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A two dimensional, irratational, linear theory is used to investigate the reflexion of an
incident surface gravity wave travelling over a region of varying depth. The existence
of 2 unique velocity potential is proved for general bottom profiles in two limiting cases,
when the wavelength is either small compared with the depth or large compared with
the transition width. The associated asymptotic results justify the approximations
obtained by others using formal methods. Also, the class of bottom profiles for which
numerical results can be achieved is extended.
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50 G. F. FITZ-GERALD

i. INTRODUGTION

This paper is concerned with the reflexion of an incident surface gravity wave that travels over
a region of varying depth. A two dimensional, irrotational, linear theory is considered.

The current knowledge of this subject may be discussed under four headings: a few theorems,
a few exact solutions, numerical studies and results believed to be asymptotic. The theorems
apply to general bottom profiles with results related solely to the reflexion and transmission coeffi-
cients. The exact solutions and numerical studies are applicable to restricted types of bottom
profiles, while the asymptotic results, for large or small wavelengths or small obstacle heights, are
generally unproven.

It is a surprising feature of the problem that although the uniqueness of the reflexion and trans-
migsion coeflicients has been proved (Kreisel 1949), there is no corresponding result for the
uniqueness of the velocity field. It remains an open question whether there exist solutions, tending
to zero at infinity, which describe modes trapped on some topographical feature of the bottom
profile.

When approximations are made in regions where speciral questions are open, it is possible that
the approximate system possesses eigensolutions, even if the exact system does not, To make
progress with such problems, it seems necessary to seek particular formulations in which
fictitious eigensolutions are suppressed. '

The existence of a unique velocity potential is proved for general bottom profiles in the
limiting cases when the wavelength is either small compared with the depth or large compared
with the transition width. A general numerical procedure is devised for wavelengths of the order
of the depth. These results are basic to determining the reflexion coefficient for-all values of the
parameters.

The basic equations are stated in § 2,1, In § 2.2 these equations are reformulated as a boundary
value problem in a parallel strip. Then Fourier transform techniques are applied and two integro-
differential equations are obtained for essentially the wave amplitude. It is shown that a one-to-
one correspondence holds between the set of solutions of the original problem and the set of solu~
tions of both integro-differential equations. However, approximations to these integro-differential
equations are not necessarily equivalent, The key to obtaining the results of this paper is thus to
find, for appropriate ranges of the parameters, suitable approximation forms by choosing
particular linear combinations of the two integro-differential equations for which convergent
iteration schemes can be developed.

In § 3.1 the existence of a unique golution of an appropriately transformed problem is proved
when the wavelength is small compared with the depth by using the contraction mapping
theorem. Then the existence of a unique velocity potential for a certain parameter range is
established. The associated Picard iteration scheme provides asymptotic results, the leading order
terms of which are essentially equivalent to those obtained in the literature using formal methods.
The corresponding results for the limiting case when the wavelength is large compared with the
transition width are discussed in § 3.2. A numerical iteration procedure is outlined in § 3.3 which
applies when the wavelength is of the same order as the depth. The success of the process depends
on selecting a suitable linear combination of the two integro-differential equations in such a way
that the system of approximating algebraic equations is sufficiently well conditioned. In com-
puting numerous results, the author encountered no serious problems in obtaining suitable linear
combinations, Possible limitations of the method are discussed.
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In § 4 a general discussion on the determination of the conformal transformation for a general
bottom profile is given, and the conformal transformations for particular profiles of interest are
discussed. The corresponding values of the reflexion coefficients are displayed graphically as
functions of both the wavenumber and the ratio of transition width to wavelength.

2. THE GOVERNING EQUATIONS
2.1. Basic equations and scales of motion

Consider the incidence of a pericdic surface wave train of amplitude ¢ and angular frequency @
on a region of varying depth. Assume the velocity field is periodic with the frequency of the
incident wave. Let g be the acceleration due to gravity and 4 be a suitably chosen typical depth.
Select w1 as the unit of time, 2 as the unit of wave amplitude, d as the unit of length and gaw™" as
the unit of velocity potential.

Choose a rectangular cartesian coordinate system in such a way that the y,-axis points vertically
upwards with g, = 0 defining the undisturbed free surface of the fluid. In terms of the above
scales, the caordinates of the bottom profile are (dx,, —db(x,)}. Denote time by ™, the wave
amplitude by af and the velocity potential by gaw—®. The well-known equations which govern
wave propagation in the small amplitude potential theory of two dimensional surface gravity
waves are then

Do, TPy, =0 In —w<ry <, —bln)<y <G (2.1.1)
D, +4(x)D, =0 on y =—blx) (2.1.2)
and wdg @y 4+ P, =0 on gy =0 (2.1.3)

(see, for example, Wehausen & Laitone (1960}). The wave amplitude is given by the formula

£ = -, (2.1.4)

|‘&|’1=0'

When the depth is uniform, Ursell (1¢953) has shown that these equations give a suitable
description of surface gravity wave propagation providing both the parameters ad—! and aA%d—2
are very much smaller than unity. Here the wavelength A = 2n£-%, where the wavenumber £ is
the real positive root of the dispersion relation £dtanh id = widg1.

If a small amplitude wave travels in a fluid of variable depth, in which the depth changes are
not too rapid, then it seems reasonable to apply Ursell’s {1953) criterion locally. This suggests
that the linear theory 1s applicable in those regions of varying depth where both the parameters
al(x,t) (db(x,)) > and af(xy, t) (A(x,))2(db(x;))~? are uniformly very much smaller than unity.
Here the wavelength A(x;) = 2rn(£,(x,)}) " where the wavenumber £,{x,) is the real positive root
of the local dispersion relation £,(x,) dtanh &, (x,) db(x;) = widg—L. This form. of the dispersion
relation appears in Keller’s (1958) formal application of the methods of geometrical optics when
the bottom profile 4 1s slowly varying. For more rapidly varying depth changes there is no a priori
estimate of the wavelength available. There clearly must be restrictions on the depth variations
to exclude the breaking of the waves. Itis expected that for sufficiently small values of ¢, providing
the other parameters are held fixed, the equations (2.1.1)-(2.1.4} will apply. An appropriate
tactic would seem to be to perform the calculations, obtain the surface response and then use a
typical length scale over which the surface displacement varies, in place of the wavelength A(x,),
in the above condition.

72
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Since the motion is periodic in time and the equations are linear, the time dependence is
removed by expressing the function value ®@{x,,#,,?) in the form Re {—iyr(x,, y,} exp (i(@ - £))},
where the real constant & is introduced to simplify the accounting for spatial phase relations in
the subsequent analysis. Suppose the incident wave travels from left to right, in the direction of
increasing &y, in a fluid which approaches uniform depth as 1, — + 0. For large negative values
of x, the field consists of an incident plane wave plus a reflected plane wave, that is

cosh & _{y; 41)

con g (P (b x) trexp(—ifx)) (m>—ec); (2159

Y%, 11) >

and for large positive values of %;, the field consists of a transmitted plane wave only; that is,

cosh &, (y, +e) . .
e o v LN} -4 2.1.
cosh £, ¢ fexp (ikox) (3 o, (2.1.55)

Uiz, i)~

where d~1k, are the wavenumbers of waves travelling in fluid of uniform depth ed {(corresponding
to that at x; = +00) and 4 (corresponding to that at £, = — ). The quantities # and  are con-
stants to be determined; the values of |#|2 and |]? are called the reflexion and transmission
coefficients respectively.

Kreisel (1949) has shown thatin the two dimensional theory of surface gravity waves travelling
in water of variable depth, the reflexion coefficient is the same for waves incident from either the
deep or the shallow end providing only that the approach to uniform depth at both ends is
exponential. The relation between the corresponding transmission coefficients is derived in
Newman (1965). Thus with no loss in generality the deeper end, if there is one, is taken at
¥, = — o0 so that the parameter < (0, 11.

It is instructive to perform an energy argument based on the divergence V- (F*V¥), where
¥ is the difference iy — ¥, of two possible solutions of the equations (2.1.1), (2.1.2) and (2.1.3)
and ¥* is the complex conjugate of ¥. The Green—Riemann formula for plane integrals and the
orthogonality results of Kreisel (1g49) imply that

0= Jf YV dx, dy,
D

Xy
= i]f,— A +ilr — Byt 4 otde | i |Wl§l=ﬁdx1—fJ‘D|V'P|2dx1dy1, (2.1.6)

where |7;]% and [;]? are the reflexion and transmission coefficients respectively for the solutions
tr; with j = 1 or 2, the constants 4 and B are real and positive, the domain D js the region
— Xy € %, € X, —b(x;) €9, € 0and the positive quantity X, is chosen large enough so that in
the regions x; > X, and x; < — X the depth is ed and d respectively. Subsequently the value of X,
will be taken as + o0 and the approach of the function value #{x,) to € and 1 as x; -~ + 0 to be
exponential.

The imaginary part of equation {2.1.6) implies the uniqueness result of Kreisel {1649}, namely
f, =1, and 7, = 7,. The real part of equation (2.1.6) yields the result

X,
wzdg“lf |12 _odxy, = J‘f |V¥|* dx, dy,.
~X, )

Thus this argument does not imply the uniqueness of the solution but merely equipartition of
energy. Although no solution for a one dimensional bottom profile is known that includes trapped
maodes, convincing physical arguments to exclude them appear to be lacking. Furthermaore there
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are known two dimensional bottom profiles which support trapped wave medes so that the above
failure of the energy method to prove uniqueness may be significant.

Even if there are no trapped modes for the original prohlem, care will be necessary in any
approximation scheme in order to aveid the introduction of false eigenfunctions. Thus the
ensuing solution procedures will be arranged so as to lead to formulations of the problem that
have a unique solution which is also one solution of the ariginal problem. Then as the reflexion
coefficient is uniquely determined, even if the total solution is not, information about the reflexion
coefficient can be obtained.

2.9, Deripation of the integro-differential equations

The boundary value problem (2.1.1), (2.1.2) and (2.1.3}, for general bottom profiles 4, is not
attractive for direct treatment using either analytical or numerical methods because of the
radiation conditions. Let the region D': —o0 < x; < 00, —b{x,} < 3; < 0 be the z;-plane {(where
zg = %; +iy,) and let the parallel strip D": —00 < ¥ < 00, —7 < y < O be the z-plane (where
z = x+1iy). A conformal transformation z, = §(fz) is sought which maps D" on to D’ in such
a way that the points at infinity correspond, the x-axis maps to the undisturbed free surface
y, = 0 and the line ¥y = —x maps on to the bottom profile y; = —b(x,). Here the parameter
pe(0,1] is introduced to cope with variations in the scale length of the depth variations; the
value of 8 = 1 corresponds to a bottom profile with a discontinucus change in depth and the
limiting case of # approaching zero corresponds to the ‘transition width’ becoming infinite,
A complete definition of 4, for bottom profiles of specific interest, is given in § 4. The mapping
is uniquely defined by choosing one point in each plane to correspond.

In the problems under consideration, the function value &(x,) approaches ¢ and 1 exponentially
as %, — + 00. Thus it is expected that near the ends the mapping function @ has the approximate

behaviour Q(fz) =nlz for x—>—00

and Q(pz) ~enlz for x->4 o0

In Kreisel (1949) this assertion is proved when the depths at ¥, = + o0 are the same and the
obstacle is finite in length, that is there exists an X, > 0such that for values of |%,| > X the depth
function & takes its limiting value. It is not believed that the existence of an X, and the same
limiting depth are essential requirements for this result to hold, but that with considerable effort
similar results could be established for the bottom profiles considered here. Consequently the
radiation conditions for the transformed potential are assumed to be of the same form as those
for ¥ but with the wavenumbers at # = %00 given by the values d-*K, = ed~*_ -1 and
d-1K_ = d-1%_n~1 respectively.
Let the transformed potential ¢ be defined by the equation

¢(x: y) = w(xl(ﬂx: ﬂy)z yl(ﬂxa ﬁy))'

Then ¢ satisfies Laplace’s equation

PoxtPyy =0 I —00<x <00, ~—T<y<, (2.2.1)
the boundary conditions
@y, =0 on y=-mx (2.2.9)
gy 4 ~0 =0 2.2.3
w ag E ¢"¢y - on ¥ ==u ( e )
=0
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and the radiation conditions

cosh K_{y +n)
S 2 cosh K _

cosh K (y+m)
and plny)—> cosh i,

(exp (IK_x)+ Rexp (—iK_x)} (x——o00),
{2.2.4)
Texp(iK,x) {x—+o0).

The quantities R and T are complex constants to be determined which differ from the constants
7 and { ouly in their arguments. To find a solution of equations (2.2.1), (2.2.2) and (2.2.3), that
satisfies the radiation conditions {2.2.4), will be called problem A.

The effect of the conformal transformation appears in problem A through the real quantity
dzyfdz|,.q Let & be the real-valued analytic function defined by the equation A(fx} = dz,/dz|,_,.
The practical determination of suitable approximations to £, for given bottom profiles 4, is
discussed in § 4. For the present it is assumed that 4 is known and to facilitate the derivation of
subsequent estimates that the function # has the limiting behaviour

R{fx) = h{ £ o) +Olexp (—-f1¥)) as x—>+oo.

Note that the assumptions are made on the behaviour of the function £ at x = + oo rather than the
behaviour of the depth profile » at x;, = + o0
Define the Fourier transform g of a function g by the equation

Ll

Zlx) =J £{x) exp {ixx) dx.
Although the Fourier transforms of the functions ¢ and x> £(fx) ¢{x, 0} should be interpreted
as generalized functions, it is convenient to proceed with purely formal manipulations, inter-
preting the functions appropriately and then making carefiil 4 posierior: verifications of the results.
Let # = n~'dw?g™) and f(x) = ¢(x, 0). Then the formal solution of problem A is the inverse
Fourier transform of the function

(,9) Bl ) = Flx) ST, (2.0.5
where —n{Af) (k) + 57 %f () tanh 1k = 0, (2.2.6)

and bars denote Fourier transforms. A formal application of the inversion and convolution
theorems to equation {2.2.5) yields the result

cosh L{x —u)
cosh (x—u} —cosy

#xg) =~ inky) [ fla) du ye[-m0),  (227)

where dx, 0) =flx), (2.2.8)

and their application to equation (2.2.6) yields the expression

nigh(fx) fx) +:Fic %dt = 0. (2.2.9)

The symbhol J[ means the integral is to be interpreted in its Cauchy principal value sense. In

deriving equations (2.2.7) and (2.2.9) the table of Fourler transforms appearing in Lighthill
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{1964) and the identities 3,981, 10 and 3,987, 1 of Gradshteyn & Ryzhik (1965) have been used.
To find a solution of equation (2.2.9} satisfying the radiation conditions

flx)>exp (iK_x)+Rexp (~iK_x) (x—>—00)

and flx) > Texp (iK, %) {x->+4c0) (2.2.10)
will be called problem B.

It proves convenient, for both analytical and numerical reasons, to derive an alternative
integro-differential equation in which the differentiated term. appears outside the integral sign.
A simple rearrangement of equation (2.2.6} yields the result

i (1) —n{hf) (k) (coth mx — (mx)=1) ~— (my)~L F () tanh ne = C,8(x), (2.2.11)

where 8 i the Dirac d-function arising as the generalized solution of an equation xg{x) = 0 and
C, is an arbitrary constant. A formal application of the inversion and convolution theorems
to equation {2.2.11) vields the result

Fix) - 2?;]( R{B{x+u)) f(x+u) (coth ju—sgna) du—in—? {gﬁ%{%du =C, (2.2.12)
o J - b3
where the formulae 3.987, 1 and 2 of Gradshteyn & Ryzhik (1965} have been used and C, is
a constant depending on €,. The value of C, is zero as determined by the behaviour of the function
value f(x) for large values of |x] using the identities 3.981, 1 and 3.987, 2 of Gradshteyn & Ryzhik
(3965) and the dispersion relations

2K, tanb K, =y {f} (2.2.13¢, 5)

These dispersion relations (2.2.13 a, b} are consequential to requiring the expressions exp (1K, x)
to be ‘local solutions® of the integro-differential equation (2.2.9), that is the results obtained if
h(fx) assumes the values h({ £ co) respectively. To find a solution of equation (2.2.12}, satisfying
the radiation conditions (2.2.10), will be called problem C.

The above analysis has formally reduced solving problem A for the potential ¢ to the problem
of determining the ‘wave amplitude’ f which solves either problem B or problem C.

TreorEM 1. There exists a one-to-one correspondence between the sets of solutions of
problems A, B and C.

Proof. Suppose the function ¢ is defined by equations (2.2.7) and (2.2.8) in terms of a solution f
of either problem B or problem C. Then

Vig =0 in —-w<xr<w, -—-n<y<i
and ¢, =0 on y=—n

Furthermore, forming the generalized functions corresponding to the ordinary functions
¢ and f, and using the convolution theorem and the identity 3.983, 6 of Gradshteyn & Ryzhik
(1965) shows the generalized Fourier transform ¢ satisfies equation (2.2.5). But as the generalized
Fourier transform fsatisfies either equation (2.2.6) or equation {2.2.11) with the constant C; = 0,
¢ satisfies the boundary condition (2.2.3). Also, upon applying the radiation conditions (2.2.10)
and again using the identity 3.983, 6 of Gradshteyn & Ryzhik (1965}, equations (2.2.7) and
(2.2.8) require that ¢ satisfies the radiation conditions (2,2.4}.
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Conversely, suppose the potential ¢ is a solution of problem A, Let the function f be defined by
the equation f{x) = ¢(x, 0). The solution ¢ of equations (2.2.1) and (2.2.2) satisfying the radia-
tion conditions (2.2.4) and assuming the value f{x) on the ‘free surface’ y = 0is given by equation
{2.2.7). Thus after forming the generalized functions corresponding to the ordinary functions
¢ and f, using the boundary condition (2.2.3) and following the prior derivation of equation
{2.2.11} 1t follows that f satisfies both the integro-differential equations (2.2.9) and (2.2.12).
Clearly the function value f{x) satisfles the radiation conditions (2.2.10}.

The correspondence between a solution ¢ of problem A and a solution fof either problem B or
problem C is one-to-one since a non-zero f cannot generate a zero contribution to ¢; for
$(x, 0) = f(x) and a harmonic function not identically zero on the boundary cannot be the zero
function, Also problem B and problem G are equivalent since a solution fof either one of them
generates a solution ¢ of problem A via equations (2.2.7) and (2.2.8), but then fis a solution of
the remaining problem.

It now follows from equation (2.2.8) that if ¢ is a velocity potential that solves problem A then
the function fis proportional to the wave amplitude {. A direct mathematical proof of the exist-
ence of a unique solution ¥ of the boundary value problem (2.1.1}, (2.1.2) and (2.1.8) satisfying
the radiation conditions (2.1.54, &) for all bottom profiles & does not seem to exist. However,
a proof of the existence of a solution to both problem B and problem C, for general functions 2,
but restricted to wavelengths either short in comparison with the depth or long in comparison
with the transition width, is given in § 3. Thus by theorem 1 this function generates a solution of
problem A. Moreover, the respective solutions of problems A, B and C are shown to be unique
if the radiation conditions (2.2.4} and (2.2.10} are satisfied with an error of O(exp (—g|«|}) as
x— + <0, where the réle of the parameter £ has heen discussed at the heginning of this subsection.

For convenience in the subsequent analysis, new independent and dependent variables are
introduced as follows:

X=px
and F(X) = flA-1X) = f(x).

3. SOLUTION PROGEDURES
3.1, Wavelength small compared with the depih

The parameter ¢ = 5=t is a measure of the ratio of the wavelength to the transition width.
For values of o < 1, Carrier (1966), using a formal multi-scaling technique, proposed a methad
of obtaining what is desirably a uniform first approximation to the wave, when the bottom
profile 4 is slowly varying. However, his results are not proven, nor is the reflexion coefficient
determined. Ashis solution is essentially the W.K.B. J. approximation for which Mahony’s {(1967)
results are available, the refiexion coefficient is probably transcendentally smali in -1 so that
any numerical process leading to a value of the reflexion coefficient will present formidable
difficultics when ¢ is small.

To discuss the limiting case of values of the parameter 4 » 1 {(and hence ¢ < 1), the integro-
differential equation (2.2.12) is the most useful statement of the problem. The solution is sought
in a form motivated by technical considerations

F(X) = T(X)exp (ia—zﬁ % dV) +R(X) exp (_10—2J':Ck(1/) dV), (3.1.1)
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where the wavenumber 4-14( X} is the real positive root of the dispersion relation
nfo~2%(X) tanh nfo~2%(X) = n2f%h(X). (3.1.2)

Given the function F, there is no unique decomposition defining the functions 7" and R. The
difficulties associated with. a possible lack of uniqueness in problem C are avoided by using this
arbitrariness to rearrange the integro-differential equation (2.2.12) into a form that admits of
a unique solution. The dispersion relation (3.1.2) is consequential to requiring the expression

exp (ia—2 f :{k(V) d]?)

to be a ‘local solution’ of the integro-differential equation {2.2.12), that is the result obtained if
the function value 2{ X} is assumed constant. For large values of %, the dispersion relation (3.1.2) is
conveniently rearranged into the form

_ exp { — 2nfo k(X))
X)) = nfh(X) +2k(X) T exp (= 2nfo k(X))

(3.1.3)

The approximate wavenumber d-1%(X) ~ nfd-"4(X) is equivalent to that obtained from
Carrier’s (1966) dispersion relation involving the bottom profile .
It is convenient to define the phase function 7 by the equation

7(X) :fﬂxk(V)dV. (3.1.4)

Then substituting equation (3.1.1} into the integro-differential equation (2.2.12}) yields the
expression
T'(X)exp (lo~27(X)) + R (X) exp ( —io27( X))
= ~10-2k{X) T(X) exp (10~27(X)) +i024(X) R(X) exp (—ic27(X))

L[ T(X+V)exp (ic=2r(X + V))
ti0 Jf_mk(}” V) { L RIX+ V) exp (—ig—2r(X+ V)

L T(X+V)exp (ioc2r(X+ V) __4ar
1) | R P o4 e GEy

] (coth 3V ~sgn V) dV

(3.1.5)

The problem is now reformulated by separating (8.1.5} into two equations for the functions
T and R, which together imply equation (38.1.5), but are not implied by that equation. This
separation is achieved by introducing a new function P, related to the functions 7" and R, by
the equation _ :

P(X) = T'(X)exp (ic™21(X)) = R'(X) exp { —ie~2(X)). (3.1.86)

To satisfy the radiation conditions (2.2.10}, the functions 7" and R are taken as

T(X) =1+ f P(V)exp (—io=2r(V)) dV,

3

) (3.1.7)
and R(X) = ~J‘X P(V)exp (ic-21(V)) dV,

with the constant factor

o—-—zfﬂ (k{ — o) —K(V)) dV

3 Vol. 284. A.
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absorbed into the parameter @. The function P is expressed in terms of integrals of the functions
T and R by substituting equation (3.1.6) into equation (3.1.5). The result is given in appendix A.

The motivation behind this choice of the function P is that a solution of the integro-differential
equation {2.2.12) is then expressed as the sum of two waves which (to all appearances) travel in
opposite directions. Moreover, the functions T and R are the unique solutions of equations
(3.1.7) and (A 2). These two equations constitute what is called problem D. For convenience,
problem D is expressed in the form of a vector equation

F = sly+ MF, (3.1.8)

where # is the vector function ( 7, R) ¥, .o, is the constant vector function (1, 0)tr and the operator
matrix # is defined in appendix A. The superscript tr stands for transposed.

Let # be thevectorspaceof C! functions f: R—~C with the property that f(X) and f*(X) exp (| X[)
tend to finite limits as X — + co. Introduce a norm on the vector space & as follows

111 = sup £ D] +sup | () exp (1K) (¥fed),

and consider the corresponding standard cartesian product norm on the vector space
B = B x #. The normed vector space %2 is then complete.

Ta show problem D has a unique fixed point in the Banach space #2, a suitable upper bound
for the function P is obtained in the following lemma.

LEMMA 1. Suppose the functions T, Re . Then there exists a , > 0 such that
|P(X)| < Ko*|(T, R} exp (~1X]) (YXeR),
whenever the parameter o€ {0, ), where K is a constant independent of o,
The proof of lemma 1 is given in appendix B.
TrEOREM 2. There exists a unique solution of problem D in the vector space %% whenever the
parametex o (0, a¢) for some af > 0.

Progf. From lemma 1, a simpie calculation vyields the inequality
|- 4(F ~Z)| < Ro'|F - Z|,NF, Fed,

whenever the parameter o & (0, o). The value of o is defined in lemma 1 and K is a constant
independent of o. Therefore, by the contraction mapping theorem, if

ot > o271 = max (K, o5 > 0

then equation {3.1.8} has a unique fixed point % e B2

The matrix product '
(exp (ic—27(X)}), exp(—iocr(X)))F#,(X), (3.1.9)
defines a solution of problem C for values of the parameter o€ (0, oy). This result is easily seen
by retracing the steps in the derivation of equation (3.1.8). Itis now shown to be the only solution
of the integro-differential equation (2.2.12) satisfying the radiation conditions (2.2.10) with an
error of O(exp { — [X])) as X-» + co.

Lemma 2. If the function Fe (! satisfies the radiation conditions
F(X)=explio (X)) +rexp(—ic (X))} + Ofexp (X))} as X->-0

, ] (3.1.10)
and F(X) =texp(io (X)) + O{exp(— X)) as X—+o0,
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then there exists unique functions 7, Re# such that

F(X) = T(X)exp (io>7(X)) + R(X) exp ( —io*r{ X))

and T'(X)exp (ic~2r(X)} = R{(X)exp (—io~2r(X)).
Progf. The functions T and R are uniquely defined by the equations
(T(X)exp (io~2r(X)})) = ${(F'(X) +i0%(X) F{X)) (3.1.11}
and (R(X)exp {—io~ (X)) = {F'(X} —ic%(X) F(X)), (3.1.12)

since the function values T(X) and R{X) have the limiting hehaviour T(X}—> 1 as X - — o0 and
R{X}—~0as X—+oc0. Also, as each of the expressions

T{X)exp (ic-®r(X)} and R(X)exp(—ioc~2r(X))

has a continuous derivative at X = 0, each of the functions 7" and R has a continuous derivative
there. The formulae for the functions T and R are obtained by integrating equations {3.1.11)
and (3.1.12}, and using the radiation conditions (8.1.10). The results are

(T(X)— 1) exp (i021(X)) = bF_(X) +¥o? [ KV)F(V)dV, (¥X <o0),

-

(T(X)—1) exp (io->r(X)) = $F,(X) — }io? f _KV)FLV)ay, (VX3 0),
(R(X) — 1) exp (—io=27(X)) = 1F_(X) *%m—zﬁf KV)F VYAV (YX <0),

and R(X)exp(—io~ (X)) = LF (X) +%io"'2fm HVYF(V)dV (YX =z 0),
X
where the functions F,_ are defined by the equations
F (X)=F(X)—texp ic~¥(X))
and F (X)) = F(X)—exp (io~2(X)) —rexp (— o2 (X)).
Corollary. The constants r, teC satisfy the identity
o 0
1—r—£+ia"‘2J‘ KVYF (V)dV +ic—? HVYF_(VydV = 0.
1} —m
Proof. This result follows immediately from the continuity of the functions 7" and R at the
origin X = 0,
THeoREM 3. There exists a unique C* solution of the integro-differential equation (2.2.12} that

satisfies the radiation conditions (3.1.10) whenever the parameter o & (0, o).

Progf. The matrix product (3.1.9) defines one such solution. Suppase the functions F, and F,
are two solutions. Then by lemma 2 there exists unique vector functions #;, %#,c #* in terms of
which the functions F; and F, are defined by the matrix products

F(X) = (exp io=r(X)), exp (—io—*r(X))) Z(X) (j=1,2)
and which satisfy the matrix product identities

(exp (io~1(X)), —exp (—io=2r(X))) FHX) =0 (j=1,3).

H
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But then by theorem 2, # = %, whenever o & (0,07 since both are solutions of problem D.
Hence F, = F, and the integro-differential equation {2.2.12) has a unique solution.

Asymptotic nature of the solution _
Consider the Picard iteration scheme defining the nth iterate #® by the recursion formula
F = oy + MFEV (02 1), (3.1.13)

where the initial iterate F© takes the value o,. The Picard iteration scheme (3.1.13} converges
to the unique fixed point #,€ %2 and it can be shown in the standard way that the matrix product

(exp (i072r(X)), exp (—ig (X)) (Fo(X) - FX)),

is O{g™H1) as the parameter o — 0. Thus an asymptotic expansion F™ of the Nth iterate F
(or equivalently the component functions 7™ and R™) will yield an asymptotic expansion of Zy
to N terms. The matrix product

A

{exp (ic~2r( X)), exp (—ioc~?r(X))) FM(X),

is then an asymptotic estimate of the solution {3.1.9) of problem C in the limiting case as ¢ —+ 0.
A first approximation to the ‘reflective’ part of the solution (3.1.9) is given by the formula

RO(X) = — a’fm B(V) exp (2io—2r(V)) dV. (3.1.14)
X
The function X+ Fy(X) exp (ic~?r{ X)) is defined by equation (A 2) in the particular case when
the functions 7" and R are the constant functions 1 and 0 respectively, that is
By X) exp (ig—2r(X)) = 0= P(X) | pes, o
Applying Taylor’s theorem and then replacing the function value §{ X, w) by the approximation
w{k(X))~! yields the formal estimate
Py(X) = 2(nf)3(hk) (X) o B exp (— 2nf8k{X) ¢72).

Thus, after one integration by parts, a formal approximation to the first iterate (3.1.14) is given
by the expression

R(l)(X) ~ (Ttﬂ)so'"z(kk’) (X) ﬂﬁk,(X) -i—lk(X)

AR (X)) + RN X)

+ (=B) o2 f: ("ﬂﬁgf;(‘;)/)(i)ik( V))’ exp (2(—nfk(V) +ir(V)) c-2) dV.

exp (2( —npk{X) +ir(X)) %)

Discussion

The approximation developed by Carrier (1966) agrees with the solution (3.1.9) only in the
limiting case as ¢ — 0, for each fixed value of 2. The wavelengths determined by the two methods
are not equivalent for non-zero values of o. In Carrier’s {1966) method the lacal value of the
wavelength is determined from the local value of the depth, However, the local value of the
wavelength is determined by the global features of the bottom profile &; this dependence being
achieved with the function 4.

The solution (3.1.9) of problem C is expressible in the form of the sum of a ‘transmissive’ and
a ‘reflective’ term. The reflexion coefficient [r|? is defined by the equation

=R = | [T P@yexpiocev)) av ]
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where an approximation to the value R{ —o0) is given by equation (3.1.14) as

Rl—o)= —o | P(V)exp (2ie—r(V)) dV +o(a). (3.1.15)

-

To accurately estimate thcintegralfw exp (In | B(V)| + 2i0-27{V)} dV, the cols of the expression

In |Fy(V)| + 2io—27(V) should be located and the method of steepest descents applied.

3.2, Waselength large compared with the transition width

In the limiting case when the wavelength is much greater than the depth, Lamb estimated the
reflexion coeflicient, for a bottom profile in which there is an abrupt change of depth, by matching
the limiting wave forms across the discontinuity. A rigorous justification of this result is given by
Bartholomeusz (1958) in the special case of long waves incident on a step. In Kajiura {1963),
Lamb’s approximation is applied to bottom profiles that do not passess abrupt changes in depth
and tentative hounds are given for the applicability of the results. Here this approximation is
shown to be a valid one for general hottom profiles 4 for the ratio of wavelength to transition
width » 1.

To discuss the limiting case ¢ 3 1, the linear combination of the integro-differential equations
(2.2.9) and (2.2.12)

P(X) = %6—2:[:10 (H(X+V)E(X+V)) (coth 351V —sgn V) dV—c—2h(X) F(X), (3.2.1)

is the most useful statement of the problem. Asin § 3.1, the solution is sought in a form motivated
by technical considerations

FX) = T+(X)exp(ifr—1k+X)+R+(X)exp.(—i0‘—1k+X) (¥
(%) = {T_(X) exp (io-%_X) + R_{X)exp (—ic—%_X) (¥

where the wavenumbers d-4, are the real pasitive roots of the dispersion relations
otk tanhnfo-1k, = n2@%—24( + o). {3.2.34,4)

Here the difficulties associated with a possible lack of uniqueness in problems B and C are
avoided by rearranging the differential-integral equation (3.2.1) into a form that admits of a
unique solution. The dispersion relations (3.2.84, &) are consequential to requiring the expres-
sions exp {icYk . X) to be ‘local solutions’ of either integro-differential equation (2.2.9) or
(2.2.12}, that is the results obtained if £(X) assumes the values £( + o) respectively. For large
values of o the dispersion relations (3.2.34, ) are conveniently rearranged into the forms

K = h{tw)+ (nf)  ghe(nfo ke —tanh nfo k). {3.2.44,5)

Upon substituting equation {3.2.2) into the differential-integral equation (3.2.1) yields the
expressions

(TL(X) + %0~ Yey T4 (X)) exp (0% X) + (RL(X) — 20— R (X)) exp ( — o1k X)
= lo® me (h(X+V)F(X+V)) (coth 31V —sgn V) dV

— KXY —K2) (Te(X) exp (ic— ke X) + Ry(X) exp (—io—1ke X)). (3.2.54, )
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In this limiting case the problem is reformulated by separating equations {3.2.54, #) into four
equations for the functions 7 and R,, which together imply equations {3.2.54, 5}, but are not
implied by that equation. The separation is achieved by introducing two new functions Gy,
related to the functions T, and R., by the equations

Go(X) = 210k T {X)exp (o 1k X)
= —2igky R, (X)exp (—ic kL X). {3.2.6ab)
To satisfy the radiation counditions (2.2.10) and the requirements that the function F has a con-
tinuous derivative at the origin X = 0, the functions 73 and R, are taken as

X
T.(X) = kf—"fk,, _ Jotkt f G, (V) exp{—io—k,V)dV

—51 —1k+J‘ G, (V)exp(ic &k, V)dV
10'“1 P
_E—i—_k_ _mG_(V) Cxp(—lo' k_V)dV, (3.2.7)
R.(X) = —%ia—lkilf: G (Viexp(ic*k, V)dP, (3.2.8)
x
T (X) = 1— %ia—lkzlf G_(V) exp (—io—k_V)dV (3.2.9)
b 9
and R_{X) = k—“———mi— %i(}'_lk:lf G_(V)exp (ic7k_V)ydV
-y X
A T P
—]2'-1 Pk, o g G_{V)exp (—iocYk_V)dV

ig—1
-1
++kf G (V)exp(ic—k, V)dV. (3.2.10)

The functions G, are expressed in terms of the underived functions F, T, and R, by substituting
equations (3.2.6 4, b) into equations (3.2.5 ¢, b). The resulting expressions for the functions G are
given in appendix C.

To find a solution of equations (3.2.7)-(3.2.10), C1 and (G2 is called problem E. Again for
convenience, problem E is expressed in the form of a vector equation

F = ol + oM, (3.2.11)

where # is the vector function (7,7 ,R,, R )%, &, is the constant vector function
(2k_(k, +£_ )75, 1,0, (A_—k,) (k. +£_)"1)" and the operator matrix 4 is defined in appendix C.
The superscript tr again stands for transposed.

Let %7+ be the vector spaces of C! functions f+: [0, +00) — C and f~: { — 0, 0] — C respectively,
with the property that f£{X) and { f£)'({X) exp (4| X|) tend to finite limits as X — + oo respectively.
Introduce norms on the vector spaces #7* as follows

[F = _sup JfHX)]+_ sup (Y (X)exp (3]X])] (Y eB?),
Xedom f Xedom

and consider the corresponding standard cartesian product norm on the vector space
(B« HB)2 = B+ x H~x Ftx %~ The normed vector space (#+x %)% is then complete.

If we proceed as in § 3.1, to show that problem E has a unique fixed point in the Banach space
(#+ = #7)2, suitable upper bounds for the functions G, are obtained in the following lemma.
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Lemma 3. Suppose the functions Ty, R €%+, Then there exists a g, > 0 such that
6uX)] < K|(T,, T, R ROl exp (—3|X]) (vXZ0),

whenever the parameter o > g4, where K is a constant independent of &.
The proof of lemma 3 is given in appendix D.

THEOREM 4. There exists a unique solution of problem E in the vector space (#Z+x #~}* when-
ever the parameter o > g for some g > 0.

Proof. From lemma 3, a simple calculation yields the inequality
lo~H(F — )| < I%o‘—lﬂg'_—@“, VF, Fc(Ftx B2,

whenever o > a4 The value of o, is defined by lemma 3 and Kisa constant independent of o
Therefore, by the contraction mapping theorem, if ¢ > af = max (K,0,) > 0 then equation

(8.2.11) has a unique fixed point F e (#+x %)%
The function defined by the matrix products :
{(exp (lo~'%, X), 0, exp (—1o07 1k, X), O F(X) (VX2 0)}

(0, exp(ic %_X), 0, exp (—ic U _X)) Z(X) (VX <0) (3.2.12)

is a solution of the differential-integral equation {8.2.1) for values of the parameter ¢ > a5 that
satisfies the radiation conditions (2.2.10). This result is easily seen by retracing the steps in the
derivation of equation (3.2.11). Itis now shown to be the only solution of the differential-integral
equation (8.2.1) that satisfies the radiation conditions (2.2.10) with an error of O{exp ( —}|X1})

as X+ + 0.
LEmMA 4, If the function Fe C? satisfies the radiation conditions
F(X) = exp (icr—lk‘_X) trexp (—iog=Y%_X)+ Ofexp (3X)) as X— —oo} (3.2.18)
and FX)=texp(ic %, X)+O0(exp (—}X)) as X+,

then there exists unique functions 7%, Rt € #* such that
() = [T+(X) exp (e vk, X)+ R, (X)exp (~ioe %, X) (¥YX 2 0)
T (X)yexp (iecVki XYy +R_(X)exp(—io % X} (VX <0)
and TL(X)exp (0 ke X) + RL{(X) exp { —io h X} = 0.
Proof, The functions T, and R, are defined by the equations
To(X) = — HokH(F'(X) +ie 2 ko F(X)) exp ( —io 1k, X)
and Ri(X) = Hok D (F'{X) —io kL F(X)) exp (i1 k. X).
Tueorem 5. There exists a unique C? solution of the differential-integral equation (3.2.1) that

satisfies the radiation conditions (8.2.13) whenever the parameter o > ag.

Proof. The function defined by the matrix products (3.2.12) is one such solution. Suppose the
functions F, and F, are two solutions. Then by lemma 4 there exists unique vector functions
S, Fye (B x )2 in terms of which the functions Fy and F, are defined by the matrix products

x) - [<exp<i«—1k+X), 0, exp (~io 1k, X), ) F(X) (VX > 0)

e (0, exp (ic-%_X), 0, exp (—io—%_X)) Z(X) (VX< 0)} (j=12)

3
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and which satisfy the matrix product identities

(exp (ie~1hk, X), 0, exp(~ic72k X), 0) F(X} =0 .
and (0,exp (io-1k_X), 0, exp (—lo A X)) F(X) = 0} U=1,2).
But then by theorem 4 # = %, whenever ¢ > g, since both are solutions of problem E. Hence
F, = Fy and the differential-integral equation {3.2.1) has a unique solution.

Asymptotic nature of the solution
Consider the Picard iteration scheme defining the nth iterate F# by the recursion formula
FW =y + o MFEN (02 1), (3.2.14)
where the initial iterate 5 takes the value ¢, The Picard iteration scheme {3.2.14) converges
to the unique fixed point %, e (#+x %~)* and it can be shown in the standard way that the
function defined by the matrix products
X [(exp (ie-14, X), 0, exp (~io—2k, X), 0) (Fo(X) - FW(X)), VX 30,
(0, exp {i07k_X), 0, exp {—io~1k_X)) (F(X) - FM(X)), ¥YX<O,
is O{g=%"1} as the parameter ¢ —+ 0. Thus, here also, an asymptotic expansion F*M of the
Nib iterate F (or equivalently the component functions 79" and R{¥) will yield an asymptotic
expansion of %, to N terms. The function defined by the matrix products
Yo [(exp (ig1%, X), 0, exp (—ic 1k, X), 0) & $“<N}(X), VX > 0,
{0, exp (lo—24_X), 0, exp (—ig~1k_X)} ""(Ni(}f), VX<g0
is then an asymptotic estimate of the solution (3.2.12) of the differential-integral equation (3.2.1)
in the limiting case as ¢ —+ o0,
A first approximation to the ‘refiective’ part of the solution {3.2.12) is obtained from equation
(3.2.10). The result is Lamb’s approximation

k_—k
RO Y +
RO(X) =327,
valid for the range of the parameter ¢ » 1. In the particular situation of the depths at X = + o0
and X = —oo being the same, the first non-zero contribution to the ‘reflective’ part of the

solution {3.2.12) is given by the formula
RWMX) ~ — Lot (k(oo))—%fw GO}y dV,
x
where the function G is defined by the equation

60x) = 5 [ W) =K (X)) (coth 17— X) ~sgn (V- X)) dV ~ (A(X) ~ (o0)).

Discussion
The approximation suggested by Lamb agrees with the solution (3.2.12) in the limiting case
as o — + oo, For values of & not large the reflexion coefficient |r|? is defined hy the equation

= [R(~o0)]?
;C ]C Lip4—17{~1 o 1L
o e f_mG_(V)exp(m— k_V)dv
e}
mgifri-g—lkzlf G_(V) exp (=i V) dV—p oo f G(V) exp (ic1k, V) V| .
—_ + —_

The Picard iteration scheme (3.2.14) provides an exph(:1t technique for obtaining accurate
estimates of the reflexion coefficient for values of the parameter & not all that large.
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3.3. Numerical iteration

In this section a numerical method of determining the reflexion coefficient is developed for use
when the parameter # is of unit order.

Difficulties associated with the oscillatory behaviour of the solution as X — + o0 are avercome
by partitioning the domain of the independent variable into the three intervals ( —co, — Ry],
(~ Ry, R,) and [Ry, + o). The constants R, and R, are chosen sufficiently large to ensure that, in
the intervals ( — oo, — Ry] and [R,, + ), is a slowly varying function and the solution is approxi-
mated by the leading order terms of the iteration scheme developed in § 3.1. The optimum values
of Ry and R, are those for which a small number of iterates accurately determines the solution in
the intervals { — oo, — Ry] and [R,, + <), and a suitable continuous linear operator, in terms of
which the wave is defined in the interval { — Ry, R}, is approximated by not too large a number of
well-conditioned algebraic equations.

Asymptotic solution in { — o0, — Ry] and [R), + 00)

In the intervals { — oo, — Ry] and [R,, -+ oo} the solution is determined iteratively; the number
of iterates chosen to ensure the approximation is uniformly asymptotic to a specified order. Let
.F"; be the restriction of the function F to the intervals [R;, + 00} and { — o0, — R,] respectively and
define the phase functions 71 by the equations

X
T (X) = | MV)dV for X3 R, (3.3.1)

B

X
and 7_(X) ==f KVYAV for X < -R, (3.3.2)
—~32

Then a solution in the intervals (—o0, —Ry] and [Ry, + <o) having a wave of unit amplitude
travelling to the right at X = — o0 and no wave travelling to the left at X = + 0 is given by the
formulae

ﬁi(X) = 'ﬁi(X) exp (io~274( X)) + Ro(X) exp { —io—27( X)), (3.3.34,8)
where the functions 'f”i and R. are defined by the equations
Ead X
T (X)=4,+ %0"‘f K(V)g (V) exp (—io=27,(V})) dV, (3.3.44)
B
R.(X)=- %-o‘—”J‘m EV)IL (Vyexp (o7 (V))dV, (3.3.45)
x

— R,

A

T (X) = exp (—~ia-*2f (k( ~o0) —k(V)) dV)

-

X
+%{1‘“2J‘"m KPYg (Viexp({—ioc~2r_(V))dV (38.8.4¢)
. —R
and R (X)= B_—%U‘ZIX KVVI_(V)exp (io—2r_(V)) dV. (8.3.44)

The functions g+ and [, arise in a similar way to the function P of § 3.1 and the constants 4, and
B_ are specified by the requirement that the function F has a continuous derivative at X = — R,
and X = R,;; the maiching of the functions ¥ and Foat X =-— R, and of the functions F and ﬁ+
at X = R, is performed analytically.

9 Vol. 284. A,
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4 functional form for F in (— Ry, Ry)
To permit the matching at X = ~ R, and X = R,, the integro-differential equation {2.2.12}
is written as

PO gy {7 EELR ay yepaf” LEED ap
—4 i, FX+7) (MXJF V) coth 34~ V“Sﬁ%"ﬁ(x+ V)sgn V) d¥V = 0.

(3.3.5)

Differentiating this equation with respect to X, inverting an integration and differentiation and
using the integro-differential equation (2.2.9) leads to the result

(R(X)) (R X)) FH(X)) + B2 F(X)
= h(X) (%5—2 XYL FX e PYRX V) (coth 31V —sgn V) AV

(B2 (X))~ oY) JE:, %d V)'. (3.3.6)

The formal solution of this equation is

F(X) = Cexp (i1y( X)) + Dexp ( —~iry( X)) + fX(p(V) cos (1,(X) —7,(¥)) dV, (3.8.7)

1]

where the functions 7, and ¢ are defined by the equations
X
) =@ [ WYy, (3.3.5)
0

P(X) = Jo2 )f: F(X+V)h(X +V) (coth} -1V —sgn V)dV

F(X+V)

+3((ng)t— o2 h( X)) SR IFTT

dv, (3.3.9)

the constant @ = nyf~* and C, D are arbitrary constants. This formal solution (8.8.7) enables
the desired matching to be performed.

Determination of the constants

The constants £y and R, are now chosen sufficiently large for the zero approximations to the
functions K to be suitable estimates of the solution in the intervals [Ry, +o0) and (—o0, — Ry],
and for the function value A(X) to be well approximated by the constants £y = A{ + o). The
dispersion relation (3.1.2) then implies that the function value

KX)x by = k(+0) for X3 R

and X)xk_ =k(-oo} for X< —Ry
For such values of R, and R,, equations (3.3.3 4, b) become
ﬁ;(X) ~ 4 exp({icTir (X)) for X2 R, (8.3.104)
and ﬁ_(X) ~ A exp(iotr_(X))+ B_ exp(_i.o*—%_(X)) for X< —R, (388108}

where the constant 4_ = exp { —io—2k_R,) and the constants A, B_ are related to the constants
A,, B_. The four constants 4,, B_, C and D are specified by the continuity requirements at
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X = —Rjand X = R,. Only thevaluesof 4_and B_ are determined since, for numerical inversion
purposes, a more useful equation than (3.3.6) is obtained for the function F in the interval
(— Ry, R,). The values of the constants 4, and B_ are given in appendix E.

Once an iteration procedure has been developed which evaluates the function Fin the interval
(— Ry, R;) and assigns values to the constants 4, and B_, then I:'i(X) are calculated from equa-
tions (3.3.104, &), p(X) is determined by equation (3.3.9) for each x €[ — R,, R,] and new values
are assigned to 4, and B_.

Tteration form for F in (— Ry, R,)

The integro-differential equations (2.2.9) and {2.2.12) are rearranged using the approxima-
tions (3.3.10 ¢, ) and expressing the function 4 as the sum g+ (& - ), where £, is obtained from
the typical shape of the particular bottom profile 5 under consideration. The result, for
Xe(— Ry, Ry), is expressible in the form

PFX) ~ G(X), (3.3.11)

where the linear operator % and the function & are defined in appendix E. Once a numerical
approximation to the inverse L of the operator % is obtained, and once suitable starting values
for F(X), Xe(— Ry, Ry) and the constants A, and B_ are given, the equation

F(X) ~ LG(X), (3.3.12)
is used iteratively to obtain higher approximations to F(X). It is shown that such an iteration

scheme is numerically very useful for a wide range of values of the parameters £ and 4.

Zero tterale
The initial values for the constants 4, and B_ are taken as
B_=0 and A4, =exp(ic2L.R)), (3.3.13)
which is consistent with a uniform depth. The initial function value F{X), Xe (— R, R,) is taken

a8 ZEXo.

Byaluation of the integrals
The integrals that define the function ¢ for Xe (— R, R,) are of the form

f‘” H(VYR(X,V)avy,

where H is a bounded €? function (if the solution F is assumed to have this property) and the
value K(X, V) of the kernel function is either cosech 1 #~1(V — X) orcothf V- X) —sgn{V—-X).
As in the determination of equation (3.3.11), such an integral is approximated by the expression
By a B »
R H(VYK(X, V) dV+f Hy (VYK (X, V) dV,
- o 0

where Ha(X) 15 related to the asymptotic estimates of H(X) for X » R  and X € — R, respectively
and the value K, (X, V} of the kernel function is either

cosech (F+v(X)) or cothi(V+u(X))—1,
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where the function value »{X) is real and positive. The Cauchy principal value integrals are
evaluated using the technique set out in Kantorovich & Krylov (1958). The infinite integrals
remaining are expressed in the form

exp (~»(X)) [ " H(V)PX, V) exp (- V)0,

where Pisa uniformly bounded function of ¥. The exponential weight function appears explicitly
in the integrand and the Gauss-Laguerre quadrature formulae are used to evaluate these
integrals (see, for example, Krylov 1962).
The exact value of the integral
J[ = exp (ix, V) qv

cwsinh 18 1(F - X

which is similar to those defining the function g, is known by the identity 3.981, 1 of Gradshteyn
& Ryzhik (1965). Using the technique described above with the Gauss-Laguerre formula for
cight nodes and the trapezium rule with a step size of 0.2 gives acceptable agreement to the exact
value for all Xe(— R, R,) and a suitable range of values of the parameter § and wavenumber
d7 k.

To determine the constants 4, and B_, the function ¢ must also be evaluated at the end points
X= —Ryand X = R,. The Cauchy principal value integrals that define ¢ do not exist at their
end points, but the integrands have singularities which decay exponentially to zero away from
the singularity. As £is a slowly varying function in the vicinity of X = — Rjand X = R, a reason-
able approximation to ¢ — Ry} and ¢(R,) is obtained by replacing the function value (X} by
the expressions that define its local behaviour near X = — R, and X = R,, that is equations
(3.3.104, ). Then, using the dispersion relation (3.1.2) and the identities 3.981,1 and 3.987,2 of
Gradshteyn & Ryzhik (1965), it follows that

o —Ry) ~ig—2(A_— B_) (k_— =2 2R k2,
and P(Ry) = o2 A (k, —m2 202 k1),

Matrix representation

The integrals that appear in the definition of the operator .% are also approximated in the
manner described above. As the trapezium rule is a second order finite difference process, the
derivatives that appear in % are consistently approximated by the central difference formula.
After transferring the quantities F{ — R,) and F(R,) to the right hand side, this discretization of
the continuous operator & results in a finite set of equations for the function values F(X)),
Xe(—Ry, Ry).

The error involved in taking the zeroth iterates as suitable approzimations to the function Fin
the intervals [R,, +c0) and { —o0, — Ry}, and of using the constant values Ay, 4 for the function
values £(X), k(X)) in these intervals is essentially of the order of exp { — R,), exp (— R,}. Thus for
values of R, and &; no smaller than 3.5, the percentage errors are no worse than 3 %. Hence for
a step size of 0.2 the order (N) of the square matrix to be inverted is no smaller than 35, An
approximate inverse of the matrix of coefficients is obtained numerically and a measure of the
conditioning of the system of equations is given by the product of the norm of the matrix and the
norm. of its inverse. The PDP-6 computer at the University of Western Australia —the only
machine available at the time the calculations were made ~has an inversion package that uses
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Gauss—Jordan elimination with total pivating and calculates this number for the maximum row
sum norm. The variation of the conditioning number (cono) for different choices of the constants
Ry, Ry, p and ¢ is marked and typical examples are given in table 1 for the function A appropriate
to a mound of height 0.4.

An examination of the square matrices of odd dimension for # = 0 and ¢ = 1 shows them to be
dominantly skew symmetric which explains why the conditioning number for these matrices is
very large; for all square skew-symmetric matrices of odd dimension are singular.

TaBte 1
Fij 7 R, R, N # g CONoO
0.6 0.52 4.8 4.6 46 0 1 162
0.6 0.3 4.8 4.6 46 0 1 11 230
4.3 4.3 42 a 1 2 322
3.5 3.6 36 (] 1 703
0.4 .36 3.8 3.8 a7 0 1 3 324 « 105
0.1 0.9 2938
3.6 36 0 1 I 254
0.1 0.9 230
0.4 0.6 241
0.6 04 242
TaBLe 2
¥i) 5 R, R, N b g cono
0.6 0.42 3.8 3.6 36 i t 25 860
Q.1 0.9 327
0.2 0.8 396
0.4 0.6 478
0.6 0.4 498

The situation is not so critical if the constants R, and R, are chosen to guarantee that, when
# =0and ¢ = 1, the matrix is of even dimension. But in particular cases the dependence of the
conditioning number for various choices of the constants p and ¢ is still important, see table 2.
When $ = 1 and ¢ = 0 the system of equations appears to be always ill-conditioned; no explana-
tion of this fact has been found.

Experience gained in working many examples using the above inversion package indicates
that the constants g, g, R, and R, should be chosen to achieve a conditioning number no larger
than 600. The frequency with which one of the sets of ordered pairs (¢, 1}, (0.1, 0.9) or { — 0.3, 1.3)
for (p, ¢) achieved this result was surprising. Although on some occasions larger values of the
conditioning number gave reasonable results, the iteration always converged numerically for
conditioning numbers smaller than 600. The number of iterates N, required to converge to the
function value F(X) (to four figure accuracy) at each discrete point in the interval (— R, B))
was always no more than 30 with more iterates required in general for smaller values of the
parameter 4. The resulting reflexion and transmission coefficients satisfied the energy balance
equation, in all cases, to better than 99 %,.

A number of fiinctions % have been investigated and in no case was it found imposstble to locate
suitable values of the constants p and g. However, it is by no means certain that there are not
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configurations for which the approach considered in this section will not work. If there were to
be a bottom geometry for which a trapped wave solution exists, then the integro-differential
equations will have eigensolutions. Then there would be no unique function F and so iterative
methods would he completely ineffective unless some method could be devised for suppressing
the eigensolution. None of the published material on the reflexion of water waves due to depth
variations provides any idea as to how this may be achieved.

4, DIscUssSION
4.1. The function

The function 4 is determined from the conformal mapping z, = @(fz) of the strip z-plane to
the physical z-plane. For general bottom profiles 2, it 1s assumed that conformal mappings
2y = Qy(fz) are available that approximate to the exact transformation . The aim is to select
an approximation so that the upper boundaries of the z,-plane and the zg-plane are coincident,
both ‘strips’ approach the width ¢ as Rez-—+ oo and the width 1 as Rez— —o00, and the lower
boundary in the zg-plane is a ‘good’ approximation to that in the z,-plane but lies nawhere
above it. The ‘strip’ in the zy-plane can then be conformally mapped into the interior of the
unit circle in the §-plane by a mapping function § = @0(20) . The same mapping function @0 will
map the “strip’ in the physical z,-plane into the interior of a simple closed curve lying nowhere
outside the unit circle. There exist many analytical-numerical techniques which determine the
conformal mapping of a near unit circle to the unit circle. For example, Kantorovich & Krylov
(1958) discuss a number of methods for mapping the interiors of families of bounding curves on to
the interior of the unit circle. Moreover, they indicate sufficient conditions for useful convergence
of the various techniques. Ideally the basic approximation to the conformal mapping would be
chosen to place the lower boundary of the z;-plane close enough to that of the z,-plane to ensure
the convergence of the chosen technique. The approximating conformal mappings would be
obtained from a dictionary of conformal mappings (it would need to be more extensive than that
of Kober’s (1952)} or else from an appropriate Schwarz~Christoffel transformation.

The latter approach has been used to obtain approximating shapes for the two important
families of bottom profiles: I, mounds superimposed on steps; and II, plateaus. The bottom.
profiles of family I include steps as a limiting case and those of family 11 include symmetrical
mounds (and reefs) as a limiting case. The details of these approximating shapes are tabulated
with the w-plane a parallel strip of width n. The significance of the w-plane and its relation to the
parallel strip D” (see §2.2) becomes apparent later.

1. Mounds superimposed on steps:
Conformal mapping, z, = Q{"(«): (see figure 1)
2z, = —ie+2en11n (SF+ (S5 — 1)) —nIn (L + e}t + (S5 — 1)1 S578)
| Frtin (1 +ebed - (S,— 38,
where Sy = ~c{l+exp (w)),
8o = 2entarctan ({1 —y)ty3) — 2atarctan (1 — )3 (146} dy-4),
for each value of y € (0, 1) and the corresponding value of ¢ given by the expression

(L deby(1 — )i (1 2¢%)
2(1—e%) )
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All branch cuts lie in the lower Sy-plane with S} and (83 — 1)} taking real positive values when
their arguments are real positive, and each logarithm taking its principal value.

Special case

In the Iimiting case ¥~ 1 —; ¢—~¢%(1 —¢2}~! and 4, -» 0 which corresponds to a step.

The transformation QY maps the lines Imw = — ¢, with a6 (0, x), on to smooth curves with
asymptotes Im z, = —ean~! and Im z, = — an~' at Rez, = + oo respectively since Qi has zero

distortion at the ends. Consider the linear transformations z, = nae~1z, and w = an~' 2z composed
with the above transformation Q" for each value of a€ (0, =). Then the conformal mapping of
the strip z-plane of width = to the z,-plane with the lower boundary a smooth mound super-
imposed on a smooth step approaching the depths ed and d as x, ~> + co is obtained. This family
of bottom shapes is parametrized by « and .

P S Y
—

Y

il (1) e

F1cure 1. zy-plane.

Let the parameter § = an~te (0, 1]. Then f#is a measure of the scale length of the obstacle; the
value of # = 1 corresponding to a bottom profile with a discontinuous change in depth and the
limiting case of § approaching zero corresponding to the “transition width’ becoming infinite.

A sketch of the bottom profiles corresponding to the three values of the parameter § =1, 0.9
and 0.6 is given in figure 2. Also in the special case when the value of the parameter y =1, a
sketch of the bottom profiles corresponding to these three values of £ is given in figure 3. The
function % can be computed and is given by the equation

zf(‘”"}?’)'["‘“‘53"[3'(1&,)[(1+t:)—i—:‘:e:J{}:)(X)]%
gm0 T{e+1)+cexp(X) [ e(t+exp (X))

~ 4z

ME) =3

I1. Platequs:

Conformal mapping, z, = Q{®{w): (see figure 4)

dzy 1 ﬂzvl]%[sg_p]&
dw_};[,ﬁ;zﬂ S3-1)"

where 8¢ = pcoth (w),
H, = 1 — Ay{arcsin [(p2 — 1)} {p2 - 2)~¥]\arcsin (1 — %)3), (4.1)
and Ly = 20T 1 2(p2 — 1)% (p? — 2)~3 K{arcsin {)
— 21K (arcsind) Z* (arcsin (g ) \aresin I}, (4.2)

for each value of & (1, 00) and & (0, 1), Here K is the complete elliptic integral of the first kind,
and A, and Z* are the tabulated Heuman’s lambda function and Jacobian zeta function respec-
tively. All branch cuts lie in the lower S;-plane with (53~} and (S} — 1)% taking real positive
values when their arguments are real positive. :
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Special case

In the limiting case I~ 0+; L,~0 and g—cosec {§nH,) which correspends to a vertical
barrier.

The transformation @{* maps the lines Imw = — a, with a€ (0, ), on to smooth curves with
asymptotes Im zy = —oan~t at Rez, = + o0 since Q¥ has zero distortion at the ends, Consider the
linear transformations z; = no~'z, and w = an~*z composed with the above transformation Q{

]

Figure 2. Mounds approaching different depths as x; =+ 0. §; = 0.14, ¥y = 0.4, ¢ = 0.08. ——, # = 1 (vertical

bartier on a discontinuous step); ————, f = 0.9 ..., £ = 0.6,
. . yl
—10 08 06 —04 —02 0 0.2 04
+ *X)

|
_0‘2..

—04-
_Of-
i
...... 0.8

..,‘..,.,.‘.----u-”“"“._: HHHHHHH — _10

T t t

Freure 3. Steps of height 0.4, ——, # = 1 (discontinuous step}; —~——, £ = 0.9; ..., # = 0.4

i l

H,

2Ly

Fiourg 4. z5-plane.

for each value of z€ (0, ). Then the conformal mapping of the strip z-plane of width « to the
z-plane with the lower boundary a smooth elongated mound approaching the depth d as
%, — + 00 is obtained. This family of bottom shapes is parametrized by «, ¢ and {. Each pair of
values of the parameters % and [ defines a rectangular block of height H and half-width L,. Two
numerical examples have been obtained by using the tables of Abramowitz & Stegun (1964),

namely,
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(1) for arcsin (1 —{2)% = 30° and arcsin[{(#2 — 1)} {52 — ) 1] = 40°, there corresponds a block
height H, of approximately 0.398 units and a width 2L, of approximately 0.67 units, and

(ii) for aresin (1 —{)% = 68° and aresin [(p2— 1) (22— [2)~}] = 50° there corresponds a block
height Hy of approximately 0.400 units and a width 2L, of approximately 0.08 units.

The inverse problem may be treated as follows. For each value of [ € (0, 1) choose the value of
p#€(1,00) that gives the required height H,,. Then choose that pair of values ({, ) that yields the
required half-width L,. No details of the plateau shapes have been pursued save to notice that,
holding / and x fixed, as f is decreased the height of the resulting plateau is decreased and its

%
—05 —08 —04 —0.2 ¢

___,,
=
2]
=
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oe

Ficure 5. Mounds of height 0.4, ——, # = 1 {vertical barrier); ————, # = 0.9; ...... , = 0.

transition width is increased. In the special case when [ = 0, the barrier height p (= H,) that
yields a mound of height p is related to the parameter g by the expression
L) = S0 GRA— 7))
cos (gnp) = sin Gnf)
A sketch of the bottom profiles corresponding to a mound of height 0.4 for the three values of
A =1, 0.9 and 0.6 is given in figure (5). The function % can be computed and is given by the
equation

_dz
T dz

h(X)

B 1[,u2~ 1]% [#2- P tanh? (%X)]i
g0 L] | gP—tanh®(§X) |

An alternative conformal mapping of the z-plane to a region with a smooth step-like lower
boundary has been given by Roseau (1g52). In the above notation, his transformation is defined
by the formula

2= Q(f2) = r'z+ (nff) 7 (e — 1) In (1 +exp ($2)),
where the value of the parameter £ is restricted to the open interval (0, 1). The corresponding
function % is given by the equation
AX) = n7t (1 +eexp (X)) (L +exp (X))

It is suggested in Kajiura (1963) that the effective width { of the transition zone is given by the
expression

! = |Re Q(n—inf)| + [Re Q{ —n —inp))|.

Thus if the function values @( + 1 —inA) are estimated by neglecting the term exp { — ) in com-
parison with unity, and the value of the parameter ¢ is not too small, then the stated approxima-
tion to { is obtained, namely { ~ g-1(1 +¢).

10 Vol. 284. A,
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The procedure of generating bottom profiles using the Schwarz—Christoffel transformation
suggests that a great variety of shapes can be obtained. Using the transformation for plateaus as
a typical example the technique is, for each fixed value of the parameter ¢ (0, 1], and for all
values of the parameters g e (1, 00} and [ (0, 1), to compute the function value @(X —irng). The
resulting obstacles y; = —&(x;) are then identified parametrically in terms of the equations
2 = Re Q(X~ing) and g, = Im Q(X—ing). In particular, if # = 1 each rectangular block has
the dimensions Hy and 2L, as given by equations (4.1} and (4.2). _

The results of this section are consistent with the form in which the assumptions on the
behaviour of the function % have been made. In general this is likely to be the behaviour of the
function A.

4.2, Results

The methods developed in § 8 are now used to extend the range of problems for which numerical
solutions are available. Specifically, the reflexion coefficient is obtained as a function of both the
parameters 4 and ¢! for the bottom profiles considered in § 4.1.

Doescription of the method

For a chosen function 4 and an assumed value of the parameter £, the matrix iteration scheme,
if it converges, will determine the reflexion and transmission coefficients for each value of the
parameter %. But for fixed values of the parameters Ry, £, and ¥ {which means the function value
#{X) may be stored as an array), the matrix iteration scheme can be expected to experience
difficulties once a significant number of wavelengths appear in the transition zone. That i, for
values of the parameter o~! greater than a certain value, the matrix iteration scheme will no
longer be particularly useful.

For the functions 4 considered, it was observed that the matrix iteration scheme and the
asymptotic formula (3.1.15) gave significantly different results for the values of the parameters
A =0.6 and o1 > 1.4, The value of o1 = 1.4 was therefore taken as the limit of usefulness of
the matrix iteration scheme. For larger values of 1, the reflexion coeflicient was determined
using the formula {3.1.15). Possibly this value of 07! = 1.4 may he increased by adopting any
one, or all of the following variations in the numerical process:

{i) reducing the step size,

{ii) increasing the number of iterates used to represent the wave in the two intervals
(— o0, — Ry] and [Ry, o),

(iii) increasing the value of the parameters R, andjor R,.

Theresults were obtained by using the PDP-6 computer at the University of Western Australia,
This machine was being superseded at the time and in its run down condition prevented a dis-
cussion of the items (i), (ii) and (iii). Any modification of the numerical procedure, however,
must be considered in the light of the alternative descriptions that are available, that is the
asymptotic formulae of §§ 3.1 and 3.2. The method used in a particular instance to be decided
by the machine time involved in computing the value of the reflexion coefficient.

For the bottom profiles considered here, it was not found necessary to use the asymptotic
results of § 3.2. Nevertheless, when the value of the parameter ¢ is small, the results given in
§3.2 define the slope of the curve of | R| against o1,

The complete curves were obtained by joining the curves for values of the parameter o1
greater than and less than 1.4 through the point 6-! = 1.4. The only suspicious results were those
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in a small neighbourhood of the value of ¢~ = 1.4; and here | R} was only 3% of the incident
wave amplitude. It thus appeared that the errors involved in the numerical computations, for
these values of the parameter 3, were of the same order as the value of [R|. It is the author’s
opinion that the present difficulty in the vicinity of this value of o1 = 1.4 could he overcome hy
employing the first of the variations suggested above, that is by reducing the step size used in the
numerical computations.
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Froure 8. N, number of iterates; |§?[3, reflexion caefficient. Roseau’s bottom profile for ¢ = 0.6, y = 0.08,
B = 0.95; ‘exact’ value for |R| is 0.1194. x, results for an incorrect seventh iterate.
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Fioure 7. N, number of iterates; | T'[2, transmission coeflicient. Roseau’s bottom profile for € = 0.6, 4 = 0.086,
£ = 0.95. %, results for an incorrect seventh iterate.

Assessment of the matrix iteration scheme

The matrix iteration scheme was applied to the Roseau bottom profile and to a vertical barrier
of height 0.5 so that a direct comparison could be made with the exact formula of Roseau (1952}
and with the approximate resulits of Mei & Black (1969) obtained using a variational approach,

Comparison with Roseau

For the values of the parameters e = 0.6, £ = 0.95and 5 = 0.06, Roseau’s (1952) exact formula
yields, for the value of the square root of the reflexion coefficient, |R] = 0.1194. A sketch of the
values of |R| and the square root of the transmission coefficient | ’f[, obtained for the successive
iterates of the matrix iteration scheme of §3.3, are given in figures 6 and 7 respectively. The
operator ¥ of equation (3.3.11) was approximated by a square matrix of order 46. In one of the

10~2
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computer runs an incorrect seventh iterate was introduced which did not affect the numerically
determined limit suggesting the iteration scheme is usefully stable. In either case, the first 20 or
so iterates have converged to values for the reflexion and transmission coefficients. The higher
iterates shown in figure 6 marginally improve the approximation. Thirty iterates yield a value of
the reflexion coefficient with an error of 3 9%,; this is of the same order as the errors involved in
developing the numerical method. While in practice this error is perhaps too large, it should be
emphasized that the approximation is obtained using the zero approximation to the wave in the
intervals { —co, — Ry} and [R,, 00} and a discrete representation of the linear operator .% based
on a not very small step size. Thus the modifications of the method outlined in (i), (ii}, and (iii)
ahove should reduce the error to meet any practical limits that might be imposed.

Comparison with Mei & Black (1969)
The comparison is necessarily qualitative since no error estimates are available for Mei &

Black’s (1969} variational method of estimating the reflexion coefficient. The values of the
parameters used were Ry = 4.8, R, = 4.6 and N = 48, The two curves are given in figure 8. The
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Fraure 8. Vertical barrier of height 0.5. s Method of this paper;
————, Mei & Black’s (196q) result,

maximum absclute difference between them is 0.017 at the value of the parameter # = 0.15. This
value corresponds to a wavelength of approximately eight times the depth 4 and a value of |R|
approximately equal to 0.13. For small values of 9, the curve obtained by the method of this paper
is on the same side of Mei & Black’s (1969) curve as the long wave approximation of Ogilvie
(1960). Inasmuch as there is some error involved in transferring Mei & Black’s (1969) curve to
figure 8, the two methods produce essentially the same curve. However, the method of Mei &
Black (1969) must be preferred (computationally) to that of this paper on those bottom profiles
where their method is immediately applicable. In particular for a rectangular block whose width
is of the order of, or larger than the depth 4, the parameters R and R, would need to be chosen
quite large to ensure the value of nh{ X} is close to unity in the intervals { — oo, — Ry] and [R, ).
This means, for reasonably small step sizes, a large system of algebraic equations must be solved.
The number of computations involved in using Mei & Black’s (1969} approximate solution
technique would be much less. The present method has been used here essentially to provide
confirmation of the results obtained.
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Battom profiles of specific interest

. The existence of obstacles for which the reflexion coefficient is zero for certain wavelengths has
been established by Newman (1963). In the long wave theory, bottom profiles with this filtering
property are also known (see for example, Kajiura 1963).

The bottom profiles of specific interest here are derived from mounds superimposed on steps
and plateaus (including the special cases y = 1 and / = 0) using the three values of the parameter
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Frgure 10. Mounds of height 0.4 approaching the same dcpth.'
—— A =1.0; .., =09 -, F = 0.6

f=1,09 and 0.6. When o1 > 1.4, the reflexion coefficient is evaluated using the formula
(3.1.15). Thus the value of % for which total transmission occurs can be determined exactly. For
a1 < 1.4 the values of % for which the reflexion coeflicient is zero cannot be determined as
precisely.

Mounds

The mounds considered are shown in figure 5. In figures 9 and 10 the composite curves of
|R] against 4, and o~ are exhibited. The maximum reflexion for the three mounds occurs when
the value of the parameter ¢—1is approximately 0.6. Thus when the value of the parameter fis 1,
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the maximum reflexion occurs when the wavelength is approximately five times the depth 4.
When the value of £is 0.9, the maximum reflexion occurs when the wavelength is approximately
5.5d, and for the value of # = 0.6, when the wavelength is approximately 94. As the wavelength
and transition width increase, in such a way that the value of -1 remains constant, the reflexion
coefficient increases as the value of £ decreases. This observation is a simple consequence of a
larger wavelength being required to maintain the constant value of o1 Furthermore, for fixed
values of the parameter 4 > 0.6, that is for wavelengths greater than 34, the reflexion coefficient
decreases as the transition width increases.

Frcure 11. Steps of height 0.4, —— # = 1; ———— 8 = 0.9; ...... =108
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Fraure 12. Steps of height 0.4, —— 8 = 1; ... s =09 ———— f = 0.6.

Far the bottom profile corresponding to the value of the parameter § = 0.6, the transition width
is approximately three times the depth 4. When the value of the parameter # is 1, which corre-
sponds to a wavelength of approximately 24, this bottom profile allows total transmission.

Staps

The steps considered are shown in figure 3. In figures 11 and 12 the resulting composite curves
of | R| against %, and o~ are exhibited. The value of |R[, in the limit of long wavelengths, corre-
sponds to the long wave formula of Lamh. For 2all finite fixed values of the wavelength, the
reflexion coefficient decreases as the transition width increases. Also, for fixed values of the
parameter a1 > 0.8, the reflexion coefficient increases as the transition width increases. This
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result agrees with that for the mounds and is again a consequence of the wavelength increasing
to maintain the constant value of ¢ for increasing transition widths.

Plateaus

Details of the plateauns considered have not been pursued save to notice that the height of the
determining rectangular block is approximately 0.4 times the depth 4 and its width lies between
0.08d and 0.674. In figures 13 and 14 the composite curves of | B| against 4, and a1 are exhibited.
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FiGure 13. Plateaus. arcsin (1 —£2)% = 50°, arcsin ((#2— 1)2 (22— 2)3) = 45°,
S B =1 e, =095 ..., § = 0.6,
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The maximum reflexion for the three bottom profiles occurs when the value of the parameter g1
is approximately 0.6, as for the mounds. For fixed values of o€ (0, 0.7), less reflexion occurs
from the wider transition zones. This is presumably because the effective height of the plateaus
is then smaller. For fixed values of o2 € (0.7, 1.1), more reflexion occurs from the wider trangition
zones, in agreement with the two previous shapes. Also, for fixed values of the parameter
5 €(0.15, 1.05), the reflexion coefficient decreases as the transition width increases.
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When the value of the parameter f§ is 1, the method of the paper yields a value of the wave-
length of approximately twice the depth 4 for which the reflexion coefficient is zero. This result is
congistent with those of Mei & Black (196g) since, for a fixed block height, as the width decreases,
the first zerc of the reflexion coefficient occurs at decreasing values of the wavelength.

e

¢ 03 08 - T

Figure 15. Mounds approaching depths 0.6 and 1 as x; > £ o0,
— =l A= 0.9 ... . =048

012

0.08

0.04

a (4 0.8 12
-1

Froure 18. Mounds approaching depths 0.6 and 1 as x, ~+ oo,
— =1, A =09~ = 06,

Moreover the method of this paper also indicates that the smooth bottom profiles, corre-
sponding to the values of the parameter # = 0.9 and £ = 0.6, have the same filtering property.
When the value of f is 0.9, the smallest value of the parameter 7 is approximately 1.08, corre-
sponding to a wavelength of approximately twice the depth 4, and when the value of #is 0.6 the
smallest value of % is approximately 0.7, corresponding to a wavelength of approximately 34.

AMounds superimposed on steps

The bottom profiles considered for these shapes are shown in figure 2. In figures 15 and 16
composite curves of || against 9, and o are exhibited. The value of |R], in the limit of long
wavelengths, corresponds to the long wave result of Lamb for a step of height 0.4, since in this
limit the reflexion coefficient for a vertical barrier in a finite constant depth of fluid is zero.

. For all fixed finite wavelengths, less reflexion occurs from wider transition zones. However, the
reflexion coefficients for the values of the parameters £ = 1 and # = 0.9 agree for the values of
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7€ (0,0.15) and stay close to the value 0.126 over a significant range of values of #. It appears
reasonable to expect {basing this conjecture on the results obtained for the vertical barrier in a
fluid of constant depth) that for higher barriers than the one considered, there may exist a range
of values of % in which the reflexion coefficient will be larger than that corresponding to the
limiting case of values of # approaching zero.

For fixed values of the parameter 0~ > 1, greater reflexion occurs from wider transition zones.
This follows as before, since to maintain the constant value of o~ the wavelength and transition
width must increase together.

I am grateful to Professor J. J. Mahony for his supervision of my doctoral thesis of which this
paper is the major part and to the members of the Mathematics Department of the University of
Western Australia for many helpful discussions. I thank the administrators of the Commonwealth
Postgraduate Award scheme for financial assistance in the course of my research. Finally, I thank
the referees for their comments which improved the presentation.

APPENDIX A
The function P

‘The value of the left hand side of equation. (3.1.5) is 2P(X) by virtue of the condition {3.1.8),
Thus an alternative expression for the function P, in terms of the underived functions 7" and R,
is immediately known.

A simplification of the latter expression is obtained by first introdueing the change of variable

X+7
w=60{X,V)=1(X+ V)—T(X)=f U AU, (A1)
X
where (for each fixed value of X') 6 is a monotone function of ¥ and then extracting the ‘principal
part’ of each resulting integral. Let the value of ¥ which satisfies equation (A 1) be given hy the

formula ¥V = (X, w). Then the term ‘principal part’, in relation to the expression

©  T(X+8(X,w))exp (ic-2uw)
—a k(X +8(X, w)) sinh 15-18(X, u)

ds,

§np)texp (o)) f

which is typical of the integral terms appearing in the right hand side of equation (3.1.5), refers
to the expression

duw.

1 o T(X)explicr(X)) [ exp (ie—2uw)
3(nf) k(X) J[ o SND 3 PRX)) T

The sum of all such ‘principal parts’ cancels with the term
—io2k(X) T(X) exp (1o-27(X)) +i0 24(X) R(X} exp (—io27( X))
by virtue of the identity
Y0 2h(X) (K(X)) —1f : {coth ${ k(X)) w—sgn w) exp (io—2w) dw

_ 1 o exp (ia’“"w) -
+§?{Eﬂzk(){))[_msinh%(ﬂk(x))_lwdw-—m- KX) =0,

obtained using the formulae 8.981, { and 3.987, 2 of Gradshteyn & Ryzhik (1g65) and the
dispersion relation (8.1.2).

11 Vol. 284. A,
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Hence the value of the function P is expressible as
exp (io—2r(X))

P} = 402
« f : [(’f ) (X +8(X, w)) (coth 9(‘;}“’) _sen w) - (%) (X) (coth E#X) _sgn w)]
x exp (io—2 )dw+exp(—ia'"2'r(X))
x.[: [(%) (X+8(X,w) (cothg(g—/’;ﬂ) —sgn w) - ('%R) (X) (coth X —sgn w)]
xexp (—ic—?w) dw +cxp (102ﬁ2(X
< J ) o o= () O smraiony |
x exp (ic—2w) diw + exp ( —;10%27(11'))
<7 () e donn Jz.ﬁ—ll@(x, o (%) @ srrmoes)
xexp (—io?w)dw. (A 2)
The operator matrix &

Define the linear operators &, &, &y and #, as follows

TX) = f " gV exp (—io=21(V)) dV,

— ]

R(X) = “f:g(m exp (io—27(7)) dV.

_exp(tic27{X))
o 4g2

X Jt:o :(%g) (X +8(X,w)) (coth 3(,;_’2;0) —sgn w) - (h—;‘f) (X} (coth M%X) —sgn w)]

exp [ tio27(X})
4n? f2

xexp{ £io~2w)dw+

ST b o %,e-llm, o () @ smymrer)

x exp { +io~2uw) dw.

Then # 15 the operator matrix
ToZp T oﬁ”R]
Hop HoHLy|

The term .#% appearing in equation (3.1.8) is to be interpreted in the obvious way.

APPENDIX B
Lemma. 1 is now proved.

Lemma 1. Suppose the functions 7, Re 8. Then there exists a ¢4 > 0such that
\P(X)| < Ko*|(T, R)| exp (—|&]) (VXeR),

whenever the parameter ¢ € {0, 04}, where K is a constant independent of ¢.
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Progf. The lemma is proved by using equation (A 2) and the assumed behaviour as X —> 1 oo of
the analytic function £. Firstly, it follows immediately from the definition that ke 8 n C2. Also,
as the problem of interest is the effect a given bottom profile has on a range of prescribed incident
waves, 4 15 independent of the parameter ¢. Thus, by the alternative form of the dispersion
relation {3.1.3), the funciuon k€4 n C? and the two functions & and Xrs &'{X) exp (| X]) are
bounded independently of o for sufficiently small values of o, The partial derivatives

(X, w)—>8,(X,w) and (X, w0)8,,(X w)
therefore exist and for sufficiently small values of ¢ are bounded independently of o.
To estimate the order of the function P, the standard method of approximating Fourier

integrals with large wavenumbers is used. The first two integrals in equation {(A.2) can he
written in the form

f “ (B(X, w) cos 02w +10(X, ) sin 62} du,
¢}

where F and @ are even and odd functions of @ respectively, neither one of which involves the
generalized function sgn. Thus sgn does not contribute to the estimates of these integrals and for
canveniende, the estimation of the function value P(X) is discussed in terms of the douhly infinite
integrals.

For fixed values of X, the value of each integrand appearing in equation (A 2) decays expo-
nentially to zere as w-» + 0. Thus, in the limiting case of o— 0, the value of each integral in
equation (A 2} is determined by the small w behaviour of the respective termsin [ ]. The last two
integrals have the estimate || (7, R)| $3(X) o{o%), where the error term o(0?) is uniform in X, the
function S is bounded independently of ¢ for sufficiently small values of o and the product
Sy (X)exp (| X|}) approaches finite limits as X->+too. This result follows immediately after
performing an integration by parts, using the mean value theorem and the exponential decaying
properties of the derivatives £, 4", 7' and R’, and then applying the ch’nann-«chcsgue lemma.,
Similarly, the first two integrals have the estimate

7 TR e 80500 xp o000 +09) = (45) (X 00, ) exp i3 ) |

[catha(Xﬁ )~sgnw]dw+“{T,R)[|Sﬂ{X)a(crz), as o0, (B1)

The error term o{ %) is uniform in X and the function 5, has the same properties as the function S;.
This last approximation Is a consequence of the fact that the functions &, & and coth are €?
functions and the function {X, w)r> 8(X, w) possesses two partial derivatives with respect to w,
which are bounded independently of o for sufficiently small values of o; accordingly one further
integration by parts can be performed on these integrals. But the integral in the estimate (B 1) is
identically zero, by assumption {3.1.6).

The lemma is an immediate consequence of thc ahove estimates involving the functions

Sy and Sy,

AppENDIX O
The functions G+
The values of the left hand sides of equations (3.2.5a, ) are 6~2G{X) and the derivative F”
involves only the underived functions 7 and R, by virtue of the conditions (8.2.6 ¢, 5). Thus
alternative expressions for the functions Gy, in terms of the underived functions 74, Ry and F,
are immediately known.

Ir-2
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A simplification of these expressions is obtained by extracting the ‘principal parts’ of the
Cauchy principal value integrals, as in appendix A. In this case the sum of the ‘principal parts’
cancels with the terms {(&{ £ ) —k3) F(X) by virtue of the identities

Lic-1keh{ + o) Jf  exp (ic-1kL V) (coth 31V —sgn V) AV + kL — h( +00) = 0,

obtained by using the dispersion relations (3.2.3 ¢, 5) and the identity 3.987, 2 of Gradshteyn &
Ryzhik (1g65).

Hence after extensive, but straightforward calculations, the values of the functions G+ are
expressible as

GLX) = 5 [T (V) #ir e MV TV) = (8 (X) 501k W) T4 ()

2}
xexp (o k V) K(V,X)dV
[ ) 0 kWYY RA) 00 — i, ) R(X))
xexp (—iok, V) K(V, X} dV
1

[ L) exp k) 4 RV exp (=i V)

~ (X [Ty(X) exp (o, V) + R, (X) exp (—ie=k, V)] K(V, X)dV
tg [ ok V) TV) exp GotV) = R(V) exp(—io=2k_V)]

—iotk, A(X) [T, (X) exp (ic71k, V) — R, (X) exp (—io 1k, V)]] K(V, X) AV
m2fra-tk,
" nfitanh nfo~1k,

.otk —tanhnfo—1k, (
R k tanhrfo—1k,

(T (X) exp (o= k, X) + R (X} exp (—io=1k, X)) (A(X) —h{ + 00))

T (X)exp (o7 k, X) - R (X)exp (—ioc kX)) K (X)
and ' _(Cl)
G_(X} = %ﬁm (B (V) +ia ke _b(V)) T_(V) = (B X) +107k_A(X)) T_(X))
xexp (ic~1k_V} K(V, X)dV
+%J.im ({(H (V) =i k_A(VY) R_(V) - (B'(X) =10 k_A(X)) R_(X))
x exp (—ioe=1k_V) K(V, X)dV
+%fﬂm [FIVY[T(PWyexp e b, VY« R (V) exp (—ic—1k V)]
- {XVT_ (X)exp (io7lk_V)+R_(X)exp({—ioc1k_V)]] E(V, X)dv
+%J? Dotk A(V) [To(V) exp (o1&, V) = R, (V) exp (—io 71k, V)]
— o TE_MXY[T_(X)exp (lo1k_V)— R_{X)exp (—io 1k_V)]] K(V, X)dV
w2 k_
 nftanhnfo—Llk_

i nfa1k_—tanhnfo—1k_
' o k_tanh nfa1k_

(T_(X) exp (io—Lk_X) -+ R_( X} exp ( —io=1k_X)) (A{X) — h{ — c0))

(T_(X) exp (ic"k_X) —R_(X) exp ( —ioc—k_X)} K (X),
(C2)



REFLEXION OF GRAVITY WAVES 85

where the function K is defined by the equation
K(X,Y) = coth}f1(X-Y)—sgn (X-¥)

2exp (— X -Y])

=sgn (X—¥) L—exp{~fgtX-Y})

The operator matrix M
Define the linear operators 4 — &, %, , and L§ — ZF as follows

2@ = [ ") exp ok, V) a7,

Ailg) = j E(V) exp (—iok_V)d¥,

— 0

£3x) = | T g(V) exp (~iatk, V) dV,

X
- f V)exp (~ic-1k_V)dV,

oo

:J‘m' Jexp (io—1k, V) dV,

X

=

Z,8(X) f V)exp (lo—1%k_V)dV,

JL

LHEE) ~ 5[ W) 210k T 2V) — ) £ie hKCX) 00)
exp (+iock V)Y K(V,X)dV
—IH(X) £iok, K(X)) Z(X) f " exp( +ic-vk, V) K(V, X) AV
n2f%ctk,
 nfitanh nﬁo‘“lk
L rfo1k, —tanhnfo1k
= o lk tanhrfo1k,

§X) exp ( £io=tk, X) (A(X) ~h( + o))

~E(X) exp (i ™k, X) K (X),

=35 ((fé’(VJiiff“lfﬂ_k(V))E(V)-(ﬁ'(X)iria'“lk_k(X))ﬁ(X))
x exp ( £io—1k_V) K(V, X)d¥V
~%(k’(X)iio"lk_fz(X))g“(X)fwexp(iio-*lf’c_V)K'(V,X)dV

0

_ mprolkl
nftanh nfo—tk_
.nfotk_—tanhgfo-1k

+1

= o Yki_tanhxfelk_

Fye(X) :%J‘im(,&(mﬂo—lu D&V exp (+ic—'k_V) R(V, X)dV,

FX) exp (tio~th_X) (R(X) —h( —c0))

~F(X)exp(+io 1k _X) ' (X)

and

£5.8(%) =%fﬂ (B(V) tic b B{(V)) g(V) exp ( +io—tk, V) R(V, X) dV.
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To simplify the notation, introduce the linear operators .,S?f—" -.,é‘\’,f: as follows:

St = — Bk fo Pt — 11k+k ;”1 — g Ao,
+

ﬁ}:—%ik;lﬁ;oﬁf’“L 11k+ﬁ —f;ogz Y +k HoZr,

. ] —k_ i
Lt = — Lk fo0 L - Lik7! j{ Al ALY
i
24 -1 T k k + —i 3
+
T = — bk Fy0 Ly + Lk E*fz jlofff",
+
Py = — Bk Ryo L + Mk uﬁ'of L pos
2 _ a 1 2 k++k 17 k +k | 3 22
" ] by —Fk_
- -1 LE-12E T iy
3 %1;{_ 9?203.; + lk k++k j0$4 k +k ﬁloy
and Fy = — Yk RByo Ly + hiko 1o =~ Ao 5 Ao
ki +k_ 20 k++k— ' !

Then . is the operator matrix
£t Pt Pt 2
~Lk o7 -~k foPr Lkl f0%; —ME' F 0%
Lk R0 L~ LA R0 FF Yk R 0L Yk B0 Ff
ST s Ps &

The term S F appearing in equation (3.2.11) is also to be interpreted in the obvious way.

AppeNDIX D
Lemma 3 is now proved.

Lemuma 3. Suppose the functions Ty, R, € ZF. Then there exists a a,-> 0 such that
|Ge(X)| < K[(T0, T, R, R exp (- 3[X])  (YXZ0),

whenever the parameter ¢ > a4, where K is a constant independent of o.

Progf. The proofuses equation (C 1, (2) and the assumed behaviour as X — + oo of the analytic
function k. Firstly, it follows immediately from the definition (restricting its dormain to the

intervals [0, +o0) and {— o0, 0] respectively) that ze &+ n C? and the product #*(X} exp (}

tends to finite limits as X - + 0. Also, as explained in appendix B, the function £ is mdependent
of the parameter o. Thus by the alternative forms of the dispersion relations {3.2.4 4, 4), the

wavenumbers k. are bounded independently of o for sufficiently large values of o.

The last two terms in equations (C 1) and (C2) define functions @& with domains [0, + o0)

and (— oo, 0] respectively. They have the bounds
|PP(X)[ < const |(T}, T, Ry, R)| exp (- 3[X]),

where the constant is independent of & for sufficiently large values of 0.
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The third and fourth terms in equations (C 1) and (C 2) define functions @@, They have the
bounds

0 _
01(X)] < const| (T, T, Ry, R [ KV, X) ¥
< COl‘lSt” (TH T—: R+a R—)” exp ( - %X)
and DD(X)| < const|[(T,, T, Ry R f ° R, x)dV
(]

< const]| (T, T, R,, R )| exp (3X),
where the constants are independent of o for sufficiently large values of o,
Finally, the first two terms in equations (C 1) and {C2) define functions @®. The functmn
value @P(X) is expressible in the form
OH(X f [(H (V) exp (- 3V) —H (X)exp (- }X}) exp (io71k, V)
+ (Hy(V )exp (—§V) ~ Hy(X) exp (— X)) exp (—~io—k, V)] K(V, X)dV,
where the functions H; , are defined by the equations
H,(X) = (KT,) (X) +io~tk, ((AT,) (X) = (T.) (+20))) exp (%)

and Hy(X) = (WR.) (X) =ik, ((hR,) (X) — (R,) (+0a))) exp (4X).
The functions H, , and H] , have the bounds

|H,,o{X)| < const (T, T_, Ry, R_)|
and , [H{ o(X)| < const||(T,, T, R,, R )|,
where the constants are independent of o for sufficiently large values of o.

A suitable estimate is now derived for the function value @@ (X). It is readily shown that

bexp () [ 7 (8, o(V) exp (=47) = H, 5(X) exp (= 32)) exp (i, V) K(V, X) 4V

_ _jX (Hyo(X—V)—H, o(X)) exp 3V) exp (+igc 1k (X—V))dV

exp (V)1

i [ s V) ) AP i, - ) v

@ 1 —
—Hl,z(X)L ;éﬁ(%_-% exp (—3V) exp (£ioc-1k, (X—V)) V.,
Since fe (0, 1], the second and fourth of the above integrals are each bounded by constants
which are independent of o for sufficiently large values of o, To estimate the first and third
integrals the mean value theorem is used to replace the terms H, ,(X+V)—H, ,(X) by
+ VH, ,(&; 4} for suitable values of &, ,. Then applying the bounds for the functions H; 5 and
H] 4 yields the estimate
| @ X)| < const|(T,, T, R,, R_)| exp (~1X),
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where the constant is independent of o for sufficiently large values of . Similarly the function
@™ has the estimate
|23 X)] < const|[(T, T, R, R_)|| exp (3 X),

where the constant is independent of o for sufficiently large values of o
The lemma follows immediately from the above estimates of the functions &9, 7 = 1, 2, 3.

B AppENDIX E
The constanis A, and B_
The constants 4, and B_ are given by the expressions
AA, = dwo2h k_A_+ 2iwh, ¢ - R,)
—26-2k_p(R,) sin7,(R,) — 2ih_g(R,) cos 74(R,)

_ R
- 2lﬁ%+k“j

(V) siﬁfﬂ(V)dV+ 2@0—2k+ﬁ_JRl o(V)cost {V}dV, (E1)
~Ra

and AB_ = 9i(ith, h_— ok, b )siny(Ry) A_
—9mo2(h b, —h k )cosTy(R) A —2iwh_g(R,)
+ 2072k, @( — Ry) sin 7y(Ry) + 2iih, p( — Ry) cos 7o(Ry)

— 213‘0'—2!:_,3&+~"R'1 p(V) cos{1{R)) —1o(V})dV
- R,
+2izﬁﬂfz+k_J‘Rl p(V)sin (15(R) —71,(V)) dV, (E 2)
By
where A = —2i(h, h_— o~ k) sinTo(R) + 2o h k_+h_k,) cosTo(Ry). (E 3)

The linear operator £ and the function G
The linear aperator ¥ appearing in equation (3.3.11) is defined by the equation

2200 = p 2k (0 800 +f 7 e Bl g av |

+alg @) ~302f " h(V) V) (coth 41V = X) —sgn (V- X)) 4V

R e
EEVEPNTY &) ]
(7 ]C_Rnsinh%ﬁ—l(V—X)dV *
where p and ¢ are arbitrary real numbers satisfying the equation p+ ¢ = 1. The function G is
defined as the linear combination pG, + ¢G, where the functions G, and G, are specified by the

equations _
Gy(X) = — 2y (h— ko) (X) F(X)
exp (= 2ifo=2k_V)
o sinh (V+3{(X+ R} 1)
= exp (2igo—2k_V)
o sinh {V+3(X+ Ry} 71}
R exp (2ifa—2k, V)
B N = e

+ 2ok A dv

dv

—2ifo—%k_B

dav, (E 4)
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and  Gy(X) =%0"2le (h=hy) (V) F(V) (coth }f~1(V — X) —sgn (V — X)) dV

_ %ﬂa‘zk“zﬂ_f: exp (—ifo2h_V) (coth 3(V+ (X+Ry) f-) — 1) dV
—}po2h_B_ f : exp (fo2k_V) (coth J(V+ (X+Ry) 1) — 1)V

42t A, [ " exp (P02, V) (coth J(V+ (R = X) f2) — 1) AV
PN exp ( — 2ife—2k_V)
—nh A—J‘ﬂ sinh (V + 3(X + Ry) A1)
e exp (2iga-2k_V)
—nth lB—L sinh (V+L(X+ R
e a1 exp (2ifia~2k, V)
e,

dv

dav

av. (E 5)
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