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Two different numerical methods are used to demonstrate the existence of and 
calculate non-symmetric gravity waves on deep water. It is found that they appear 
via spontaneous symmetry-breaking bifurcations from symmetric waves. The struc- 
ture of the bifurcation tree is the same as the one found by Zufiria (1987) for waves 
on water of finite depth using a weakly nonlinear Hamiltonian model. One of the 
methods is based on the quadratic relations between the Stokes coefficients discovered 
by Longuet-Higgins (1978a). The other method is a new one based on the Hamil- 
tonian structure of the water-wave problem. 

1. Introduction 
The problem of two-dimensional irrotational water waves of permanent form was 

first considered by Stokes (1849). He found, by using successive approximation 
methods, periodic travelling-wave solutions. Stokes’s results were limited to small- 
amplitude waves. Another important contribution of Stokes in this field is his 
argument that if a sharp crest is attained by these waves as the amplitude is increased, 
the sharp crest must have an angle of 120’. During the last decade, with the use of 
computers, Stokes’s solutions have been extended to finite-amplitude waves. It has 
also been proved that Stokes’s argument concerning the 120’ singular crest is true 
(Amick, Fraenkel & Toland 1982). 

For the case of finite depth, where shallow-water approximations have made it 
possible to introduce simplified models accessible to analytical tools, not only have 
periodic families been found for finite depth (cnoidal waves), but also solitary-wave 
solutions have been found (Boussinesq 1871 ; Rayleigh 1876; Korteweg k de Vries 
1895). 

If x is taken to be the horizontal coordinate, the equations for travelling waves 
are invariant under the change x+-x. This relation defines a symmetry group. A 
lerge class of solutions of the equations are invariant under the action of the same 
symmetry group. These solutions are called symmetric. In  other words, a wave is said 
to be symmetric when, iff(x) represents the shape of the wave, the origin of the x-axis 
can be chosen such that f(x) =f( -2). All the travelling-wave solutions that are 
known to date correspond to symmetric waves. 

It is very well known in physics that bifurcations can lead to solutions that are 
no longer invariant under the action of the symmetry group. Two typical examples 
are the Hopf bifurcation and BBnard convection. In a Hopf bifurcation the temporal 
symmetry is broken, and in BBnard convection the spatial symmetry is broken with 
the appearance of hexagonal convection cells. Bifurcation in the presence of 
symmetries has been extensively studied by different authors using group- 
representation theory (Sattinger 1980, 1983). 

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 09 Aug 2009 IP address: 134.246.166.17

18 J .  A .  ZuJiria 

The possibility of finding non-symmetric solutions for the problem of water waves 
has been until now an open question. Another open question is, given that these 
solutions exist, do they appear via a spontaneous symmetry-breaking bifurcation 
from a symmetric family or as isolated branches of solutions ? 

The rapidly increasing power of numerical methods to study finite-amplitude 
waves has encouraged some authors to search for these kinds of solutions in such 
waves. Chen & Saffman (1980) studied finite-amplitude gravity waves on deep water 
by numerical methods. They found that gravity waves of finite amplitude are not 
unique. Bifurcations to  families of waves in which all crests are not equal were found. 
They computed two new families which they called irregular class 2 and class 3 waves. 
These waves are still symmetric. They did find symmetry-breaking bifurcations of 
the equations, but the new solutions proved to  be just shifted symmetric waves. In  
later work, Saffman (1980), using a method based on the quadratic relations between 
the Stokes coefficients discovered by Longuet-Higgins ( 1978 a ) ,  demonstrated that 
an infinite set of bifurcations to  new families exists for the Stokes family, but all the 
new branches correspond to  symmetric waves. Also Longuet-Higgins (1985), using 
the same method, showed that there are no bifurcations into non-symmetric waves 
from the regular Stokes family, over a certain range. 

Recently Zufiria (1987), using a weakly nonlinear Hamiltonian model based on 
small-amplitude and dispersion approximations, found that for water of finite depth 
families of non-symmetric waves are possible. These waves appear via spontaneous 
symmetry-breaking bifurcations from families of symmetric waves. His results follow 
from some universal behaviour found by Green et al. (1981) on the bifurcation 
properties of fixed points of two-dimensional area-preserving maps in the presence 
of one symmetry. I n  particular Green et al. (1981) were able to locate some symmetry- 
breaking bifurcations. Zufiria’s (1987) Hamiltonian model could be reduced to a 
two-degrees-of-freedom discrete Hamiltonian system, and thus via surface section 
can be reduced to  an  area-preserving map (Arnol’d & Avez 1968). 

Zufiria’s (1987) results raise several questions. The first is whether these results can 
be generalized to  the full equations or are just properties of the approximation. 
Another question is whether these results hold for deep-water waves, where assump- 
tions of small amplitude-depth ratio and low dispersion are no longer valid. 

I n  this paper, motivated by these questions, we compute fmite-amplitude waves 
on deep water. We show that the same bifurcation scenario occurs. Therefore 
non-symmetric permanent-form travelling waves on deep water exist, and they 
appear via symmetry-breaking bifurcations. To confirm our results we have done the 
computations using two different methods, and we have found the same results. 

The first method that we consider is the one used by Longuet-Higgins (1985) and 
Saffman (1980). It consists of an  expansion of the shape of the wave in the potential 
plane, and is based on Longuet-Higgins’s (1978~)  quadratic relation. This is a very 
simple method, gives the most accurate results, and can be very easily implemented. 

The second method is based in the Hamiltonian structure of the water-waves 
problem. Because the results found by Zufiria (1987) on finite depth are related to 
the Hamiltonian structure of the problem, we thought that  i t  would be interesting 
to  develop a numerical method that kept the Hamiltonian structure of the original 
formulation. That method would contain all the symmetries of the problem, and the 
bifurcation scenario would perhaps be better obtained. 

The Hamiltonian method of computation is more complicated and time-consuming, 
but i t  offers some other advantages. The first is that  the superharmonic stability of 
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the wave solutions can be computed directly without the need to write a more 
complicated code, as happens in other formulations. This is true because the Jacobian 
of the set of equations is the stability matrix, as we shall see below. A second 
advantage is that a small number of modes suffice to reproduce the bifurcation 
behaviour of the problem, whereas in the Stokes expansion method it is found 
(P. G. Saffman, private communication) that a minimum number of around 50 modes 
in a class 1 wave are needed to reproduce the bifurcation structure of the problem. 

Another motivation to try this numerical approach came from the successful 
results obtained by several authors during the last few years on the stability of 
travelling waves using the Hamiltonian formulation for the water-waves problem. 
Some examples are Saffman (1985), MacKay & Saffman (1986), Zufiria & Saffman 
(1986). 

2. Stokes expansion 
2.1. General formulation 

Consider two-dimensional irrotational surfaces waves of permanent form travelling 
with speed c in the negative x-direction on water of infinite depth. In a frame of 
reference moving with the wave, following Stokes (1849) and taking the basic 
wavelength to be 2x, the 2- and y-coordinates of the flow can be expressed in the 
following form .(Longuet-Higgins 1985) : 

00 1 
x+iy = -(@+i'Y)+$a,+i C akeik(@+iY')/c, 

C k-1 

where @ and Yare the velocity potential and the stream function respectively. 
For a general wave the coefficients ak are complex, except for a,, which can always 

be taken to be real. In  the case of symmetric waves the origin of the frame of reference 
can always be chosen such that all the coefficients ak are real. This happens when 
the origin of the reference frame lies on one of the axes of symmetry of the wavetrain. 

If the horizontal level of the frame of reference is chosen such that the mean surface 
level is = -c2/2g, Longuet-Higgins (1978u, 1985) has shown that the dynamical 
boundary condition of constant pressure at the free surface (Y = 0) is equivalent to 
the set of equations 

(k = 01, 2nc {-r2 (k = 1,2, ...). 
y e-ik@/c(dz + i dy) = 

where g = 1 has been taken. 

coefficients : 
Introducing (1) into (2) we obtain the following set of quadratic equations for the 

rn-i m 

where the asterisk denotes complex conjugate. The first equation is real and the rest 
are complex. For computational purposes and for the following discussion it is 
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convenient to split the complex equations into real and imaginary parts. Taking 
ak = p ,  + iq,, we have 

m-1 

m-1 00 

If we truncate the expansion (1) at the term an and take uk = 0 for k > n, (3a)  
together with the set of equations ( 4 )  form a system of 2n+ 1 nonlinear algebraic 
equations with 2n+l  unknowns (ao ,pk ,qk ) , c  being the only parameter of the 
problem. 

This scheme, simplified for symmetric waves, has been used by several authors. 
For the family of Stokes waves that we shall call regular waves because all the crests 
and troughs are equal, the phase speed c does not behave monotonically through the 
full range of steepness. This has led several authors to  introduce other parameters 
that behave monotonically for the full range of steepness. Longuet-Higgins (1985) 
used the parameter Q, defined as follows 

Qc = 1 -+-Crest, (5 )  

where vCrest is the velocity a t  the crest of the wave. This parameter ranges from t 
to 1 : Q, = f corresponds to the flat surface, and Q, = 1 to  the 120’ Stokes limiting 
wave. 

Chen & Saffman (1980) used another parameter that  they called b.  This parameter 
b is defined and related to Q, through 

We introduce the parameter Q as 

where yo is the height of the wave a t  the origin of the x-axis. When the origin is chosen 
on the crest, Q = Q,. 

Equation (7)  can be used to complete system (4) instead of using the equation for 
c, and then the Stokes family can be studied taking Q as parameter. 

As we shall see below, some of the bifurcations that we find break the symmetry 
with respect to the crests, but not with respect to the troughs. Therefore it is 
convenient to  take the origin of x on a trough. I n  our computations we took the origin 
on a trough and used (7) to complete the system. 

A property of (3) is that  if a set of coefficients {ak} represents a wave, the set { a t }  
where 

I 
= 0 otherwise,] 

is also a solution that describes the same wave but of a different scale. The set {ak} 
represents a wave of wavelength 2n, and the set { d f }  represents the same wave with 
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wavelength 2 n / N .  These waves are called class N waves (Saffman 1980) because there 
are N crests in the window of x between 0 and 2 ~ .  

Another property of the system defined by (3) is that it  is degenerate in the sense 
that solutions are not isolated. Due to the Galilean invariance, if a set of coefficients 
{ a k }  satisfies ( 3 )  the set {akeik6} is also a solution of (3) for all 8. So for a given value 
of &, (3) do not uniquely determine a solution. To remove this degeneracy we thus 
need to fix the phase. As we shall see below, this degeneracy disappears when 
considering symmetric waves. To avoid this problem for non-symmetric waves we shall 
introduce some modifications into the system of equations. 

Because Zufiria (1987) found the symmetry breaking from a class 6 wave, we shall 
start computing with a regular wave of class 6. Therefore the coefficient a, will be 
the dominant coefficient in a solution set {ak}. To avoid the Galilean-invariance 
degeneracy, we shall force a, to be real (q, = 0) in our computations. This was 
actually implemented by modifying the equation corresponding to a, in (3) to the 
following form : 

5 co 
q, + a,( 1 + 6 ~ , )  + k a k  U6-k + x (6 + k ,  a6+k = 

k-1 k-1 
(9) 

The modified system has the same solutions as the original system if q, = 0, and 
the new system is not degenerate any more. This simple modification has been found 
to work very well during our computations. 

As we are to study bifurcations, it is important to examine the Jacobian of the 
system defined by (4), which has the following form : 

where p = @ k }  and q = { q k } .  This Jacobian is always singular, and the eigenvector 
associated to the zero eigenvalue is the shift. As A ,  and A ,  are symmetric J is 
symmetric when q = 0. This symmetry will simplify some of the computations. 

Some properties of the waves, such as the kinetic and potential energies, can be 
expressed in terms of the set of coefficients { a k } .  For example, the kinetic energy per 
one wavelength in the frame of reference in which the fluid is at  rest at the bottom 
(y+-co) is 

n 
T=$Ca x k U k a z = - '  ,7cc (a,+c2), (11) 

The potential energy, taking the mean horizontal level of the surface as reference 

k-1 
where (3a)  has been used. 

level, can be written as 

l n  
-$(c2 + a,)' +- a k  

k-1 

A similar expression for I' was obtained by Longuet-Higgins (1984) for the case 
of symmetric waves. 

2.2. Symmetric waves 
All actual calculations that give waves have assumed symmetric waves owing to the 
inability to find non-symmetric solutions. When symmetric waves are considered, 
large simplifications can be introduced in the formulation of the problem. The first 
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one is that the shift can be chosen such that qk = 0 for all k, and the truncated system 
of equations defined by (4) and (7) reduces to 

m-1 n 

The degeneracy related to the Galilean invariance disappears because the shift is 
fixed by the condition q =  0. As we have already pointed out in the general 
formulation, a wave appears as a continuous set of solutions by varying the shift E ,  

but when the wave is symmetric only a discrete and isolated set of those solutions 
satisfies the condition q = 0. For example, for a regular wave, if we take the origin 
of the x-axis a t  a trough or a crest we find q = 0. The starting point for the calculations 
determines where the origin is taken. 

If q = 0, the Jacobian defined by relation (10) is 

because B(0) = 0. Notice that A,@) is the Jacobian that appears in the symmetric 
formulation given by (13). As Galilean invariance is not allowed in the symmetric 
formulation A,@) will not be singular in general. As J @ ,  q )  is always singular A,@) 
has to be always singular, and the null eigenvector will be the shift. If we now consider 
the modification introduced by (9), A,@) does not change, but A,@) does. Let us call 
the new matrix A;@) and the new Jacobian J ’ @ , O ) .  These matrices will not be 
singular in general. 

A bifurcation from a family of symmetric waves to a different family corresponds 
to  a zero eigenvalue of J’. This zero eigenvalue can appear in two ways. One is via 
a zero eigenvalue of A, that corresponds to a new family of waves that are symmetric 
again with respect to  x = 0. The second way is a zero eigenvalue of the matrix A;. 
This point corresponds to a bifurcation to  a family of waves that are no longer 
symmetric with respect to  x = 0. This does not mean that the new branch corresponds 
necessarily to  non-symmetric waves. As Chen & Saffman found, these branches can 
correspond to  symmetric waves for which the origin of x does not lie on one of the 
axes of symmetry of the wave. But if non-symmetric waves exist and they appear 
through symmetry-breaking bifurcations from symmetric waves, the symmetry- 
breaking bifurcation has to correspond to a zero eigenvalue of A;. 

For a given set of coefficients {a,}, whether the set represents a symmetric or 
non-symmetric wave can be determined by computing the ratios ak/ak+l. If the wave 
is symmetric we find that arg (ak/ak+l) = const. for all k .  

2.3. Numerical results 
We started by computing the family of regular Stokes waves. Following Zufiria 
(1987), because of the type of structure that we expect in the bifurcation diagram, 
we start with a regular class 6 wave (six equal crests in the interval ( 0 , 2 x ) ) .  The 
starting point was generated using Schwartz’s (1974) expansion for low-amplitude 
regular waves. 

This branch is symmetric, and therefore the system defined by (13) was used in 
the computations. The origin of the x-axis was chosen in a trough. A simple arc-length 
(Keller 1977) continuation method was used, with Q as the parameter along the 
branches. The algorithm converged very rapidly in all regions, reaching an error of 
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1 2 3 4 5 6 

FIGURE 1.  Periodic travelling wave of class 6. 

less than for the quadratic norm of the residues of the equations in three or 
four iterations for the step used. 

Because we shall deal in our computations with families of waves for which the 
six crests are not equal, it is convenient to introduce a parameter to measure the 
amplitude of each of the six crests. As a generalization of (7) we define 

where y, is the height of the different crests (figure 1). Notice that if Qj = 1 for some 
j, this means that thejth crest reaches the limiting 120’ Stokes crest. This is because 
y = 0 corresponds to zero velocity from Bernoulli’s equation. 

To make the difference among the families of waves that we are going to study 
clearer, we introduce the following notation. We associate with each of the six crests 
one of the following letters 2, Y, X, W, V ,  U depending on the relative amplitude of 
the crests, where 2 > Y > X > W > B > U. A regular wave of class 6 will be denoted 
by six equal letters. 

Computations have been performed using n = 256,512,768 and in some cases up 
to 1024. We have found that for most of the branches in which we are interested 
n = 512 gives good convergence results. 

Because the bifurcations that we found are not simple, bifurcation points were 
detected during the computations by monitoring the determinant and the last three 
pivots of the Gaussian elimination for the matrices A, and A;. In  some cases, to 
understand the bifurcations better we also computed the eigenvalues and eigenvec- 
tors of A,. 

To switch branches a code based on Keller’s (1977) method was written. But in 
most of the cases it was found that to switch branches it was enough to perturb the 
solution at the bifurcation point with the null vector, and impose the condition that 
the first few Newton iterations of the continuation process be normal to the null 
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FIGURE 2. Bifurcation diagram for solution branches showing wave height versus wave speed 
for travelling waves of permanent form on deep water. 

vector. This method was found to converge to the new branch in three or four 
iterations. 

Longuet-Higgins (1985) showed that period-doubling and period-tripling bifurca- 
tions from the regular family appear in very truncated models (n = 2 and 3) of (13). 
We have found that this is true, but these bifurcations disappear when the number 
of modes reaches 8, and they do not appear again until the number of modes is around 
200 for a class 6 wave. 

Starting a t  low amplitude we computed the regular branch, that  we will call the 
P-1 branch. For this branch the period of the wave is L,  where L = in. As the 
amplitude was increased the determinant of A, was found to vanish at three points, 
these points corresponding to period-six, period-three and period-two bifurcations. 
We will refer to  these points as P,, P3 and Pz respectively. The point P3 is shown in 
figure 2. These bifurcations correspond to the ones that Chen & Saffman (1980) and 
Saffman (1980) found. A; was singular a t  the two points P, and 4. But no 
non-symmetric families are created a t  these points. These branches just represent 
shifted symmetric waves. 

The new family of waves that is created at the period-tripling bifurcation has the 
form Y Z Y  YZY (see figure 3) and has wavelength n. The branches that appear as 
non-symmetric waves with respect to  x = 0 have the form Z Y YZ Y Y and Y YZ Y YZ,  
but are the same waves as YZY YZY .  This P-1 branch was computed using n = 256, 
512 and 768. Values of some parameters of the wave at the bifurcation point p3 are 
given in table 1.  We can see that the agreement with the results of other authors and 
methods is good. The values obtained for the period-six and period-doubling 
bifurcations agree with those given by Saffman (1980) to four figures. In this table, 
ak denotes the steepness, which is defined as one-half of the waveheight times the 
wavenumber for the regular class 1 wave. 

With n = 512, computations were carried out up to steeper waves without being 
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A A ~  A 
A / \ / \  / \  / \ A 

P- 1 

P-3 

P-6 

(dl / v v v v v \ P-6a 

FIQURE 3. Schematic representation showing the relative amplitude of the crests of the travelling 
waves corresponding to different branches of the bifurcation diagram given in figure 2. 

n Q C E = T + V  ak 

Saffman (1980) 300t - 0.4425 0.01239 0.40464 
Chen & Saffman (1980) - 0.98815 0.44255 0.01239 0.40470 
Longuet-Higgins (1984) 320t - - - 0.404688 

- 0.40470 Simmen & Saffman (1985) - - 0.4426 

Present work 

Stokes expansion 

Harniltonian method 

256 0.98848 0.44306 0.012518 0.406644 
512 0.98815 0.44261 0.012394 0.404676 
768 0.98815 0.44255 0.012393 0.404676 

48 - 0.44350 0.01266 0.40794 
60 - 0.44268 0.01243 0.40440 
72 - 0.44262 0.01240 0.404664 

TABLE 1. Values of some parameters of the wave at the bifurcation point P, 
t Modes on a class 1 wave. 

able to find the first maximum in the energy. To obtain convergence in the strongly 
nonlinear region, it is necessary to increase the number of modes to around 300 for 
a class 1 wave (Longuet-Higgins 1985), which is equivalent to 1800 modes for a class 6 
wave. 

At the period-tripling bifurcation point (P , ) ,  we switched from the P-1 branch to 
the P-3 branch (period 3L). Taking the P-3 branch in the direction of decreasing c 
from P3, we found a point for which A, becomes singular, point p3, in figure 2. The 
bifurcation here corresponds to a period-doubling bifurcation. The new branch 
corresponds to a family of waves of the form XZ Y YZX. Notice now the importance 
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FIGURE 4. Relative amplitudes of the crests of the travelling waves along the path P-1, P-3, 
P-6 and P-6a. Numbers denote the crests of figure 1. 

of taking the origin of the x-axis in a trough. If we had taken the origin in a crest, 
these waves would have appeared as a spurious non-symmetric branch. This is 
because the period-doubling bifurcation breaks the symmetry with respect to the 
crests, but not with respect to  the troughs. With the origin in a crest, instead of fmding 
A, to be singular, we would have found A; to be singular a t  P3, 6 .  Thus the new branch 
could not be computed using system (13). The new family of waves is not symmetric 
with respect to any crest, in contrast to the P-1 and P-3 branches where the waves 
were symmetric with respect to some crest (see figure 3). 

On this new branch of period 6L, which we shall call the P-6 branch, computations 
were carried out in both directions from the bifurcation point. We found that the 
two sides correspond to the same wave, the difference being a shift of R in the origin 
(see figure 3, curves b and c). The matrix A, was non-singular on the whole computed 
region of the branch, except at the point P3.6. It was also found that A; vanishes a t  
one point of this branch (point Psb in figure 2). This means that a t  this point there 
is bifurcation to a family of waves that are not symmetric with respect to the trough 
at which we took the origin of x. 

The new branch was examined with a non-symmetric code based on the system 
formed by (4) and (7).  This time we found that the waves were not just shifted 
symmetric waves, as we found in the other cases in which A; vanished. This new 
branch corresponds to a family of non-symmetric waves. At the beginning of the 
branch the waves have the form described by the sequence WZYXZW (see figure 3), 
but if we go further along the branch we find that all the crests have different heights. 
The difference among the heights of the crests is very small and cannot easily be seen 
by eye. Figure 4 shows the relative height of all the crests with respect to  the fifth 
crest for all the branches that we have computed. We in fact plot (Qj-Q,) versus 
Q5 for all the crests. In  figure 5 we show the actual shape of a non-symmetric wave. 

The P-6 branch was computed using n = 256,512,768 and 1024 to determine with 
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X 

FIQURE 5. Non-symmetric gravity wave for c = 0.442497. (a) Actual form of the wave. 
(b) Detail of the relative amplitude of the crests. 

C 

0.442 515t 
0.442525 
0.442533$ 
0.442539 
0.442551 
0.442571 
0.442606 
0.442640 
0.442 691 
0.442 740 
0.442803 

Q1 

0.98794 
0.987 77 
0.987 69 
0.98766 
0.98758 
0.98744 
0.98721 
0.98695 
0.98658 
0.986 18 
0.98562 

QZ 

0.98837 
0.98841 
0.98843 
0.98845 
0.98849 
0.98854 
0.98859 
0.98861 
0.98855 
0.98839 
0.987 99 

QS 

0.987 94 
0.988 10 
0.988 16 
0.988 19 
0.98827 
0.98838 
0.98855 
0.98872 
0.98897 
0.98920 
0.98948 

Q4 

0.987 94 
0.988 10 
0.988 16 
0.988 19 
0.98827 
0.98838 
0.98855 
0.98872 
0.98897 
0.98920 
0.98948 

Q, 
0.98837 
0.98841 
0.98843 
0.98845 
0.98849 
0.98854 
0.98859 
0.98861 
0.98855 
0.98839 
0.987 99 

Q6 

0.987 94 
0.987 77 
0.987 69 
0.987 66 
0.98758 
0.98744 
0.98721 
0.98695 
0.98658 
0.986 18 
0.98562 

T 
0.0064658 
0.0064670 
0.006 468 2 
0.0064686 
0.0064700 
0.0064724 
0.0064762 
0.0064798 
0.006 484 9 
0.0064894 
0.006494 3 

V 
0.0059179 
0.0059189 
0.0059197 
0.005920 1 
0.0059212 
0.005922 9 
0.005 925 8 
0.0059284 
0.0059320 
0.005 9350 
0.005938 1 

TABLE 2. Values for some parameters of the wave along the P-6 branch 
t Point P,.6. $ Point &. 

high accuracy the position of the symmetry-breaking bifurcation. We found that with 
1024 modes very good convergence is achieved. Along this branch the energy 
increases monotonically, as does the phase speed. 

The non-symmetric branch P-6A was computed using only 256 and 512 modes in 
the non-symmetric code. This is equivalent from the computational point of view to 
using 512 and 1024 modes in the symmetric code. We can observe that the energy 
and the phase speed decay very rapidly along the non-symmetric family. 

Properties of the waves along branches P-6 and P-6a are given in tables 2 and 3. 
Table 4 shows the first 20 coefficients for the non-symmetric wave given in figure 5. 
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C 

0.4425331- 
0.442 3 16 
0.442 528 
0.442525 
0.442 5 1 7 
0.442508 
0.442 497 
0.442483 
0.442475 
0.442467 
0.442450 

Q1 

0.987 69 
0.987 48 
0.987 24 
0.987 15 
0.98671 
0.986 34 
0.98595 
0.985 56 
0.98536 
0.985 15 
0.984 73 

QZ 

0.98843 
0.98853 
0.98865 
0.98869 
0.988 84 
0.98891 
0.98893 
0.98889 
0.98885 
0.98880 
0.98865 

Q3 

0.988 16 
0.98850 
0.98871 
0.98878 
0.989 10 
0.98933 
0.98955 
0.989 76 
0.98986 
0.98995 
0.990 12 

Q4 

0.988 16 
0.987 80 
0.98756 
0.98748 
0.987 11 
0.98680 
0.98650 
0.986 19 
0.98604 
0.98589 
0.98558 

Q S  

0.98843 
0.98867 
0.98887 
0.98893 
0.98922 
0.98943 
0.98962 
0.989 79 
0.98987 
0.98994 
0.99007 

Q6 

0.98769 
0.98750 
0.98728 
0.98721 
0.98683 
0.98653 
0.98622 
0.98592 
0.98576 
0.98561 
0.985 30 

T 
0.006468 2 
0.0064673 
0.006 4662 
0.006 465 8 
0.006 4630 
0.006460 1 
0.006 456 5 
0.006 452 4 
0.006450 1 
0.006447 6 
0.006442 3 

TABLE 3. Values for some parameters of the wave along the P-6a branch 

t Point &, 

V 

0.005 91 9 7 
0.0059189 
0.0059178 
0.0059174 
0.0059144 
0.00591 13 
0.005 907 5 
0.005903 1 
0.0059006 
0.005 8980 
0.0058923 

j P,( x q,( x lo-? 
0 - 2 16.795 000 0 
1 -0.092 495 0.042022 
2 0.190116 0.099751 
3 0.003 196 0.161 178 
4 - 0.375653 0.194 799 
5 0.444 870 0.204610 
6 - 49.456600 0 
7 -0.353888 0.158902 
8 0.197 979 0.105 166 
9 0.001 469 0.025249 

10 0.102 077 -0.052641 
11 - 0.228032 -0.106101 
12 16.506100 -0.000028 
13 0.280234 - 0.124 306 
14 - 0.186 820 -0.100413 
15 -0.004249 -0.043752 
16 -0.423778 0.021 337 
17 0.154 760 0.072 821 
18 -8.425180 0.000057 
19 -0.231 066 0.101 246 
20 0.164546 0.089484 

TABLE 4. Values of the first 20 coefficients for the non-symmetric wave shown in figure 5 
(C = 0.442497) 

3. Hamiltonian method 
3.1. General formulation 

Consider two-dimensional irrotational periodic surface waves on water of infinite 
depth. Zakharov (1968) and Broer (1974) have proved that this system has the 
following Hamiltonian structure : 

_ -  
at ~ $ 7  
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where &‘ is the total energy per period of the waves, and 6 represents a functional 
derivative (see Goldstein 1980). The canonical variables r](x,t) and $ ( x , t )  are the 
surface shape and the velocity potential evaluated at the surface $(x,t) = 

The lengthscale can always be chosen such that the period of the waves is 2x. With 
Wx, r ] ( Z , t ) ,  t ) .  

this choice r](z, t )  and $(x, t )  are 2x-periodic functions, and S is given by 

where H is the energy density. In the case of gravity waves H is given by 

where g is the acceleration due to gravity, which is taken equal to 1 in the following. 
As r](x, t )  and $(z, t )  are periodic functions of x, they can be expressed in the 

(19) 1 
following form : co 

~ ( x ,  t )  = X r ]k( t )  eikz, 
-co 
03 

$(xj t )  = $k(t) eikz, 
-W 

where r]k = r]?k end $k = $?k because r ]  and $ are real. The transformation defined 
by (19) can be considered as a canonical transformation from a continuous system 
with canonical variables r](x, t )  and $(x, t )  into an infinite dimensional discrete system 
with the infinite sets {qk} and {$k}  as canonical variables (Goldstein 1980). 

To write the system in a more compact form, Zakharov (1968) introduced the 

lklt 
following transformation : 

r]k(t) = 27&4(k) 
. I  I 

where w(k) is the linear dispersion relation for deep-water waves, which is given by 

w(k) = Iklk (21 1 
When the horizontal level of the frame of reference is chosen at the mean horizontal 

Using transformations (19) and (20), the Hamiltonian system (16) becomes the 
level of the surface, a, = 0. 

single equation 

where now &‘ = 6” H(r], $) dx = &‘(a, a*), 

and a = {ak}. Notice that the functional derivative has become a partial derivative 
because we now have a discrete system. 

As we are interested in the study of permanent-form travelling waves, it is 
convenient to write (22) in a coordinate system moving with the phase speed c:  

at 
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Travelling waves of permanent form are equilibrium solutions (fixed points) of this 
system. For symmetric wave solutions, the origin of the reference frame can always 
be chosen such that a k  = a;. An important property of 2 is that &' is invariant under 
the change a k + a ; .  

Instead of considering only (24), it is convenient to consider (24) together with its 
complex conjugate and the coefficients { a k }  and {a;} as different independent 
variables. With these considerations the system is analytic, and the stability analysis 
becomes clearer. 

The stability of these equilibrium solutions of (24) under superharmonic pertur- 
bations (cc eiut) is determined by the eigenvalues of the matrix (Saffman 1985; Zufiria 
& Saffman 1986) 

where 

When all the eigenvalues are real the system is said to be stable. Stability is lost 
when some of the eigenvalues leave the real axis. This can occur only by collision 
of two eigenvalues of different signature (MacKay 1986; MacKay & Saffman 1986). 

Some important properties of the matrix S called ' Hamiltonian ' (Arnol'd 1978) 
are that if c is an eigenvalue of S, so is - (r, and so are the complex conjugates u* 
and -(r*. The matrix S always has eigenvalue that is zero due to the Galilean 
invariance. Because the system is even-dimensional u = 0 has to be a t  least a double 
eigenvalue. Saffman (1985) proved that at  points where the wave energy is an 
extremum (T = 0 is an eigenvalue of algebraic multiplicity four and geometric 
multiplicity one. This analytical result was checked by our computations, as we shall 
see below. 

As happened in the Stokes formulation, it is important to notice that if a set of 
coefficients {ak} represents an equilibrium solution of (24) the set {a;} where 

a: = o otherwise, J 
is also an equilibrium solution of (24), and represents a class-N wave. 

3.2. Weakly nonlinear form 
Before going into the details of the numerical algorithm, it is worthwhile to work out 
some linear results that will help us to generate starting points and check the 
computations. 

For linear waves the Hamiltonian &' is given by 

Using (24) the equations for travelling waves are 

( l k ( : - C k ) U k = O  (--cO < k <  W ) .  (28) 

We have an eigenvalue problem. For c =I= l/lklf there is a unique solution a k  = 0 for 
all k, that corresponds to the flat surface. For c = l/lklt we have a bifurcation point 
for a regular class-k wave (aj  = 0 fo r j  =I= k and a k  arbitrary). 
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The eigenvalues for the superharmonic stability of the solutions at the bifurcation 
points are 

These values will serve as a first check of the stability code. Each eigenvalue is named 
by giving the two numbers j l k .  The eigenvector associated to the eigenvalue j l k  is 
an oscillation with l j l  crests on a class-k wave. Negative values o f j  correspond to 
perturbations travelling in the same sense as the unperturbed wave. Positive values 
of j correspond to perturbations travelling in the opposite sense to the unperturbed 
wave. 

As we are interested in the branch corresponding to class 6 waves, in order to 
generate a starting point for the computations we calculated the expansion of the 
energy for small amplitude to second-order, obtaining 

J f  x d6[a,a:+%46a6a, 9 2 *,I . 
With this Hamiltonian, we fhd  that the beginning of the class 6 branch is given 

a6az x -“1/6c-l] .  4 6 n  
162 

3.3. Numerical atgorithm 
We are interested in computing travelling waves of permanent form. In  a frame 
moving with the wave, these waves are solutions of the following steady-state 

ckaz = 0 ( - 0 0  < k < GO), 
ax -- 
auk 

where the equations are complex. 
We now truncate the system (32) by taking a k  = 0 for lkl > n. Thus we shall 

consider only 2n complex coefficients to describe the wave. Then we have to solve 
an algebraic system of 4n equations in 4n unknowns. 

To make this formulation useful, we first need to compute the gradient of the 
energy x in terms of the set of coefficients {ak}. In  other words, we have to evaluate 
(18) and its derivatives in terms of the coefficients. The part corresponding to the 
potential energy is straightforward. The most difficult part is to compute the kinetic 
energy. Notice that as we need to compute the gradient of the energy we have to 
compute the energy of a general water wave which in general will not correspond to 
a permanent-form travelling wave. Hence simple expressions for the energy similar 
to the ones shown in (1 1) and (12), which are valid only for steady travelling waves, 
cannot be used for the present purpose. Here we describe a way of doing this 
computation. 

Knowing the set of coefficients {ak), we can directly compute the sets {qk) and {@k} 
using (20). To evaluate the kinetic energy we need to know the velocity potential 9 
in the fluid region. Using Fourier analysis and assuming that 0 is analytic below the 
line of mean horizontal height, we can write 
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where the set { @ k }  is the coefficients of the Fourier expansion of the velocity potential 
on the line y = 0. 

Introducing (33) into (1  8) and performing the integral, we obtain the following 
expression for the total energy : 

where the coefficients c k ,  are defined by 

These coefficients depend only on the set { v k } ,  and can be computed in the following 
way. Using an inverse fast Fourier transform (FFT) we can compute ~ ( x )  evaluated 
on equidistant nodes from the set { v k } .  For every value of m we take the exponential, 
and via a forward FFT we obtain the coefficients Ck, directly. An alternative way 
of computing these coefficients consists of expanding the exponential function in 
Taylor series, and after doing the algebra among the different modes we can obtain 
c k ,  m. For small-amplitude waves the last procedure is faster because we only need 
to take a few terms in the Taylor expansion of exp(Imlv(x)). For the range of 
amplitudes in which we are interested, we found that the expansion has to be carried 
out up to order 30 to get convergence. Hence for our purposes the algorithm based 
on the FFT was found to be faster. 

To compute the coefficients @k we write (33) on the surface of the wave in the 
following form : 

n CQ 

$ k e i k z  = @,elAW eijz. (36) 
k--n j - -m 

Introducing the coefficients C k , m  and equating the same harmonics, (36) can be 

m 
rewritten as follows: 

where $ j  = 0 fo r j  > n. 
It is important to notice that the series in (36) and (37) will be uniformly convergent 

if and only if the analytic continuation of @(x,y) above the surface does not have 
any singularity below the highest crest of the wave. For the waves that we shall 
consider this was found to be true. 

We now have to truncate the set { @ k } ,  and take @k = 0 for Ikl > n,. Thus we have 
two parameters in the algorithm, n and n,. How the algorithm converges as n, is 
increased serves as a measure of the validity of the statement of the previous 
paragraph. 

To compute the set {Gk} we need to solve the linear system of equations defined 
by (37). This part of the algorithm has a complexity of nt operations and is the time 
consuming part of the method. 

Until now we have only computed the energy H, but for (32) we actually need 
to compute the gradient of the energy. This can be done without increasing the 
complexity of the algorithm as follows. 

Taking the derivative of (34) with respect to a: we have 
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can be directly obtained by differentiation The derivative of the coefficients Ckn 
of (35), giving 

To obtain the derivatives of the coefficients Gk we take the derivative of (37) with 
respect to a;. We have 

Therefore to compute the derivatives of @k we have to solve 2n h e a r  systems of 
equations. But notice that we only need to make one back substitution, because the 
matrix of the system is the same as the one that we had before in order to compute 
the set {ak}. Thus to compute the set of derivatives a@,/aaf we need 2n back 
substitutions. The total complexity of this part is nn:. 

Notice that using this algorithm, the expansion that we are actually obtaining for 
the function &'(a, a*)  is not a Taylor polynomial expansion, as happens in the weakly 
nonlinear expansion given by Zakharov (1968). Due to the properties of the linear 
system that we are solving, the expansion has the form of the ratio of two 
polynomials. The structure is similar to the one that is obtained when using Pad6 
approximants to represent a function. 

Once we can compute the gradient of the energy in terms of the coefficients a&, 
we can solve (32) by using arc-length continuation (Keller 1977) in the parameter 
c. As happened in the Stokes expansion method, the system defined by (32) is 
degenerate owing to the Galilean invariance. As can be very easily checked, if a set 
of coefficients {ak} represents a solution of (32) the set {akeiks} is also a solution of 
(32) for all E .  Therefore, as we have already seen, the Jacobian of (32) (matrix S) is 
singular. 

To be able to do the continuation with this degeneracy, we modified the 
continuation algorithm by imposing the condition that the increments in the solution 
as the parameter is changed be normal to the null vector of the Jacobian. The null 
vector of the Jacobian is given by the set {ikak}. This is equivalent to performing the 
continuation in a subspace that is the projection of the whole space on to the direction 
normal to the null vector. Physically this is equivalent to keeping the origin fixed. 

Equation (32) represents a set of 4n complex equations for the coefficients ak and 
a:. Using linear combinations among the equations and taking a k  = p,+iqk, the 
system can be reduced to 4n real equations for the coefficients p k  and qk. 

For the continuation process the Jacobian was computed numerically using 
increments. Even though we used double precision in our calculations, this was the 
main source of inaccuracy in the computations of the eigenvalues for the stability. 

The whole algorithm can be simplified when considering symmetric waves. For 
symmetrical solutions the coefficients can be taken to be real, with ak = a:. Then the 
original system (32) can be reduced to only the first set of 2n real equations. The 
Jacobian of this real system is just the matrix M- N, where M and N have already 
been defined in (25). 

3.4. Numerical results 
In  order to check our code we first computed the regular branch using a class 1 

wave. Taking n = 12, n, was increased until convergence was obtained for the 
solution in the range from zero amplitude up to the amplitude at  which the energy 
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C 

FIQURE 6. Eigenvalues of the superharmonic stability of the class 6 regular family showing the 
bifurcation points. Dashed lines denote a-complex. 

of the wave reaches the first maximum. We found that n, = 2n = 24 is sufficient to 
get convergence in this range. 

All the eigenvalues of the matrix S were computed along this branch. We found 
that an exchange of stability occurs at  the point of maximum energy. This result was 
first found by Tanaka (1983), who studied the superharmonic stability of regular 
Stokes waves using a numerical method based on conformal-mapping techniques. 
Later Saffman (1985) proved the result analytically, using the Hamiltonian formu- 
lation of the water-wave problem. He found that it is a property of the Hamiltonian 
structure of the problem. Because the code keeps the Hamiltonian structure, the 
coincidence of the critical amplitude for the superharmonic stability and the 
amplitude for the maximum energy is a property of the structure of the code, and 
is independent of the number of modes, even though the location of the actual point 
is inaccurate unless the number of modes is sufficiently large. On the other hand, other 
methods like the Stokes expansion used by Longuet-Higgins (19783)  and the methods 
used by Tanaka (1983, 1985) are inaccurate in both respects unless the number of 
modes is sufficiently large, i.e. when a small number of modes are used in the 
computations both points do not coincide and their location is not accurate. We also 
found that results for the eigenvalues of the first few modes are in very good 
agreement with the computations of Longuet-Higgins (19783)  in the range of 
steepness within which his results are valid. 

With n = 12 we found good numerical convergence in the region of amplitudes 
where bifurcations to other families are expected to happen. Actually in this region 
we found that n = n, gives convergence for a given n, and it is not necessary to go 
up to n, = 2n. 

In  the region of strong nonlinearity where the extrema of the energy and phase 
speed appear, with n = 12 and n, = 24 we were able to reproduce the first maximum 
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FIGURE 7 .  Behaviour of the eigenvalues along branch P-3, associated with the bifurcation at 
P3 and P3s8. 

of the energy and the phase speed. Numerical values were within 7 % of the real ones 
for the phase speed and 2.5 % for the energy and the amplitude. 

Once the code was checked, we tried to reproduce the results for symmetry breaking 
that we obtained by the Stokes expansion. Using (31) we generated a starting point 
for the regular class 6 family. We increased the amplitude up to the point where 
bifurcations appear. As the eigenvalues were computed the bifurcations were checked 
by looking at where eigenvalues become zero. Eigenvalues along this branch are 
plotted in figure 6. 

Because of the complexity of the algorithm, computations could be carried out only 
for up to n = 72. This is equivalent to n = 12 in a class 1 wave. To switch branches 
we used the same procedure as in the previous method, and again we found that the 
method converges to the new branches in three or four iterations. 

Figure 6 shows eigenvalues for disturbances to class 6 waves. We can see that there 
are three bifurcation points. These bifurcations are the same as the ones obtained 
by the Stokes formulation. Notice that only the period-doubling bifurcation leads to 
a change of stability in the regular family. At the other two points eigenvalues pass 
through zero, but they do not give a change of stability. From the behaviour of the 
eigenvalues it is probable that more bifurcations exist for higher amplitudes. 
However, in that region we do not get convergence with the number of modes that 
we are using. These higher-amplitude bifurcations were computed by Vanden-Broeck 
( 1983) using conformal-mapping techniques for finite-depth water waves. Values of 
the phase speed and total energy for the period-tripling bifurcation (P , )  are given in 
table 1. 

A t  the period-tripling bifurcation, we switched to the new branch (P-3). This 
branch was computed in the direction of decreasing phase speed. We found that there 
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FIGURE 8. Kehaviour of the eigenvalues along branch 1 ’ 4 ,  associated with the bifurcations a t  
f:.@ and cb. 

n C E = T + V  92 
Stokes expansion 256 0.442988 0.012 5027 0.988756 

0.012 383 6 0.988367 512 0.442 515 
768 0.442 5 10 0.012 3825 0.988372 

1024 0.442 510 0.0123825 0.988 373 

Hamiltonian method 60 0.442 9 1 8 0.01 2 484 2 
72 0.442 590 0.0124018 

TABLE 5. Values obtained for some parameters of the wave at the bifurcation point 

is always at  least one unstable eigenvalue on this branch. In figure 7 we show the 
two smallest eigenvalues, besides the one due to the shift (c-r = 0). The eigenvalue that 
leads to the p3 bifurcation is the one that is always unstable. This was expected, 
because on the P-1 branch there is no change of stability at the p3 bifurcation point, 
as can be seen in figure 6. We can see that the other eigenvalue also goes through 
zero, giving a new bifurcation. This bifurcation is a period-doubling bifurcation. 
Actually, this is the point P3, in figure 2. 

At the point P3, we switched to the new branch (P-6). The eigenvalues along the 
new branch are given in figure 8. Again we plot the two smallest eigenvalues, finding 
that another bifurcation appears on this branch. This bifurcation corresponds to the 
symmetry breaking. In figure 8 we can also see that the eigenvalue that gives the 
P3, bifurcation is unstable along the P-6 branch. Notice that, as P3, is period-doubling 
bifurcation, the new branch P-6 starts a t  the bifurcation point and does not exist 
for values of the phase speed below the value corresponding to the bifurcation point. 
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n C E = T + V  Q* 
Stokes expansion 256 0.443014 0.0125082 0.988823 

0.988429 512 0.442533 0.0123874 
768 0.442528 0.012 3863 0.988434 

1024 0.442 529 0.0123866 0.988440 

Hamiltonian method 60 0.442938 0.0124886 
72 0.442606 0.0124052 

TABLE 6. Values obtained for some parameters of the wave at the bifurcation point Psb 

Values of the phase speed and energy at the point 4, and eb are given in tables 5 
and 6 respectively. 

Therefore we find the same bifurcation structure using this completely different 
numerical approach to the problem. This is strong evidence for the validity of our 
results. 

4. Conclusions 
We have shown that non-symmetric gravity waves exist on deep water. They 

appear from a spontaneous symmetry-breaking bifurcation of symmetric waves. To 
fhd one of these bifurcations we go from the regular family of waves to an irregular 
family of class 3, which was found by Chen t Saffman (1980). In  this class 3 family 
there is a period-doubling bifurcation to a family of waves that have six crests per 
basic wavelength. This class 6 wave can bifurcate to a non-symmetric family also with 
six crests per period. 

Hence we find that results found by Zufiria (1987) using a weakly nonlinear 
Hamiltonian model for finite-depth water waves can be completely generalized to the 
full system and to the deep-water case. Zufiria’s (1987) results follow from properties 
of two-degrees-of-freedom Hamiltonian systems. This means that in this case results 
for a finite-dimensional Hamiltonian system appear to apply for a continuous system. 
This raises again the open question of whether or not travelling water waves of 
permanent form are actually a Hamiltonian system of two degrees of freedom. 

In this way Hamiltonian methods have served to answer one more question in the 
problem of water waves. 

In  the present paper we have computed only one family of non-symmetric waves. 
This does not mean that this family is unique. For area-preserving maps many more 
symmetry-breaking bifurcations have been found, but this one is the easiest to 
compute in the case of water waves. The other bifurcations appear with considering 
waves of higher class. Class 6 is the minimum class to have symmetry breaking. 

To confirm all these results we have performed computations using two different 
methods. The first is based on the Stokes expansion and is shown to be very easy to 
implement and fast. Therefore many modes can be used in the computations, and 
the method gives the most accurate results. But we have found that the structure 
of the equations is poor in the sense that the number of modes needed to reproduce 
the physical behaviour and to find convergence is large. 

The new numerical method based on the Hamiltonian formulation of the water- 
waves problem has been found to be much more expensive from the computational 
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point of view because of the complexity of the algorithm to compute the energy. We 
have been able to run only up to 72 modes, but the bifurcation structure was 
reproduced using as few as 12 modes. 

Also the algorithm gives the stability of the wave solutions without much 
additional work. The method can be very easily generalized to other cases. For 
example, to consider gravity-capillary waves we only need to add to the total energy 
the energy due to the surface tension without changing the main part of the code. 
Also, the same code can be used for studying unsteady problems in water waves, and 
keeping the Hamiltonian structure of the problem. For example, in initial-value 
problems properties that have to be conserved such as energy are directly checked. 

More work should be done to try to speed up the way of computing the kinetic 
energy, so that the computations can be made more efficient. Also generalization to 
three-dimensional waves would be straightforward. 

I am indebted to Professor P. G. Saffman for his encouragement and valuable 
advice during the course of the research. This work was supported by the Office of 
Naval Research (N00014-79-C-0412, NR062-639) and by the National Science 
Foundation (OCE-8415988). I also wish to acknowledge receipt of a Fulbright award. 
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