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ABSTRACT

An exact equation governing the maximum possible pressure fall in steady tropical cyclones is developed,
accounting for the full effects of gaseous and condensed water on density and thermodynamics. The equation
is also derived from Carnot’s principle. We demonstrate the existence of critical conditions beyond which no
solution for the minimum central pressure exists and speculate on the nature of hurricanes in the supercritical

regime. -

1. Introduction

A complete understanding of the physics of hurri-
canes requires, among other things, knowledge of the
factors that set an upper bound on their intensity. In
Emanuel (1986, hereafter referred to as I) it was argued
that such an upper bound is determined by the product
of the maximum possible latent heat input from ocean
to atmosphere and a thermodynamic efficiency pro-
portional to the temperature difference between the
sea surface and lower stratosphere. This upper bound
was directly related to the maximum possible pressure
deficit in the eye. Predictions of minimum sustainable
pressure compare very well with values obtained from
a nonhydrostatic time-dependent axisymmetric prim-
itive equation model described in Rotunno and

Emanuel (1987), and appear to correlate quite well with-

the intensities of the strongest tropical cyclones ob-
served (see Anthes, 1982). The interpretation of the
upper bound on intensity in terms of the Carnot cycle
is quite general and assumes only that mechanical dis-
sipation is limited to the boundary layer and the out-
flow at large radii.

In I the effects of water substance on density and
heat capacity were neglected. Our present purpose is
to derive an exact equation for the maximum pressure
drop, which accounts for fully reversible thermody-
namics and the effects of water substance on density
and to point out that the equation has no solution un-
der certain conditions. In section 2 the pressure equa-
tion is derived from the thermal wind relation for steady
axisymmetric flow and a single graph showing solutions
to that equation under all conditions is presented. An
interpretation of the breakdown of the equation under
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certain conditions is offered in section 3. Section 4
contains concluding remarks.

2. The relation for minimum central pressure

Consider a steady-state axisymmetric hurricane over
an ocean with uniform temperature. We shall assume
that outside a frictional boundary layer, and except at
large radii in the outflow, three properties of the flow
are conserved: Angular momentum per unit mass (M),
total entropy (s) and total water (liquid plus vapor, Q).
We shall also assume hydrostatic and gradient balance
(except in regions of dissipation) and ice phase physics
will be ignored. The constraints of axisymmetry and
hydrostatic and gradient balance are relaxed in the re-
derivation from Carnot’s principle presented in ap-

pendix C.
The conserved quantities are defined
M-=-rV+%fr2, (1)
L,w

s=(Cpa+ OC) InT +

— RyInp; — wR, In(RH), (2)
Q=w+], €)

where r is the radius, V the azimuthal velocity, f the
Coriolis parameter (assumed constant), C,, the heat
capacity of dry air at constant pressure, C; the heat
capacity of liquid water, L, the latent heat of vapor-
ization (a function of temperature T), R, the gas con-
stant of dry air, R, that of water vapor, p, the partial
pressure of dry air, w the mixing ratio, RH the relative
humidity and / the mass of liquid per unit mass of dry
air. The reader is referred to Iribarne and Godson
(1973) for a derivation of (2) under saturated condi-
tions; the last term makes s conserved under unsatu-
rated conditions as well, as shown in appendix A.
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a. Constraints on the distributions of entropy, total wa-
ter and angular momentum

The assumption that conserved variables do not vary
along angular momentum surfaces, when coupled with
the thermal wind balance approximation, places a
powerful constraint on the distributions of the con-
served variables with respect to each other. We here
derive that constraint. As an aside, we note that while
in the following derivation we assume that s and Q
take on their boundary layer values along each A sur-
face in the hurricane, this is equivalent only to asserting
that the density of air above the boundary layer has
the same value as the density of parcels lifted reversibly
from the boundary layer and does not require that the
air be everywhere saturated and filled with cloud. That
this condition on density is actually met in the tropical
atmosphere has been beautifully demonstrated by Betts
(1982).

The thermal wind equation for axisymmetric flow

is (see I):

1 (‘OM 2) _ (aa)

Sl=) ==

r’\ dp /, o/,
where « is the specific volume, which we regard as a
function of the three variables p, s and Q (i.e., two state

variables and a measure of the total water content).
Using the chain rule, then, (4) becomes

aM 2 _(8a\ ds- [da\ 6Q
ap 6s ar 00/, or )
We next assume that s and Q are functions of M alone.
This may be regarded as a requirement of neutrality
to slantwise convection (see I) or alternatively, where
there is strong circulation, as the constraint that all
conserved quantities are constant along streamlines and

are therefore invariant with respect to each other. With
this assumption, (5) can be written

C))

&)

1 {oM? _ oM ds | (da\ dQ
pl e %) 2t o (©)
r’\ dp /, or dM aQ s AM|°
Dividing through by dM/dr, we obtain _
2M or a_a ds + a_a dQ
ap 05/,0 90/,
Now the partial derivatives on the right-hand side of

(7) may be rewritten using the Maxwell relations de-
rived in appendix B. These are

(&), o (o)
o/,, 1+Q\op S,Q’

do\ L [(8) Ld g
(55)”,5—1 . [(a )M+ Gy T 1nT>1s,Q],

©)

)

(8
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where & = gz + 1 V2. Substitution of (8) and (9) into
(7) results in an equation which can be exactly inte-
grated along M surfaces. The result of this integration
is

M _ 1

2 l+Q<(T To)——+—{<17 P,

dM  dM

+ C{T(1 —1InT) — To(1 — 1nTo)]}>, (10)

where the subscript 0 represents evaluation as r = oo.
This constraint on the distributions of s and Q with
respect to M is a direct consequence of the thermal
wind relation and the specification that s and Q are
functions of M alone.

b. Constraint on the variation of entropy at the surface

~ We next show that (10) places a constraint on the
variation of entropy along constant altitude surfaces.
Specifically, we evaluate (10) along z = 0. In using (10)
in the mixed layer we need not assume gradient balance
there as long as we define M as the angular momentum
that would obtain if there were gradient balance. The
assumptions of no variation of s and Q along M so
defined is still equivalent to the assumption of slantwise
neutrality.

We begin by multiplying (10) through by dM/dr and
also relating ¥ to M using (1). The result is

1+ Q(oM* _ . [8s
37 (o) o)

2r2 \ or
99\ [_ 1M s o
e

+ C[Ts(1 — InTy) — To(1 — lnTo)]} , (11)

where the subscript s refers to evaluation at the surface
(z = 0). The quantity r, is a very large radius (technically
infinite) although in practice it can be regarded as the
radius at which the temperature and height approach
Tp and z, in the outflow. (It comes from relating V to -
M in the limit of r = o0.) In appendix C we show that
this term is energetically interpretable as the kinetic
energy that must be used to spin up water mass in the
anticyclonic outflow. In any real situation, the water
will have fallen out before large radii are achieved. Even
if an appreciable amount of condensate flows out to
radii as large as 10 000 km, the term r, in (11) can be
shown to have little influence on the result. We retain
it here for generality.

The terms involving M? in (1 l) can be combined
into a single term, so that the left-hand side becomes

1 (o
- 32 (3) 10 + o0

2r (12)
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From the gradient wind equation (see I), we have

1+ QM?=r¥ 1+ Q)a(%) + ifzr“(l + Q)

(13)

= ad(‘; ) 1P+ 0)

where ay is the volume per unit mass of dry air. Using
(13) and (12), (11) can be put in the form

RO R

i) s o9

X {—gzo + C{T,(1 — InT}) — To(1 — InTo)l}. (14)

By differentiating (2) and making use of the Clausius-
Clapeyron equation, the first law of thermodynamics
can be written (for saturated and unsaturated processes)

—addp = Tds — (de + C[Q)dT

—d[L,w] - CTInTdQ. (15)

If (15) is substituted for the left-hand side of (14), the
result is
2-208

t 522
O9r or dr+4fr(l+Q)

27y

+ Low+ (Cpa + C,Q)T,]

or

We next define an “outer radius,” r, where dp/dr van-
ishes. This may be identified as the radius of the out-
ermost closed isobar. Integrating (16) from this outer
radius to the storm center along z = 0, we obtain

+ @ ["gZo + C[(To lnTo - To) - %fzrlz] . (16)

TO(SC — 8g) = (W, — Wa)[CITs

+ Lo+ CTo (T — 1)

ST O R VA (RS

where the subscript ¢ stands for “storm center”. The
overbarred quantities are defined
C

TodS,

Ty =

Se — Sg a

(—* _ 1

Qa Qc a
Here T, is the entropy-weighted mean “outflow” tem-
perature which the moist 1sentroplc surfaces asymptote

to at large radii. The quantities Z5*, r,> and TO are
similarly defined, but the weighting is proportional to

( )dQ.
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the total water content Q rather than to the moist en-
tropy. For simplicity, we hereafter assume that the en-
tropy-weighted average temperature isequal to the total
wa}‘er-welghted average; i.e., To .= To. Given Ty,
r? and Z,* the above amounts to a specific relation-
ship between the entropy change along the sea surface
and the change in water vapor mixing ratio.

¢. The central pressure equation and its interpretation

Using the definition of moist entropy, (2), the rela-
tion (17) can be expressed as an equation for the min-
imum central pressure. Specifically, we use (2) to eval-
uate s, and s,, where both are evaluated at z = 0 and
it is assumed that air is saturated at r = 0. The result
can be expressed in the form

1
Inx = —A[— - B} , (18)
x
where .
- P
Dda
— — *
A=—" L, e 1 _gzo*_lfzrlz
— € RyTs paa eL, 8 €L,
[ W —
(a) (b)
CT,
+ 5+ (1 — ¢ In(l —¢)
L,
(©)
f2r,,2(1 +RH I—f—)
e, In(RH) 1 da
B=RH|1+— =
[ DPia A ] 4 R,T(1 - 64

(19)

In the above expression, p,. and p,, are the central and
ambient surface values of the partial pressure of dry
air, RH is the ambient surface relative humidity and e
is a thermodynamic efficiency, defined

T,— To
eE—S'T—O. (20)

(This efficiency may be as large as %5 in the present
tropical atmosphere.) The relation (18) is the desired
result.

In appendix C, (18) is rederived from a Carnot cycle
argument which does not restrict the flow to be hydro-
static or in gradient balance, and for which the as-
sumption of axisymmetry is pertinent only to term (b)
and the last term in the definition of B in (19). More-
over, that argument shows that term (a) in (19) is simply
the potential energy used to lift water substance to the
outflow level; term (b) is the energy required to move
the water substance against the radial pressure gradient,
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and term (c) represents the contribution of water sub-.

stance to the heat. capacity.

Term (b) is technically infinite; this shows that if all
the water substance added by the ocean to the air really
had to be carried to infinite radius in the outflow (and
thus accelerated to infinite anticyclonic velocity), no
truly steady hurricane could exist. In practice, air can-
not flow out to infinity in the finite lifetime of a hur-
ricane, and most of the water falls out. Moreover,
asymmetry and dissipation remove the constraint of
angular momentum conservation at relatively small
radii. For typical values of fand L, on earth, r, would
have to be of order 20 000 km to make term (b) of
order unity when Q is conserved. We therefore neglect
(b) hereafter.

Since (18) is the focus of this paper, it is worthwhile
to discuss the various terms that comprise it. Before
doing so, we first rewrite (18) in the form

In(x) — % In(RH)
Dda

fzraz(l + ﬁ)
- —A[}C—RH + @1)

] 4 RT(1—¢

The left-hand side of (21) represents a combination of
the total entropy change due to isothermal expansion
and the work done against friction in the boundary
layer which, by appendix C, Eq. (C8), is proportional
to the change of In(p). The quantity enclosed by brack-
ets in the first term on the right-hand side of (21) is
proportional to the total increase in mixing ratio from

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 45, No. 7

the ambient environment to the storm center. The
1/x term represents the pressure dependence of the sat- -
uration mixing ratio while RH represents the ther-
modynamic disequilibrium of the air-sea system which
is the energy source of the hurricane. The smaller the
relative humidity, the greater the air-sea entropy dif-
ference.

The increase in mixing ratio is multiplied by A4 as
defined by (19). The first term of A represents the actual
addition of latent heat to the system while term (c)
describes the increase of entropy due to addition of
water mass. As previously discussed, terms (a) and (b)
represent work done on water substance to lift it against
gravity and accelerate it in the outflow.

Finally, the last term in (21) represents the work
done to restore the angular momentum of the outﬂow
to its ambient value.

The relation for the minimum central pressure, (18),
has two roots, one root, or no roots, depending on A
and B. To see this, first define y such that y = 1/x
= Puad/Dac. Then (18) becomes

y = explA(y — B)]. (22)

The left- and right-hand sides of (22) are individually
plotted against y in Fig. 1 for the case 4 = 0.5, B = 0.8.
The two intersection points correspond to two solu-
tions. Reference to the derivation of (18) shows that
the left-hand side is the maximum pressure drop that
can be sustained by a given inward increase in vapor
mixing ratio, while the right-hand side includes the
pressure dependence of the core mixing ratio itself. This
leads naturally to the following mterpretatlon of
Fig. 1:

<

3 3.5 \d 4

FIG. 1. The left- and right-hand sides of (22) as a function of y, for 4 = 0.5 and B
= 0.8. The central pressure deficit would be given by Y, if there were no isothermal
expansion effects. Y, and Y, denote the equilibrium solutions of (22).
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At ambient pressure (y = 1), the pressure drop that
could be sustained energetically merely by increasing
the relative humidity from its ambient value to 100%
at constant pressure is a finite value reflected by y,. If
such a pressure drop were realized, however, the actual
core mixing ratio would increase further since w;
= 0.622¢,/p,. This is reflected by moving to the right
along the exponential curve., This additional water va-
por leads to a further decrease in the core pressure (in-
crease in y), and so on until the first intersection point,
¥1, is reached. The fact that y, > y, reflects the addi-
tional input of heat energy from isothermal expansion.
Now if the system is forced to move beyond y,, the
core saturation mixing ratio (reflected by the exponen-
tial curve) becomes less than that necessary to sustain
the central pressure drop (») and the system would
have to spin down. In this sense, y, is a stable equilib-
rium point of the system.

The solution y, (which in this case occurs at the very
small value of ps,./p4, of 1/3) is unstable, however. If
one moves to the right of y,, the core mixing. ratio
(exponential curve) is always larger than that necessary
to sustain the pressure drop () and so the system would
continue to intensify indefinitely. On the other hand,
moving to the left of y, leads to core mixing ratios less
than those necessary to sustain the pressure drop and
the system spins down. Thus, y, is an unstable, and
therefore unobservable, solution; the solution of inter-
est is y;.

Suppose, however, that we either increase 4 or de-
crease B. This causes the exponential curve in Fig. 1
to move upward, so that solutions y; and y, move in
toward each other. Eventually, they coalesce into a sin-
gle solution and for larger A or smaller B no solution

Hypercones
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exists at all. By the preceding argument, the system is
always unstable in this event, and moves inexorably
toward lower pressure. This may be thought of as a
“runaway” Carnot engine in which central pressure
falls lead, through isothermal expansion, to increased
heat content, which drives further pressure falls, and
so on. If a new equilibrium is achieved, its energetics
must be quite different from those of ordinary hurri-
canes; presumably the excess energy generation is ul-
timately balanced by large internal dissipation; other-
wise, the central pressure would literally approach the
saturation vapor pressure of the sea water. We apply
the term: hypercane to any mature storm that might
exist beyond the parameter range where equilibrium
solutions are possible.

The threshold values of A or B beyond which no
solutions exist can be found by requiring that the two
curves in Fig. | have the same slope at their intersection
point, In addition to (22) being satisfied, then, we have

1 = A exp[A(y — B)] = 4y,
so that
x(=1/y) = 4,
A = e84, (23)

The latter can be solved explicitly for a critical value
of B for a given value of 4:
_1+1In4

I
No solutions exist for B < B,.

General solutions of (18) for x (=p,./p4,) are shown
in Fig.'2. The equilibrium central pressures decrease

very rapidly close to the critical curve, along which x
= A.

B, (24)

6 7 .8 .9 1

FIG. 2. General solutions of (18) for x (=pu/p4), as a function of 4 and B. The
heavy solid curve denotes the critical condition beyond which no solutions exist.
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Actugl minimum pressures are shown in Fig. 3aas culated from (19) using the appropriate gas constants
a function of Ty a_nd T, for an ambient pressure of and temperature-dependent L,, with e given by Bolton
1013 mb and humidity of 80%. These have been cal- (1980). The last term in the definition of B (19) is ne-

40 ¢

36 -
Hypercanes

T, (°C)
s 00
J ' ) 5
] 978 \\\\\\
20 5\5 + !\ + \ \ + $
o -15 -30 -45 -60 -75 .90 -105 -120 -13§
Ty (°C)

40T

38 1

36T
Hypercanes

341

32 1
T (°C)
30--

28 1

(o] -15 -30 -45 -60 -75 -90 -105 -1200 <135
| To (°C)

FIG. 3. (a) Minimum sustainable central pressure (mb) of tropical cyclones as a function of sea
surface temperature (7}) and entropy-weighted mean outflow temperature (T), assuming reversible
thermodynamics and an ambient surface relative humidity of 80%. The asterisk denotes mean
August conditions in the near-equatorial western North Pacific. (b) As in (a) but for a surface
relative humidity of 75%.
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glected; it is generally very small unless r, exceeds about
1000 km. Rotunno and Emanuel (1987) showed that
the intensity of numerically simulated hurricanes was
insensitive to r, as long as it was within an upper bound.
The following procedure was used to estimate z,*:
From the conservation of /4 (appendix A) we have

g = (de + QCI)(Ts - TO) + LvQ - LvoWO
0 1+Q
_ (GCpa+ QCXTs = To) + L,Q[1 — (Loo/ Lo)Wo/ O]
1+Q )

(25)

Were it not for the last term in the numerator of (25),
£2o would be a function of Q, T and T alone. Since
wp will be small at low temperatures, the last term
within brackets will be small provided the saturation
mixing ratio at the outflow level is small compared to
the boundary layer mixing ratio. Thus wy/Q is related
to ¢. Rather than calculate w, explicitly, we approxi-
mate it by curve fitting its dependence on € from te-
phigrams. We find that the approximation

Lva Wo
Flg=1--=22
©) L Q
8.7¢ — 19.33¢%, €< 0.23 .
~ (26)
1, e> 0.23

produces errors less than 5% over a range of surface
temperatures between 20 and 40°C. Using this and
averaging (25) over the range of Q between w, and w,
yields

_ 1 1+
g7* ~ eT,Ci+ L, F(e) + In ——¢
1+ w,

W, — W,
X [eT(Cpa — C) — Ly F(e)].  (27)

As this depends on w,, which in turn depends on p,,
(18) must be solved iteratively. We estimate that the
errors arising from approximating 1 — we/Q by (26)
are less than 2 mb.

Figure 3b shows the minimum central pressures for
reversible ascent when the ambient humidity is 75%.
Total pressure drops are about 25% greater, indicating
that the pressure drop is nearly proportional to 1 — RH,
which is in turn proportional to the entropy input from
the ocean.

Note in Fig. 3 that at current lower stratospheric
temperatures, the sea surface temperature would have
to be greater than 38°-40°C to permit hypercanes.
Likewise, at present sea surface temperatures hyper-
canes could only occur if the lower stratosphere cooled
to less than about —105°C.

Real hurricanes do not, of course, operate on re-
versible thermodynamics. The largest irreversible effect
is the fallout of precipitation, which reduces the water
loading term (a) in (19) as well as the effect of the heat

KERRY A. EMANUEL

1149

capacity of water substance, represented by term (c).
It is possible to define a pseudo-adiabatic hurricane by
removing all condensate instantaneously. Then, ac-
cording to appendix C, Zo* is a mean altitude, weighted
by the water vapor content, and term (c) in (19) is
somewhat altered. As calculation of these is rather in-
volved, we shall instead obtain an upper limit on 4 in
(19) by ignoring the water loading and heat capacity
terms (a) and (c). This will in general lead to estimates
of the pressure drop that are about 5% too large.

Figures 4a and 4b show estimates of the minimum
pressure obtained by ignoring the water loading and
heat capacity terms. These represent slight underesti-
mates of the minimum pressure of pseudo-adiabatic
hurricanes. At high surface temperatures, the difference
between the reversible and pseudo-adiabatic minimum
pressures is very substantial, reflecting the importance
of water loading in limiting the hurricane intensity in
the reversible case.

The asterisks in Figs. 3 and 4 denote the most ex-
treme conditions that exist in the western North Pacific
Ocean, where the surface humidity varies between
about 75% and 80%. The pseudoadiabatic case accu-
rately reflects the record minimum pressures of 870-
900 mb in that region. Apparently, the most intense
hurricanes approach the actual thermodynamic limit
on their intensity.

3. Hurricanes in the supercritical regime

The absence of stationary solutions of (18) for suf-
ficiently large values of 4 and sufficiently small B im-
plies that if steady hurricanes are possible at all, their
energetics must involve processes not accounted for in
this analysis. As pointed out previously, the breakdown
of (18) may be regarded as arising from a runaway
isothermal expansion in which falling pressure leads
to a heat input that is more than sufficient to drive
further pressure falls. In view of this interpretation and
the assumptions made in the Carnot cycle development
of (18) (see appendix C), we may speculate on the na-
ture of processes that might actually limit hurricanes
in the supercritical regime:

1) Inflow in supercritical hurricanes is not approx-
imately isothermal, as observed in subcritical storms.
This possibility would appear to depend on the details
of the boundary layer physics of hurricanes; the inflow
might become so strong that surface fluxes are unable
to keep up with adiabatic expansion.

2) The vortex may become supercritical in the clas-
sical sense; i.e., the outflow may not match up with
the ambient environment. In I it was assumed that
outflow is weak enough that gravity waves can prop-
agate inward from infinity, so that the outflow tem-
perature T, can be calculated from the ambient sound-
ing. This was shown to be the case in the numerical
simulations by Rotunno and Emanuel (1987). Were
the outflow sufficiently strong, however, gravity waves
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RH = 80%

Ts (°C)

=15 -30 -45 -60 -75 -9'0 -I(‘)S ~|2'O -135

To {°C)
RH = 75%

40,4

Hypercanes

Ts(C)

-l05 -120 ° -135

FIG. 4. As in Fig. 3 but for solutions of (18) ignoring condensate loading
and heat capacity effects.

would not be able to penetrate inward of a critical ra-  boundary layer physics since the secondary flow in a
dius at which a shock would presumably form, and Ty steady vortex is frictionally driven.

might be controlled by the vortex itself rather than by 3) The assumption that all of the dissipation occurs
the environment. This possibility also depends on the in the inflow layer and at large radii in the outflow
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breaks down and internal dissipation becomes impor-
tant. This implies a turbulent breakdown of the vortex,
presumably at very high intensity.

To these considerations we add that hurricanes occur-
ring over oceanic mixed layers of finite depth are
known to cool the sea surface temperatures by up-
welling and mixing; this may limit hurricane intensity
under some conditions.

Let us suppose for the present that whatever process
limits the intensity of hypercanes nevertheless results
in storms of extraordinary intensity. We can speculate
on several aspects of the structure of such storms based
simply on their intensity and on some suppositions
about their boundary layer structure.

In the first place, hypercanes would penetrate large
distances into the stratosphere due to the very high
core values of the moist entropy. The distance above
the tropopause of the highest outflow from the eyewall

is approximately
d
0z =~ (_z és,
ds/,

where (ds/dz) is the rate of increase of moist entropy
with height in the stratosphere. We have neglected wa-
ter loading of the updraft. If we approximate moist
entropy by dry entropy in the ambient stratosphere
and assume that the latter is isothermal with a tem-
perature T, we have

(28)

T
oz ~ =2 §s.
8

The entropy increase és is the increase between the
ambient environment and the core along the surface.
Neglecting effects due to the heat capacity of water,
this is [from (2)]

(29)

L,
8s = — 6w — R,6 Inp,.
T;
Using the definition of mixing ratio in the above, (29)
becomes

RiTo[ L, e
az=—ﬂ[—1‘——e—(1—RH)—1nx], (30)

g |[RoTspaa\x

where X = pae/Pas.

For T, = 40°C, Ty = —73°C,RH = 0.8 and x = 0.5
this gives a penetration of about 13 km into the strato-
sphere, compared to a penetration of about 2 km for
T, =30°C, Ty = —=73°C, RH = 0.8 and x = 0.9. Thus
it appears that hypercanes would extend much further
into the stratosphere than present-day hurricanes.

It is also possible to show that the ratio of the radius
of maximum winds to the outer radius would be rel-
atively small in hypercanes. In order to demonstrate
this, it is necessary to close the zero moist potential
vorticity model with a second condition on the radial
distribution of boundary layer pressure or moist en-
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tropy. Equation (16) may be considered a first such
relationship. If the steps leading from (16) to (17) are
repeated but while allowing the radial integral to be
evaluated between two arbitrary radii, the result is

— 1 ap\ 1 ap
To(s, — $2) = 2 (md 37')1 3 ("ad 6r)2

+ %lerlz(l 4+ w) — (1 4 w)]
+ (w, — wz)[ClTs + L, + C;To*(lnﬁ* -1

-3t - gZ_o*] e

where the subscripts 1 and 2 refer to the two arbitrary
radii and the overbar represents averages defined over
that interval.

To obtain approximate relationships for maximum
wind speed and radius of maximum wind we make an
ad hoc closure assumption based on observations. In-
side the radius of maximum winds, we assume that
the gradient wind field is in solid body rotation, while
outside that radius we assume constant relative hu-
midity. The first condition is a direct condition on the
pressure field while the second ties variations of moist
entropy to variations in pressure.

As we are only interested in the qualitative behavior
of the maximum wind and the radius of maximum
wind, we shall make several further simplifying as-
sumptions, viz. 1) neglect water loading and the effect
of the heat capacity of water substance in (31) and in
the definition of s, (2); 2) assume that T;, does not de-
pend on the averaging interval; 3) assume that the radial
pressure gradient is equal to the radial gradient of the
partial pressure of dry air; and 4) neglect w where it
multiplies £2 in (31). With these conditions, (31) be-
comes

— 1 dlin ol
To(s —Sz)=§Rde[r|( ar"") —rz( ;”“)]
1 2

2SR = B+ Liw — w). (32)

Within the radius of maximum winds, the gradient

~wind equation assumes the form

i) lnpd _
ar
where V,, is the maximum gradient wind, occurring at

radius r,,. Integrating this from r = 0 to r = r,, results
in

Rd Ts

& r r

Dam 1
RiT;In=— ==V, [V + ftm
d Py) [ Jrml
1 d Inp,
== ruR T
2 fm ( or )r=r,,, (33)



1152

Using (33) and evaluating (32) between r = 0 and r
= r,, Tesults in

—R.T,1n ’;’)“—’" = TolSe — Sm) —

de

Lv(wc - wm)’ (34)
where we have neglected the Coriolis terms in this in-
terval. Substituting the definitions of moist entropy (2)

and mixing ratio, we obtain

Dam _ €Ly €

2—¢ln
( ) Dac Ru Ts Dac

[I RH ] (35)
Dam

Here p;, is p;evaluated at r = r,,, and we have assumed
a relative humidity RH at r = r,,. Given the central
pressure from (18), (35) may be used to obtain p,,, and
(33) then gives V,, (neglecting the Coriolis term).

The radius of maximum winds may be found by -

matching (35) to the result of integrating (32) inward
from r, to r, under the assumption of constant RH.
The differential equatlon for p; derived from (32) is
then

19 Inp, Pa eL, Dda
~r— 1—¢ln ——RH — -
2" or t1-9 R T Dda [Pd 1]
leraZ r2
T AR, (1 r,,z) - (38)

. To solve (36), we make the further assumption that

(Paa — Pa)/P4a <€ 1 in the range of pressures between
Paz and py,,. Then

Pda _ 1=In Dda .

Da Da
Using this, the solution of (36) evaluated at r = r,, is

g Pae LS (1 [frm\®(ra\
Pa 4RI, CH+ 1|\, Vo

1 T 2C .
-G ] e
QEl—e(l+M5).

'Under the approximation that 7,, < 74, (37) can be
solved for r,, as a function of r, and py,:

4R,T, o 172¢
Fo r,,[ f2d2 1 + C)n ;’:m] )

Given r,, pim (from (35)) and p,., (39) yields an estimate
of r,,. Clearly, as w, increases (i.e., surface temperature
increases) and as the outflow temperature decreases (e
increases), C becomes smaller and so does 7,,.
Examples of estimates of r,, and V,, calculated from
(18), (33), (35) and (39) are shown in Table 1 for two
different sea surface temperatures one of which is typ-

1

where
(38)
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TABLE 1. Estimates of r,, and V,, for two different sea surface
temperatures and for p, = 1013 mb, RH = 80%, T = —73°C and

f=5X107s1,

T,(°C) rs(km) pc(mb) p,(mb) V,(ms™") r,(km)
30 700 894 917 80 26
35 700 762 788 96 2
35 1500 762 788 96 64

ical of present conditions while the other nears, but
does not exceed, the hypercane threshold. Estimates of
the relative values of 7, and r, and of V,, for extreme
hurricanes under present conditions are reasonable.
When the sea surface temperature is increased to near
the hypercane threshold, the radius of maximum winds
becomes very small unless the outer radius is increased.
From this we may conclude that hypercanes would
either have very small eyes or very large outer radii.

4. Conclusions

We have derived an exact equation (18) governing
the minimum sustainable central pressure of hurri-
canes. The Carnot cycle derivation presented in ap-
pendix C shows that the only approximations necessary
in deriving (18) are 1) no radial temperature gradient
in the mixed layer, and 2) no dissipation except within
the inflow and at large radii in the outflow. The as-
sumption of axisymmetry has a relatively small effect
on the steady state central pressure.

Both the reversible and pseudo-adiabatic values of
the parameters 4 and B in (18) yield regimes under
which no solution to (18) exists. Under these condi-
tions, the Carnot engine experiences a runaway iso-
thermal expansion which drives the central pressure

- ever lower, unless the expansion ceases to be isothermal

or unless internal dissipation becomes large, implying
very high intensity. We call mature storms.that might
occur in the supercritical regime Aypercanes, and show
that they would extend very high into the stratosphere
and have either very large outer radii or very small
eyes.

Holding the temperature of the lower stratosphere
constant, sea surface temperatures would have to be
6° to 10°C warmer than present values to sustain hy-
percanes. It is very unlikely that this has happened in
the recent geologic past or will happen in the near fu-
ture. Some estimates based on oxygen isotope deter-
minations from fossil foraminifera (e.g., see Frakes,
1986) indicate middle Cretaceous tropical sea surface
temperatures as much as 7°C warmer than at present,
suggesting that hypercanes might have been possible
at that time, unless the lower stratosphere was also
substantially warmer. Nor can one rule out the exis-
tence of supercritical regimes very early in the earth’s
history, when temperatures may have been substan-
tially warmer than at present.
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The existence of hypercane regimes in the geological
past aside, the question of whether a runaway Carnot
engine is dynamically possible remains. The solutions
to (18) under present conditions give quite reasonable
estimates of the central pressures of the most intense
storms on record (see Emanuel, 1987), indicating that
the upper bound provided by (18) is actually achieved
in a small number of storms. Whether a tropical cy-
clone of extraordinary intensity and large internal dis-
sipation is actually possible in the supercritical regime
constitutes a challenging question that might be an-
swered through numerical modeling.
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APPENDIX A

Expressions for Moist Entropy and Moist Static
Energy Valid in Saturated and Unsaturated Air

The following quantity can be shown to be conserved
during reversible moist or dry adiabatic expansion:

Low
T
— R;Inp; — wR, In(RH), (Al)

where C,; and C; are the heat capacities of dry air and
liquid water, respectively, Q is the total water content,
L, is the heat of vaporization (a function of tempera-
ture), w the vapor mixing ratio, R; and R, are the gas
constants for dry air and water vapor, respectively, and
RH is the relative humidity.

Differentiation of (A1) yields

§=(Cpa+ QCI) InT +

Tds = (Cpqg + QCAT + L,dw — R—;ded + wdL,
d

Lyw
T

The last term of (A2) vanishes since reversible changes
in w can only occur at RH = 1. The temperature de-
pendence of L, is given by

dLu = (va - CI)dT,

where C,, is the heat capacity of water vapor at constant
pressure. Also, the Clausius-Clapeyron equation may
be written:

LT < porte - e 4N)

T & RH

since e; = ¢/RH. Usiné these two expressions in (A2)
gives
Tds = (Cpy + WCpy + IC)dT + L,dw

R,T

———dps — vaTéé-) . (A3
Da e

dT — wR,Td In(RH) — R, T In(RH)dw. (A2)
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Finally, we note that since w = ay/a,, where a, and
o, are the specific volumes of dry air and water vapor,
respectively, (A3) can be written

Tds = (de + WCp', + lC])dT + LvdW - addp, (A4)

which is a direct statement of the first law of thermo-
dynamics written as entropy changes per unit mass of
dry air. This proves that (Al) is a uniformly valid
expression for entropy of moist air.

A uniformly conserved moist static energy can also
be derived from (15). Using the hydrostatic equation,
this is

h= (de + QC)T + L,w+ (1 + Q)gz.
It follows from (A5) that for reversible processes
dh = (Cpy + QC)AT + L,dw + wdL, + (1 + Q)gdz
=(Cpa + QC)dT + L,dw + w(Cpy — C)dT
+ (1 + Q)gdz

= (Cpa + WCpy + IC)AT + Lydw — agdp = 0.

(A5)

(A6)

The last line of the above is simply a statement of the
first law of thermodynamics. This shows that # is con-
served for hydrostatic reversible displacements.

APPENDIX B

Maxwell’s Relations for Reversible Moist Processes

We begin with the first law of thermodynamics,
which can be obtained by differentiating (2) and mak-
ing use of the Clausius-Clapeyron equation. The result
is

Tds = —audp + (Cpa + QCHAT
+ d[L,w] + C,T InTdQ. (Bl)

This is valid in both saturated and unsaturated air. The
last term on the right arises because the system is not
closed to exchange of water mass. Before proceeding
further, we rewrite the first term on the right as follows:

—aqdp = —dlagp] + pd(ag)

v

= —d{adpd + %{ ave] + pd(e)

= ~d[R,T + wR,T] + pd(as).  (B2)
Combining (B2) with (B1) yields
Tds = pd(ag) + (Cos + QC)AT

+ di(L, — R,T)W] + C;T InTdQ, (B3)

where C,, is the heat capacity of dry air at constant
volume.
We next define a moist enthalpy h:

h=pag+ (Coa+ CQT + (L, — R,T)w. (B4)
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It then follows from (B3) and (B4) that

dh = Tds + azdp + CG;T(1 —InT)dQ. (BS)
Using (B5) we then obtain the relations
o,
S pQ
R
)., ds
oh
—| = CT[1 —InT], B6
( . Q)W 711 — InT] (B6)

from which it follows, by cross-differentiation, that
9oy oT
ds 2.0 ap 50

aad _{9 ; =
(@)S‘p = ( » [CT(1 lnT)])

Furthermore, since a = ag4/(1 + Q), (B7) can be written

(&)~ 70 o)
o), U+Q\op/

da 1
(@)s T+ 0 5— [CGT(1 = InT)),0 — T—+_Q (B9)

Finally, the last term on the right of (B9) can be reex-
pressed using the hydrostatic equation

9¢
—a=22

ap’

where ¢ = gz is the geopotential. Using the chain rule
and gradient wind balance it is possible to show that

: 3¢\ _ (0%
, ap/, 6p
where ® = ¢ + 1 V2 and Vis the gradient wind. Using
(B11) and (B10), (B9) becomes

(B7)
50

(B8)

(B10)

(B11)

. 1
(@) ~ T T ~ Dk
1 0%
+r:5(:9;)M' (B12)

The relations (B8) and (B12) are the desired Maxwell’s
relations.

APPENDIX C

Carnot Cycle Derivation of (18)

We begin by writing a Bernoulli Equation for steady
flow: : )
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d(% V2) + adp+ gdz—F-dl = (C1)
where V is the magnitude of the total velocity vector,
F is the vector friction force and 11is a unit vector par-
allel to streamlines. It is understood that the derivatives -
of (C1) are everywhere along streamlines. We next in-
tegrate (C1) around a closed streamline as indicated in
Fig. Cl. The result is

§adp=fF-dl,

which simply expresses a balance between pressure
work and dissipation in steady flow. We also integrate
(C1) between points a and c in Fig. Cl1. Since z = 0
and V vanishes at both points the result is

f adp=f F-dl
a a

We next assume that all frictional dissipation occurs
only between points a and ¢ and between points 0 and
o' in Fig. C1. Thus

(C2)

(C3)

fF-dl=ch-dl+fa,F-dl. (C4)
Combining (C2), (C3) aand (C4) r'e:ults in
f: adp = f adp — J;o’ F-dl (C5)
Since a = ay/(1 + Q), it follows that
a=oay— aQ. (Co)

Using (C6) in (C5) we obtain
f addp = .‘faddp - f F-dl
+ f aQdp — f aQdp.” (C7) *

The last two terms of (C7) can be written as

a
—| Quadp,
c
e oL T T T A S m SR T DI
7 [+3]
’ - — i
It e mm - =
{ " A
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t / /
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I 7
2 3’
f )
3
{ e
{ rd
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g
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¢ 41y
Y, 7/
L o
1;//,5/”’
c AN a
—d
ra r -

FiG. C1. Illustrating the path integral for the Carnot cycle.
Points o and o' are taken to lie at very large radius.
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where it is understood that the path of integration is
c-0-0'-a. Once again using (C1) to replace adp in the
above, the last two terms in (C7) can be written

fc ’ Q[d(% V2 + gz) - Fodl]

- f i [(% V2 + gz)dQ + QF-dl] , (C8)

-[ Qo

where we have made use of the vanishing of z and V
at the end points and the assumption that irreversible
processes act only between o and o’ along the integra-
tion path ¢c-0-0'-a.

We once again use (C1) to estimate the frictional
dissipation necessary to close the Carnot cycle. Under
the plausible assumption that the flow is hydrostatic
between o and o', (C1) shows that F-dl = d(*2V?) in
this region. Using this estimate in (C8) and (C7) the
two relations may be combined to give

f Olddp

= f agdp — f [(gz)dQ + d((l + Q)% Vz)]

’ 0’

, (C9)

o

= f aqdp — 82,%Q

(4
o

1 .
~ [5(1 - Q)VZ]

where Zo* is defined as before.

Finally, we use (15) to eliminate a,dp from (C9).
After some integrations by parts, and noting that en-
tropy only changes at the surface and between o and
o', we obtain

_YTO(Sc = 8a) = (We — W)L, + C/T

+ CTo Ty — 1)~ g&*] + [§ (1+ Q)Vz]

o

(C10)

Using (1) to relate ¥ to r and M and noting that M,
= 1 fr.2, it can easily be seen that (C10) is equivalent
to (17).

In the pseudo-adiabatic case we allow all condensate
to fall out of the system immediately upon forming.
To derive a pressure equation in this case, we start with
(C7) and this time insist that Q = w everywhere. Then
(C8) is instead written

_andp=f “{d(% V2+gz)-F'dl]

ol

= (% Ve + gz,,)(w,, — W) — f wF-dl, (Cl1)
[

where %Vaz + gz, is evaluated at point o and W, and

W, are defined

KERRY A. EMANUEL

1155

I
=
M

W, —l—l-—f wd(—1—V2+gz),
EV02+gZo ¢ 2

Wd'El——l——f wa'(-;- V2+gz).
> V02 + gz, **
Combining (C12) with (C7) gives
f addp = faddp - f (l + W)F'dl

a

(C12)

+(yva s am)m-m. €

As before, we use the first law to eliminate adp from
(C13). In the pseudoadiabatic case, the first law can
be written (see Iribarne and Godson, 1973)

—agdp = Tds' — (Cpg + wCAT — d[L,w]. (Cl14)

Unlike the reversible case, s’ is a state variable as well
as a conserved quantity so that its material derivative
is the same as its general derivative. Substituting (C14)
into (C13) yields

Tolst — 54) = L(w, — wa) + Ci(Ts — To)Wy — Wa)

- (% Vo + gzo)(w_u —Wa) + f (1+ W)d(% Vz) ;

(C15)

where
a

wdT,

~

Ve =TT, )

T.-T.J, wdT.

This can be directly compared to (C10) which applies
to the reversible case. The main differences are the dif-
ferent definitions of s and s’ and the replacement of w,
— w, by weighted vertical averages of w, — w;, in the
heat capacity and gravitational terms. This means that
the effects of heat capacity and weight of water sub-
stance are much less in the pseudo-adiabatic than in
the reversible case.

~

Wg =
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