —ikAx n
+Z)u*(n)j[ekA — e kA ]}Nj+l

{1 + — (’u(n)) [ezkAx + e—tkAx 2]

4 #](’l)[eikAx - e_ikAx]}N}', (28)

j{n)

where pf = (¢, + u)" "At/Ax. Let us define

1 kA
a=1-— '5 ([J,("))2 sin? Tx N

b= % p™ sinkAx.

Then, the computational stability parameter A can be
shown to be
a—ib a®>—b*—~ i2ab

A: = . 2
a+ib a’>+ b? (29)

Therefore, we always have
[A] = |Awe! = L. (30)

Equation (30) means that the new scheme is uncon-
ditionally and computationally neutrally stable (non-
dissipative) for all u. If we wanted to plot a computa-
tional stability graph as in Fig. 1a for the new scheme,
the result would be a single line at |A]| =

For the asymptotic limit kAt — O,

A=1+iukAx — %uz(kAx)z

— i g (kAX)® + 21—4 pH(kAX)* + (31)
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Unlike the explicit schemes, Eq. (31) shows that two
levels of time and three grid points in space give us a
fourth-order accuracy scheme instead of a second-order
accuracy scheme.

For the numerical dispersion analysis, we obtain the
computational phase error as

2ab

— g tan—1<———) 50 (e + u)kAL =
a? - b2 g

(c, + u)* = —0%kAt S (¢, + w). (32)

When the grid size is small, the dispersion will be
eliminated. Unlike the Euler upstream scheme, At
can still be reasonably large for a small Ax. There-
fore, we can also limit the dispersion by using this
fourth-order semi-implicit scheme. Figure 2 is the
same as Fig. 1b except that it presents results for the
fourth-order semi-implicit scheme. The maxima of
the numerical solutions from the fourth-order semi-
implicit scheme are about 73% of the true solution
for both x! and u? when t = 100. If we increase u
by a factor of 2, the computational amplitude is still
about 73% of the true solution. It should be pointed
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out that the decrease in the maximum here is not due
to dissipation, for this scheme is nondissipative;
rather, it is due to dispersion, which causes the same
amount of energy to spread out. The results of the
large 1 shown here cannot be obtained from any of
the previous schemes because they suffer from com-
putational stability problems.

Based on these comparisons, we conclude that the
new scheme is superior to the classic Euler upstream
scheme. The reasons can be reiterated as follows:
First, the new scheme eliminates computational dis-
sipation completely for all x4 and limits the disper-
sion to an acceptable level for a reasonably large At
and small Ax. The numerical errors of the implicit
scheme are practically independent of p. The dis-
persion effect does change the distribution of the
solution slightly, but there are no significant nega-
tive values of N. Therefore, the new scheme pre-
sented here gives more reliable numerical solutions
and also saves computing time. Second, the new
scheme generates only a physical mode. Third, one
has only to deal with a simple boundary condition
in this implicit high-order scheme, which is differ-
ent from the case with classic high-order schemes.

DISTRIBUTION OF N

T 11 1 ]l T ll‘l—( l‘lj LI ] T T 7T ]_l7| TrrTT Tj‘rl I1l| T 1 1T 1
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FI1G. 2. Same as Fig. 1 except that the numerical computation here
is based on the fourth-order semi-implicit scheme.
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And finally, unlike the Taylor—Galerkin method (Chen
1992), one only has to solve a narrow-band matrix by
using a preconditional conjugate residual method (Lin
et al. 1992) instead of a full matrix, which again results
in computational time savings. Based on dynamical
considerations, the transport equation should not be
used. If for some special reason the transport equation
is preferred, the fourth-order semi-implicit scheme
should be adopted.

b. Conservation equation

Having discussed the different schemes for the trans-
port equation, we now consider the conservation type
of equation

A + O (cyx + u)A] + Ol(c,y + v)A]
ot ox dy

Ol cgpAl N ey Al _
09 of

in which A is the spectral action density, defined as the
ratio of spectral energy density to the intrinsic fre-
quency. Although all the computations are performed
in terms of the action density, the final results are con-
verted into spectral energy density because it is a di-
rectly observable quantity.

There are two major advantages of using the con-
servation law in wave modeling. First, action conser-
vation is the most fundamental law governing the wave
motion. The conservation of action can be shown to be
equivalent to the conservation of energy only when the
intrinsic frequency is an invariant following the waves.
In coastal regions where the bottom topography
changes from one location to another and unsteady tidal
currents prevail, the intrinsic frequency is no longer an
invariant and the wave energy density is no longer con-
served. The conserved quantity is the action density
that is equivalent to the energy flux. Under these con-
ditions, the action conservation law is preferable. The
second, more practical, reason is to accommodate the
effects of currents. To account for the ubiquitous
coastal tidal currents in the transport equation requires
the inclusion of the radiation stress, which is rather
cumbersome to compute. But in the action conservation
equation, the current—wave interaction is included eas-
ily. The action conservation equation used here is the
same as that in Tolman (1992a). The difference is that
we do not invoke the conservation of wave crests as
did Tolman (1992a). The advantage of the conserva-
tion-type equation, however, can be easily offset by a
well-known difficulty: the difficulty in finding a usable

S, (33)

numerical scheme that will conserve the total action in

a hyperbolic conservation law. This difficulty was par-
tially resolved by sophisticated methods in a one-di-
mensional case (Shu and Osher 1989). For more gen-
eral multidimensional cases, the solutions are still elu-
sive. We will introduce a new method that will be
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applicable to the specific conservation equation in a
multidimensional domain as required by Eq. (33). .

For the conservation equation [Eq. (33)], the Euler
upstream scheme becomes unconditionally computa-
tionally unstable because 9,(c,, + #) = 0 (Book et al.
1975). For the same reason, the special fourth-order
implicit scheme discussed above and the ICN scheme
used by Tolman (1992b) suffer the same defect as the
Euler upstream scheme.

To overcome this difficulty, we propose a second-order
semi-implicit scheme with a directional filter. This scheme
will be discussed and compared with the ICN scheme used
by Tolman (1992b). For simplicity, we will treat the one-
dimensional case analytically as before. The numerical re-
sults, however, are for the full multidimensional cases.

1) THE ICN SCHEME

The finite-difference expression for the ICN scheme
is

At
AP = A7 = = (1 + @)l + w)Al

— 2a[(c, + w)A],
= (1= a)[(cg + WAL }",

where a is a parameter within the range 0 < || < 1,
which is used to determine the relative importance of
the propagation and source terms. Note that the sign
of a is chosen to be the same as of that ¢, + u. Phil-
lips (1959) has demonstrated that this type of scheme
is unconditionally computationally unstable, a fact
fully acknowledged but also ignored by Tolman
(1992a). In an effort to alleviate this problem, Tol-
man (1992a) used parameter . When a is small, the
propagation term dominates. When « is large, the
source term dominates. Therefore, the ICN scheme
remains unconditionally computationally unstable
unless « is large enough to stabilize the propagation
terms by allowing the source terms to become dom-
inant (Tolman 1992a). Tolman (1992b) also applied
flux corrected transport as proposed by Book et al.
(1975, 1981) and Boris and Book (1973, 1975, and
1976) in order to overcome the above problem. How-
ever, the flux corrected transport method is nothing
but a numerical diffusion; it is unable to completely
eliminate the above problem. Furthermore, the flux-
corrected transport introduces new errors. The errors

(34)

-can be eliminated or controlled only for particular

problems where the character of the solution is es-
sentially known in advance (Book et al. 1974). Fig-
ure 3 shows the numerical simulation for N when ¢
= 100. The solution is the same as that in Fig. 1b
except that it is for the ICN scheme with & = 0; and
a set of much smaller At = 0.1, 0.05, and 0.0125. As
noted above, unlike the numerical solutions of the
transport equation (1), the solutions are unstable,
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FI1G. 3. Same as Fig. 1 except that the numerical computation here is based on the ICN scheme
with (@ = 0.0) and conservation equation {Eq. (33)]. Line A represents the true solution; line B
represents the numerical solution for Ar = 0.1 and n = 1000; line C represents the numerical
solution for Ar = 0.05 and n = 2000; line D represents the numerical solution for Af = 0.0125

and n = 8000.

and they grow to twice the magnitude of the real so-
lution after £ = 100. Additionally, there is a substan-
tial amount of numerical dispersion. The tail of the
noise dispersion can reach 40% of the true solution.
Tolman applied the flux-corrected transport method
to eliminate these noise tail problems by setting all
the negative values to zero. Unfortunately, this sim-
ple solution did not eliminate the problem; there is a
subtle difficulty here. Negative noise for a nonneg-
ative function can, of cause, be eliminated easily, but
there is no guarantee that some of the positive values
are not spurious. These major drawbacks (high dis-
persion, unconditional computational instability, and
the difficulty of separating the signal from the com-
putational noises) have prompted Kriess and Lorenz
(1990) to caution against the use of this scheme for
hyperbolic-type equations.

2) SECOND-ORDER SEMI-IMPLICIT SCHEME

To solve the conservation equation, we propose two
semi-implicit schemes designated as A and B. Type A
is the formal semi-implicit scheme

AV — AT = (F1, — F1)/2, (35)
AFTt = AJ = (FJ22 = F3*'") * factor
+ (Fiy — F?) = (1 — factor), (36)

where F} = (At/Ax)(c, + u);A} and 0 < factor
< 1. Our study of the wave model indicates that the

_minimal numerical dissipation occurs when the factor

is 0.7.
To conserve computation time, we also introduce a

variety of the Type A scheme designated as Type B, in
which

n 1 n n n n
AT — A7 =§[(Fj_+1‘ —F"Y+(Fr,—Fn1. (37)
The stability parameter is
(I -a)—ib
T (l+a)+ib’
1—a)’+b?
A== (38)

(1+a)?+b*’
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FiG. 5. The profile of bottom topography along the x direction
for the test region.

where

K _ K-
a > 2 coskAx

and

b= %‘—‘ sinkAx.

The dispersion parameter is

b x>
—6* = tan™! (1—_—5 kA_’ ’ ukAx.
Therefore,
— 0% kax—0
(cg+u)*=k—A? c, t u. (39)

From Eq. (38), one can see that second-order semi-
implicit schemes are stable when a = 0, and when p
< 0.5, 100% = |A| = 90%. Therefore, the computa-
tional dissipation is very small and does not vary sig-
nificantly with ¢ when gy < 0.5. Equation (39), how-
ever, indicates that this scheme is dispersive and non-
conservative when kAx # 0. Unlike the ICN scheme,
the dispersion will not generate a sign changing tail,
but it will spread action around the propagated direc-
tion and cause the total action to increase. Nonconser-
vation of action is a classical difficulty encountered in
numerical solutions of hyperbolic conservation equa-
tions. To compensate for the nonconservative property,
we introduce a directional filter to maintain conserva-
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tion of action. The filter forces total action to be con-
served and suppresses numerical dispersion by a
weighting function. This filter is not related to Az, Ax,
(cg + u), or u. A more detailed description is given in
the appendix.

The Type B scheme is twice as fast as for Type A.
This gain in computational speed is paid for in accu-
racy. Our tests suggest that the accuracy of the Type B
scheme is 5% less than that for Type A. Figure 4 shows
that the distribution of N for the Type A and B schemes
in the same format as Fig. 3 except that it is for the
second-order semi-implicit scheme and At = 1.0, 0.5,
and 0.125, which are ten times greater than the Af in
Fig. 3. Figure 4a is for Type A based on Eqgs. (35) and
(36), and Fig. 4b is for Type B based on Eq. (37) both
with the directional filter. Figures 4a,b show that both
numerical simulations are computationally stable; the
maximum values equal about 83% of the true solutions
when ¢ = 100. The total energy remains the same and
the results do not vary significantly with Az, Ax, and
¢, + u when p is less than unity.

3. Numerical resuits of wave propagation

In numerical computations, the equation types and
kinematics influence the results. Therefore, a detailed
comparison between WAM and Goddard Coastal
Wave Models will be discussed separately in Part II.
Here, we only compare the numerical simulations for
the GCWM with and without a directional filter.

The numerical simulations were conducted in a rec-
tangular box 300 km (in the x direction) X 900 km (in
the y direction) with open boundaries. Along the x
(west to east) direction, the depth of the ocean de-
creases from 3000 m to 2.5 m. The depth is uniform in
the y (south to north) direction. Figure 5 shows this
bottom topography. The spatial grid interval (Ax and
Ay) is 12.5 km; the time step (At) is 10 min; the res-
olution for the propagation direction (A#) is 30°; and
the frequency resolution (A f) is 0.1 fHz. We assume
a simple tidal current with a period of 24 h oscillating
along the x direction. The magnitude of the tidal current
is 0.2 m s ' in the deep ocean and increases linearly to
a maximum value of 1 m s™! at the coastline. A con-
tinuous swell system enters only on the western bound-
ary with the directional and frequency distribution il-
lustrated in Fig. 6a. All other boundaries are open for
the waves to propagate through without impedance.
The numerical simulations are all applied to the pure
propagation problem without source terms with the re-
sults in different directions presented according to the
numbered system given in Fig. 6b.

The experiment was conducted numerically for 14
days. The test condition is so chosen to guarantee that
the results represent the case of infinite long beaches
with uniform open ocean boundary conditions. Figures
7a,b show the wave energy density spectra distribution
over a whole tidal cycle along the direction number 4
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Fi1G. 6. (a) The direction energy spectrum of a swell system used in the propagation test. (b) The energy propagation
direction labeled by a number system used in the computation.

and a line 100 km north of the southernmost boundary
of the test region. In these figures, the horizontal axis
indicates the distance from the coastline; the vertical
axis indicates the wave frequency in Hz.

Figure 7a shows the results from the second-order
implicit scheme without the directional filter. In this
computation, action was first computed, and the results
were then converted into energy density. The most con-
spicuous features are the drastic pileup of energy at the
coastline, which agrees well with the analytical solu-
tion, as shown in Phillips (1977), and the widespread
of energy over frequency space. Not all of the energy
pileup is real, for this scheme does not conserve the
total action. Therefore, the results could be exagger-
ated, yet there should be a drastic pileup as dictated by
the analytical solution (Phillips 1977). The spreading
of the energy density is no doubt due to computational
dispersion in this scheme.

Figure 7b shows the results from the second-order im-
plicit scheme with the special directional filter, which
serves to eliminate the dispersion and to conserve the total
action. The changes are quite drastic. The frequency
spreading is much reduced, yet the energy pileup is re-
tained. The lack of frequency spreading is to be expected,
for with the linear dispersion relationship, the frequency
should be nearly constant. As a result, the final width of
the spectrum is almost equal to the original value. The
amount of the energy pileup is slightly reduced as a con-
sequence of the elimination of dispersion and the main-
tenance of the action conservation.

In reality though, the energy pileup could not have been
as strong as depicted here, for some of the energy would
inevitably be dissipated through bottom friction and wave

breaking. But such physical effects are not included in any
of the present computations; therefore, the pileup should
be there as predicted by the analytical results in Phillips
(1977). True physical processes will have to be invoked
to dissipate some energy, but that is a separate issue from
the computational dissipation addressed here. The simple
comparisons presented here offer strong evidence for us to
question the suitability of the propagation schemes used in
previous models. Yet the numerical results from the im-
plicit scheme with a directional filter confirm the analytic
solutions. Thus, it is our view that the new numerical
scheme should be adopted for a wave model either in terms
of transport type or conservation type of equations.

4. Summary

To advance our understanding of wind wave field
generation and evolution, a numerical model is a valu-
able tool; yet, in order for the tool be reliable, the un-
derlying numerical scheme first has to be reliable. As
our analyses show, numerical errors can cause not only
quantitative but also qualitative errors. Such errors
could cause computational effects to be misinterpreted
as part of the true physical mechanisms. Clearly, with-
out a reliable numerical scheme, the numerical errors
will be intertwined with the true physical variations and
adversely influence the form and substance of the kin-
ematics and dynamic source functions.

Based on our analyses, we conclude that the first-
order Euler upstream method contained in the WAM
should not be used as a research tool, because it is
strongly computationally dissipative and dispersive.
But the WAM model is still better than the ICN scheme
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proposed by Tolman (1992a), for the ICN scheme in
the conservation equation is unconditionally computa-
tionally unstable and strongly dispersive (see, e.g.,
Kriess and Lorenz 1990). Furthermore, an inseparable
computational mode always occurs with the physical
mode.

Wave modeling has advanced steadily through the
years to the present state of sophistication. To proceed
further, the need for a new scheme is absolutely essen-
tial and imperative. To this end, we proposed two al-
ternatives: a fourth-order semi-implicit scheme for the
transport-type equation, and the second-order semi-im-
plicit scheme plus a directional filter for the conserva-
tion-type equation. Based on physical considerations,
the second-order semi-implicit scheme for the action
conservation equation should be used. On the practical
side, the new schemes use much larger computational
steps than the previous models. Therefore, the new
methods use much less computational time than the
previous models for the same conditions. The new
schemes also overcome most of the previous numerical
problems by limiting computational dissipation and
dispersion. Most importantly, the new schemes are not
significantly dependent on the group velocity, temporal
step, or spatial grid size. Only by eliminating the com-
putational dissipation and dispersion can one truly de-
termine the effects of the physical processes.
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APPENDIX
Directional Filter

The directional filter is adopted to maintain the to-
tal action conservation. In a numerical solution of a
differential equation in a multidimensional domain,
it is necessary to take turns simulating each dimen-
sion while keeping the other dimensions frozen for
the A-grid distribution, except in the ENO method
(Shu and Osher 1989). The directional filter intro-
duced here serves exactly this purpose as in the ENO
method, but the directional filter is designed for mul-
tidimensional problems. The details of the directional
filter will be discussed in a separate paper. We will
offer the following outline to explain the essential
features and the design principles of this filter. In a
conservation equation of the type given by Eq.
(33), we assume the original total action, TA™,
to be

L
n (n)
TA® =3 A",

Jj=1
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in which n represents the time step, j represents the
gridpoint number, and L is total number of grids. After
m time steps, the total energy will be

L
(n+m) __ (n+m)
TAC™ = 3 4™,
j=1

If the action energy at each grid is conserved after m
time integrations, then we will have the following equation:

filter]" "™ (A;""™ — FF"™ Ar) = A{”, (Al)
in which
FFj(n+m/2) _ —V‘(Cg " u)J(_n+m/2)Aj(n+m/2)
+ forcing{"*"'?,

where forcing represents the source functions, which
are assumed to be zero here. Equation (Al) can be
rewritten for total action as

L L
log,ofilter™™ + ¥ logo(A™™ — FF™ At)
g J g J J
j=1

Jj=1
L
=Y logioA”. (A2)
Jj=1

(n+m)

We assume the filter; to be a highly directional
function in terms of cos’a; and define the filter as

2 pr(ntm)
(nimy _ {[cos a;] ,

cosa; > 0
filter;
0, cosa; < 0,

(A3)

where a; is the angle between the the grid j and the grid
jm, and o; = 27(j — jm)/l (with jm indicating the grid
where maximum value occurs, and / as a function of
the width of the energy spectrum). If the action spec-
trum A ;"+m) has more than one maximum, we should
define jm,, jm,, ... and [, L, ... corresponding to
each local action maximum. Combining Eq. (A3) with
(A2), we have

L L
rrm™ Y loge(cos®ey) = Y, logloAf")

=t =1

— logio[A"™ — FF™™P At];  (A4)

consequently,

rr(n+m)

L L
Z logmA;") -2 IOglo[A;Hm) - FF,-(n+m/2)At]
_ =t ot

L
_El logocos’a;
=

(AS5)
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The accuracy of the energy conservation can
be defined as high as one wants. This filter is
very effective for the second-order semi-implicit
scheme, which was introduced in the section
2a(2). With this filter, the numerical scheme is
computationally stable, and the dispersion effects
are largely eliminated. This filter can produce rea-
sonable numerical solutions as shown in Figs. 4
and 7b.
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