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ABSTRACT   
 
A coupled-mode technique for wave-current interaction is presented, 
with application to the problem of wave scattering by steady currents in 
variable bathymetry regions, and current variations on various scales. 
We consider obliquely incident waves on a horizontally non-
homogeneous current in a variable-depth strip, which is characterized 
by straight and parallel bottom contours. The flow associated with the 
current is assumed to be parallel to the bottom contours (along-axis 
current) and it is considered to be known. In a finite subregion 
containing the bottom irregularity we assume an arbitrary horizontal 
current structure. Outside this region, the current is assumed to be 
uniform (or zero). At a first-order of approximation the wave flow is 
assumed to be irrotational, i.e. the vorticity of the total field is the same 
with the vorticity associated with the current. Then, restricting 
ourselves to linear, monochromatic (harmonic) waves of absolute 
frequency ω, the wave potential, including the scattering effect by the 
current, is obtained as a solution to the modified Helmholtz equation, 
subject to the free-surface boundary condition formulated with respect 
to the intrinsic frequency, the bottom boundary condition, and the  
conditions at infinity. Based on an appropriate variational principle, in 
conjunction with a rapidly-convergent local-mode series expansion of 
the wave field in a finite subregion containing the current variation and 
the bottom irregularity, a coupled-mode system is obtained that can be 
considered as a generalization of the one derived by Athanassoulis & 
Belibassakis (1999). The present approach can be considered as an 
extension of the works by Jerome Smith (1983, 1987), and some of its 
main features are that it can be  further elaborated to  treat lateral 
discontinuities (e.g. vertical vortex sheets), to treat more general 
vertical current profiles with cross-jet component, and to include the 
effects of weak nonlinearity. 
 
KEY WORDS: wave-current interaction, scattering of waves by 
current,  variable bathymetry, coupled-modes.  
 
 
INTRODUCTION 
 
The characteristics of surface gravity waves could present significant 
variations as they propagate through non-homogeneous currents, and 
these variations are further modified by the effects of depth 

inhomogeneities that occur in variable bathymetry regions. For 
example, the wave amplitudes could present a significant enhancement 
within the streaks associated with ‘Langmuir’ circulation, which is 
generated by a pattern of alternating horizontal roll vortices and plays 
an important role in the kinematics and dynamics of air-sea interaction; 
see, e.g., Smith (2001). Furthermore, large amplitude waves can be 
produced in cases when obliquely propagating waves interact with 
opposing currents, see, e.g., Mei (1983, Ch.3.7). This situation could be 
further enhanced by inshore effects due to sloping seabeds, and has 
been reported to be connected with the appearance of “giant waves”; 
see, e.g., Faukner (2000), Kjeldsen (2000). 
 
The study of spatial variation of waves and the investigation of 
scattering of realistic wave spectra over irregular sub-wavelength scale 
currents, with the effects of bottom irregularities, can be supported by 
theoretical models treating the simpler problem of monochromatic 
waves interacting with steady currents. Such kind of models have been 
developed for surface waves crossing weak current jets or steps with 
horizontal shear, see, e.g., Evans (1975), Smith (1983, 1987). 
 
In this work we consider the problem of scattering of obliquely incident 
waves on a horizontally non-homogeneous steady current, in a 
variable-bathymetry region, characterized by straight and parallel 
bottom contours. The flow associated with the current is assumed to be 
parallel to the bottom contours (along-axis current) and it is considered 
to be given. In a finite subregion we assume an arbitrary current 
structure, as, e.g., a monotonic one or a periodic one with characteristic 
width L. Outside this region, the current is assumed to be uniform (or 
negligible). We also assume (at a first-order of approximation) that the 
wave flow is irrotational. Then, restricting ourselves to linear, 
monochromatic (harmonic) waves, periodic in the y-direction, the wave 
potential, including the scattering effect by the current, can be obtained 
as a solution to the modified Helmholtz equation, subject to the free-
surface boundary condition formulated with respect to the intrinsic 
frequency, the bottom boundary condition, and the appropriate 
conditions at infinity. 
 
The above problem is very conveniently treated, for all scales 
concerning the width and depth of the current and the depth of the strip 
in comparison with the incident wavelength, by a generalisation of the 
coupled-mode model by Athanassoulis & Belibassakis (1999) for 
waves propagating over variable bathymetry regions. 
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Figure 1.  Geometrical configuration and basic notation 
 

 

The latter model has been extended to 3D by Belibassakis et al 
(2001) and to the (weakly) non-linear case by Belibassakis & 
Athanassoulis (2002). The present derivation is based on an 
appropriate variational formulation of the problem, in conjunction 
with a rapidly convergent local-mode series expansion of the wave 
field in a finite subregion containing the current variation and the 
bottom irregularity. In order to illustrate the effects of the structure of 
the current and of the bottom slope on the wave characteristics, 
numerical results are presented and discussed in the case of waves 
propagating through a monotonic and a periodic current, in constant 
and in variable depth strips. 
 
DIFFERENTIAL FORMULATION OF THE PROBLEM 
 
The studied marine environment consists of a water layer 3DD  

bounded above by the free surface 3F , DD∂  and below by a rigid 

bottom 3, DDΠ∂ . It is assumed that the bottom surface exhibits an 
arbitrary one-dimensional variation in a subdomain of finite length, 
i.e. the bathymetry is characterised by straight and parallel bottom 
contours lying between two regions of constant but possibly different 
depth,  (region of incidence) and  (region of 
transmission); see Fig. 1. A Cartesian coordinate system is 
introduced, with its origin at some point on the mean water level (in 
the variable bathymetry region), the z-axis pointing upwards and the 
y-axis being parallel to the bottom contours. The liquid domain 
is , where  is the (two-dimensional) intersection of 

1h h=

D D= ×

3h h=

3D

3

R D

DD

(
 by a vertical plane perpendicular to the bottom contours, 

) ( ){ }0x R, z<D x,z := ∈ h x− < , and ( )R = − ,∞ +∞ .  
 
The function ( )h x , appearing in the above definitions, represents the 
local depth, measured from the mean water level. It is considered to 

be a twice continuously differentiable function defined on the real 
axis R, such that  

( ) ( ) 1h x h a h= = ,  for all x a≤ ,    , for all ( ) ( ) 3h x h b h= = x b≥ . 
                 (2.1a) 

The strip  is further decomposed in three subdomains 

 where )  and )  are constant-depth subdomains 

corresponding to

D

3, ,1 2( i )D , i ,= 1(D 3(D

x a<  and x b> , respectively, and )  is the 

variable bathymetry subdomain lying between )  and . 
Without loss of generality, we assume . The same 
decomposition is also applied to the free-surface and the bottom 
boundaries. Finally, we define the vertical interfaces  and 

 separating the three subdomains. The latter are vertical 
segments (between the bottom and the mean water level) at 

2(D
1(

(
ID∂

D

3h

3( )D

)

1h >

12

23( )
ID∂

x a=  
and x b= , respectively. 

In this work we consider a simple version of the scattering problem 
of monochromatic, obliquely incident plane waves, propagating with 
direction 1θ  with respect to the bottom contours in the region of 
incidence, under the combined effects of variable bathymetry and a 
horizontally non-homogeneous shear current, existing in x a> ; see 
Fig.1. The flow associated with the shear current is considered to be 
steady and directed parallel to the bottom contours (i.e. along the y-
axis). Moreover, the steady free-surface displacement associated with 
the current flow is assumed to be negligible. The horizontal current 
structure is described by the (given) continuous function V(x), which 
can be general in the intermediate region, a x b≤ ≤ , as, e.g., a 
monotonic one or a periodic one with characteristic width L. Outside 
this region, the current is assumed to be uniform (or simply zero), 

( ) 1 0V x V= =  ,  ,x a≤            and        V x ,  ( ) 3V= x b≥ .       (2.1b) 

x=a x=b 

1θ
3θ

y 

Nonhomogeneous 
current  V(x) z 

λ L 

Incident 
wave 

x 

h(x) 
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Assuming that the wave flow is irrotational, i.e. the vorticity of the 
total field  is the same with the vorticity associated with the current 

( )( )0,V x ,V = 0 , and restricting ourselves to linear, monochromatic 
(harmonic) waves of absolute frequency ω, periodic in the y-
direction, the wave potential can be expressed in the form      

( ) ( ) ( )( )x,y,z;t Re x,y,z exp i t ,Φ φ= − ω

))

                                   (2.2a) 

where 

( ) ( ) ((x,y,z x,z exp i qy tφ ϕ= ω− .                                             (2.2b) 
 
In the above equations ( )x,y,zφ  is the complex wave potential and 

 the reduced one on the vertical plane,  is the periodicity 

constant along the y-direction, and 

(x,zϕ ) q

1= −i . 
 
Under the stated assumptions, the problem is governed by the 
Laplace equation on ( )x,y,zφ  or the modified Helmholtz equation 

on , the no-entrance bottom-boundary condition and the free-
surface condition, 

(x,zϕ )

                    

( )

( )

2 2
2

2 2 0 0

0 0

dhq , , z h x ,
x z z dx x

x , z ,
z

ϕ ϕ ϕ ϕϕ

ϕ µ ϕ

∂ ∂ ∂ ∂
+ − = + = = −

∂ ∂ ∂ ∂

∂
+ = =

∂

    (2.3) 

where ( ) ( )x qV xσ σ ω= = −

(
 is the local intrinsic 

frequency, ) 2x / gµ σ=  the corresponding frequency parameter, 
and g  is the acceleration due to gravity. In the examined case, the 
complex pressure p is proportional to the complex wave potential 
( p iρωφ= , where ρ is the fluid density), and the above equations are 
in compatibility with Eqs. (6.17), (6.19) and (6.23) of Mei (1983, Ch. 
3.6). 
 
The problem of water-wave scattering by current, with the effects of 
variable bathymetry, can be formulated as a transmission problem in 
the bounded subdomain , with the aid of the following general 
representations of the wave potential 

( )2D
( )x,zϕ  in the semi-infinite 

strips  and  (see, e.g., Smith 1983, 1987): ( )1D ( )3D
 

( ) ( ) ( )( ) ( )( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

1 1 1
0 0 0 0

1 1 1

1

exp exp

exp

R

n n n
n

1x,z A ik x A ik x Z z

C Z z k x a

ϕ
∞

=

= + −

+ −∑

+

n

   

( )1in D ,   (2.4a) 
 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )3 3 3 3 3 3
0 0

1

exp expT n n
n

x,z A ik x Z z C Z z k b x ,ϕ
∞

=

= +∑ −  

                     .   (2.4b) ( )3in D
 

The terms ( )( ) ( )( )( ) ( ) ( )1 1
0 0 0 0exp expR

1A ik x A ik x Z z+ −

)

 and 

( )( ) ( ) (3 3
0 0expTA ik x Z z  in the series (2.4) are the propagating modes, 

while the remaining ones ( )1 2n , ,= …  are the evanescent modes.  In 
the above expansions, the wavenumbers 

( )( )2 2
2 2i i

n n qκ κ= +

} 1 3, , i ,= =…

) 2
ih , µ =

}0 1 2n , , ,= …

( ))
)

i

i

h
( i )
n

1(D σ ω=
3D

( )( 11
3 0 sin /θ κ−

(D∈

( )x,z ∈

( )x,z ∈

2 1

2 1

( )

( )n n
∂ϕ

∂ ∂
− x,

2 3

2 3

( )

( )n n
ϕ ∂ϕ

∂
− (

1 22 /
dh
dx

ϕ ϕ
−

 ∂ ∂     ∂  

                  
( ) ( )( ) ( )
0 0 1 2 3 1 3i ik q , k , n , , ,...., i ,= − = = , (2.5a) 

 
where { 0 1 2( i ) ( i )

ni , , n ,κ κ , are obtained  as the roots of the 

following dispersion relations 
 

( 1 3( i ) ( i )
i i ih h tan / g , pV , iµ κ κ σ σ ω= − = − = , .  

               (2.5b) 
 
The functions ( ){ ( i )

nZ z ,  appearing in Eqs. (2.4) are 

given by 
 

  ( ) (
(

0
0

0

( i )
( i )

( i )

cosh z
Z z

cosh h

κ

κ

+
= ,      ( )

( )( )
( )
( i )
n i

( i )
n i

cos z h
Z z

cos h

κ

κ

+
= ,     

 
1 2 1 3n , , , i ,= =… .      (2.6) 

 
Since the current is zero in ) , ,  and thus, ( )1

0 1p sinκ θ= . The 

direction of the transmitted wave in  is then given by ( )

                              ( ) )1sin θ= .                              (2.7) 3
0κ

2

Given the representations (2.4), the problem can be re-formulated as 
a transmission boundary value problem in the bounded 
subdomain , consisting of the following equations, boundary and 
matching conditions: 

2( )D

 
( ) ( )22 2 0p , x,zϕ∇ − = ) ,                                       (2.8a) 

 

( )
2

2
2 0

( )
( )

( ) x
n

∂ϕ µ ϕ
∂

− = ,             2( )
FD∂ ,                          (2.8b) 

 
2

2 0
( )

( )n
∂ϕ
∂

= ,                                  2( )DΠ∂ ,                          (2.8c) 

 
2 1

( )
( ) ( )

( ), ∂ϕϕ ϕ= = ,     ( ) ,   (2.8d,e) 12( )
Iz D∂∈

 
2 3

( )
( ) ( )

( ), ∂ϕ ϕ
∂

= = ,     ) 23( )
Ix,z D∂∈ ,   (2.8f,g) 

 
where ( ) ( ) ( )( )i i

x zn n ,n=

( i )D∂

i  denotes  the unit normal vector to the 

boundary  directed to the exterior of , ( )iD 1 2 3i , ,= . The 

normal derivative of the wave potential at the bottom ( )2DΠ∂  can also 
be expressed in the form: 
 

               
( )

( )

( ) ( )2 2

2 1 dh d
z dx dxn

 
= − + +  ∂  

2ϕ .              (2.9) 

Paper No. 2004-MP-11 Belibassakis & Athanassoulis   3  



VARIATIONAL FORMULATION OF THE PROBLEM 

The problem (2.8) admits of an equivalent variational formulation, 
which will serve as the basis for the derivation of an equivalent 
coupled-mode system of horizontal equations. Consider the 
functional: 

( ) ( ){ } ( ){ }( ) ( )( )(
( )

( )( )
2

2 22 1 3 2 221
2R n T nn N n N

D

F ,A , C ,A , C p dVϕ ϕ
∈ ∈

= ∇ + 
∫ ϕ

 

                                         ( )( )
( )2

221
2

FD

dS
∂

µ ϕ− +∫    

( ) ( ) ( ){ }( )
( ) ( ){ }( )

( )
12

1 1

2 1 1
1

1
2( )

I

R n n N
R n n N

D

A , C
A , C dS

n∂

∂ ϕ
ϕ ϕ

∂
∈

∈

 + − ⋅ 
 ∫

( )

+

 

( ) ( ){ }( )
( ) ( ){ }( )

( )
( )

R
23

3 3

2 3 3
03

1
2( )

I

T n n N
T n n N

D

A , C
1A , C dS A A

n∂

∂ ϕ
ϕ ϕ

∂
∈

∈

 + − ⋅ 
 ∫ J− , 

  (3.1) 
 

where    ( ) ( ) ( ( ) ( ) )
1

0
21 1 1

0 02
z

z h

J k Z z
=

=−

= ∫ dz

2

.  

 
The function ( ) ( ) ( ) ( )2 x,z , x,z Dϕ ∈  and the coefficients  

( ){ }1
R n n N

A , C
∈

 and  ( ){ }3
T n n N

A , C
∈

 constitute a solution of the problem, 

if and only if they render the functional F  stationary, i.e. 

                         { } { }( )2 1 3 = 0( ) ( ) ( )
R n T n,A , C ,A , CF ϕδ .                     (3.2) 

To see this we calculate the first variation Fδ  of the above 
functional (see also, Athanassoulis & Belibassakis, 1999). Making 
use of the Green’s theorem and the properties of the modal 
representations (2.4) in the two constant-depth strips , , 
the variational equation (3.2) takes the form: 

( )iD 1 3i ,=

( ) ( )( )
( )

( )
( )

( )
( )

( )

( )
( )

( )

( )

( ) ( )

( )

( )
( ) ( )

( )

( )

2 2

2

12 23

2
2 2

2

2

2 1 2 3

F

2 2 2 2

D D

2 2

D

2 2

D D

p dV dS
n

dS
z

dS dS
x x x x

Π

Ι Ι

∂

∂

∂ ∂

∂ϕϕ ϕ δϕ δϕ
∂

∂ϕ µϕ δϕ
∂

∂ϕ ∂ ϕ ∂ϕ ∂ ϕδϕ δϕ
∂ ∂ ∂ ∂

 
− ∇ − + +  

 

 
+ − +  

 

   
− − + −      

   

∫ ∫

∫

∫ ∫ +

 

 

( ) ( )( )
( )

( ) ( )( )
( )

12 23

1 3
2 1 2 3 0

( ) ( )
I ID D

dS dS .
x

∂ ∂

∂ϕ ∂ϕϕ ϕ δ ϕ ϕ δ
∂

   
+ − − −      

   
∫ ∫ x∂

=    

                          (3.3) 

The functions ( )iϕ  and their derivatives  appearing 
in the last terms of the lhs of Eq. (3.3), are considered to be 
represented by means of their series expansions, Eqs. (2.4), and their 
horizontal derivatives, respectively. The proof of the equivalence of 
the variational equation (3.3) and the transmission problem (2.8) is 
obtained by using standard arguments of the Calculus of Variations 

(see, e.g., Rectorys 1977, ch.22).  

( ) 1 3i / x,i , ,∂ϕ ∂ =

 
 
THE COUPLED-MODE SYSTEM OF EQUATIONS  
 
The problem on ( ) (2 )x,zϕ

( )2D

 will be treated by an appropriate 
extension of the consistent coupled-mode theory developed by 
Athanassoulis & Belibassakis (1999), and is based on the following 
enhanced local-mode representation of the wave field (in the variable 
bathymetry region  containing also the current variations): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) (2
1 1 0 0

1
n n

n
)x,z x Z z;x x Z z;x x Z z;xϕ ϕ ϕ ϕ

∞

− −
=

= + +∑    

                                            (4.1) 
 
In Eq. (4.1) the term ( ) ( )0 0x Z z;xϕ  is the propagating mode of the 

wave field and the remaining terms ( ) ( ) 1 2n nx Z z;x , n , ,ϕ = …  are 

the evanescent modes. The additional term ( ) ( )1 1x Z z;xϕ− −  is  a 
correction term called the sloping-bottom mode, which accounts for 
the bottom boundary condition on the sloping parts of the bottom and 
which identically vanishes on the horizontal  parts of the bottom. The 
function ( )nZ z;x  represents the vertical structure of the -th mode. 

The function 

n

( )n xϕ  describes the horizontal pattern of the -th 
mode and is called the complex amplitude of the -th mode. The 

functions

n
n

( )nZ z;x , 0 1 2n , , ...= , appearing in Eq. (4.1) are obtained 
as the eigenfunctions of local vertical Sturm-Liouville problems, and 
are given by 
 

             ( )
( ) ( )( )

( ) ( )( )
0

0
0

cosh

cosh

x z h x
Z z;x ,

x h x

κ

κ

 +=                            (4.2a) 

 

            ( )
( ) ( )( )

( ) ( )( )
cos

1 2
cos

n
n

n

x z h x
Z z;x , n , ,

x h x

κ

κ

 + = = … ,         (4.2b) 

 
where the eigenvalues ( ) ( ){ }0 ni x , xκ κ  are obtained  as the roots of 

the local dispersion relation 
 
 ( ) ( ) ( ) ( ) ( ) ( )tanx h x x h x x h xµ κ κ= −    ,      a x b≤ ≤ .        (4.2c) 
 
A specific convenient form of the function  ( )1Z z;x−  is given by  

            ( ) ( ) ( ) ( )

3 2

1
z zZ z;x h x

h x h x−

    
 = +           

,                     (4.2d) 

and all numerical results presented in this work are based on the 
above choice for ( )1Z z;x− . However, other choices are also possible. 
The main effect of the additional sloping-bottom mode 

( ) ( )1 1x Z z;ϕ− − x  is that it makes the series (4.1) compatible with the 
bottom boundary condition (2.8c) on the sloping parts of the bottom 
surface and, at the same time, it significantly accelerates the 
convergence of the local-mode series. For more details about the role 
and significance of this term see Athanassoulis & Belibassakis 
(1999, Sec. 4).  
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By using the local-mode series representation (4.1) in the variational 
principle (3.3), and by following exactly the same procedure as in 
Athanassoulis & Belibassakis (1999), the following coupled-mode 
system is obtained:   
 

( ) ( ) ( ) ( ) ( )( ) ( )2

1

2

0

1 0 1

mn n mn n mn mn n
n

1

a x x b x x c x a q x

a x a , m , , ,....

ϕ ϕ ϕ
∞

=−

′′ ′+ + −

< < = −

∑ ,=

     (4.3) 

 
where a prime denotes differentiation with respect to x. The 
coefficients  of the system (4.3) can be found in Table 1 
of Athanassoulis & Belibassakis (1999). The system (4.3) is  
supplemented by the following decoupled end-conditions 

mn mn mna , b , c

 
( ) ( )1 1 0a aϕ ϕ− −′= = , ( ) ( )1 1 0b bϕ ϕ− −′= = ,    (4.4a,b) 

( ) ( ) ( ) ( ) ( )( )1 1
0 0 0 0 02 expa ik a i k i k aϕ ϕ′ + = 1 ,                                     (4.4c) 

( ) ( )1 0 1( )
n n na k a , n , ,.ϕ ϕ′ − = = 2 . ,                                        (4.4d)        

( ) ( )3
0 0 0 0( )b ik bϕ ϕ′ − = ,                                                               (4.4e) 

( ) ( )3 0 1 2 3( )
n n nb k b , n , , ,ϕ ϕ′ + = = …  ,                                     (4.4f) 

where  the coefficients ,   n=0,1,2,...  are defined  by Eqs. 

(2.5a). Furthermore, the reflection and transmission coefficients 

(

( ) ( )1
n nk , k 3

R TA , A ) appearing in Eqs. (2.4) are obtained from the solution of the 

coupled-mode system as follows: 
 

( ) ( )( ) ( )1
0 0exp exp( ) ( )

R
1

0A a i k a i kϕ= − a ,                                   (4.5a) 

( ) ( )3
0 exp ( )

T 0A b i kϕ= − b  .                                                            (4.5b) 

An important feature of the solution of the present scattering problem 
by means of the representation (4.1), is that it exhibits an improved 
rate of decay of the modal amplitudes ( )n xϕ  of the order ( )4−O n . 

Thus, a small number of modes suffices to obtain a convergent 
solution to ( )x,zϕ , even for large bottom slopes. 
 
NUMERICAL RESULTS AND DISCUSSION 
 
The construction of the discrete system is obtained by truncating the 
local-mode series (4.1) to a finite number of terms (modes), retaining 
a number of evanescent modes, and by using central, second-order 
finite differences to approximate the derivatives in the coupled mode 
system (4.3). Discrete boundary conditions are obtained by using 
second-order forward and backward differences to approximate 
derivatives at the ends. Thus, the discrete scheme obtained in this 
way is uniformly of second order in the horizontal direction. The 
forcing appears only in one equation, at the left endpoint x a=  (see 
Eq. 4.4c). 
 
(i) The case of a smooth underwater shoaling 
In order to illustrate the combined effects of variable bathymetry and 
shear current on the calculated wave field, we examine the case of a 

smooth but steep underwater shoal, characterised by the following 
depth function 
 

( ) 1 3 1 3 1tanh 3 0 20
2 2 2

h h h h x ah x , a x b m,
b a

π
 + − − = − − = < < =  −    

                (5.1) 
 
with 1 15h m=  and h3 5m= . This bottom profile has mean slope 

mean 0 5s .=  and maximum slope max 2 40s .= . (A sketch of the bottom 
topography is shown in Fig. 2). The angular frequency of the incident 
wave is taken to be rad/sec (which corresponds to 1 62.ω = 1 1 4hκ = , 

implying almost deep water wave conditions in ), and its 
direction is taken to be .  The phase speed of the waves in 

 is then c . . We consider also an opposing shear 
current 

( )1D
1θ = −

6 06m / s

30o

( )1D 1 =

 

( ) 3 3 1tanh 3 0 20
2 2 2

V V x aV x , a x b m,
b a

π − = + − = < < =  −  
    (5.2) 

 
where 3 0 5V maxV . c1= = . In the region of transmission  the 

wave characteristics are 

( )3D

( )3 3 3 32 14 1 48h . k h .κ = =  and 3 118.θ = − ° . 
The effects of the shear current on the wave are shown in Fig. 2 on 
both the horizontal and vertical planes by using equipotential lines. 
(Only the real part of the wave field is plotted). The values of the 
wave potential on the free surface ( )0x,zϕ = are also included in this 
figure, from which the free-surface elevation is obtained, 
 

( ) ( )( ) ( ) ((( )0
qV x

))x, y;t Re i x,z exp i qy t
g

ω
η ϕ

−
= = ω− .          (5.3) 

 
In this case, the calculated values of the reflection and transmission 
coefficients are  0 14 0 71R TA . , A .= = . The previous result is to be 
compared with the corresponding one whitout the effect of the shear 
current shown in Fig.3, which is also obtained by the present method 
by using ( ) 0V x = . In this case, 3 26 8.θ = − ° , and the values of the 

reflection and transmission coefficients are 0 014 0 91R TA . , A .= = . 
A small number of modes (totally 5 terms) have been retained in the 
modal series expansions, which has been proved enough for 
numerical convergence, even for such large gradients of the depth 
function and of the shear current. In all cases we observe that the 
equipotential lines intersect the bottom surface perpendicularly, 
which is evidence of  satisfaction of the bottom boundary condition, 
both on the horizontal and on the sloping parts of the bottom. 
 
By systematically varying  the depth and the current profiles, using 
as shape functions Eqs. (5.1) and (5.2), respectively, we present in 
Fig. 4 numerical predictions concerning the reflection coefficient in 
the case of a steep shoal, for various depth and current variations.  In 
this case, the incident wave conditions have been  fixed to 1 1 4hκ =  
and 1 30θ = − °

3 1 0 025h .
, the shoaling ratio is taken to vary from 
0 5h / .= ÷  (and thus, ), and the strength of the 

current from V /
1 3 0 1 2h .κ = ÷

3 1c 2 2= − ÷ . The situation closely resembles the 
conditions of waves crossing a step with horizontal shear for which 
results are available from Smith (1987). The present method provides 
compatible results with the ones presented in Fig. 6 of Smith (1987). 
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Figure 2  Calculated wave field in the case of oblique waves 
propagating with direction -30deg over a smooth and steep shoal and 
under the effects of an opposing shear current. 

Figure 3  Same as in Fig.2, but without current. The extension of the 
equipotential lines below the bottom surface is maintained in order to 
better visualize the fulfillment of the bottom boundary condition.

 
Figure 4 Calculated reflection coefficient in the case of a steep shoal, for various depth and current variations. 

Incident wave conditions: 1 1 4hκ = and 1 30oθ = −
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Figure 5  Calculated wave field in the case of oblique waves 
propagating with direction -30deg in constant depth under the effects 
of an opposing sinusoidal shear current. 
 
(ii) The case of a sinusoidal current 
As a final example, we consider the case of waves of angular 
frequency 1 62.ω = rad/sec propagating with direction 1 30θ = − °  in a 
constant depth strip h=15m, under the effects of an sinusoidal shear 
current with horizontal profile, 
 

( ) 1 1 2
4 3
c x aV x cos , L

L
π − = − =  

  

b a−

s

,                                 (5.4) 

 
In this case, the shear current exists only in the region from x=a=0m 
to x=b=20m, it has a periodic structure with characteristic width 
L=6.67m, and its maximum is equal to the half of the phase speed of 
waves in  and , which is c c . The real part of 
the calculated wave field, as obtained by the present method using 5 
modes, is shown in Fig. 5, and the values of the reflection and 
transmission coefficients are now 

( )1D ( )3D 1 3 6 06. m /= =

0 08R T 0 99A . , A= = . . 
 
CONCLUSIONS 

A coupled-mode technique for wave-current interaction in variable 
bathymetry regions is presented, with application to the problem of 

wave scattering by steady currents with current variations on various 
scales. The present method does not introduce any simplifying 
assumptions or other restrictions concerning the bottom slope and 
curvature, or the vertical structure of the wave field. All wave 
phenomena (refraction, reflection, diffraction) are fully modelled 
and, thus, the present method can serve as a useful tool for the 
analysis of the wave field in the whole range of parameters within 
the regime of linear theory. 

Based on an appropriate variational principle, in conjunction with a 
rapidly-convergent local-mode series expansion of the wave field in 
a finite subregion containing the current variation and the bottom 
irregularity, the present coupled-mode system can be considered as a 
generalization of the one derived by Athanassoulis & Belibassakis 
(1999) for the propagation of waves in variable bathymetry regions. 
The key feature of the present method is the introduction of an 
additional mode, completely describing the influence of the bottom 
slope. It turns out that the presence of the additional mode in the 
local-mode series representation of the potential makes it consistent 
with the bottom boundary condition and, at the same time, 
substantially accelerates its convergence. 

The analytical structure of the present model facilitates its extension 
to various directions as, e.g., to three-dimensional problems and to 
more complex wave-current systems, including the effects of lateral 
discontinuities (e.g. vertical vortex sheets), the effects of more 
general vertical current profiles with cross-jet component, and the 
effects of weak nonlinearity. 
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