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[1] We characterize horizontal mixing and transport
structures in the surface circulation of the Mediterranean
Sea, as obtained from a primitive equation circulation model.
We calculate the Finite Size Lyapunov Exponents (FSLEs)
of the velocity data set, which give a direct measure of the
local stirring. By proper election of the FSLE parameters, we
focus on the mesoscale structures, locating a number of
vortices embedded in an intricate network of high-stretching
lines. These lines control transport in the system. At the edge
of the vortices, a dense tangle of line intersections appears,
identifying strong mixing. The spatial distribution of FSLEs,
averaged over one year, allows to classify areas in the
Mediterranean basin according by their mixing activity.
The space average of FSLEs on selected geographical
regions gives a measure for quantifying and comparing the
mixing seasonal variability. INDEX TERMS: 4568

Oceanography: Physical: Turbulence, diffusion, and mixing

processes; 3220 Mathematical Geophysics: Nonlinear dynamics;

3240 Mathematical Geophysics: Chaos; 4255 Oceanography:

General: Numerical modeling; 4572 Oceanography: Physical:

Upper ocean processes. Citation: d’Ovidio, F., V. Fernández,

E. Hernández-Garcı́a, and C. López (2004), Mixing structures in

the Mediterranean Sea from finite-size Lyapunov exponents,

Geophys. Res. Lett., 31, L17203, doi:10.1029/2004GL020328.

1. Introduction

[2] Horizontal transport and mixing processes are central
to the study of the physical, chemical, and biological dynam-
ics of the ocean. Correct understanding and precise modelling
of them are relevant from a theoretical viewpoint and crucial
for a range of practical issues, such as plankton dynamics or
the fate of pollutant spills. In this regard, the last few years
have seen the appearance of interesting new developments
[Mariano et al., 2002] on the Lagrangian description of
transport and mixing phenomena, many of them coming
from the area of nonlinear dynamics. Such approaches do
not aim at predicting individual tracer trajectories, but at
locating spatial structures that are known from dynamical
systems theory to act as templates for the whole flow [Ottino,
1989; Wiggins, 1992]. Such structures (attractors, saddles,
manifolds,. . .) have been used since many years ago for
classifying the evolution of trajectories in abstract dynamical
systems. However, when put in a fluid dynamics context, they
gain a new and direct physical meaning, corresponding for
instance to avenues and barriers to transport, vortex bound-
aries, or lines of strong stretching. In particular, chaotic
motions such as the ones occurring in the turbulent ocean

are characterized by complex intersection of stretching and
contracting manifolds at the so called hyperbolic points:
regions of fluid initially compact in the proximity of these
points become elongated along the stretching directions and
then folded, leading to the typical filamental and convoluted
structures that are common in satellite pictures of water
temperature or chlorophyll, as well as in laboratory experi-
ments. From the point of view of transport, such regions are
characterized by a strongmixing: trajectories of initially close
particles are quickly separated along the stretching directions,
and fluid of different origins is inserted in between.
[3] Until recently, the power of these novel Lagrangian

approaches has been mainly relegated to mathematical
systems or simplified workbench models, since the required
detailed knowledge of the velocity field was not readily
available in real geophysical situations. However, in the last
decades the situation has dramatically changed, with a
rapidly increasing amount of data available from Lagrangian
drifters [Mariano et al., 2002], satellite measurements
[Halpern, 2000], and especially from detailed computer
models [Haidvogel and Beckmann, 1999; Dietrich, 1997].
This has paved the way to a growing number of geophysical
applications, among which we mention studies of the Loop
Current in the gulf of Mexico [Kuznetsov et al., 2002], or the
characterization of dispersion properties in the Adriatic Sea
from drifter experiments [Lacorata et al., 2001]. The
methodology is not restricted to ocean circulation, but it is
also being developed in atmospheric dynamics [Joseph and
Legras, 2002], and mantle convection [Farnetani and
Samuel, 2003]. Indeed, new Lagrangian approaches are
very appealing for geophysical applications, since they
can be used as a tool for automatically extracting transport
structures underlying raw Eulerian velocity data.
[4] In this Letter we characterize mixing strength at the

mesoscale in different areas of the Mediterranean Sea by
means of a Lagrangian technique, the Finite Size Lyapunov
Exponents method. The technique also identifies dynamical
objects that organize the transport, and relevant coherent
structures. To our knowledge, this paper shows for the first
time the optimality of the method to identify mesoscale
structures in an oceanic context.

2. Numerical Data

[5] We produce velocity data from the DieCAST ocean
model (Dietrich for Center Air Sea Technology), adapted
to the Mediterranean basin with a horizontal resolution of
1/8 degrees (approximately 10 km) and 30 vertical levels
(see Fernández et al. [2004] for details). The DieCAST
model is a z-level primitive equation model based on the
hydrostatic, incompressible, and rigid lid approximations.
The model has been integrated for 20 years being forced
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by yearly repeating monthly climatological atmospheric
forcing. Using such climatological forcing the model
reproduces well the general surface circulation and many
of the important features of the observed annual cycle of the
Mediterranean Sea [Fernández et al., 2004]. Due to the
adequate horizontal resolution and the numerical character-
istics of the model, basically high order numerics and low
numerical and physical dissipation [Dietrich, 1997; Dietrich
et al., 2004], the numerical simulations reproduce a great
number of mesoscale structures (in particular, typical
Algerian eddies of diameter 50–200 km [Millot, 1999]),
that are required for the present study.
[6] In this work we analyze the daily model output of

velocity field obtained from the last three years of simula-
tion and corresponding to the second vertical horizontal
layer (in this way we avoid the strong dependence on wind
stress of the first model layer). This layer has a vertical
extent of 11.60 m, centered at a depth of 16 m. The two-
dimensional horizontal velocity field on this layer is not
exactly incompressible, but it is very close to this situation
since typical vertical velocities in the ocean are four orders
ofmagnitude smaller than horizontal ones (10�5 vs 10�1m/s).
Thus, points at which fluid particles diverge horizontally
along particular directions receive fluid along other direc-
tions, so that stretching is linked to mixing. On the other
hand, within the Finite-Size Lyapunov exponent (FSLE)
method used in this Paper and presented in the next sections
to estimate transport at the mesoscale, fluid particle trajec-
tories need to be integrated only while they undergo
horizontal displacements of the order of 100 km, i.e., during
1–10 days (see Section of Results). Estimating an effective
or average vertical velocity for this time as the spatial
average of the vertical velocity field in horizontal regions
of that size, one obtains an effective vertical velocity of 0.1–
0.7 m/day. Thus, during the time of integration, most
particles do not leave the horizontal layer considered. In
consequence, restricting the study to horizontal motion on a
single model layer is a good description of the full transport
processes for the space and time scales relevant to mesoscale
processes within the FSLE approach.

3. Finite Size Lyapunov Exponents (FSLEs)

[7] A common way to quantify the stretching by advec-
tion is by means of the standard Lyapunov exponents. They
are defined as the exponential rate of separation, averaged
over infinite time, of fluid parcels initially separated infin-
itesimally. In realistic situations (such as the case of the
Mediterranean Sea where boundaries at finite distance
strongly influence the circulation) the infinite-time limit in
the definition makes the Lyapunov exponent a quantity of
limited practical use. Recently, the Finite Size Lyapunov
Exponent (FSLE) has been introduced [Aurell et al., 1997;
Artale et al., 1997] in order to study non-asymptotic
dispersion processes, which is particularly appropriate to
analyze transport in closed areas. FSLEs have been used for
two complementary goals: for characterizing dispersion
processes [Lacorata et al., 2001], and for detecting and
visualizing Lagrangian structures (e.g., transport barriers or
vortex boundaries) [Koh and Legras, 2002]. Here we will
focus mainly in the second use, but we will also introduce
measures of dispersion and mixing based on the Lagrangian
structures detected.

[8] The FSLE technique appears to be ideally suited for
oceanographic applications, being the mathematical analo-
gous of a floater experiment: a set of tracers, with some
initial mutual distances, are followed in time as they are
transported by integrating the velocity field (we use a
bilinear interpolation to assign velocities to points that are
not model grid points; thus the velocity field is effectively
smooth at scales below 1/8 of degree). The FSLE is
inversely proportional to the time at which two tracers
reach a prescribed separation. More precisely, l(x, t, d0, df),
the FSLE at position x and time t, is computed from the
time t it takes for a trajectory starting at time t at a distance
d0 from x to reach a separation df from the reference
trajectory that started at x:

l x; t; d0; df
� �

� 1

t
log

df
d0
: ð1Þ

[9] In order to characterize the strongest separation (and
the fastest convergence along the complementary direction),
l is selected as the maximum among the four values
obtained when the initial separation d0 is chosen along four
orthogonal directions.
[10] The FSLE depends on the choice of two length

scales: the initial separation d0 and the final one df. Here,
we are interested in the spatial distribution of FSLEs, and
thus we calculate them at points x located on a grid of
spacing Dx. In this case, a simple argument shows the
convenience of using a value of d0 close to the intergrid
spacing Dx: If one chooses d0 much smaller than Dx, all the
points of a stretching manifold laying further than d0 from
any grid point are not tested, and thus the method gives only
a rather discontinuous sampling of the structure. On the
other hand, if d0 is much larger than Dx, the same stretching
manifold is detected (‘‘smeared’’) on several grid points,
with a loss in spatial resolution. Since we are interested in
mesoscale structures, the other length, df, will be chosen as
df = 1 degree, i.e., separations of about 110 Km. In this
way the FSLE represents the inverse time scale for mixing
up fluid parcels between length scales d0 and df.

4. Results

[11] The spatial distribution of FSLEs for a particular day
of the simulation (10th of June of the first year of the data
set) can be seen in Figure 1. Typical values are in the order

Figure 1. FSLE spatial distribution for the whole
Mediterranean on a specific day (10th of June of the first
simulation year). Dx = d0 = 0.02 degrees. Mesoscale
structures and vortices can be clearly seen. Units for FSLEs
are day�1. A zoom of the indicated box is presented in
Figure 3.
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of 0.1–0.6 days�1, corresponding to mixing times for
mesoscale distances of 1.7–10 days. As observed in previ-
ous works, maximum values of the distribution organize in
lines [Joseph and Legras, 2002; Koh and Legras, 2002] that
provide good approximations to repelling material lines
(which are in turn stable manifolds of hyperbolic moving
points) [Joseph and Legras, 2002]. These lines organize the
transport processes in the basin. Spatial structures ranging
from the small scales to the ones typical of mesoscale
vortices are clearly identified. Computing such picture for
every day of the year and taking then the time average, one
can obtain a map of regions in the Mediterranean with
different mixing activity (Figure 2). As expected, the
Southern part of the basin appears more active, especially
close to the North African coast. In Figure 3 we show more
in detail the FSLEs of the area in the small box of Figure 1.
In the core of the eddies one has low values of the FSLEs
(i.e., low dispersion rates); on the contrary, the largest
values of the FSLEs can be found in the outer part of the
eddies, where the stretching of the fluid parcels is particu-
larly important.
[12] Note that in some regions of the vortex cores, chaotic

tangles are still observed as local maxima of the FSLE
distribution. These maxima are, however, not strong. In fact,
even if the stretching is locally very high, the requirement
for two points to diverge for more than df = 110 km gives a
low value of l to such finer structures, since such distance is
bigger than the size of the vortex that acts as a containing

barrier most of the time. This is an example of a useful
property of the FSLE technique: it allows to restrict the
analysis to the structures relevant for transport among
selected lengthscales only.
[13] Additional sets of coherent structures and organizing

lines can be obtained by computing the FSLEs from
trajectory integration backwards in time. Maxima in the
new distribution identify lines of maximum compression,
approximating attracting material lines or unstable mani-
folds of hyperbolic moving points [Joseph and Legras,
2002]. Since stable and unstable manifolds cannot be
crossed by particle trajectories, such lines strongly constrain
and determine fluid motion.
[14] Calculating in this way the FSLEs in a region of

strong mixing, we unveil the tangle of stretching and
compressing lines in which vortices are embedded
(Figure 4). These lines also define the directions of trans-
port. Lobes arising from intersections of stretching and
compressing lines at a vortex edge indicate where transport
in and from the vortex takes place, whereas tangencies

Figure 2. Time average (for the first simulation year) of
the FSLEs in the whole Mediterranean basin. Geographical
regions of different mixing activity appear. Colors as in
Figure 1.

Figure 3. Enlarged plot of the small box shown in
Figure 1.

Figure 4. FSLEs calculated from forward (displayed as
positive values) and backwards (displayed as negative
values) integrations in time, i.e., what is plotted is the field
l+ � l�. A region with strong mixing appears organized by
a tangle of stretching and compressing manifolds. Such
lines organize the flow. The black dots indicate some of the
hyperbolic points that are located at the intersections of the
lines.

Figure 5. Temporal evolution of the mixing measures
M+(t) (circles), and of M±(t) (squares) for the whole
Mediterranean Sea during one simulation year. They display
a very similar behavior, with maximum values in winter.
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among them provide barriers to transport. In Figure 4 some
intersections of stretching and compressing lines are indi-
cated as black dots. These identify Lagrangian hyperbolic
points (and their motion define hyperbolic trajectories).
Such points correspond to areas with strong mixing activity:
fluid is advected here along a compression line and then
dispersed away along the stretching line.
[15] This dynamical picture suggests a quantitative mea-

sure of mixing in a prescribed area A: one can define de
quantity M±(m) � h

ffiffiffiffiffiffiffiffiffiffiffiffi
lþl�

p
iA where l+ and l� are the

FSLEs in the forward and in the backwards time direction,
and the average is the spatial average over the area A. This
quantity is large only where hyperbolic points are present.
The time dependence of this quantity when the area A is the
whole Mediterranean is shown in Figure 5, characterizing
the seasonal variations of mixing. Maximum values, of the
order of 0.13 days�1, are attained in winter. Because of the
approximate incompressible character of the horizontal
flow, the temporal variations of forward and backward
FSLEs are strongly correlated, and one expects that the
same information can be obtained from just one of the
FSLEs. Thus one can define a simpler measure of mixing in
an area as M+(t) = hl+iA. We show in Figure 5 that, as
expected, it contains essentially the same information asM±,
but at variance with it, it could in principle be measured
from floater experiments. It is thus a more convenient
characterization of mixing strength. As a further example,
we compare (Figure 6) the temporal behavior of M+(t) in
two regions (the areas North and South of the Balearic
islands, corresponding to the boxes in Figure 2) where we
expect (from Figure 2) to see a very different mixing
activity. The higher activity in the Southern part, where
the Algerian current is present, is confirmed. In addition,
seasonal fluctuations are smaller in the Northern part.

5. Conclusions

[16] The FSLEs provide a direct method for computing
simultaneously the mixing activity and the coherent struc-
tures that control transport at a given scale. Interestingly, the
method is based on the evolution of the relative separation

between two passive tracers, and thus numerical results
directly suggest floater-based experiments for verification.
In this work we have analyzed with this method horizontal
velocity data from a Mediterranean computer simulation.
Different mixing behavior between geographical regions,
and at different seasons, is readily characterized. We have
used climatological forcing to highlight mixing processes
arising from the internal ocean dynamics rather than from
external events. The method can be applied to velocity data
obtained under more realistic forcings. Finally, we point out
that the strong horizontal stirring associated with hyperbolic
points should also have important biological consequences.
In the direction of recent works [Martin, 2003], it would be
interesting to compare the Lagrangian structures presented
here with productivity, patchiness, or other measures
obtained from biological distributions.

[17] Acknowledgments. We acknowledge financial support from
MCyT of Spain and FEDER under projects REN2001-0802-C02-01/
MAR (IMAGEN) and BFM2000-1108 (CONOCE). C.L. is a Ramón y
Cajal research fellow (MCyT of Spain).

References
Artale, V., G. Boffetta, A. Celani, M. Cencini, and A. Vulpiani (1997),
Dispersion of passive tracers in closed basins: Beyond the diffusion
coefficient, Phys. Fluids, 9, 3162–3171.

Aurell, E., G. Boffetta, A. Crisanti, G. Paladin, and A. Vulpiani (1997),
Predictability in the large: An extension of the concept of Lyapunov
exponent, J. Phys. A Math. Gen., 30, 1–26.

Dietrich, D. E. (1997), Application of a modified Arakawa ‘‘a’’ grid ocean
model having reduced numerical dispersion to the Gulf of Mexico circu-
lation, Dyn. Atmos. Oceans, 27, 201–2177.

Dietrich, D. E., A. Mehra, R. L. Haney, M. J. Bowman, and Y.-H. Tseng
(2004), Dissipation effects in North Atlantic Ocean modeling, Geophys.
Res. Lett., 31, L05302, doi:10.1029/2003GL019015.

Farnetani, C. G., and H. Samuel (2003), Lagrangian structures and stirring
in the Earth’s mantle, Earth Planet. Sci. Lett., 206, 335–348.

Fernández, V., D. E. Dietrich, R. L. Haney, and J. Tintoré (2004), Meso-
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Figure 6. M+(t) during one year for the Algerian current
(squares), which corresponds to the area delimited by the
southern box in Figure 2, and the north of the Balearic
islands (circles), which is the northern box in Figure 2.
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