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1. Introduction

In a recent paper, Hersbach and Janssen (1999) pre-
sent a modification to the method used for integrating
the source term in the third-generation ocean wave mod-
el (WAM). The new method shows substantial practical
benefits when compared to the earlier method, but is
still not entirely satisfactory for use in high-resolution
coastal applications. More significantly, their work is
based upon misunderstandings and errors, which they
appear to have picked up from earlier publications. This
note aims to take this opportunity to correct these long-
established errors and clarify the situation. We dem-
onstrate that the time-centered discretization used to in-
tegrate the source terms does not guarantee numerical
stability, despite repeated claims in the literature to that
effect. We also analyze and explain why the supposedly
less accurate first-order implicit Euler method is gen-
erally superior to the second-order time-centered tech-
nique in most applications.

2. Background

WAM (Komen et al. 1994; WAMDI 1988) is a third-
generation wave model designed for modeling the ocean
wave field in deep water and up to global scales. In this
context, third generation means that a full wave spec-
trum (F), discretized according to frequency and direc-
tion, is calculated diagnostically (up to a high-frequency
threshold above which a prognostic tail is added) by
finite difference approximations to partial differential
equations.

WAM uses an operator splitting method in which the
propagation terms and source terms are integrated sep-
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arately. With the propagation terms excluded, the equa-
tion describing the evolution of F becomes

]F
5 S(F ), (1)

]t

where the S(F) is the total source term. This is now a
set of ordinary differential equations (ODEs) for which
there are a wide range of well-researched solution meth-
ods (e.g., Press et al. 1994, chapter 16). Since the time-
scale for the evolution of the high-frequency end of the
spectrum is much shorter than for the low end of the
spectrum (WAMDI 1988), this set of ODEs is in fact a
stiff set of equations (Press et al. 1994, section 16.6).
The literature on this particular subject (e.g., Seinfeld
et al. 1970) does not seem to have been considered in
the context of wave modeling, which may explain some
of the errors and misunderstandings, which we address
in the following sections.

3. Comments on the integration scheme

A simple method for the solution of Eq. (1) is to use
the following finite difference approximation:

F 2 Fn11 n 5 (1 2 a)S(F ) 1 aS(F ). (2)n n11Dt

Here Fn is the initial energy level, Fn11 5 Fn 1 DF is
the energy level after a finite time interval Dt has passed,
and a is the implicitness parameter, which can be chosen
in the range [0, 1], with a 5 0, ½, 1 corresponding to
the explicit (forward time) Euler method, time-centered
and implicit (backward time) Euler method, respective-
ly. We prefer to avoid using the term ‘‘semi-implicit’’
here since it has been used to mean different things by
different authors. Also, S(Fn11) is not known a priori
but is estimated via a first-order Taylor series expansion
around S(Fn), which results in the following equation:
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DtS(F )nDF 5 , (3)
1 2 aDt min[S9(F ), 0]n

where S9(Fn) 5 .(]S/]F)|Fn

The minimum operator is required to avoid the sin-
gularity and nonphysical results that could otherwise be
produced if S9(Fn) is positive. It is worth pointing out
that when S9(Fn) is positive, this equation reduces to the
explicit Euler method, which is well known to exhibit
poor stability (Press et al. 1994, chapter 16). Although
the partial derivative of S is a matrix (when the spectrum
is discretized), only the diagonal terms are retained since
this greatly reduces the computation without signifi-
cantly affecting the results (Komen et al. 1994, p. 235).
This means that each equation can be solved indepen-
dently without the need for matrix inversion.

The original integration scheme used in WAM was
the time-centered method, a 5 ½, with a time step that
roughly matched the timescale of the evolution of low-
frequency waves. It was stated by WAMDI (1988) and
Komen et al. (1994) that this method was in principle
numerically stable. Hersbach and Janssen (1999) repeat
this assertion, referring to a ‘‘proof’’ by Janssen and
Doyle (1997), and therefore they have to attribute the
ensuing instability to the fact that the nondiagonal terms
in the integration have been omitted. In fact, as has been
stated (e.g., chapter 16.6 of Press et al. 1994 and chapter
111-F-5 of Roache 1976), the integration technique is
not numerically stable, and counterexamples are readily
found. For example, consider the ODE

dx
1/35 2x . (4)

dt

It is trivial to solve this equation analytically, but the
physically stable point at x 5 0 will never be found by
any of the three finite difference methods described
above, for any finite time step. For a small value xn

close to the stable point, the implicit Euler method will
calculate xn11 . 22xn and so the distance from the
equilibrium solution is amplified (the time-centered and
explicit methods diverge even more rapidly). This ex-
ample serves to disprove the claims cited above that the
time-centered method is numerically stable.

This simple counterexample has a pathological sin-
gularity in its gradient at x 5 0, but a slightly more
contrived example can be created by replacing a short
segment of the curve with a straight line segment; for
example,

1/3dx 2x , |x| . 0.000001
5 (5)5dt 210 000x, |x| # 0.000001.

The skeptical reader is invited to check that the inte-
gration of this ODE by any of the simple methods de-
scribed above will not in general converge to the stable
equilibrium point x 5 0, although for this second ex-
ample convergence is at least sometimes possible if one
manages to reach the straight line segment either

through the use of an extremely short time step or for-
tuitous starting position. We emphasize that this second
counterexample is extremely well behaved in the neigh-
borhood of its stable fixed point (being linear around
that point), but this does not help matters as the linear
region will not necessarily be reached during a numer-
ical integration.

Given that none of these three simple integration
methods can guarantee unconditional stability, the pre-
ferred approach must surely be to reduce the time step
where necessary. Indeed, Tolman (1992) has done this
in his wave model WAVE-WATCH with apparently
good results. Of course, the existence of pathological
examples such as (4), which would require vanishingly
small time steps, implies that no absolute guarantees of
performance can be given.

The misunderstanding over the numerical stability of
the schemes is compounded by the original choice of
the time-centered scheme for the integration of the
source terms. WAMDI (1988) asserts that ‘‘for high
frequencies the method yields the (slowly changing)
quasi-equilibrium spectrum’’ but in practice the method
can generate oscillations in this region of the spectrum.
Hersbach and Janssen (1999) observed such oscilla-
tions, and Janssen and Doyle (1997) attributed similar
oscillations in the ECMWF atmospheric model to a spu-
rious chaotic period-doubling effect. Both sets of au-
thors discovered that the oscillations could be eliminated
by the use of the implicit Euler method [a 5 1 in Eq.
(3)]. The original time-centered scheme of WAM is not
a generally favoured method for the integration of
ODEs, and it is a particularly poor choice in the case
of stiff sets of equations, where the implicit Euler meth-
od is undoubtedly a better choice (if more complex
methods are prohibited by computational limitations).
The time-centered technique was not even tested by
Seinfeld et al. (1970) in their otherwise thorough review
of simple methods for stiff ODEs, and this omission
suggests that the drawback of this technique is well
known in some quarters. Since this does not, however,
appear to be widely known in the oceanographic and
meteorological modeling communities, these comments
(which apply widely across many numerical models and
not just to wave modeling) are fully justified in the
appendix.

4. Numerical versus physical limitation

The approach used in WAM to cope with the nu-
merical instability of the integration method is to apply
a ‘‘limiter,’’ which restricts the rate of change of the
spectrum. Hersbach and Janssen (1999) note that their
limiter acts as if it is part of the physics of the model
since its influence remains even as Dt → 0. They assert
that this alteration to the physical description of wave
evolution is justified since it ‘‘compensates for the lack
of physics in the diagnostic part of the spectrum.’’ There
is no description or justification of this new physics in
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WAMDI (1988) or Komen et al. (1994), or even of the
limiter itself, although it was apparently in use at that
time, and indeed the only previous peer-reviewed pub-
lication that we can find that mentions the existence of
the limiter appears to be Tolman (1992). Furthermore,
Hersbach and Janssen (1999) show in their own work
that any modification to the physics is not justified.
When they run WAM for a small enough time step (Dt
5 1 s), the limiter is not needed and the output appears
to be physically satisfactory. Indeed, Hersbach and Jans-
sen (1999) judge the performance of their new proposed
limiter in part by comparing its results to the convergent
no-limiter WAM output. They argue that the new limiter
is superior to the old one because its physical impact
is very much lower, which appears to be in direct con-
tradiction to the earlier statement that a change to the
model physics is required. The convergent no-limiter
runs demonstrate that the limiter is not required to com-
pensate for the lack of physics in the diagnostic model.
Instead, as we have explained above, it corrects for a
numerically unstable integration scheme. In practical
terms, the new limiter does a fairly good job, especially
over larger grids, but there is still a noticeable effect in
coastal regions, which leads to an underprediction of
wave height. Monbaliu et al. (2000) explore this issue
further and present the results from an alternative meth-
od of source term integration, which does converge to
the continuum solution as the time step is reduced. For
the reasons described above, however, this method
(which does not rely on a limiter) cannot be guaranteed
to always be stable, and so is not suitable for operational
use.

It is of course always possible that the physical de-
scription of wave evolution could be improved in fetch-
limited situations, but no evidence for this is supplied.
The imposition of a limiter can only make any improve-
ment to the physical equations more difficult since it
means that a change to (for example) the source terms
might not fully feed through into the model output due
to the model run being constrained by the limiter rather
than solving the underlying physical equations. It must
be recognized that the need for a limiter is a purely
numerical artifact, made necessary by the use of an
unstable integration method together with a large time
step. The numerical instability is not related to the phys-
ics of wave growth (as the Dt 5 1 s model runs prove),
and the post hoc rationalization by Hersbach and Jans-
sen (1999) of the limiter as physically based is com-
pletely unjustified since it in truth compensates for a
numerically unstable integration method.

5. Conclusions

None of the integration methods discussed by Hers-
bach and Janssen (1999) can guarantee stability for an
arbitrary time step, despite several claims in the liter-
ature to this effect, and the limiter is required for purely
numerical reasons. Where a relatively large time step is

used (as will often be the case when, as here, the set of
ODEs is stiff ), the time-centered discretization should
be avoided since it generates nonphysical oscillatory
behavior and converges only slowly to a quasi-equilib-
rium solution. Forward-time integration is preferable in
both theory and practice, and reduces the likelihood of
oscillations, although there are no simple guarantees of
stability. A mathematically and physically better solu-
tion to this problem of instability would be to reduce
the time step where the spectrum is evolving rapidly,
and this method has been employed by Tolman (1992).
However, for most applications, the method presented
by Hersbach and Janssen (1999) seems to work well
enough (the problems are restricted to high-resolution
coastal applications) despite its dubious theoretical
foundations.
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APPENDIX

Analysis of Integration Methods

Error analysis for finite difference methods is gen-
erally performed by comparing the difference equations
to a Taylor series expansion of the continuum equation.
For example, a second-order Taylor series expansion of
Fn11 around Fn using (1) produces

2(Dt)
F 5 F 1 DtS(F ) 1 S(F )S9(F ), (A1)n11 n n n n2

which can be rearranged as

DF Dt
5 S(F ) 1 1 S9(F ) . (A2)n n[ ]Dt 2

A first-order Maclaurin expansion of the fraction in eq.
(3) yields

DF
5 S(F )[1 1 aDtS9(F )]. (A3)n nDt

Inspection of (A3) and (A2) indicates that a second-
order accurate (in Dt) finite difference equation is gen-
erated by choosing the value a 5 ½. This value cor-
responds to the time-centered discretization.

However, for large Dt, this analysis is not relevant or
even valid. First, the higher-order terms in the Taylor
series expansion (A1) may be larger than the low-order
terms that have been retained, and more importantly,
the Maclaurin expansion in (A3) is only convergent for
|aDtS9(Fn)| , 1. An alternative approach reveals the
truth of the situation.

We can sidestep the problem of a large Dt by using
a first-order Taylor series expansion for S(F) around
S(Fn) and solving equation (1) directly. The truncated
Taylor series is given by
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FIG. A1. Finite difference solutions to ]F/]t 5 2F. Solid line is
exact solution, triangles show implicit Euler method, and squares
show time-centered method. Dotted line is for Dt 5 40, dashed line
for Dt 5 10.

S(F) 5 S(Fn) 1 (F 2 Fn)S9(Fn). (A4)

The error of this approximation depends on F 2 Fn,
which (for physically stable equations) we can reason-
ably expect to be finite and bounded even for an arbi-
trary time step. Substituting this expression into (1) en-
ables the resulting linear ODE to be integrated analyt-
ically, and the solution for Fn11 is given by

S(F )n DtS9(F )nF 5 F 2 [1 2 e ]. (A5)n11 n S9(F )n

Of course, the accuracy with which this matches the
exact solution of the original ODE depends on how well
the first-order Taylor series approximates the source
function (i.e., it is exact in the linear case, and the error
depends on the degree of nonlinearity in the source func-
tion). If S9(Fn) is negative (as we would expect in the
region of a physically stable root), then the exponential
term in (A5) vanishes for large Dt and the resulting
equation converges to

2S(F )nDF 5 . (A6)
S9(F )n

This equation will be recognized as the Newton–Raph-
son iteration scheme for finding a root of the equation
S(F) 5 0 (Press et al. 1994, chapter 9.4). This is en-
couraging since the physically correct solution for the
ODE is that F should converge to an equilibrium point
over time, and any equilibrium point is of course a root
of the equation S(F) 5 0. It will now be shown that the
implicit Euler scheme approaches this solution as Dt
increases but the time-centered scheme does not.

Assuming for clarity that the derivative S9 is non-
positive (this is required in the neighborhood of a stable
equilibrium point) and taking a 5 1, we can rearrange
Eq. (3) to give

2S(F )nDF 5 . (A7)
S9(F ) 2 1/Dtn

The only difference between Eqs. (12) and (11) is the
1/Dt term in the denominator. For a large time step this
extra term is vanishingly small, so the implicit Euler
method generally works reasonably well even with a
large time step.

If, however, we consider the time-centered method,
a 5 ½, Eq. (3) can be rearranged to give

22S(F )nDF 5 . (A8)
S9(F ) 2 2/Dtn

The method is still similar to Newton–Raphson, but the
factor of 2 in the numerator effectively acts as an over-
relaxation parameter, which if applied to the Newton–
Raphson method directly, would completely prohibit
convergence (Press et al. 1994, chapter 19.5). In fact,
a slow convergence will generally occur due to the extra
2/Dt term in the denominator, and the form of this term
means that the convergence will deteriorate as the time

step increases. Figure A1 shows a comparison between
the solutions generated by various implementations of
the methods described. The underlying differential
equation is given by

]F
5 2F, (A9)

]t

where for simplicity, we are considering F as a single
variable and the initial condition is taken to be F(0) 5
1. The implicit Euler method gives reasonable results
for both time steps used, but the time-centered technique
generates oscillations which are substantially worse for
the larger time step, as explained above.

When a very small time step is used, the time-cen-
tered method may be marginally more accurate than the
first-order explicit and implicit Euler methods, but in
this case they will all be close to the continuum solution
and so errors from other terms in a system of PDEs
(advection, in the case of WAM) will probably render
the differences insignificant. For a large time step, the
time-centered method generates nonphysical oscilla-
tions even for a simple linear ODE and the implicit Euler
method is to be preferred. For these reasons, it seems
that the time-centered technique is a poor choice that is
best avoided for integration of the source terms in a
system of PDEs, unless there are very specific require-
ments for it.
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