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Abstract

A dispersion relation for gravity waves in water covered by disk-like impu-
rities embedded in a viscous matrix is derived. The macroscopic equations are
obtained by ensemble-averaging the fluid equations at the disk scale in the
asymptotic limit of long waves and low disk surface fraction. Various regimes
are identified depending on the disk radii and the thickness and viscosity of the
top layer. Semi-quantitative analysis in the close-packing regime suggests
dramatic modification of the dynamics, with orders of magnitude increase in
wave damping and wave dispersion. A simplified model working in this
regime is proposed. Possible applications to wave propagation in an ice-
covered ocean are discussed and comparison with field data is provided.

Keywords: surface gravity waves, complex fluids, sea ice

(Some figures may appear in colour only in the online journal)

1. Introduction

Materials floating on the surface of the ocean affect the propagation of gravity waves: oil
slicks have long been known to produce wave attenuation. Larger objects, such as floating
debris, buoys, ice floes, have a more complicated effect, but attenuation is usually dominant.

Analogous effects are commonly observed in polar regions when sea ice is present.
Remote sensing of wave propagation modifications has been used as a proxy for the thickness
of newly formed ice (Wadhams et al 2002, 2004, Squire and Williams 2008, Doble
et al 2015). The matter is of great interest in climate modeling, as sea ice contributes in
important ways to moderate the global climate. It is conceivable that similar approaches find
application in oil spill detection (Brekke and Solberg 2005).
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Over the years, several models of wave propagation in ice covered waters have been
proposed (Squire et al 1995, Squire 2007). Such models depend crucially on the properties of
the ice, which in turn depend on its age. The initial phase of ice formation is characterized by
so called grease ice, that is a a thick suspension of ice crystals (frazil ice). The crystals
coalesce to form cake-shaped objects (pancake ice), which initially have diameter 30—100 cm
and thickness 10-30 cm, and later evolve into floes several meters wide.

In the case of grease ice, one of the first theories of wave propagation was derived by
Weber (1987), where the suspension was treated as a very viscous medium in creeping flow
conditions. Keller (1998) extended the theory to generic values of the viscosity. Various
generalizations have been proposed to include the effect of an eddy viscosity in the otherwise
inviscid bottom region (de Carolis and Desiderio 2002), the possibility of a viscoelastic
component in the ice (Wang and Shen 2010a) and spatial inhomogeneities (Wang and
Shen 2011). For additional references and a comparison of different viscoelastic models (see
Mosig et al (2015)).

In the case of large floes, the floe-wave and floe—floe interaction could be modeled as a
wave scattering process (Foldy 1945, Bennetts and Squire 2009), with the flexural dynamics
of the individual floes expected to play a dominant role (Wadhams 1973, Meylan 2002,
Kohout and Meylan 2008). In the opposite limit of pancakes, which are much smaller than a
wavelength, scattering and elastic properties are not expected to be important. Rather, viscous
forces from the grease, ice and collisions should dominate. A macroscopic model, in which
the ice layer is treated as a continuum with assigned rheological properties, seems therefore
natural.

Macroscopic models, unfortunately, depend on rheological parameters such as effective
viscosities and elastic moduli, which must be supplied either from experiments or by fitting
field data. Moreover, there is no guarantee that such parameterizations properly account for
the physics of the problem.

A first attempt to derive rheological properties from the microscopic dynamics was
presented, in the case of grease ice, by de Carolis ef al (2005). One wonders whether a similar
approach could be used with pancake ice, by treating the pancakes as microscopic on the scale
of the waves. As in the case of grease ice, the main difficulty lies in the fact that one is dealing
with a concentrated suspension, as pancakes typically form a closely packed assembly at the
ocean surface.

A possible strategy in analysis of the problem is to consider first the dilute limit, and to
use the information gathered in this way to get some insight of the behavior of the system in a
concentrated condition. This is precisely the approach that will be followed in the present
paper.

We consider first the simpler problem of the dynamics of a monodisperse two-dimen-
sional suspension of non-interacting thin disks in the field of a gravity wave. To mimick real
pancake ice, we assume the disks to be embedded in a viscous matrix (the grease ice layer)
lying on top of an inviscid fluid column. The stress modifications at the water surface are
determined as an average effect from the flow perturbation by the individual pancakes. At a
macroscopic scale, this takes the form of modified boundary conditions on the wave field at
the water surface. Such boundary conditions may be interpreted equivalently as a spatially
uniform three-layer model, with an infinitely thin top layer accounting for the effect of the
pancakes.

We shall use this information to derive a semiquantitative model of the disk dynamics in
the close-packing regime. The reduced relative mobility of the disks with respect to the dilute
case is expected to cause a sharp increase of the friction forces on the grease ice matrix. We
shall provide order of magnitude estimates of such forces and incorporate them in the wave
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dispersion relation. The resulting modification in wave propagation will be compared with the
prediction by the dilute theory.

This paper is organized as follows. In section 2, the flow perturbation by the wave field
around an isolated disk is considered. In section 3, a coarse graining operation is carried out to
evaluate the average stress generated locally in the wave field. In section 4, the resulting
modification to the dispersion relation is determined. In section 5, some qualitative con-
siderations on the close-packing limit is presented. In section 6 the results are discussed and
compared with other models. Section 7 is devoted to conclusions. Calculation details are
confined to the appendices.

2. Flow perturbation by a single disk

Consider a random distribution of disks of radius R and thickness 6 < R, floating on top of an
infinitely deep column of fluid of viscosity v and density o. We postpone analysis of the case
in which only the top part of the column is viscous to section 3.1. We assume that a small
amplitude gravity wave of frequency w is propagating in the fluid. We want to determine the
response of the disks to the wave field in the dilute limit, in which no interaction among the
disks is present.

The problem is characterized by two relevant space scales. One is induced by the
wavenumber in the case of an infinitely deep inviscid fluid (without the disks), k. = w?/g,
with g ~ 9.8 m? s~! the gravitational acceleration. The other is the thickness of the viscous
boundary layer at the water surface,

Ao = W/ w2, 2.1

that is the momentum diffusion length in a wave period (Longuet-Higgins 1953). For waves
of unperturbed wavelength A\ ~ 100 m, we would have w ~ 0.78 rad s~ '. A typical estimate
for the grease ice viscosity is v~ 0.01 m*s~! (Newyear and Martin 1999, Wadhams
et al 2004). This would produce a boundary layer of thickness A, =~ 0.1 m. Shorter waves
would produce even thinner boundary layers. Smallness of this parameter is an illustration
that creeping flow assumptions, characteristic of standard suspension theory do not apply at
the disk scale.
We assume the ordering

8, Ay < R < k! (2.2)
and introduce expansion parameters
& = kR and €, = \,/R. (2.3)

Presence of an isolated disk will affect the wave in substantially two ways:

* Possible relative motion of the disk with respect to the fluid.
* Fluid stress at the disk surface due to the rigid structure of the body.

The first is basically an inertia effect, which is going to be negligible for very thin disks.
To evaluate the second effect, we must calculate the flow perturbation generated by inter-
action of the disk with the wave field.

Let us put our reference frame with origin at the disk center, with the z-axis pointing
upward and the x-axis in the direction of propagation of the wave. For small amplitude waves,
the velocity field at the water surface can be approximated with that at the unperturbed water
surface z = 0. For small kx, we can Taylor expand the velocity field in the absence of the
disk,
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U(r, 1) = U, 1) + x0,U(0, 1) + %xzaiU(O, H+ .. 2.4)

The disk will experience a tangential stress proportional to 0, U, associated with extension and
compression in the x direction, and a normal stress proportional to §>U. associated with
bending. If §/R < 1, the disk will have very low inertia so that its relative motion with
respect to the fluid will be negligible. For small ¢, the disk will thus translate with velocity
Usisk,x (1) = U (0, ) and rotate with angular frequency Qg (f) ~ —0,U;(0, t)e,. The
difference Uy . (1) — U, (0, t) must be determined explicitly by equating to zero the total
normal force on the disk. Analysis carried out in section 2.2 will demonstrate that
Usisk ; (1) — U (0, t) is small.

We consider rigid disks. No-slip and impermeability condition must be imposed. For
small /R, the boundary conditions need to be enforced only at the disk bottom,

z=0, p=4/x* + y* < R. The velocity perturbation at the disk surface will be

u(r, 1) = Ugisk (1) + Qaisk x €; — U(r, 7). (2.5)
Exploiting equation (2.4), we obtain
u(r, t) = 2a(x/R)e, + [b + 2c(x/R)*le,, z=0, p <R, (2.6)

where a = —(R/2)0, U, (0, t), c = —(R/4)3)2CUZ(O, t), and b gives the relative vertical
motion of the disk with respect to the fluid.

It is convenient to shift to cylindrical coordinates and express the velocity as a sum over
angular harmonics. We write for the generic quantity Q,

+00
o, = > Qulp. z e 2.7

m=—00

The boundary condition for p < R, equation (2.6), will read in cylindrical coordinates
uo(p, 0) = a(p/Rye, + [b + c(p/R)le;
ua(p, 0) = (1/2)[a(p/R)e, £ ia(p/R)es + c(p/R)e.]. 2.8)

For p > R, we have to impose zero stress at the free water surface,

1
T = H(Ou, + Opuy) = 0, Top = u(@zuo + —30141) =0,
p

Ty =2u0u, — P =0, z=0,p >R, (2.9)

where P is the pressure perturbation and p = gv is the dynamic viscosity of the fluid.
The velocity perturbation u obeys, for small-amplitude waves, the time-dependent Stokes
equation

ou+ o7 'V(P + V) =vV2u, V-u=0, (2.10)

where V = — ggz is the gravitational potential. We can express u in terms of scalar and vector
potentials

u=-Vo + V x A. @2.11)
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In angular components:
u, = (— 0B + Ay, — azAm,¢)ep
p
+ (_ﬂq)m + azAm,p - 8/)Am,z)e(,‘>
p

1 .
+ (—@CDm + 0Amg + —(Ayy — 1mAm,p))ez. (2.12)
P

Note that for m = 0 we can take Ay = Ape, (the flow component for m = 0 is in essence two-
dimensional).
The scalar and vector potentials ® and A can be taken to obey, from equation (2.10),

00 =P+V, V=0 2.13)

and
O,A = VV2A, V-A=0 (2.14)

(see appendix A). The first of equation (2.13) can be used to rewrite the condition of zero
normal stress at p > R, equation (2.9), in the form

2v0.u; + gn, — 0, =0, (2.15)

where 7, is the vertical displacement of the water surface induced by u. We have the
kinematic relation

. (p, &5 1) = u(p, ¢, 0; 7). (2.16)

The system of equations formed by the second of equations (2.13) and (2.14), with the
definition equation (2.11) and the boundary conditions equations (2.9) and (2.15), describes
the dynamics of the flow perturbation induced by the disk. For v — 0, the velocity field
u(r, t) describes the flow that would be produced (in the absence of the wave) by a radius R
membrane whose surface oscillates vertically with the law u,(r, t) = b + 2c¢(x/R)?. For
kR — 0, the effect would be that of a point force quadrupole. Inclusion of viscosity induces
local dissipation, which we shall evaluate perturbatively in the limit of small ¢, and ¢;.

2.1. Boundary layer structure

The small ¢, limit is associated with a viscous boundary layer asymptotically thin on the scale
of the disk. This suggests a multiscale approach to calculate the vector potential

A) = A (r)e™ (2.17)
with
a = (—iw/v)1/? (2.18)
identifying the fast scale and A, slowly dependent on z. We set up the perturbation expansion
+00 too
D= dWer, A=) AWel (2.19)
n=0 n=1

and use equation (2.12) to write the boundary conditions (2.9) and (2.15) in terms of
potentials. For ¢, < 1, we expect distinct behaviors of A for p < R and p > R, separated by
a transition region of thickness A\, < R. Keeping only leading order terms, we have in the

5
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inner region p < R, from equation (2.12):

0 0 =20 0
0.0 = — u?, aA = —uy, — 0,9,
im
QAL =ty + ~ PO, a=a/e, (2.20)

(note that u,, , depends on b and must be determined within perturbation theory). The zero
divergence condition for A becomes, for r < R:

1 . im ¢ 1 L. a ~42) _
Al =o; —AL + AN, + —AD +aAl) = 0. (2.21)
p P
In the outer region r > R, we get, from equations (2.9) and (2.15), A,ﬁl{)p = A,;l,l) = 0, which
gives to leading order:
- 009 + ™AL - a2, 0,
2im _ _
- 08 - adAL, + aAL, =0,
—gn) + 9,90 =0 (2.22)

(it is easy to see that v0O,u, /0,® = O(Ei), while V,, and 9, are of the same order in ¢,). The
zero divergence condition for A becomes, for p > R:

1 : im , 2 l.e ~A () _
AW — 0 7A,(m)<b + AL, + ;A,;},, +aAf) = 0. (2.23)

m,z

Putting together equations (2.20)—(2.23), we get to lowest order in ¢, the boundary
conditions at z = O:

0. @) =—up),  GALL =, — 0P},

AL =tms + WD, AL =0, p<R @2
and

A(W]l) =0, —gni% + 8,@52) =0, p > R. (2.25)

The divergenceless condition equation (2.21) ceases to be necessary (it would provide us with
the second order term A,(nzg that we do not need at the order considered). Similarly, the zero
tangential stress conditions at p > R is also automatically satisfied at the order considered.

2.2. Potential component

The potential component of the flow is fully accounted for by the part of the velocity field due
to the scalar potential ®. This obeys the Laplace equation V2® = 0, with the boundary
conditions established by the first of equation (2.24) and the second of equation (2.25). The
boundary condition gn®) + 9,0’ = 0 in the outer region p > R, can be rewritten in terms
of potentials using eqﬁations (2.15) and (2.16). From equations (2.12) and the first of
equation (2.25), we have in the external region p > R, to lowest order in ¢,, u, = —0.9©.
Putting together with the first of equation (2.24), we get the boundary conditions for the scalar
potential:
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8,30 = —y©, p <R,

2
.00 — L0 =0,  p>R, (2.26)
8
i.e. mixed Neumann and Robin boundary conditions. These must be compounded with the
condition of zero vertical force on the disk, required to fix the parameter b in equation (2.6).
This is

wZ
[ as [ug(’)(r) - —<I><0>(r)] =0, 2.27)
pP<R g

where the integral is carried out on the disk surface at z = 0.
We solve the boundary value problem defined by equations (2.26) and (2.27) pertur-
batively in ¢, and to lowest order in ¢,. We write

+00
PO = 3" Om 7 (2.28)
n=0
and similarly for b and u,. It is easy to see that small ¢; corresponds to a condition of slow
dynamics for the potential component of the flow. This means again that inertia is negligible
at the disk scale, which converts the Robin boundary condition at p > R in equation (2.26), to
lowest order in ¢, to a Neumann boundary condition 9,89 = 0.
We recall the expression for the Neumann Green function for the Laplace equation (see
e.g. Jackson (1999)):

1 1
GV(r, )= — + —, V=&, ¥, -9, (2.29)
r—# |r—#
which allows us to write
0,0)
OOy — L [ as Uz (po) (2.30)
21 Jp,<r [r — 1o

In similar way, the total vertical force in equation (2.27) will receive contribution, to lowest
order, only from the vertical velocity. In other words, the condition of zero vertical force on
the disk coincides with that of zero average vertical component of the velocity perturbation.
This gives in equation (2.6)

pOO = ¢, 2.31)

The next orders in the expansion are obtained in iterative fashion from the expression for
PO.D

000D =—pOD,  p <R,
2.0 — _ %@(0,0), p> R, (2.32)

where b1 is obtained from the next order in the condition of zero average normal force,
equation (2.27):
pon — L [ ds o00w), (2.33)
7TR2 pP<R
The coefficient 5D gives the first contribution to the relative vertical motion of the disk with
respect to the fluid. From now on we shall neglect subscripts on ¢ and A, and
indicate @ ~ ®©0 A ~ AV = (4,, A,, 0).

7
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y

Figure 1. Laboratory and floating disk reference frames.

3. The stress perturbation

We want to determine the stress generated on the water surface by the disks. In the dilute
limit, this is the sum of the stresses generated by the disks individually, neglecting their
mutual interaction. By construction, the only place where the surface stress is non-zero is
under a disk. From equation (2.12), the stress under a disk will be, working to lowest order in
€ and €,:

Tm,zp = M(azum,p + apl'tm,z) = _MazAm,<7>’ 3.1
1 2

Tm,zp — M azum,¢5 + ;8éum,z =~ j2ze; Am,p, (32)
i

Tz = 200Uy, + Viy — 00,9, =~ %umz. (3.3)

We note that the vector potential in the tangential components can be expressed by means of
equation (2.24), as a function of the velocity u and of derivatives of the scalar potential ®.
Thus, the only field whose spatial structure we actually need to know is the scalar potential ®.

At macroscopic scale, the cumulative effects of the disks is evaluated by means of a local
spatial average, which is carried out by summing over all the possible positions of a disk,
relative to a hypothetical fixed sensor.

If the disks are distributed randomly, uniformly on the water surface, the only stress
components surviving the average will be, by symmetry, the ones along xz and zz. We find
from equations (3.1) and (3.2),

fatp

27 R
(o) = ~28 [ a0 [ p do 1A, cos6 + 4, sing), (3.4)

while, from equation (3.3),

1 2m R
() = 28 [T a6 [ pdp s (3.5)
TR*w Jo 0
fis the surface fraction of the disks, which represents the probability that a disk actually lies
over the sensor.
It is clear that the integrals in equations (3.4) and (3.5) can be carried out equivalently in
the disk reference frame, by summing over the sensor positions. This allows us to use the

8
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expressions for the integrands in the previous sections. Care must be taken, however, of the
fact that the expansion in equation (2.6) is now carried out with respect to different positions
in the wave field.

Let us indicate with ¥ = (%, ¥, 0) = (p, [ﬁ, 0) the position of the disk in the laboratory
reference frame, and place the sensor at ¥ = 0 (see figure 1). In the disk reference frame, the
sensor will be at r = —F, where r = (p, ¢, 0) = (7, gES — m, 0), and the velocity U(r, ) at
the sensor position will be related to the corresponding expression in the laboratory frame,
U(, t), by

U, 1) = U(r, t) = U, 1) + x0:U(F, 1) + %xzaﬁfj(f, 1+ ... (3.6)

This gives us the dependence of the coefficients a and ¢ in equation (2.6), on the sensor
position r = —F:

Rx _
a(r,t)=a(0,t) + T‘ﬂévx(n Dle=0 + e

R2x2
8

where a (0, t) and ¢ (0, #) are the values of a and ¢ when the disk center is at the sensor
position. It is important to note that neglecting the corrections in equation (3.7) would give
zero in equations (3.4) and (3.5), as the lowest order contribution to the average stress is just
the total force on the disk—which is zero, divided by the disk area.

We are now in the position to calculate the average stress. Let us start with the tangential
stress. Working to lowest order in ¢, and ¢,, we have, from equations (3.4), (2.24) and (2.6):

R? - -
e, =, 1) + R0 Dl — =010 Dleo + . (3.7)

7R?
flua 2m R P
= —fo dqﬁj(; pdp (aE + 0,,<I>O)cos¢

TR?

B m—a 27 R B ‘ l ‘ .
(Te) = j; dqu; p dp [(up + 9,$)cosg (uo + p&,@)smqﬁ].

n (a% n 2apc1>2)cos2¢ cose + (a% n ic1>2)sinz¢ simb]. (3.8)
p

We stress that the coefficient a (and ¢ through ®(,) depend on r through equation (3.7).

Calculations, detailed in appendix B, allow to write the potential harmonics ®; and $, in
terms of the corresponding harmonics of the Green function G” appearing in equation (2.29).
Substituting the expansion in equation (3.7) into equation (3.8), gives, after additional
algebra:

11fuR?*a 02U,  BfuaR? 93U,
64  Ox2 2 o
where B >~ 0.16 (see equation (B.7)). From comparison of equations (2.24), (3.7) and (3.8), it
is clear that the first term to RHS of equation (3.9) accounts for the u, , contributions to (7,;)
while the second accounts for the one by .
Passing to analysis of the normal stress, substituting equations (2.12) and (3.7) into
equation (3.5) will give
ifogR* 0*U;
(1) = 64 Aod "
w 0%

(Te) = (3.9

(3.10)
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Despite the higher derivatives with respect to ¥ in 7, the two stress component are of the
same order,

() & G.11)
(Tx2) €a
On the contrary, the second term to RHS of equation (3.9) is smaller than the first by a factor

€ and should be disregarded to the order considered. In the end, to lowest order in ¢, and ¢,
neither component of the stress depends on the spatial structure of ®.

3.1. The case of a finite thickness viscous layer

We can extend the analysis to the case in which only a top layer of thickness % of the water
column is viscous, and the whole basin (including the viscous layer on top) has finite depth H.
We assume

H> R, keoh < 1, (3.12)

and take the difference ¢,, — ¢ between the densities in the inviscid and viscous regions to be
small and positive.

Let us consider the modification to the flow perturbation by a single disk. Viscous
stresses are generated only in the top part of the column at —h < z < 0, while the flow
remains potential in the bottom part —H < z < —h. The vector potential, which is now
confined to the top viscous layer, in order to insure continuity of tangential stress at z = —#,
will thus acquire an additional component

A = AT (e + A (r)e . (3.13)

The spatial structure of ¢ will similarly be modified by the the solid boundary at z = —H and
by the discontinuities in 7, and (V X A), at z = —h.
We want to understand how all this affects the boundary conditions at z = 0.
Consider first the normal stress. Inspection of equation (3.3) tells us that, to lowest order
in €., the normal stress is determined solely by the velocity condition on u,, and is insen-
sitive to the spatial structure of ® (the only place in which the ¢, < 1 assumption plays a role
is the Taylor expansion in equations (2.4) and (2.6)). The normal stress at the surface thus

remains unaffected by presence of a rigid bottom at z = —H and of a viscous-inviscid
transition at 7 = —h.

Let wus shift our attention to the tangential stress. We can decompose
A" = —Afe 20 L A where —A e 2% cancels the tangential stress contribution from A",

and A cancels the one from ®. To evaluate A, we must determine the two contributions to
stress from @ and A, that we indicate with 74 4. From equation (2.12) we obtain
Tol—o &~ p®|.—o/R? and Tal.—o ~ paAl.—o, which gives T|,_o ~ €, 7al.—o. We have at
most 7|, & €2Tal,_o, 50 that A < €2A|._ge " ~ e2A e 0,

When A > A, both A~ and the corresponding modification to the boundary condition at
z = 0 are exponentially small. When / ~ ), the contribution from A to A is O(€2) and can
be disregarded. We can thus write in general

A = —Afe20n (3.14)
From here we obtain for the tangential stress at z = 0, exploiting equation (2.24):

T.p = Moy, ptanh(&tp) and 74 = pow,, gtanh(&a), 3.15)
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where we have introduced dimensionless quantities

kL4174
b = Aﬁ:% and & =al, = V1. (3.16)
(a3 v

We arrive at the general expression for the average stress at the surface, working to
lowest order in ¢, and €,:

() = a0, (T) = 1;"81-01, (3.17)

where, from equations (3.9) and (3.10),

fgoR?

tanh (& and =
(&) o P

11fuR?
(== (3.18)

We see that the disk layer acts as a membrane with bending rigidity o and extensional
viscosity a(. We note the dependence of o on an exogenous variable such as g, and the
complex nature and frequency dependence of ¢, which cannot be easily interpreted in terms of
a viscoelastic dynamics such as the one described by Wang and Shen (2010a).

4. Dispersion relation

The procedure to derive a dispersion relation for gravity waves in the presence of a viscous
layer at the surface is analogous to the one described in (Keller 1998, de Carolis and Desi-
derio 2002, Wang and Shen 2011). We have to enforce four boundary conditions: continuity
of tangential and normal stress at the water surface, z = 0; zero tangential stress at the bottom
of the viscous layer, z = —h; continuity of normal stress again at z = —h. Addition of the
disks generates non-zero surface stresses, as accounted for by equations (3.17) and (3.18).
Imposing continuity between the fluid and the surface stresses gives us:

w(0,U, 4+ 9.Uy) = (ad>U, 4.1)

2ud.U, — P = 20, 4.2)
w

(we omit from now on overbars on vectors in the laboratory frame). We write the velocity
field of the wave in terms of potentials: U, = —0,®Y — 0.AY, U, = —9,0V + H,AU. In the
top viscous layer —h < z < 0, we have from equation (2.10):

PU = (I)Zekz+i(kx7wr) + @Hesz+i(kx7wz)’
AU = AJlrj eakz+i(kx7wt) 4 AEJ e*(l’kZJv'i(kX*qu)’ (43)

where oy = (—iw/v + k2)'/2. In the inviscid region —H < z < —h, only the scalar potential
survives:

®Y = &Y cosh[k(z + H)Je! w1, 4.4)

where we have enforced the zero vertical velocity condition at the bottom of the
column, z = —H.
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It is convenient to introduce dimensionless quantities

~ k372 N A N
k:ki; p= D G =i 0k h=kahy A= koH;
0o 8
b O oG KSR NG e s ST @5)
=— == = ——tanh(&v)); & = =—. .
¢ Ow €q p1/2 64 64

Dependence on the two small parameters ¢, and ¢, has been replaced by one on & = (¢ €,)?
and h. For wavelength ~ 100 m, effective viscosity v ~ 0.01 m?s~! and thickness of the
viscous layer 4 ~ 0.5m, we would have 9 ~ 4.4, corresponding to # ~ 5 x 107> and
h ~ 0.03. Note that we can write h = D!/ 2, and since v is O(1) in most situations of
interest, we end up with a single small parameter # = (k. \,)?, which is independent of R.
The relevant parameter accounting for the disk radius is now &, that in the case of pancake ice
tends to be rather small (with the same wave parameters as before, taking R ~ 0.5 m would
give £ =~ 0.14), but could become larger than one for lower viscosity and shorter waves.

In terms of potentials, the continuity condition for the tangential stress at the surface,
equation (4.1), becomes

DEC[Q2 + Cak) DY + (=2 + Cak)BY] — (1 + 1720k + 2ikHAY

— (1 — V2R + 2ikHAY = 0. (4.6)
In similar way, the continuity condition on the surface normal stress, equation (4.2), becomes,
using equations (2.13), (2.15) and (2.16) to express pressure in terms of potentials:
k—1— ok @i+ 6k + [~k — 1 — pk°Qi — 6k ]2V

— ik = 2i01 2%y — pokMHAY — ik (1 + 210126 — pekHAY = 0. 4.7)
We see that for £ fixed, sending  to zero corresponds to sending to zero also the contribution
from the disks (the # — 0 limit at fixed £ coincides with an R — 0 limit at fixed k., and v).

Calculations analogous to those leading to equations (4.6) and (4.7) allow us to write
continuity conditions at the interface for the tangential stress:

20k (Ve R — BUekhy — (1 4 2ipk ) AVe M0 4 AVe¥)y =0,  (4.8)

and for the normal stress (see appendix C):

(i[2 — qy_y + (1 — 2)k] — 200k"} @Y e

+ {2 + gy, — (1 — 2)k] — 200k7} @V el

+ (1 — )k — gy, + 210020 k1AY e~ 0¥

+ 1A = 2k — qy_, — 210020 k]1AY eV = 0, (4.9)
where

1

Y

We have a system of four equations (4.6), (4.7), (4.8) and (4.9), in the four variables ®Y
and Af , which, forz = & = 0, reduce to equations (15)—(18) in Keller (1998). From here, a
dispersion relation can be extracted equating to zero the secular determinant. We proceed
perturbatively in #'/2 or equivalently, for v not large and fixed, in powers of /. We write

gy (k) (4.10)

12
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F=S k"0 @4.11)
n=0

and likewise expand the secular determinant

A A

Stk by =[S + A& 0; + 0pS + . Ji_0 4. (4.12)

The dispersion relation S (k, h) = 0 is solved equating to zero order by order the coefficients
in the expansion in equation (4.12). The operation is sped-up with the help of a symbolic
manipulation program.

Let us focus for the moment on the case of an infinitely deep basin, H — oo, for which

9 =1. Stopping the perturbative expansion at O (3/2), we obtain

R+ volial + o] + 03/21/1{8@ [i ,hcohdy — 1 1]

1 sinhaw)
+200 - p)o + 2801 — p) — 22ONAV Tl 28 cos AP,
¢ sinh &) 1 sinh &) @.13)

which has a number of relevant limit regimes.

4.1. Limit regimes

If the surface fraction of the disks is not too small and the viscous layer is not too thin,
k~1+ oplial + &),  f, ¥, ¢ finite. (4.14)

Writing i& = 27'/2(1 + i), we see that disks produce a frequency-dependent response
consisting of both wave damping and decreased wave propagation speed. The viscous layer
contributes only a correction at O (3/2). The information on the layer depth is buried in the
dependence on v of the tangential stress & .

The limit of a very thin viscous layer, i < \,, which corresponds to putting ¢ < 1 in
equation (4.13), gives the result, from the first of equation (3.18):

k~1+ poo, ¢ small. (4.15)

Also in this case, the leading contribution comes from the disks>.
The viscous layer will play a role in the absence of disks, i.e. for f — 0, or when the
disks are small, i.e. for £ — 0. We get in this case
F~1 o+ 8@93/2[i¢ T aM] foré small, 4.16)
sinh &)
which can be brought back to the small h deep-water limit of the dispersion relation, equation
(45) in Wang and Shen (2010a); see also (Keller 1998).
Finally, the limit of an infinitely deep viscous layer could be obtained converting the
perturbation expansion in powers of & at fixed 1), to one in powers of & at fixed h. The result,
stopping at O (D), is

3 No dissipation to this order, as the flow perturbation from the disks, in the absence of a viscous layer, becomes
purely potential.
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Figure 2. Sketch of close-packing arrangement. The maximum area fraction fi,,x is
obtained for S = 0, and coincides with the ratio of the circle to hexagon area:
Foax = 7/ (24/3) = 0.91. The deviation f,,, —f is the surface fraction of the interstices

among the hexagons, which, for § < R, is «S/R.

Ja — e + alli+ 5

k~1+ , h finite, 4.17)
14+ (1/0 — e~
which, for large h , becomes
k=1+ p[4i + ial + &1, h— (4.18)

and we recognize, in the disk-free case f = 0, the dispersion relation for waves in a viscous
fluid derived by Lamb (1932). The transition from a shallow to a deep layer regime occurs in
two stages. For ¢ < 1, the disks see the viscous layer as shallow, corresponding to the
dispersion relation in equation (4.15). They will see the layer as deep for ¢» > 1, which would
correspond to setting tanh(ae)) = 1 in the first of equation (3.18) and then in equation (4.14).
Only for h>> 1, will equation (4.17) converge to the infinite depth solution equation (4.18),
and will the waves see the viscous layer infinitely deep.

5. Close-packing effects

Moving away from the dilute limit requires taking into consideration the mutual interaction of
the disks. A microscopic theory generalizing equations (3.17) and (3.18) is going to be
difficult. Some progress can be made if we assume that the disks interaction is produced by
contact forces. To fix the ideas let us imagine that the disks are arranged in a regular lattice, as
illustrated in figure 2. The wave velocity field at the surface, U, (x, ¢), is horizontally com-
pressible. The disk separation S will thus oscillate in space and time, and, if S is initially
small, collisions will occur. Such collisions take place in the compression regions where
0 U (x, 1) < 0. If rafting is neglected, the disks will remain locked in their position relative to
neighbors until 0, U, (x, 1) becomes positive again. In such compression regions the wave will
not see the disks as individual entities, rather as horizontally rigid agglomerates (‘islands’)
whose extension A scales with the wavelength .
We can try to be more quantitative on this.

* Since disk inertia is small, collisions can be treated as anelastic. At the same time, the kinetic energy dissipated in
collisions is neglected compared to the viscous dissipation at the disk bottom.

14



Fluid Dyn. Res. 49 (2017) 025512 F D Santi and P Olla

The wave field at z = 0,
Ux, t) = ﬁcos(kx — wt + @), 5.1
w

where 2.4g/w? is the crest to trough wave height, determines the motion of the disks. The
relative motion of a pair of points separated by X < A in the x direction obeys
X ~ XO,U,(x, t), which can be integrated to give

X() = X()[1 + Acos(kx — wt + ¢)]. (5.2)

Consider two disks aligned along x, whose centers are separated initially by X (0) ~ 2R. The
maximum relative displacement in a wave period will be ~R.A and the minimum rim to rim
separation between neighboring disks, compatible with horizontal free motion in the wave
field, will thus be S ~ RA (see figure 2).

Collisions among disks will take place in the regions of the wave in which

Acos(kx — wt + ) > S/R (5.3)

(see equation (5.2)). These regions are centered at the coordinates of instantaneous maximum
compression x; = k~![wt — ¢ + (21 + 1)7]. Since in equation (5.3) S/R ~ f,..—f. the
extension of these regions is independent of R and scales with A as claimed,

o i l o fmax_f
A W\/:)\, 7—7(—A ) (5.4)

where the proportionality coefficient is chosen to simplify the dispersion relation to be
derived below. In the limit f — f, . , we can imagine that islands coalesce to form a uniform
layer, A/\ — o0, corresponding to a peristaltic regime U, (x, t) = 0.

Arguments similar to those leading to equations (3.17) and (3.18) can be used to estimate
the stress perturbation under an island. The island’s structure can be likened to that of a
lamellar armor, in which small metallic plates are laced into rows allowing flexibility in the
normal direction. Of course this flexibility is lost when the length scale of the deformation
(i.e. \) is of the same order of the size of the lamellae (i.e. the disks, R).

For the tangential stress, the role of R is replaced by A:

11 paN

" D2 U, tanh (au)). (5.5)

(Tw) =
From equation (5.4), the expression for {7,,) in equation (5.5) is O (6;2) larger than the one in
the first of equation (3.17).

If we assume that the disks remain free to move vertically as in the dilute case, the normal
stress will continue to be generated by the resistance of the disks to bending. Thus, even if
(m,,) is going to be modified with respect to equation (3.17), its magnitude will be fixed by R
and will go to zero in the ¢;, 6/R — 0 limit of a continuous, horizontally homogeneous, but
immaterial surface layer. This means that to leading order in ¢, the normal stress at the surface
can be neglected.

It is interesting to note that in the present situation, the condition ¢, < 1 in equation (2.2)
loses meaning and should be replaced by A\, < A, which, for A & A, is always going to be
satisfied.

We are now in the position to derive a dispersion relation in the close-packing regime,
along the line of the procedure which leads to equation (4.13) in the dilute case. To allow
comparison, at least in principle, with data from wave tank experiments, we allow H < co.

15
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Equation (4.6) for the tangential stress balance is then replaced by

(v P20k + 208 BY + (3, 0120k — 2087 DY
— (14 20k @AY +AY) g (4 - k)2 @Y —AY) =0, (56)
where v, = 7 tanh &. We note that the disks contribute to the dynamics at O (9'/?) while in

the dilute limit, they contribute only at O (9).

D . o NOR .
Considering a finite depth regime implies that we must expand around £ = kg, that is
the solution to the dispersion relation of gravity waves in a basin of depth H:

ki = qyy k). (5.7)

This means that we must expand in equation (4.9)

B = by + Ry — KBy — D02 + .. (5.8)

Putting to system equation (5.6) with equations (4.7)—(4.9), and expanding the resulting
secular equation to O (2'/2) gives the dispersion relation

A A2 n 22
~ 1+ 191/2 10‘7@kH tanflz(aw) . + (1 B g?\(zkH — 137,& , (59)
1+ [ + (kg — DHH] 1+ (ky — DH
where the normal stress from the disks, that is O (¥), is disregarded. The second term in braces
in equation (5.9) is the correction that would be produced by an inviscid layer of density

different from the rest of the column, which is just a mass-loading effect (recall that
yp'/2 = h, which is independent of /). The disks are accounted for by the first term in braces.

§)|N‘>

6. Discussion

6.1. The dilute theory

The theory has been derived for small f, ¢,, ¢ and 6/R. The dispersion relation
equation (4.13) accounts for the stresses by the viscous layer and by the disks, but not for the
disks mutual interaction. In most situations involving pancake ice, such conditions are not
fully satisfied. The dilute model can nevertheless be used in intermediate regimes, provided
the pancake concentration is not too high and the locking mechanism described in the
previous section does not set in. The situation as regards the other expansion parameters ¢
and ¢, is not as dramatic and we expect that the theory is able to provide order of magnitude
estimates also when the condition ¢ , < 1 is not strictly satisfied.

An aspect that is worthwhile studying is the relative contribution by the viscous layer and
by the disks to the wave dynamics. The two relevant limits equations (4.14) and (4.16) of the
dispersion relation equation (4.13) correspond to situations in which the stress by the disks
and by the viscous layer, respectively, are dominant.

The magnitude of the contribution to the dispersion relation equation (4.13) from the
stress by the viscous layer and from the tangential and normal stress components by the disks
can be estimated as

O(eed),  O(feue)) and O(fe), (6.1)

respectively.
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Figure 3. Plots of wave damping (panels (a) and (c)), and wave dispersion (panels (b)
and (d)), in a typical pancake ice scenario. Values of the parameters:
v=10"2m?s!, ky, = 0.06 m~!, = 0.917, corresponding to A\, = 0.1142m and
£ = 4.69 x 107, The choice R = 0.5 m in panels (a) and (b) leads to ¢ = 0.13. The
choice 7 = 0.2 m in in panels (c) and (d) leads to 1y = 1.75. In all panels f = 1.
Parameters typical of pancake ice in the ocean are

v=001m?>s,R < Imk, = 0.06m"!, corresponding to ¢, ~ 0.2. To maximize the
effect of the disks we set nominally f = 1 in the analysis that follows.

As shown in figure 3, there are situations in which, even though f = 1, the viscous layer
dominates over the effect of the disks. This corresponds to the £ — 0 limit of equation (4.13),
which is equation (4.16). The effect is more pronounced for damping than for dispersion.
Inspection of equation (4.13) and of its limit forms tells us that the viscous layer’s effect is
mainly damping of the waves, while the disks produce damping and dispersion that are of the
same order. The damping by the viscous layer turns out to be larger than that by the disks (¢,
is not small enough compared to the numerical coefficients in equation (4.13)). This implies
that damping dominates over dispersion in most of the parameter range considered, and that
the effect of the disks on wave damping is small. The effect decreases at larger i and
smaller R.

The situation is different as regards wave dispersion, as the viscous layer contribution to
lgr — 11is much smaller than to 12,-. This has the consequence that when the viscous layer is thin
enough (less than ~ )\, in thickness), the disks dominate dispersion.
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Figure 4. Plots of wave damping (panels (a) and (c)), and wave dispersion (panels (b)
and (d)), in a possible pancake ice—mixed oil scenario. Effective viscosity
v = 10"*m?s~!; values of k, o and f as in figure 3.

The dispersion relation is drastically modified when ¢, and ¢, are both small and
& = ¢,/€, = O(1). Such a condition could be realized, in the range of /& and R of figure 3,
using a smaller viscosity. In the context of pancake ice, examples in which a smaller viscosity
could be considered are generally related to the presence of oil: situations include oil spilling
under pancake ice and oil incorporated into the ice as grease ice is formed (Fingas and
Hollebone 2003). We repeat in figure 4 the analysis in figure 3 adopting v = 10~* m?s~!. In
this case, we see that wave dispersion is dominated by the disks, while damping is dominated
by the disks only for small 4 and large R. In this parameter range, damping and dispersion are
of the same order of magnitude. The slow dependence of the disk stress on /% is due to the fact
that for small v, A\, is small as well, ¢ is consequently large, and the tangential stress in
equations (3.17) and (3.18) reaches a plateau.

It is to be noted that the wave damping does not grow without bound for ¥ — o0, instead,
it first reaches a maximum for A ~ )\, and then goes to zero for ¥ — oo (the first term in
braces to RHS of equation (5.9) becomes purely real in the limit, with i& tanh(&)) ~ —1)).
The limit corresponds to the viscous layer behaving as a rigid lid with the shape of the wave,
which is transported by the wave itself. From analysis of equation (4.16), we see that the same
limit cannot be achieved—within perturbation theory at least—in the case of a simple viscous
layer.
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Figure 5. Comparison of the the predictions by the close-packing model and its
extended version, the dilute theory and the Keller theory, in a typical pancake ice
scenario. Values of the parameters: v = 102m?s™ !, 5 =0917, h=02m, R =0.5
m, f= 1 and v = 0.2. Panel (a) wave damping; panel (b) dispersion.

6.2. The close-packing model

The model has been introduced to take into account the reduced relative mobility of the disks
for f~ 1. The dispersion relation equation (5.9), which is valid in the limit

R <A, A 6.2)

describes a situation in which both wave damping and dispersion are greatly increased with
respect to the prediction of the dilute theory, for comparable values of the surface fraction f.

The dispersion relation equation (5.9) neglects normal stress contributions. Such con-
tributions can be taken into account by an extended version of the model in which
equations (5.6) and (4.7)—(4.9) are solved without approximations®. This reveals that the
simplified model works well as long as A/R 2 4 (see figure 5). For A ~ R, the ‘extended’
close-packing model merges with the dilute theory equation (4.13). As regards wave
damping, we see in figure 5(a) that for a typical pancake ice scenario, with
v=10.01 m*>s~!, R = 0.5m and fixed v = O(1), this merging occurs for very short waves.

As regards wave dispersion, figure 5(b) illustrates that both equations (4.13) and (5.9),
and the extension of the second to ¢; ~ 1, lead to a decrease of the phase velocity. As in the
case of damping, the close-packing model gives a result that is orders of magnitude larger
than that of the dilute theory at large wavelengths. We have included for reference the
prediction by the Keller theory (Keller 1998), which, for all values of k,, disappears in front
of the contribution from the pancakes in close packing conditions.

We can compare the results of the close-packing model with those of a viscoelastic
model such as the one by Wang and Shen (2010a). The composite pancake-grease-ice layer is
treated as a homogeneous Voigt medium with complex viscosity

v, =V + ﬁ (6.3)
ow

5 It should be stressed that the extended version of equation (5.9) can provide only an estimate of the behavior of the
dispersion relation at small wavelengths, since only a part of the higher order contributions in ¢ in the perturbation
expansion for the stresses (equations (3.17) and (3.18)) is taken into account.
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Figure 6. Comparison of the the predictions by the close-packing model, the viscous
layer model and the viscoelastic layer model. Values of the parameters:
v=102m?s",, p=0917,h=02m, R=0.5 m, y= 6, G = 10°Pa. Panel (a)
wave damping; panel (b) dispersion.
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Figure 7. Comparison of field data on wave damping by ice floes (R = 10 m)
(Wadhams et al 1988) and prediction by the Keller model and close-packing model
equations (4.16) and (5.9). Values of the parameters: v = 0.0l m>s~!, h = 0.14 m,
+ — oo (close-packing model); v = 10 m?>s~!, A = 0.21 m (Keller model).

We take for the elastic modulus G = 103 Pa (a value in the range of gels, but still much less
than what would be observed in solid ice), and keep considering a shear viscosity typical of
grease ice, v = 1072 m? s~!. This choice guarantees that, in the small to moderate k., range
considered, &, = ko30/ 2¢=1/2, is small. The full dispersion relation, equation (45) in Wang and
Shen 2010a, can then be approximated with our equation (4.16) by setting H — oo and
substituting o — 7.

As shown in figure 6, the viscoelastic model predicts a wave damping much smaller than
the close-packing model, equation (5.9). Even smaller values of k; are predicted in the purely
viscous model, that is equation (4.16) in its original form with v = 0.01 m*s~! and G = 0.
The value of « adopted is close to the inextensible membrane limit; however, different
choices do not produce dramatic modifications (see figure 5). The viscoelastic and close-
packing model lead to values of the dispersion modification k, — 1 of the same order of
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magnitude, although with opposite sign. Comparison with data from synthetic aperture radar
imaginery by Wadhams and Holt (1991) (see table 1 in that reference), suggest that
k. — 1> 0 as in the close-packing model, even though it must be mentioned that such data
referred to an inhomogeneous situation, in which regions with just grease ice and regions with
grease and pancake ice were both present.

We have checked the validity of the close-packing model against some real field data on
sea ice. We have considered the Bering Sea data of 7th February 1983 on wave damping
reported by Wadhams et al (1988). The data refer to waves propagating in ocean covered with
ice floes of radius R ~ 10 m. Results are illustrated in figure 7.

A fit of the data by equation (5.9) has been obtained for the reference value of the
viscosity in the top layer v = 0.01 m? s~!. The top layer viscosity may be due to the presence
of grease ice, but in principle an eddy viscosity contribution may also be present due to the
underwater stresses generated by the wind.

Best fit of equation (5.9) by least squares gives & = 0.14 m, while +y can take any value
=10, corresponding to a peristaltic regime. Least square fit by the Keller model (Keller 1998)
varying v and h, gives v = 10 m? s~ and & = 0.28 m. In order for such a model to generate a
wave damping of the same order of magnitude, a much larger value of the viscosity in the top
layer must be adopted, which seems rather unrealistic.

Both models fail to predict the apparent rollover in the spectrum at ko, > 0.06 m~!.

7. Conclusion

We have studied the propagation of gravity waves in a water body covered by a distribution
of thin disks embedded in a viscous layer. We have described the wave dynamics as a
function of the surface fraction of the disks f, and of the relevant scales of the problem: the
disk radius R; the wavelength )\; the depth & of the viscous layer; the thickness A, of the
viscous boundary layer at the surface (see equation (2.1)).

We have provided an analytical theory valid in the limit A, < R < A, f < 1. In such
dilute limit, the interaction among disks is disregarded. In the range A\, < h, the role of
control parameter is played by the quantity & ~ R2/(\),) defined in equation (4.5). In
particular, the ratio of the normal and tangential stresses by the disks, and the ratio of the
contribution from the disks and from the viscous layer to wave damping, are both propor-
tional to &. It is interesting to note that, for values of the parameters compatible with pancake
ice in the ocean (for which the dilute theory, however, would not work), the contribution to
wave damping from the viscous layer would exceed that from the disks.

We have used the dilute theory as a groundwork for the development of a macroscopic
model valid in a close-packing regime f ~ 1.

While in the dilute case, the surface stress is associated with surface strain rate on the
scale of the individual disks, in the close-packing case it is the whole disk layer that resists
horizontal compression. The result is a dramatic increase of the friction forces by the disks on
the viscous layer, with wave damping and dispersion corrections larger by orders of mag-
nitude than predicted by the dilute theory.

An interesting point in the close-packing model is the appearance of a new characteristic
length A, which represents the extension of the regions in which disks are so closely packed
to form a horizontally rigid structure, and where tangential stress is maximum.

We have used the close-packing model to fit field data of wave propagation in ocean
covered with ice floes (Wadhams et al 1988, Wadhams and Holt 1991). We have compared
the performance of the model with that of the theory by Keller (1998). Using values of the
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parameters compatible with presence of a grease ice layer or possibly a turbulent boundary
layer (effective viscosity = 0.01 m? s~!), we have observed that the data on wave damping
reported by Wadhams et al (1988) can be fitted reasonably well with the close-packing model.
In comparison, the Keller theory would require much larger (and difficult to justify) values of
the effective viscosity.

As far as wave dispersion is concerned, the close-packing model predicts a decrease of
phase velocity, which seems to agree with the data by Wadhams and Holt (1991).

The close packing model fails to account for any rollover effect, which are predicted
instead by nonlinear models such as the one by Shen and Squire (1998). In principle, non-
linear effects could be made to sneak in the close-packing model, by taking seriously the
interpretation of A as the extension of the high compression regions of the wave field (the
parameter y in equation (5.4) would become a function of U). It is to be mentioned that
rollover effects typically take place when the size of the disks is comparable to the wave-
length, in which case our theory ceases to be meaningful. This prevents comparison with
wave-tank data such as the ones in Wang and Shen (2010b). Similar limitations exist also
with field data on wave damping in ice covered ocean, when large floes are present (Kohout
et al 2014).
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Appendix A. Potential representation of time-dependent Stokes flows

We decompose the fluid velocity as

u=-Ve® +V x A. (A.1)
Assuming incompressibility, we have that ® is potential
V-ou=0= V?®=0. (A.2)

The time-dependent Stokes equation is
du + lVP = vV + lf, (A.3)
4 4

from which we get the vorticity equation
O,[V x u] = vV2[V x u] (A4)

(we consider for simplicity the case in which the force field is of gradient type); in terms of
potentials:

O, [VV - A — V2A] = vVi[VV - A — VZA] (A.5)
and, if we assume A divergenceless,

9, V2A = vV2V2A. (A.6)
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Equation (A.6) has general solution A = A + A/, where
0A = vV?A, V2A' = 0. (A7)

If we continue to assume that A is divergenceless, we see that A’ does not contribute to
vorticity

V x [V x Al=-V?A"'=0. (A.8)
We could decompose

A'=Vg+V xC, Vg = 0. (A.9)
We have

VA’ =V x V2C =0 = VC = Vg, (A.10)
which allows us to write the contribution of A’ to the velocity in the form

VxA=VV-C-yg. (A.11)

We see that adding a potential term A’ to the vector potential has the same effect as
renormalizing the scalar potential:

b —-d+g-V-C (A.12)
In general, the equation for the scalar potential will be

-OV@+g-V-C+ lVP = lf. (A.13)
o o

The equation will simplify if A’ =0, ie. if we assume that A obeys the first of
equation (A.7). In this case we shall have, taking f = —VV:

P+V
4
that are equations (2.13) and (2.14).

0P = and 9A = vV2A, (A.14)

Appendix B. Green function of the potential component

It is convenient to expand the Neumann Green function, equation (2.29), in angular har-
monics:

2 +o00 }"p . C
GN(r, py) = —=—= > & [2—02]6"’(% %) (B.1)
p2 —|— pO m=-—o0o p + /70
with
1 f27r e—im¢
N
xX) = — dp—. B.2
Thus
“+o0 )
PO ,cg = > Y (p, 0)ei, (B.3)

m=—00
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where

R Y (pgs 0) PP
0 (p, 0) = —f Po dpy 2 0 > gmN 2 : 2 (B.4)
0 p*+py  \P TP

and similar expressions holding at higher orders. This allows to rewrite equation (3.8) as

277 2m R
Jie 07Uy fo d fo p? dp [%(COSW + sin® 2@]

T, ~
() 27R Ox>

@30, (2 (R
ey e f et

(po/R? =1y ppy
8 e + 2(cos2¢pcos? pd,

R
xaf d
Py Pt N R 0

: 2
+ S‘n;2¢) j;R po 4o, (po/’:) —21 gZN[ ZpJprO 2] . (B.5)
P+ Py pP=T Py
Carrying out the polar integrals and integrating by part in R where necessary, we find

1fuR*a 9*0,
64  Ox?

a 03U, (R R (po/R)* — 1 Pp,
_fL ”L/(‘) p* dp apL[(; Po dpy o/ g :

- 0
4 ox JPE+ oy P>+ pg
2) (R (po/R* =1 [ ppy
+19, + —)f Podpg 8
(ﬂ p)o Jpz—i—p(z) 2 PZ+P(2)

_ 11fuR*a 820, BfuaR’ 93U,
64  Ox? 2 ox

(M)

(B.6)

with

! ‘ 1= pg pp
B:f pdpf podpo 2g'| 52 |~ 0.16. (B.7)
0 0 PPty \PTE P

Appendix C. Boundary conditions at the bottom of the viscous layer

The derivation of equation (4.8) is straightforward and is omitted. We concentrate on con-
tinuity of normal stress. We need first to enforce continuity of the normal velocity:

Ple M — @Uekh — j(AVe uh - AVeh) = &Y sinh[k(H — h)]. (C.1)
Continuity of normal stress gives

Q'IjazUzlzthJr - P/g = 7Pw/g~ (C.2)
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The first of equation (2.13) allows us to write

P=o{—iw@e ™ 4 Vet + %@'4, sinh[k (H — h)]} (C.3)
and

B, = 0, ®Y{—iwcosh(k(H — h)) + ig?ksinh[k(H — ]} (C4)

Substituting equations (C.3) and (C.4) into equation (C.2), and passing to dimensionless
variables, we get

oG — 2087 (@Yt 4 Ve 4 2ipp! 2k (AU e — AUedv)
—i{gy , — (1 — 2)k}y®Ysinh[k(H — h)] = 0, (C.5)
where ¢, _, = 1/tanh[k(H — h)]. We can eliminate <I>lvﬂ using equation (C.1), to obtain
(i[2 — qy_y + (1 — 2)k] — 200k"} @Y e
+{ilo + qy_, — (1 — )k] — 200k} BY ekl
+ (1 — )k — gy, + 21002 k1AY e~ 0¥
+ 1A = 2k — qy_, — 21002 k1AY eV = 0, (C.6)
that is equation (4.9).
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