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The Decay of Wind-Forced Mixed Layer Inertial Oscillations 

Due to the Effect 

ERIC A. D'ASARO 

Applied Physics Laboratory and School of Oceanography, College of Ocean and Fishery Sciences, University of Washington, Seattle 

Wind generation of mixed layer near-inertial frequency oscillations has been observed and successfully 
modeled many times. Modeling of the decay of these currents by linear wave theory has been more difficult 
because the necessary horizontal scales are much smaller than the typical horizontal scales of the wind. A new, 
and highly effective, mechanism for generating such scales by the • effect is proposed here. An asymptotic 
analysis of the linear equations is presented which suppresses high-frequency gravity waves and thus simplifies 
the near-inertial frequency dynamics. The computed residence time for ine•ai motions in the mixed layer 
depends both on the scales of the wind and on [•, with • imposing an upper limit of 1-2 weeks. The relative 
importance of the wind and • is estimated using realistic wind stress fields, generated by advecting Seasat scat- 
terometer data over the simulated ocean. The predicted horizontal scales and decay times of mixed layer inertial 
motions are similar to those observed. The subsynoptic scales of the wind, the advection speed, and [3 are all 
important in determining the decay time of the simulated mixed layer inertial currents. 

1. INTRODUCTION 

Near-inertial oscillations are an important velocity component 
in the upper ocean, commonly contributing half or more of the 
kinetic energy and a somewhat smaller fraction of the 10-m shear 
[D'Asaro, 1985b]. They play a key role in theories of mixed layer 
deepening [Niiler and Kraus, 1977; Price, 1981] and have been 
observationally linked with patches of enhanced mixing [Kunze 
and Lueck, 1986; Gregg et al., 1986; Marmorino eta/., 1987]. 
Under some circumstances they may be sufficiently nonlinear to 
generate wave-forced and Stokes flows of several centimeters per 
second [Price, 1983; White, 1986]. 

Webster [1968] and Pollard and Millard [1970] were the first 
of numerous investigators to report the generation of energetic 
near-inertial frequency oscillations in the mixed layer during 
storms. Pollard and Millard [1970] introduced the following S/Lm- 
ple model of the generation process: 

•}u % 

•}t fv - poll ru (1) 

• + fv - rv (2) 
•t p0H 

where the velocity components u and v in a uniform surface 
mixed layer of depth H and density P0 are driven by a wind stress 
x = (%,, xy ) and decay through the action of an arbitrary decay 
constant r. With r =0, these equations are valid for a rapidly 
varying wind under the same conditions that an Ekman layer 
exists for a slowly varying wind [Gill, 1982, section 9.3]. Like 
the Ekman equations, this model has been successful in explaining 
a large number of observations. Some recent examples of its 
application are given by Sherwin [1987] and Paduan et al. [1988] 
(see D'Asaro [1985a] for more examples). 

The greatest weakness of (1) and (2) is the arbitrary decay con- 
stant r. Observed mixed layer inertial oscillations clearly decay 
within a week or so after their generation, corresponding to r -1 
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values between 2 and 20 days. Linear theory has often been used 
to explain this decay, starting with Pollard [1969], with recent 
work by Price [1983], Gill [1984], Greatbatch [1984], and Kundu 
[1986], among others. Although definitive verification of these 
theories is still lacking, limited comparisons with data are 
encouraging [Price, 1983; D'Asaro, 1985b; Kundu and Thomp- 
son, 1985; Sanford et al., 1987]. 

A typical result is that of Gill [1984] (hereinafter referred to as 
G84), who finds that significant decay of mixed layer inertial 
currents will occur in time 

/1 = /1;J e c ? (3) 
where c• is the phase speed of the first baroclinic internal mode 
and k is the horizontal wave number of the mixed layer inertial 
motions imposed by the wind stress. Typically, the wind stress has 
horizontal scales of many hundreds of kilometers [Freilich and 
Chelton, 1986]. For a typical value of c• = 2.7 ms -• [G84] and 
k = (500 km) -•, t• is about 4 months. This is at least an order of 
magnitude larger than observed t•. Conversely, if significant 
decay is to occur within a few inertial periods, as was found, for 
example, by D'Asaro [1985a], k -• must clearly be smaller than 
100 km. The few existing observations suggest that wind-forced 
near-inertial motions have horizontal scales consistent with the 

linear theory [D'Asaro, 1985a; Kundu and Thompson, 1985]. We 
are thus faced with a dilemma: How does the wind stress field 

with a typical scale of hundreds of kilometers generate near- 
inertial motions that are horizontally much smaller? 

There are several possible solutions to this dilemma, within the 
framework of linear wave theory. First, small-scale fluctuations 
in wind stress do exist in the atmosphere. Hurricanes, which often 
have a radius of less than 100 km, are a prime example. For such 
storms, Price [1983], Greatbatch [1984], and Sanford et al. 
[1987] find excellent agreement with observations. Mid-latitude 
storms also have considerable small-scale structure [Houze and 
Hobbs, 1982; Overland and Wilson, 1984]. D'Asaro [1985b] used 
equations (1) and (2) with mid-latitude wind data to show that the 
generation of mixed layer near-inertial oscillations usually 
corresponds to the passage of a small-scale atmospheric feature, 
such as a front or small low. Such features may have a charac- 
teristic scale much less than typical synoptic systems and thus 
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induce a more rapid decay of the associated inertial oscillations. 
Second, small-scale wind stress patterns typically translate over 

the ocean with a speed C of the order of 10 ms 4. This introduces 
a horizontal scale Cf -• = 100 km, the distance the wind stress pat- 
tern or "storm" travels in a time f-•. This is also much smaller 
than the typical scale of synoptic systems and thus yields a decay 
time for mixed layer inertial oscillations much closer to that 
observed. D'Asaro [1985a] and Kundu and Thompson [1985] 
invoke this advection mechanism to produce the small scales 
necessary to model observations of near-inertial energy transfer 
from the mixed layer to the thermocline. 

In this article a third mechanism for generating small horizontal 
scales in mixed layer inertial oscillations is proposed. It relies 
only on the latitudinal variation of f, the [• effect, and thus does 
not depend on any particular characteristic of the wind stress field. 
Suppose that mixed layer inertial currents of very large horizontal 
scale are generated by the wind stress. The subsequent evolution 
of these currents, assuming no subsequent wind generation, can be 
described by 

u + iv = t•e-i• (4) 
which is an exact solution to (1) and (2) with x = 0, r -0, and f 
constant. If instead f - f0+ [•Y, 

u + iv = Oe -iføt -i [3yt (5) 
In this latter case, the inertial oscillations have a north-south wave 

number •t. At 50øN this equals (100km) -• for t = 6.6 days. In 
this way inertial oscillations of arbitrarily large initial scale will, 
within a week or so, develop scales small enough to transfer 
energy efficiently to the thermocline by linear dynamics. 

In this paper, the relative importance of these three mechanisms 
will be explored using theory and realistic wind stress fields. In 
section 2, a multiple time scale analysis of the linear equations of 
motion is presented that yields a general expression (equation 
(35)) for the evolution of near-inertial motions on a • plane. In 
section 3 this is applied to determining a time scale for the decay 
of mixed layer inertial oscillations by each of the three mechan- 
isms described above. In section 4, the relative importance of the 
three mechanisms is addressed using wind stress fields derived 
from Seasat microwave scatterometer data, which can resolve 
100-km-scale fluctuations in the wind field. Sections 5 and 6 are a 

summary and discussion of these results. 

2. A LINEAR MODEL OF INERTIAL FREQUENCY DYNAMICS 

A set of equations describing the linear evolution of near- 
inertial frequency internal gravity waves is derived below using 
an asymptotic perturbation analysis that is uniformly valid in time. 
Many aspects of this analysis will draw upon G84. Readers who 
are uninterested in theoretical details may wish to skip to section 
2.5 for a physical discussion of the results. 

2.1. Equations of Motion 

Consider the linear, Boussinesq, 13 plane, hydrostatic equations 
for a flat-bottomed ocean of depth B, mixed layer depth H, and 
buoyancy frequency profile N (z) [G84]. Here y is north, x is east, 
and z is up. The system is forced by a wind stress x = (%, ,xy ) 
modeled as a body force with a depth distribution Z (z): 

U t --fv =-Px + p-•--• Z (z) + [tyv (6) 

v, + fu + o-ff z (z ) - (7) 

N 2w =-P:t (8) 

ux + vy + w: = 0 (9) 

where the reference density P0 has been absorbed into the pres- 
sure, P. Previous studies have shown distinctly different 
responses for the barotropic and baroclinic modes [G84]. We are 
interested in the baroclinic response in this study and will 
therefore use rigid lid boundary conditions 

w(O)=w(-B )=0 (10) 

Following G84, the wind stress will be distributed uniformly over 
the mixed layer so that 

Z(z)=I+H/B z >-H 
Z(z)=H/B z <-H (11) 

where the first term ensures that there is no projection on the baro- 
tropic mode. 

We will derive a general solution to (6)-(11) assuming a hor- 
izontally homogeneous stratification, i.e., H and N 2 are functions 
only of z, for variations in x(x, y,t) of horizontal scales 
sufficiently large that high-frequency gravity waves are not 
excited. 

2.2. Vertical Structure 

Equations (8)-(10) can be combined to form 

Pt - 1Vn'u (12) 

where Vn'u = u,, + v•. 

I = (1-M ) fadztN2(zt) fadz" (13) 
is an integral operator that combines (8) and (9), and 

1 

m = •. I dz (14) 
-B 

is an integral operator required by (10). In (12) the operator I 
integrates w, to find w and then applies (8) to find the resulting 
pressure field as discussed in section 3.2.1. 

An alternative [G84] to u•ing the integral operator I is to make 
a modal decomposition, i.e., find the eigenfunctions Pn with 
corresponding phase speed Cn that satisfy 

Ipn = - Cn2pn (15a) 

or equivalently 

d 1 d 1 Cn2 dz N 2 dz Pn = Pn (15b) 
with boundary conditions (10). The solution is then expanded in 
terms of these modes: 

U(x, y, z )= •Onp n (Z )U n (x, y ) (16) 
n=l 

Here, this expansion is delayed until a general space-time solution 
is obtained. 

2.3. Nondimensionalization 

Assuming velocity, vertical, horizontal, and time scales V, D, 
L, and f 4, respectively, gives the nondimensional forms of (6), 
(7), and (12): 

U'r = v'-œP'•, + T•Z(z') + œõy'v' (17) 

V' t' -- -u'-œP'y, + TyZ(z')- œfiy'u' (18) 
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where 

P'r = l'V'wu' (19) 

œ_ sAP D 
p0f2L 2 (20) 

b= [•L L - (21) 
fœ Re 

0 

g Ap = IN2dz (22) 
T = 'r/(p0H Vf ) and [• = fR-•. The prime denotes dimensionless 
variables. I and P are nondimensionalized by g ApZ/po and 
fLU œ, respectively. 

Equations (17) and (18) can be combined by defining a com- 
plex velocity U'= u'+ iv' and wind stress forcing F = Tx + iTy. 
The nondimensional equations are then 

U'r + iU' =-œ(P'z + iP'y, )- i œSy'u' + FZ' (z') (23) 

1, [U'z + U'• i ( U'y, U?)] (24) P'r = •I - - 
where the asterisk denotes complex conjugation. This complex 
number technique is used to clarify the exposition. It can, at times, 
result in wrong answers, but it does not do so in any of the results 
presented here. 

Two nondimensional parameters appear in (23) and (24). The 
first, œ, is the squared ratio of the Rossby radius to the scale of the 
motion. This must be small if the linear response is to be dom- 
inated by motions with a frequency close to f [G84]. With œ- 0, 
for example, (23) is equivalent to an undamped version of (1) and 
(2). The second, œ5, is the ratio of the scale of the motion to 
R-f[•-z. Since R (7600km at 50øN) is comparable to the 
radius of the Earth, œ5 is also small. It is not negligible, however. 

2.4. Asymptotic Analysis 

We will derive an approximation to (23) and (24) that is asymp- 
totically valid at all times for small œ and œ5 using the method of 
multiple time scales [Kervorkian and Cole, 1981 ]. This derivation 
is inspired by Hasselman [1970], is similar to that of Smith 
[1973], and also expands on some results of D'Asaro [1985a]. We 
expand U and P in a perturbation expansion 

U = U0 (t", x") + r U • (t",x") +- ß ß (25) 

where t" = t '[ 1 + O (œ2)] and 'r" = œ t' are "fast" and "slow" time 
variables, respectively. The equations are expanded in orders of œ, 
with the 'r" equation chosen so as to eliminate resonance. 

The resulting solution to order œ is 

U' - U•r + [O •(t")Z' (z')+ •'('r",z')]e -it" 

where 

+E15 • (z' ,'r" )e it" (26) 

U'e --iFZ '(z') (27) 
t 

~, !. O'F it Uv= t-•e dt (28) 

1 'l'V'n 2 + iby')[0' + O.•Z' (z')] (29) - (-7• 

~, 1 , 

U• - 7I 
•2 •2 32 

+ 2i 
3x' 2 3y' 2 3x' 3y' 

[0 '* + t5 /'z' (z')] (30) 

au'o a[•.x ' at,• + iW'o = I'Z' (z' ) + t•xx 

x 'wT' + -V'. x T' dt - i 8y'U • (31) 
0 

or dime•ionally 

U =Ue+ [O•(t)Z(z)+O(t,z)]e-ifi +•,eift +uo (32) 
i 

= •(z, + i zy )Z (z) (33) Ue fll po 
t 

= ift x• + i xy ] dt poll 
(34) 

Ot = 2• IVn2 (0 +/),. Z) (35) 

4f 2 ax 2 3Y 2 +2t--fxy (I5*+UvZ) (36) 

2.5. Inertial Motion Dynamics 

The velocity field described by (32) is the sum, from left to 
right, of "Ekman" velocities Ue' inertial frequency oscillations 
with components U,,, U, and U l' and geostrophic and other 
noninertial forced motions Uo. Each of these terms is discussed, 
in turn, below. Notably, high-frequency internal waves do not 
appear here; they have been filtered from the equations of motion 
by the perturbation analysis. Accordingly, the equations contain 
only one time derivative, as opposed to the full equations (6)-(10) 
or G84's equation (3.9), which contain second derivatives. This 
makes the new equations simpler to analyze or numerically 
integrate. 

2.5.1. Directly forced Ekman and inertial velocities. The 
first two terms in (32) represent motions directly forced by the 
wind stress in the mixed layer. These motions are the solution to 
(6) and (7) for infinite horizontal scale (œ = 0), or equivalently (1) 
and (2) with r = 0. The general solution to these equations con- 
sism of two terms. The well-known Ekman flow Ue is directly 
proportional to the wind stress, but at right angles to it, as is indi- 
cated by the complex right-hand side of (33). In addition, the time 
dependent part of the wind stress induces an inertially oscillating 
velocity whose amplitude Uv depends on past values of the iner- 
tially oscillating component of the wind stress (equation (34)). 
Wind-forced motions in the mixed layer have been successfully 
modeled by these two terms many times, as discussed in the intro- 
duction. 

2.5.2. Propagating inertial motions. The propagation of 
inertial motions is described by (35). The formulation here differs 
from that used previously (however, see Smith [1973]) in that it 
explicitly gives the evolution of the complex inertial magnitude U 
as a function of its current value and the forcing. Observations of 
near-inertial motions are cornn2only expressed in terms of the 
space and time variation of U [Pollard, 1980; WeIIer, 1982; 
D'Asaro, 1985a]. Here we see that the time derivative of U 
depends on the values of Vn 2 U over the entire water column. The 
operator I describes the contribution of the values at various 
depths (see section 3.2 for discussion). Equation (35) thus expli- 
citly describes what space-time measurements are necessary for 
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locally testing a linear description of near-inertial frequency 
dynamics. 

The formulation used here is, of course, equivalent to other 
descriptions of linear dynamics. If a modal expansion (equation 
(16)) is substituted into (35) with UF=0, the resultin..g equation 
describes the evolution for a single modal coefficient 

i c•2VH2/•,, (37) •)t = •-f 
An f pla•e dispersion relation is derived by substituting 
l• e ifi = Ue i• + ily - i tot into (37) with [3 = 0, yielding 

-to-f = -•-f(/c 2 + l (38) 
This is identical to the ball internal wave dispersion relation [G84, 
equation (4.3)] if the approximation 

c02 _f 2 •:z 2f (c0-f ) (39) 
is made. Thus the asymptc•Sc approxin:ations used here are, for 
internal waves, equivalent to assuming dqat the wave frequency is 
close to f. Any dynamics associated o•ly wkh higher-frequency 
internal waves has been eliminated. 

The second term in expression (35) adds the • effect to the evo- 
lution equation. Assumi•ng a modal expansion and 
•,, (y)e i• - i tot gives an equation, fo• the latitudinal variation of 
S n ' 

2 + o',-f- 13y ) - a z = 0 (4o> 
This is a variant on the usual equatio•t lot wave propagation on a 
[3 plane [Mun& 1980; Fu, 19811. A turning point occurs at the iati- 
tude for which the bracketed quantity is zero. Freely propagating 
waves cannot travel north of this latitude. 

2.5.3. Asymmetries' in tnertiai mottons. The horizorttai veld- 
city vector for a sinusoidal propagating near-inertial wave on an 
fplane does not move in art exact circle but moves in an ellipse 
whose major axis is a)igned aiong the wave number. The ratio of 
major to minor axis is equal to cof --• [Calman, 1978]. Here, this 
same asynmmuy •s expressed by a•e srnmi annclockwise rotating 
inertial velocity O• (,equat{.on (_50))..S•ubStltutmg a modal expan- 
sion in (36) and assuming U, e -'•'•: = O, e i '":'(:•' cos 0+y sin ½5-- it0t 
yields 

U,i - v-e •.., - -1)e2i0•,, (4!.) 
4f • 2 'f 

Combinivg (41) with the ,qc•:kw;se ro*•lir)g v,21ocity of r•mplitude 

ti.'•,es of de ccmFlcx im•:.rtid 
2.5.a. Other forced .... 

•ese •re •.,es•ibed •., t:'• 

of wind forcing •e time 
the curl of •;e w.•nd s•:'ess 

3.1. What is a "Storm"? 

•g as in (1) and (2) to es'firearms': t•5•': ,•,•,ergy flux h'•to m•ed layer 

inertial currents. Using many years of wind data, he found that the 
energy input was highly intermittent. Inertial motions were mostly 
generated during infrequent "storms," each of which produced a 
large response in the ocean, separated by long periods of "calm." 
It is therefore useful to consider the response of the ocean to one 
such storm as done by G84. The total wind-forced near-inertial 
wave field is then the sum of a number of such events. The results 

of D'Asaro [1985b] suggest that several dozen storms per year 
would account for most of the wind-forced energy. 

3.2. Inertial Puttying 

3.2.1. Physics. The initial near-inertial response of the 
ocean to wind forcing can be described in terms of inertial "pump- 
ing" of the deep ocean by mixed layer inertial currents [Price, 
1981' G84; Greatbatch, 1984]. Inertial currents UF forced by the 
wind are confined to the mixed layer, as described by the function 
Z(z )• If these currents have a horizontal variation, vertical veloci- 
ties will be generated throughout the water column with an ampli- 
tude given by the integration of (9): 

w (z) = -I V• '0F dz (42) 
That is, inerthod fi'equency convergences and divergences in the 
.,:'i•L•½d !.ayer w•!l "?;:anp" the thermocline down and up at the iner- 
fi;G 5'eqnency. These displacements of the thermocline, given by 
•,, where •t =w, will produce hydrostatic pressure variations 
given by the integration of (8): 

P = -f N 2•(z )dz (43) 
That is, inertial frequency pressure variations will be induced by 
the inertial frequency "pumping." These pressure variations are 
computed by combining (42) and (43) to yield (12); the integral 
operator I is merely the combination of the two integrals in (42) 
and (43). Inertial frequency velocities U are accelerated by gra- 
dients of these pressures according to the momentum equations 
(6) and (7). lhe rate of acceleration, from (35), is 

OU i 

•)t - 2)• IVH2/•F (44) 
Eq•aticn (44) p•cv•dcs a succinct description of the initial transfer 
of e•ergy from mixeA layer inertial currents to the interior: hor- 
izonta! variations in mixed layer inertial currents UF lead to 
k,•ertial '¾•umping" of the thermocline and acceleration of inertial 
curre.•t• U throughout the water column. 

3.2.2. Vertical profiles. For an initially quiescent ocean the 
inertial velocity •eld at small times is, from (44), 

/• = 0F (t)Z (z) - i VH 2 0F (t)dt I Z (z) (45) 

2he ¾•!oc•ty field. is the sum of the directly wind-forced com- 
Fc:icn,•' Uv mad fi•e lnertially pumped component proportional to 
VH 2 Uv.. •ese two terms have very different depth dependences. 

,•.,au •,,'o,., •a Figure 1, in which it is assumed that 

N2(z) = 0 z>-H 

N2(Z ) = No2e (z +H)/b z <-H (46) 
with H=50m, b = 1000m, N0=5x10-•s -• (3 cph), and B= 
50• m. The directly forced component varies as Z(z ) (Figure lb, 
soli• c-•ve) and is large only in the mixed layer. The inertially 
pumb, ed component varies as IZ(z) (Figure lb, dashed curve), 

•.:,•..::ot, gn. l:•r•?e.r in the upper ocean, has a finite value at all 
dc.t:;¾'?:;':. A sample v,•locity profile at finite time is shown in 
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Fig. 1. Vertical stmcture of simulated wind-forced inertial motions 
assUming N 2 profile shown in Figure l(a). Figure l(b) shows the vertical 
structure of motions directly forced by the wind (Z, solid curve) and of 
their initial evolution (I Z, dashed curve). Figure 1 (c) is a typical velocity 
profile with u=Z+sin(O. 53)IZ (solid curve) and v=cos(0.53)IZ 
(dashed curve). 

Figure l c, in which the bracketed term in (45) is equal to 
0.5e 0.53 i Or. Inertial motions are now present both in the mixed 
layer and at depth. Inertial pumping has transferred energy from 
the mixed layer to depth. 

Several characteristics of the velocity profiles (Figure lc) are 
notable. The inertial velocity is uniform through the mixed layer, 
jumps sharply across the mixed layer base, and then decays with 
depth in the thermocline, resulting in a velocity maximum 
immediately below the mixed layer base. The thickness of this 
maximum is set by the stratification. For stratifications that 
include a thin seasonal thermocline, the velocity maximum is 
thinner and thus more distinct than that in Figure lc. Examples of 
this pattern for various stratifications can be seen in the work of 
Rubenstein [1983], 1384, D'Asaro [1985a], and Kundu [1986]. It 
should be noted that since I Z has no discontinuity across the 
mixed layer base, the infinitely thin shear layer at the mixed layer 
base is unchanged. As the mixed layer velocity vector changes, 
the same vector change occurs immediately below the mixed 
layer, so the shear is unchanged. This can be seen both in Figure 
l c and in the references just cited. 

3.2.3. A Rossby radius. The strength of the velocity induced 
by inertial pumping is proportional to the ratio of the horizontal 
scale of the mixed layer inertial currents to a Rossby radius Lt, 
defined by 

Lt" 
IZ(0)- • (47) 

f2 

where Lt is a length scale. For the stratification (equation (46)), 
Lt 2 =HbNo2/(2f 2) if, in addition, H <<b<<B. This yields 
Lt = 7 km. If the normal mode decomposition (equation (16)) is 
made and, from G84, 

Z(z)= •o,p, (48) 
n =1 

then 

L/2 = ZO,, '•-p,, (49) 
so that L/ is a weighted average of the Rossby radii c,f -• associ- 
ated with the normal modes. With 1384's stratification, (49) yields 
Lt = 8.8 kin. The first mode alone yields a value 80% of this, 
showing its dominant role in inertial pumping. 

The acceleration due to inertial pumping can now be written 

aU.___•0 = -i Lt•'V•/Jr (50) 
a9 

where U0 is the inertial current induced by inertial pumping at 

3.2.4. Energetics. Inertial pumping generates velocities be- 
low the mixed layer. The energy in these motions is given by 

-H 

E them, $ •- I tJ 12dz 
-B 

(51) 

The potential energy contribution for near-inertial motions is 
small, of order œ in this analysis. For the stratification (46) 

1 

Etherm = •-b I t)0l 2 (52) 
For comparison, the energy contained in mixed layer inertial 
currents is 

H 

E,,a =-5-1 tJF 12 (53) 
3.2.5. Range of validity. The perturbation expansion (equa- 

tion (25)) used here requires that U change very little in time f 
that is, that it be a function of the slow time 'c. Applied to (50), 
this requires that Lt2V• 2 Or be small compared with Ur or that 
the scale of the mixed layer inertial currents be large compared 
with Lt. The expressions for inertial pumping presented here 
therefore will be valid only for mixed layer inertial currents with 
scales of many tens of kilometers, or wavelengths greater than 
150km or so. Smaller-scale variations will generate internal 
waves with frequencies significantly above f and therefore re- 
quire the full linear equations. 

Expression (50), giving the rate of inertial pumping, is quan•a- 
tively valid for short times, when U 0 is small compared with 
The expression should become qualitatively incorrect as soon as 
the lowest mode begins to propagate away from the generation 
region, approximately the time given by (3) according to G84. 

3.3. Estimation of Decay Time for Mixed Layer 
Inertial Currents 

We now come to the key part of the paper, the estimation of the 
decay time foi' mixed layer energy by inertial pumping. One decay 
time will be defined as the time it takes for E thcrm (equation (52)) 
to equal E,,a (equation (53)). A second, following G84, is based 
on the separation of the lowest mode. 

Equations (45) and (35) clearly show that the evolution rate 
d•epends on the horizontal scale of the mixed layer inertial currents 
Ur. In the introduction three mechanisms that may set this scale 
are introduced. The scale may be set (1) by the spatial variability 
of the wind field, (2) by the rate at which it translates over the 
ocean, or (3) by the [3 effect. We will evaluate a decay time for 
each mechanism and then, in section 4, evaluate their relative 
importance using high-resolution wind fields. 
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3.4. Decay Time and Horizontal Scale Set 
by the Wind 

D'Asaro [1985b] found that storms that generate mixed layer 
inertial motions usually translate across the ocean. A reexamina- 
tion of 77 of the storms analyzed by D'Asaro [1985b, Figures 
8-10] finds a mean translation speed of about 15 m s 4 with a stan- 
dard deviation of about 6 m s -•. At these speeds, the storms travel 

. 

100 km in only a few hours. In this time, their large-scale struc- 
ture generally changes very little. It i s thus useful, at least for the 
purposes of this paper, to assume that the storms move unchanged 
across the ocean. Similar assumptions are commonly made in the 
analysis of meteorological data on these spatial scales [Bond and 
Fleagle, 1985]. 

With an advection speed C in the +x direction, the wind stress 
field can be written 

x (x, y, t ) = x (x- Ct, y, 0) (54) 

The directly forced inertial motions are thus proportional to 
e-ift + ikA x so that 

- (55) 
where ka = fC -• is the wave number due to advection and • is a 
wave number •sociated wi• the y v•iation of 

•e wind •us con•ibums to •e v•iabili W of the mixed lay• 
•e•ial cu•ents Uv in two dist•ct ways. Wind s•ess v mimions 
•e cross-adv•fion •) dkection generate v•iations in 
represenmd here by •. •is is •e first mech•ism discuss• 
ß e in•oduction. •e cl•sic ex•ple of this is a slowly moving 
hu•ic•e • which •e size of •e hu•ic•e se• the spatial scale 
of the •ertial motions [Price, 1983; Greatbatch, 1984]. •e 
advection of •e storm • the x direction intoduces scale, 
•e dist•ce the sto• moves • t•e f 4. •is is the second 
mech•ism discuss• • the •oduction. The classic ex•ple is 
ß e •slating, two-d•ensionfl •ont •alyzed by K•u [1986] 
•d appli• to data by Ku•u a• Thomson [1985] •d D'Asaro 
[1985a]. For such a •ont, ka se• the spatit scale of the •ertifl 
motion. 

•e essential physics of inertial p•ping in both c•es is 
ret•ned by assum•g 

so •at k• locflly descri•s •e v•iabili• introdu•d •to •e 
mixed layer in•fi• cu•en• by the wind. 

Using (50) gives •e inertially p••d c•en• 

00= -iflLtZ•Ov (57) 
so •at E the• = Eml at 

f t• = LI2 k•2 (58) 
For kv = (100km) 4, tv = 7 days at 50øN if (46) is used. Note 
that the thermocline inertial c •urrents grow linearly, so E•,m 
grows quadratically. The energy transfer rate is therefore not con- 
stant but increases with time, at least for short times. 

If a modal expansion is used, G84 shows that the mixed layer 
inertial current amplitude is reduced by a fraction c• in the time 
that it takes for the first mode to rotate •h• away from a pure 
inerti4 oscillation. This yields expression (3). For kv = 
(100 km )4, t• = 5 days at 50øN using the stratification of G84. 
Noting that Lt 2 is similar in magnitude to c •2f-21 we see that (3) 
and (57) are very similar expressions, the main difference being 
that (57) contains information on the evolution of all the modes at 

short times, rather than just one. Both, however, are adequate to 
estimate the approximate time SCale of inertial pumping when the 
horizontal scales of the inertial currents are set by the wind. 

3.5. Decay Time and Horizontal Scale Set by [l 

Another horizontal scale, and consequently another time scale, 
for inertial pumping appears when 13 is added. Consider the evolu- 
tion of inertial motions that are set up by a rapidly moving, large- 
scale storm with little small-scale structure. The mixed layer 
inertial currents directly forced by this storm, 0F, will have the 
same amplitude and phase over a large region. Then kF will be 
ver. y small, the inertial currents will ex;01ve only very slowly, and 
little transfer of energy to the thermocline will initially occur. 
Now consider the same forcing, but include the variation of f as 
function of latitude so that f(y )=f +[3Y. The mixed layer 
inertial currents now vary as 

/JF (y, t) = OF(y,O)e -i(f+[ly)t (59) 
Even if UF is uniform at t = 0, its phase becomes a function of 
latitude for t>0, corresponding to a north-south wave number [It. 
At 50øN this equals (100 km) 4 for t = 6.6 days, allowing inertial 
pumping to proceed rapidly thereafter. When (59) is substituted 
into (50), the acceleration due to inertial pumping is seen to be 
proportional to Lt2[l 2t 2 at z = 0 and the inertial currents propor- 
tional to Lt2 [• 2 t 3/3 ' 

Fo•rrnflly, the solution to (35) for short times with UF constant 
and U zero at t = 0 is 

U = UF e-i (f + [3yt ) (z) - -•-I Z (z) (60) 
where the second term gives U0, the inertial pumping at z = 0. 
Computing E then n (equation (51)) and equating it to Era/ (equa- 
tion (53)), we find the decay time for mixed layer inertial currents, 

ft• = (61) 

which has a value of about 82, or 13 inertial periods, at a latitude 
of 50 ø N. Thus horizontal scales induced by [3 alone can rapidly 
produce the small scales necessary to pump inertial energy into 
the thermocline. 

Notice that the thermocline currents grow as t 3 here and thus 
the the, rmocline energy grows as t 6. Practically, this implies•that 
inertial pumping is nearly negligible for times much less :than t • 
and then rapidly begins transferring energy at a high rate. 

The characteristic wave number due to the • effect is 13 t. It 
will be important, compared with the characteristic wave number 
kF imposed by the wind, if it becomes larger than kF in the time 
tF defined by (58). This implies that kF must be larger than 

k I• = • Li2R 
The value of k• is (94 km )4 a t 50 ø N. For kF >>k• the 13 effect 
will have little influence on the initial decay rate of mixed layer 
inertial curre.nts. For kF <<k • it will have a large effect. 

If a modal decomposition is made, the evolution of mode n is 
given by 

o. - (63) 
6 f 

Again following G84, an evolution time can be estimated as the 
time for the second term to equal •A• for the first mode. This 
yields 
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= (64) 

which is equal to 15 inertial periods, or 10 days, using G84's 
s•atification. 

4. SlMUI•TION OF INERTIAL CURRENTS 

USING SEASAT WIND FIELDS 

4.1. Wind Fields 

The theory developed above introduces three factors that may 
influence the horizontal scales of wind-forced ine?tial currents, 
namely, the horizontal scales of the wind field, the advection 
speed of the wind field, and the [3 effect. Below, the relative 
importance of these three factors is estimated using wind 'stress 
fields measured by the Seasat scatterometer. These data are nearly 
the only available wind fields with a spatial resolution better than 
100 km, as is required for this problem. At this spatial resolution, 
no information on the time evolution of the wind is available. An 
approximate advection speed for the synoptic scale features 
described by these fields can, however, be estimated both from 
standard surface charts and from successive scatterometer passes. 
The simulations have therefore been driven by advecting the 
Seasat scauerometer wind fields over the ocean at a constant 

speed. Al.though this may not well represent all aspects of the 
time evolution, it is sufficient for the limited goals of this sttldy. 

4.2. Simulation Techniques 

Wind stress fields were computed using data from the Seasat 
scatierometer [Brown, 1986]. Estimates of the 10-m wind from 
the Jet l•'opulsion Laboratory (Pasadena, California) were edited 
for attenuation, and one of the four possible directions was choset• 
as described by Levy and Brown [1986]. These were converted to 
estimates of surface wind stress using the formula 6f Large and 
Pond [1981] with no correction for boundary layer stratitication. 
This results in a slightly irregular, gappy array bf surface stress 
estimates With a spacing of about 50 km( Figure 2a). 

The model requires •i smoothly varying estimate of x(x, y ) so 
that (34) can be evaluated. In addition, some smoothing is 
required to reduce noise in the wind estimates. Two-dimensional 
smoothing splines [Wahba, 1984] were us•cl to accomplish both 
tasks. These fit a smooth function f (x, y ) with continuous first 
derivatives to n data points fi (xi, Yi ) to minimize 

i1 •[fi-f (xi, Yi )] 2+•,2j (f) (65) 
n i=l 
,. 

where J (f) is an isotropic sum of second derivatives of f that 
measures iis smoothness. This criterion is isotropic (unlike that for 
bicu•ic splines) and therefore imposes no asymmetries on the 
fitted function. The relative balance between the smoothness of 

the fit and the closeness of the data to the surface is controlled by 
the parameter •,. A value of •,= 1000 m is used here. This value 
yields an rms differenca between the raw and smoothed stress 
fields somewhat larger than the official error estimates for the 
•catterometer, 1.6 m s -• in wind speed and 16 ø in direction [Born 
eta/., 1982]. Typically, about 20-30% of the stress field variance 
was removed by this method. The two components of x were 
independently smoothed using this technique. An example of the 
resulting wind stress field is shown in Figure 2b. 

The wind fields from a Seasat pass over the eastern North 
Pacific on September 11, 1978, are used here. These were chosen 
because they cover the low and cold front of a strong cyclone and 

because the same data have been previously analyzed for their 
meteorological content [McMurdie and Katsaros, 1985]. Each 
section of data used was small enough that the advection speed 
was approximately constant, and large enough to encompass a 
well-defined portion of the storm. 

For each w'•d stress field and advection vector C, Ur was 
computed using (34) along paths through the data parallel to C 
and ending at t = 0. The value of f corresponding to the final 
poMt was used throughout. The value of V2Ur was estimated by 
evaluating Ur on a 25-kin grid and fitting a quadratic surface to 
all points within a 50-km radius of each grid point. Estimates of 
0fit)4 (equation (57)), kr, and tr were computed at t=0 using 
Lt =7km. 

4.3. Results 

4.3.1. Response to a low. Figures 2 and 3 show the simu- 
lated inertial response to a Seasat wind field measured at 0900 UT 
September 11, 1978. The stress field (Figures 2a and 2b) shows a 
well-defined cyclone with the largest winds in the northeast and 
southeast quadrants. Warm and cold fronts from McMurdie 
[1983] have been drawn in Figure 2a. As expected, the wind 
stress varies on a scale of several hundred kilometers. 

Mixed layer inertial currents are generated by advecting this 
stress pattern in the direction indicated in Figure 2c. The resulting 
field of data can be interpreted either as a space-time map, with 
the time scale given on the right side of the data, or as a true spa- 
tial pattern, bearing in mind that f is constant in the advection 
direction. The variation of the Complex inertial amplitude Ur is 
shown in Figure 2c; the corresponding currents Ore-' are 
shown in Figure 2d. 

In Figures 2c and 2d, inertial currents are generated by the 
changes in wind stress associated with the two wind stress max- 
ima. The largest inertial amplitudes occur on the right side of the 
cyclone because the winds are strongest in this region and because 
the clockwise rotation of the winds with time corresponds to the 
clockwise rotation of inertial currents and thus evokes a resonant 

response [Price, 1981]. As expected, the inertial currents 
show several spatial scales. In the advection direction, they rotate 
with a wave number ka, here about (75 km )4. In the cross- 
advection direction they vary with a dominant scale of several 
hundred kilometers, approximately that of the wind stress, as well 
as on smaller scales that can be traced to smaller-scale variations 
in the wind stress. For example, the 90 ø shift in inertial current 
direction that occurs at about 152øW, 45.5øN can be traced to a 
subtle change in the direction of the wind stress in the southeast 
quadrant of the storm combined with a decrease in the magnitude 
of the wind stress in the northeast quadrant of the storm. 

The cross-advection scales can be seen more clearly in Fig- 
ure 3, which shows a number of variables at t -0. As discussed 

above, Ur (Figure 3a) shows both a broad, several hundred 
kilometer variation and smaller-scale fluctuations. The 90 ø 

change in the direction of Ur, for example, appears between 
300 km and 400 km.-In Figure 3b the acceleration due to inertial 
pumping 0ø(fi)4 (equation (57))•shows two scales. On the scale 
of several hundred kilometers, iUo mimics the behavior of 

For example, at 300 km the im~aginary part of Ur (dashed) is 
minimum, as is the real part of_U0(fi )-• (solid). This is due to the 
contribution of k•2•r 2 to V• Ur (equation (55)). In addition, 
/•00• ):1 varies on smaller scales because of the contribution of the 
wind stress variations in the cross-advection direction associated 

with the cyclone (i.e., /c s ) to VH 2 . The turning of Or between 
300 km and 400 km, for example, produces a negative peak in 
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Fig. 2. Simulation using Seasat scatterometer winds from 0900 UT September 11, 1978. (a) Dealiased surface stress vectors. 
Locations of fronts and lows are indicated. (b) Smoothed wind stress field sampled o_n a 25-kin grid with superimposed contours 
of wind stress magnitude. (c) Complex ineAial amplitude of wind-forced motions, U F. Advection direction and corresponding 
time axis are indicated. (d) Inertial currents corresponding to Figure 2(c). 

U 0(ft) -•. Significant energy appearing near the Nyquist wave 
number suggests that the scatterometer noise may be significant in 
this calculation. 

Figure 3c plots tv (equation (58)), its value assuming k• = 0, 
and t • (equation (61)). Note that tv varies spatially owing to the 
spatial variation in k•. The turning of Uv between 300 km and 
400 kin, for example, produces a value of tv that is more than a 
factor of 2 below its/$ = 0 value. Wind stress fluctuations in the 
cross-advection direction are clearly important here. Generally, 
however, tv is only about 25% below the k• = 0 line, which indi- 
cates that wind stress fluctuations in the cross-advection direction 

are only marginally important. Typically, t • is about a factor of 2 
more than tv, indicating that the [3 effect will have only a small 
influence on the initial rate of inertial pumping. 

4.3.2. Effect of advection speed. Figures 4 and 5 show the 
result of decreasing the advection speed from the observed 

8.4 rn s -• to 4.0 rn s q, which corresponds to a decrease in ka from 
about 85 km to about 40 km. Since there is, in general, less vari- 
ance in the wind stress at smaller scales [Freilich and Chelton, 
1986], the inertial amplitudes are decreased (compare Figures 2 
and 4). However, the biggest change is a concentration of inertial 
motions into a small region. At this location the two wind maxima 
are separated by about one wavelength, 2•k] • , resulting in a 
coherent forcing of the inertial motions. We might expect that the 
change in advection speed would increase ka while leaving the 
fluctuations in the y direction unchanged. This would decrease tv 
by about a factor of 4 and thus decrease the relative importance of 
the y fluctuations and 13. Comparing Figures 3c and 5c, we note 
that tv decreases as expected, but its deviation from the k, = 0 
value is about the same. The concentration of inertial motions into 

a small region has increased the small-scale variability of the 
inertial motions more than simple scaling .arguments would sug- 
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Fig. 3. Simulated quantities at t =0 for Figure.2. (a) Real (solid curve) 
and imaginary (dashed curve) components of Uv. (b) Same but for U0, 
the thermodine inertial currents. (c) Time for energy to be transferred 
from mixed layer to thermocline by the [• effect alone (t •), by storm 
advective scales alone (ky = 0), and by all wind scales (tf). 

gest. This should serve as a warning that mid-latitude storms are 
sufficiently complex that these simple scalings may be mislead- 
ing. 

4.3.3 Response to a cold front. Figures 6 and 7 show the 
simulated response to the cold front associated with the same 
storm. The wind stresses (Figure 6a) shift sharply from northeast 
to northwest at the front, which is drawn to coincide with the loca- 

tion of the wind shift. The strongest winds (Figure 6b) occur 
behind the front. Inertial currents (Figure 6c) are generated pri- 
marily by the frontal wind shift. North of about 48øN (y less than 
300 km in Figure 7) the wind shift and the wind stress are weak. 
The associated inertial currents are also weak, and the estimated 

inertial acceleration U 0(fi)4 is noisy. At about 48øN (300 km) 
the frontal stress increases, leading to larger inertial currents. The 
change produces low values of tt, near 400 km (Figure 7c). From 
about 47øN to 45øN (450 to 650 km) the frontal wind stresses 
change gradually, resulting in a nearly linear change in Uv and 
larger values of tv. South of 44øN (600 to 800 km) the wind 
stresses behind the front increase, resulting in a turning of Uv, 
larger values of U 0(fi )4, and a decrease in tv. 

This front is moving fast (17.8 m s-i), so the advective wave 
number is small, ka =(180km) -•, and the decay time due to ka 
alone is quite long, approximately 200f -•. Accordingly, k v is 
larger than ka over most of the domain. The fluctuations in wind 
stress in the cross-advection direction are dynamically far more 
important than the advection speed. The [3 effect is also impor- 
tant; t • is comparable to tj=. 

On a typical weather map a cold front appears as a nearly 
straight line, which suggests that fluctuations of the wind stress in 
the along-front direction are unimportant. Such a map has a reso- 
lution of a few hundred kilometers, so the scales relevant for 

inertial motions camxot bc r•z. so':vzd,. The front s•.u,lated gn Fig- 
ure 7 is not a 1Ne• feature since fluctuations • the cross- 

advection direction c•ot be •egi•md. FNs should sepde as a 
wrong that models of inertial pumping t'hat •eat •onm as one- 
d•ensional wind discovtim.dt!es r•,.a,, 198.6; K•v•u a• 

Tho•'•so'•, 1985] 'may 'o'• n,•glecfing much of the v•.ab•lJty in •e 
wbd fieid. 

4.3.4. Scattero•ter errors. The preced•g •flysis uses 
smoothed versions of the sc,Itero ,meter da[• The a.mp}i.u•de of the 
sm•l-scale w•d vmiatio:;.z "'•'-e .... •- :•m th• ?,egret. ,.-•r smoothing 
applied. Here the an•o• o[ vm;'•ce remov• by •e smocking 
is comp•able to the ofl}cial estanates o•" scatterometer accuracy. 
However, Lhe scatteromerer •:.• ?obably less accurate in regions of 
precipitation •d '&•zt:z•:'J 7 ; • rB,.-ow,•,' 986], exactly the con- 
ditions 'a•'Mer which it is berg used here. The qu•tification of the 
mo•t of extra e•or and irs natme is not availaOle. A second 

source of e•or c• be seen in Figt•e 6a, in which •e frontal line 
zigzags as it p•ses obliquely through .the 1i•nes of data. •is is • 
alias•g effect due to •_ sz•:;match o'.• 8;.e scatterometer fooprint 
•d iu spati• resolution. FinMly, tF•e oce• is driven by w•d 
s•ess, not wind. C•ently, •e ability of •e scatterometer to mea- 
s•e w•d stress is poorly '•own, •nd •e ad hoc scheme us• 
here for comput•g s•ess from scatterometer w•d is subject to • 
u•own e•or. Never•eless, the data used here appe• to • 
sufficiently accurate to show •e •port•ce of all t•ee factors, 
ka, •, •d ½, • determ•ing •e decay t•e of mixed layer 
•ertial cu•enu. Until •e errors •e bettin understood, it will • 

difficult to do qu•titative work us•g scatterometer data on the 
spafi• sc•es of •terest here. 

5. SUMMARY OF RESUI.TS 

A set of equations describing the lineaz evolution of internal 
gravity waves of near-inertial frequency in a horizontally homo- 
geneous ocean is derived using an asymptotic perturbation 
analysis that is uniformly valid in time. These equations are used 
to estimate the decay time for mixed layer inertial motions gen- 
erated by mid-latitude storms due to the transfer of energy to 
inertial motions at deeper levels. The transfer rate depends on the 
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Fig. 4. Same as Figure 2(d), but with slower advection sp•d. 



2054 D'AsA•o: DECAY OF WIZ, a)-FORCED Mix•D LAV•R OSCILLATIONS 

0.2 

0.1 

i 

(a) 

ß -' 3 

•D 0 

-0.2 ,, ] i i I • 
9 • • • • •-- 

x•/ ii 

-3 I "- "•/ / I I I 

103• • • • • • 1 o 2 

100 I i i i 1 

0 200 400 

Oross-path d•stance / km 

(b) 

' l 
(c) 

ky=O 

i 

6OO 

Fig. 5. Simulated quantifies at t = 0 for Figure 4. Format and symbols are 
the same as in Figure 3. 

stratification and on the horizontal scales of the inertial motions. If 
the storm is assumed to advect over the ocean while its structure is 

slowly changing, three factors govern the horizontal scales of the 
inertial motions: 

1. The advection speed of the storm, C, imposes a wave 
number of magnitude ka = Cf-1 in the advection direction. 

2. Fluctuations of the wind stress in a direction perpendicular 
to the advection direction impose wave numbers oriented perpen- 
dicular to the advection direction. 

3. A new result is that the north-south variation inf imposes a 
time dependent north-south wave number of magnitude [3t where 
[•=af /ay. 

Characteristic energy transfer times for each factor are given in 
(:58) and (61). Factors 1 and 2 depend on some aspect of the wind 
stress and thus require a detailed knowledge of the wind stress 
field on scales smaller than 100 km for their evaluation. Factor 3, 
in contrast, is independent of the wind field and thus imposes an 
approximate upper limit on the residence time of inertial motions 
in the mixed layer, typically 1-2 weeks. 

Simulations of storm-forced inertial motions using wind stress 
fields derived from the Seasat scatterometer indicate that any one, 
or more, of these three factors can be important, depending on the 
storm and one's location within it. 

6. DISCUSSION 

6.1. Estimating the Decay Time for Mixed Layer 
Inertial Oscillations 

As discussed in the introduction, the excitation of mixed layer 
inertial currents by wind stress has been observed numerous times 
and is well understood. It appears that the subsequent decay of 
these currents can be modeled using linear near-inertial wave 
theory, but this requires a horizontal scale of the mixed layer 
inertial currents of the order of 100 km or, equivalently, a hor- 
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Fig. 6. Simulation of response to a cold from using Seasat scatterometer 
winds from 1840 UT September 11, 1978. Format and symbols in 
Figures 6(a)-6(c) are the same as in Figure 2. 
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izontal wavelength of order 600 km. This scale may be set by the 
wind, by preexisting oceanic variability, or, as introduced in this 
paper, by the • effect. Of these, only the [3 effect will operate at 
all times; the storm scales depend on the storm characteristics, and 
the intensity of the oceanic mesoscale varies greatly. The decay 
time imposed by the [3 effect, therefore, places an upper limit of 
1-2 weeks on the residence time of storm-forced inertial oscilla- 

tions in the mixed layer. This is in accord with existing observa- 
tions; storm-forced inertial oscillations do not persist for much 
longer than this in any observations known to the author. 

The present study indicates that scales imposed by the wind are 
often as important as those imposed by [3. The accurate modeling 
of their effect, however, requires wind stress fields with a spatial 
resolution better than 100 km and a temporal resolution better 
than a few hours. Such data are not currently available even to 
researchers, let alone for use in operational or large-scale models. 
It thus seems unlikely that a wind stress field of sufficient resolu- 
tion for routinely modeling the decay of mixed layer inertial oscil- 
lations will soon be available. Even if such a wind field were 

available, however, it would only accelerate the inevitable decay 
of mixed layer inertial currents due to the [3 effect. For many pur- 
poses the difference may not matter, and a model that includes 
only the [3 effect may be sufficient. 

6.2. The Usefulness of Scatterometer Wind Fields 

The simulation of wind-forced inertial motions probably 
requires wind stress fields with a resolution better than 100 km. 
Satellite scatterometry appears to be the only method of obtaining 
such data routinely, but our current understanding of the errors in 
scatterometer wind stress measurements is poor. Accordingly, it 
will be difficult to use scatterometer data properly in upper ocean 
models until the measurement errors are better understood. The 

wind stress fields used in this work were generated by a meteorol- 
ogy student (G. Levy) studying scatterometry for his dissertation. 
Clearly, easier ways of distributing future scatterometer data will 
be required if such data are to be applied to oceanographic prob- 
lems without a similar effort. 

6.3. Two- and Three-Dimensional Inertial Motions 

Many simple models of the forcing of near-inertial motions 
have been used in previous studies. These generally lead to a 
two-dimensional wave field for short times. If, for example, the 
scale associated with advection is dominant, the mixed layer 
inertial motions will be uniform in the direction perpendicular to 
the direction of advection. This is the case studied by Kundu and 
Thompson [ 1985]. If the small-scale structure of the wind field is 
dominant, the wave field will be uniform in the advection direc- 

tion. This is the case studied by G84. If the [3 effect is dominant, 
the wave field will be uniform in the east-west direction. At long 
times, ]3 will always become important [G84] and north-south 
scales will appear in the problem. 

In each of these limiting cases the wave field is two- 
dimensional and considerable sin2plification occurs [Kundu, 1986' 
Kundu and Thompson, 1985]' UF, for example, will always be 
90 ø out of phase with i VH 2 0F and thus with U0. If more than one 
of the factors becomes important, as is likely for realistic wind 
fields, the inertial motions will no longer be two-dimensional. 
Then UF and U0 need not have an exact phase relationship. 

6.4. Shear at the Mixed Layer Base 

The analysis here does not address the rate of evolution of 
inertial shear at the mixed layer base. Traditional mixed layer 
models [Niiler and Kraus, 1977] decay such shear at the same rate 
as they decay the velocity in the mixed layer. Such a formulation 
cannot be justified on the basis of the models used here, which 
will decay velocity and shear at different rams. The evolution of 
velocity is dominated by the evolution of the lowest few modes, 
while the evolution of shear is dominated by the higher modes. 
Since the high modes evolve much more slowly than the low 
modes, the shear changes much more slowly than the velocity. 
Physically, evolution of the low-mode components of an initial 
slab, mixed layer velocity profile, as in Figure lb, results in an 
offset of the slab from zero, as in Figure lc, without changing the 
magnitude of the velocity change at the mixed layer base. More 
attention to this distinction, and to the processes that influence 
shear, as opposed to velocity, is needed in future studies of mixed 
layer dynamics. 

6.5. The Importance of Oceanic Mesoscale Variability 

This paper has considered only the linear evolution of inertial 
motions in a homogeneous ocean. Under some circumstances, 
inhomogeneities in the ocean may play an important role in set- 
ting the horizontal scales, and thus the evolution rate, of near- 
inertial motions. Here, planetary scale variations in f were found 
to be capable of generating mesoscale variations in initially homo- 
geneous near-inertial motions within a few tens of inertial periods. 
Gyre-scale and mesoscale variations in velocity may act similarly 
to [3 and generate small-scale inertial motions even more rapidly. 
Thus it seems possible that the horizontal scales, and thus evolu- 
tion rates, of inertial motions generated within a field of strong 
mesoscale eddies could be set almost entirely by the characteris- 
tics of the eddies, as opposed to those of the wind field. 
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6.6. 7'• Imt7ortance of Mesoscale Meteorological 
Variability 

This paper makes clear the close l•.k between inertial motions 
and atmospheric wind stress fluctuations on the 30- to 200-km 
scale. This is the domain of subsynoptic, or mesoscale, meteorol- 
ogy. It seems that future progress toward the understanding of 
inertial motions will require the cooperation of oceanographers 
and mesoscale meteorologists. 
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