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A weakly nonlinear model is developed from the Hamiltonian formulation of water 
waves, to study the bifurcation structure of gravity-capillary waves on water of finite 
depth. It is found that, besides a very rich structure of symmetric solutions, 
non-symmetric Wilton’s ripples exist. They appear via a spontaneous symmetry- 
breaking bifurcation from symmetric solutions. The bifurcation tree is similar to that 
for gravity waves. The solitary wave with surface tension is studied with the same 
model close to a critical depth. It is found that the solution is not unique, and that 
further non-symmetric solitary waves are possible. The bifurcation tree has the same 
structure as for the case of periodic waves. The possibility of checking these results 
in low-gravity experiments is postulated. 

1. Introduction 
Since early in this century it has been known that the problem of permanent-form 

gravity-capillary waves travelling on water has a very rich structure of solutions. 
Wilton (1915) discovered that even for very low-amplitude waves solutions are not 
unique, i.e. given the shortest period and height of the wave there may be more than 
one solution. In  particular, he studied the case of waves on deep water, and predicted 
two different wave profiles of 2.44cm wavelength. These waves are today called 
Wilton’s ripples. Further, he actually found a set of critical wavelengths where his 
perturbation solution was not valid. 

In the case of gravity waves, it  has been shown that for sufficiently low amplitude 
the solutions are unique. This is because, at  low amplitude, resonances are not 
possible. Two waves are said to be resonant when they travel with the same phase 
speed. In general, resonances lead to bifurcations into different families of waves and, 
therefore, to a lack of uniqueness in the solutions. When capillarity is taken into 
account, the new parameter allows resonances at low amplitude. These can be 
observed even with linear theory. 

Wilton’s results were later extended to higher order by Sekerzh-Zenkovich (1956) 
and Pierson & Fife (1961) using classical perturbation techniques, and by Nayfeh 
(1970b) using the method of multiple scales. Schooley (1961) photographed short- 
length wind-generated water waves showing that profiles with two dimples predicted 
by Wilton (1915) exist. He also showed that, under proper conditions, waves of 3,4,5, 
or more dimples are observed. 

Chen & Saffman (1979, 1980) reconsidered the problem of gravity-capillary waves 
on deep water. They performed perturbation expansions for weakly nonlinear waves 
and computed finite-amplitude waves using the full water-wave equations. They 
reinterpreted Wilton’s (1915) results as a bifurcation phenomenon and showed that 

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 09 Aug 2009 IP address: 134.246.166.17

184 J .  A .  Zujiriu 

higher-order resonances exist and produce bifurcations to new families of solutions 
with larger wavelengths and more crests per period. Toland & Jones (1985) and Jones 
& Toland (1986) gave rigorous mathematical accounts of the existence theory of the 
weakly nonlinear waves found by Chen & Saffman (1980). 

Nayfeh (19704 considered the problem of periodic gravity-capillary waves on 
water of finite depth. He obtained third-order expansions for the solution using the 
method of multiple scales. He found that his expansions broke down for two 
wavenumbers if the depth of the fluid was larger than some critical value (his 
condition on the depth of the fluid is equivalent in our notation to the condition 
7 < f ,  where 7 is defined in ( 5 ) ) .  In the limit of deep water Nayfeh’s expansion matches 
Wilton’s. The two points where the expansion breaks down correspond to the first 
two critical wavelengths found by Wilton. Recently Jones (1987), using a functional- 
analysis approach based on the Lyapunov-Schmidt reduction procedure, has studied 
rigorously the existence and multiplicity of small-amplitude solutions of the periodic 
gravity-capillary wave problem of finite depth. But, as we shall describe below, his 
work is limited to the study of some particular cases of waves whose shapes are even 
periodic functions of the horizontal distance (i.e. symmetric waves). 

In considering a fluid of finite depth the possibility of solitary-wave solutions is 
added to the problem. Solitary waves in the presence of surface tension were first 
considered by Korteweg & de Vries (1895). They found that for sufficiently large 
values of the surface tension a depression solitary wave is possible. Recently, 
Benjamin (1982) and Vanden-Broeck & Shen (1983) considered the problem again 
confirming Korteweg & de Vries results. Amick & KirchgLsner (1987) have given a 
rigorous proof of the existence of the solitary wave of depression when 7 > 5. Also 
Hunter & Vanden-Broeck (1983) performed numerical computations for the 
depression solitary wave using the full water-wave equations. They studied the effect 
of the capillary parameter, and found that, as surface tension was decreased below 
a critical value (7 = i), inflexion points appeared in the solitary-wave profile and 
numerical convergence became very difficult. 

Even though there are still many open questions about the problem of Wilton’s 
ripples and solitary waves on finite depth, relatively little work has been done. For 
gravity-capillary water waves on the surface of the Earth, resonances and all the 
interesting behaviour appear at depths of approximately 4.8 mm. At this scale the 
waves are strongly affected by viscosity, so that the irrotational model is not realistic 
and experimental checks are difficult. Benjamin (1982) tried some experiments with 
water 3 4  mm deep, find that depression solitary waves are realizable, but they are 
damped very rapidly. 

With the increasing possibility of performing experiments in outer space, where 
gravity can be reduced by several orders of magnitude, and the model becomes quite 
realistic, such experiments are more feasible and make the problem more attractive. 

In the present work we shall consider one of the open theoretical questions, namely 
the existence of non-symmetric gravity-capillary waves. All solutions of permanent- 
form gravity-capillary waves travelling on water known to date describe symmetric 
waves. A wave is said to be symmetric when, iff (x) represents the shape of the wave, 
the origin of the horizontal axis can be chosen such that f(x) = f( -x). 

Recently, Zufiria (1987a, b )  has shown that non-symmetric gravity waves are 
possible. They appear via a spontaneous symmetry-breaking bifurcation from 
symmetric waves. He first found these waves using a weakly nonlinear model for 
finite-depth water (Zufiria 1 9 8 7 ~ ) .  Later Zufiria (1987b) extended the results to deep 
water by numerical computations using the full water-wave equations. It is our belief 
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that a great part of the success in extending the results from the model to the full 
equations comes from using a Hamiltonian formulation of the problem, which keeps 
the symmetries of the water-wave problem. We found that most of the physical 
behaviour of the system is related to the Hamiltonian structure and its symmetries. 

Motivated by these results, in the present work we develop a weakly nonlinear 
model for gravity-capillary waves on shallow water. The model is obtained from the 
Hamiltonian formulation of the water-wave problem introduced by Zakharov (1968). 
With this model we try to increase the understanding of the Wilton's ripples 
phenomenon by using dynamical systems theory. In  particular we show that 
non-symmetric waves exist, and they appear via spontaneous symmetry breaking 
from symmetric waves, as happens for gravity waves. 

We start by developing the model, which leads for steady waves to a Hamiltonian 
system of two degrees of freedom. A local analysis of the solutions around the fixed 
points of the system is carried out, followed by a numerical global analysis of the 
model. 

In the last part of the work we consider solitary-wave solutions. We give numerical 
evidence that when the depth of the fluid is close to the resonance value (T = i), the 
solitary wave is not unique and non-symmetric solitary waves are possible. 

2. Weakly nonlinear model 
Consider two-dimensional irrotational water waves in a laterally unbounded 

domain of constant depth h. Taking as variables to describe the state of a wave the 
shape of the wave ~ ( x ,  t )  and the velocity potential evaluated at the surface of the 
wave $(x, t )  = $(x, ~ ( x ,  t ) ,  t ) ,  the evolution equations for the system can be written 
with the following Hamiltonian structure (Zakharov 1968, Broer 1974, Miles 1977) : 

where &' is the total energy of the waves and 6 represents a functional derivative 
(see Goldstein 1980, p. 564). 

The total energy is defined as 

&' = J H ( T > $ ) d x ,  (2) 

where the integral extends over one period in the case of periodic waves. In  the present 
study we consider gravity-capillary waves. The energy density H is 

i r n  r n  

where g is the acceleration due to gravity, p the density and T the surface tension. 
We consider weakly nonlinear shallow water waves, 

(4) 

where a represents a measure of the amplitude and A of the wavelength (order of 
magnitude of the distance between crests) of the considered wave (see figure 1 ) .  The 
two dimensionless parameters a and /3 measure the amplitude and dispersion of the 
waves respectively (Whitham 1974). 

I n  order to deal with variables of order unity and determine the relative importance 
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FIGURE 1.  Periodic travelling wave on water of finite depth. 

of the different terms in the equations, i t  is convenient to introduce the following 
dimensionless variables : 

For gravity waves, the nonlinearity is of the same order as the dispersion when 
the waves are such that a x /3. The same is true for gravity-capillary waves except 
when we look a t  the minimum of the dispersion. In the region of minimum dispersion, 
the nonlinearity and dispersion are of the same order when a x p .  Hunter & 
Vanden-Broeck’s (1983) results showed that this region is where all the interesting 
resonances and bifurcations occur. Therefore in the following we shall use E instead 
of a and /3, where 8 is taken as 

a = 8, /3 = E. (6) 

Zufiria (1987 a) showed that using the variables introduced in (4) the energy density 
can be expanded for E 4 1 as 

_ _  di7 = @:( 1 + €7) + 3 2  + +[& + 211.3 11.3521 + *2[q&z 

_ _  
+8(3223?e2m+ *z11.zz3zz)I +m;+ m3). (7) 

Using the energy density defined by (7) and neglecting terms of order E ~ ,  we obtain 
the following evolution equations for the water-wave system : 

(8) 

We are looking for permanent-form travelling waves of these equations, i.e. 

(9) 

2-- 1 
- - - 

rlt = -*z,--;.11..,,,,-~z3z~z23,-s ( r l + Z h  

11.r = - i j  + €qzz - pq;. - 

- 
solutions of the form 

?j = ?j(Z,t) = T(Z-cct) = ‘if@), 
11. = $(Z,t) = $(X-cZ) = @Z), 
- 

where c is the phase speed of the wavetrain. 
Introducing (9) into (8), we have 
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Notice that the linear dispersion relation associated with (10) is 

C’ = 1+(7- i )kz+(&-*)k4 .  ( 1 1 )  
where k = 2n;h/A is the wavenumber. This dispersion relation agrees up to (but not, 
including) terms of order ks with the classical dispersion relation for linear wat,rr 
waves, which is tanh k 

k 
cz = - ( 1  4- 7k2). (12) 

From (1  1 )  it follows that system (10) has wavetrains that travel in both directions 
with phase speeds c x 1 respectively. To find solutions we shall concentrate our 
study on waves that travel to the right (c x 1) .  

In the present case of gravity-capillary waves on shallow water resonances appear 
when 7 is close to 4 (Nayfeh 1970a, b;  Hunter & Vanden-Broeck 1983). For 7 = f the 
coefficient of the second term of the dispersion relation ( 1  1)  vanishes, and the term 
in k4 becomes important ; hence the balance between nonlinearity and dispersion leads 
to waves such that k4 x (a/A), i.e. a x p”. 

Considering waves that travel to the right with 7 x 4, a travelling-wave solution 
can be expanded in the following way: 

- 
l+ = ~ o + E $ 1 + E 2 $ 2 + O ( E 3 ) , )  

Substituting these relations into (lo), we end up, after some algebra, with 
- 

(14) 

(15) 

(16) 

- 
c1 = 0, @oz = 70, 

and the following equation for ?lo: 

23, Tjoz - 3ij0 Tjoz + T1 Tjozzz - ~ T j o 2 z z 3 2  = 0. 

This equation can be integrated once with respect to ?? giving 
2 c - -  2 - -  

2 7 0  Bo + 71 7ozz - &Tjozzzz = C. 
The first three terms of the equation represent the Korteweg-de Vries (KdV) 
approximation. 

The origin of y can be chosen such that C = 0. Thus in the following we assume 
C = 0 without any loss of generality, i.e. 71 = 0 is a solution. Equation (16) can be 
also directly obtained from the classical water-wave equations by performing the 
formal expansion for E 4 1 (Hunter & Vanden-Broeck (1983). 

The dimensionless variables introduced by (5) are useful to determine which terms 
of the equations are important in the range of waves of interest and to derive the 
model equation. However, for computational purposes and understanding the nature 
of the solutions it is more convenient to scale directly in terms of h, 

where we have dropped the primes. 
I Y L X  184 
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In this equation the small parameter E has disappeard and each term has its own 
magnitude (i.e. may be large or small depending on the magnitude of the physical 
wave). 

Since /3 4 1 ,  a/ax 4 1 and the last term in (18) can be neglected when 71 is of order 
unity, we recover the KdV approximation. But when 71 is sufficiently small the fourth 
term of the equation becomes important. 

Equation (18) can be rewritten as the following system of four first-order 
differential equations : 

(19) 

dx 

where u1 = 70, u2 = 70z1 = 70zzj 244 = 7ozzz. (20 1 

H = (c2 -h1) 4; + P l  42 -a71 4; +?Pi. (21) 

Note that this system is Hamiltonian, with Hamiltonian function 

and the canonical variables (p l , p2 ,  pl, q2)  related to the variables (ul, u2, u3, up) by 

p1 =71u2- - ,  u4 p -"j 
45 - 45 

Notice that we started with a continuous Hamiltonian system evolving in time. 
Looking for travelling waves of that continuous system we finish with a discrete 
Hamiltonian system that evolves in x. The same phenomenon was found by Zufiria 
(19874 for gravity waves. Benjamin (1984) has shown that this is a general property 
for travelling waves of continuous Hamiltonian systems for which the Hamiltonian 
density can be expressed in terms of finite-order derivatives of the canonical 
variables, as is the case in our model. Hence, the problem of finding travelling waves 
of permanent form has been reduced to  the study of the properties of a Hamiltonian 
system of two degrees of freedom with two parameters, c2 and 71. 

3. Local analysis 
The aim of the present study is to  understand the structure of the families of 

periodic orbits of the dynamical system defined by (19). These periodic orbits 
correspond to travelling waves of permanent form in the physical plane. 

We start our analysis by examining the fixed points of the dynamical system and 
the local structure of the phase flow around them. The two-degrees-of-freedom 
Hamiltonian system defined by (19) has two fixed points for all values of the 
parameters c2 and 71. These fixed points are 

I FP1: 

FP2: 

u1 = u2 = u3 = u4 = 0, 

u1 = ;c2, u2 = u3 = u4 = 0. 

Both fixed points represent flat surfaces. FP1 is the origin of the phase space and 
corresponds to the actual surface of the fluid at rest. The other fixed point represents 
a flat surface also but with a different location of the horizontal axis. The two fixed 
points represent states of the system that are conjugate (see Benjamin 1984). Notice 
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FIGURE 2. ( a )  Eigenvalues for the stability of the fixed point FP1. ( b )  Eigenvalues for the stability 
of the fixed point FP2. (c) The three different regions of the (~,,c,)-plane where the study is 
concentrated. (d )  Lines where bifurcations ocur at zero amplitude in the (71, c,)-plane. pZ denotes 
period doubling, P3 period tripling and so on. 

that  (19) has two parameters, but the location of the fixed points depends only on 
one of the parameters, c2. 

Linearizing the system in the neighbourhood of the fixed points, we find the 
following eigenvalues for the stability of the fixed points: 

FP1: h2 = 45[T1&(T1+$?)']. 
2 

(24) 

For each fixed point we have four eigenvalues, which determine the structure of 
the fixed point. Depending on the values of the parameters, we can have real, pure 
imaginary or complex eigenvalues. According to  the nature of t.he eigenvalues the 
(71,c2)-plane can be divided into four different regions for each fixed point, see 
figure 2 ( a ,  b ) .  For example, looking at FP1, we find that for c2 > 0 two of the 
eigenvalues are real and two pure imaginary. For c2 < 0 there are three different 
possibilities. If 71 < - ( - 8c2/45)1 there are two pairs of pure imaginary eigenvalues 

7-2 
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(Al ,2  = +iwl, A3,4  = +iw2). For < -8c,/45 the four eigenvalues are complex. And 
finally, when T~ > ( -8c2/45)t  all the eigenvalues are real. The situation for FP2 is 
similar, with c, changed to  -c,. 

According to  the previous paragraph and figure 2(a, b ) ,  there are six different 
regions in the (.r,,c,)-plane. But we find that (18) is invariant under the 
transformation c, + - c,, 

u1 + u1 -$c2. (25) 

This means that the region corresponding to c, > 0 is equivalent to the region c2 < 0 
just interchanging the roles of the two fixed points. Owing to this symmetry we only 
need to  study three of these regions. Therefore, in the following, we reduce the study 
to the region c, < 0 (see figure B c ) . ,  

Now consider a local analysis of the three different regions in figure 2 (c). 

Region I (c, < 0, 71 < - ( - 8c2/45)i) 
I n  this region FP1 is a centre. It has two pairs of pure imaginary eigenvalues 

(Al ,2  = +iwl, A3,4 = f iw,) .  According to the Liapunov theorem for fixed points of 
Hamiltonian systems (Abraham & Marsden 1978), for fixed values of the two 
parameters c2 and r1 the phase space has two two-dimensional manifolds containing 
FP1. Each of these manifolds contains a one-parameter family of periodic orbits 
whose period approaches 27c/w1 or 27c/w2 respectively as the amplitude goes to zero 
and the orbit approaches the fixed point. This is actually only true when there are 
no resonance relations between the two frequencies. We say that two frequencies are 
resonant when there exist two integers m and n such that mu1 + nu, = 0. In  resonant 
cases linear stability is not enough to determine the local structure of the phase flow 
around the fixed points. 

Note that the Liapunov theorem for Hamiltonian systems is equivalent to the Hopf 
theorem for generic dynamical systems. 

I n  region I, FP2 has two pure imaginary and two real eigenvalues 
(Al , ,  = fiw,A3,, = fa ) .  Hence according to the Liapunov theorem there is a single 
two-dimensional manifold containing FP2 and a one-parameter family of periodic 
orbits whose period approach 27c/w as the amplitude goes to zero. 

Since there are two families of periodic orbits centred on FP1, this region is very 
rich from the bifurcation point of view, as we shall see below. 

Region 11 (c2 < 0,rt < - 8c2/45)  

Inside the parabola (figure 2 c )  FPl has four complex eigenvalues 
(Al, , = f (a1 + i q ) ,  = f (a, + iw2)). FP1 has two-dimensional stable and unstable 
manifolds. On each of the manifolds the flow has a spiral structure. I n  this case, from 
the local analysis of FP1 we can conclude nothing about possible families of periodic 
orbits. We can only say that locally there are no families of periodic orbits that end 
a t  the fixed point. 

There exists the possibility of a homoclinic connection for FP1. If this homoclinic 
connection exists, i t  will correspond to  a solitary wave with oscillatory tails. We will 
present below numerical evidence that this kind of connection exists. 

For FP2 we find the same situation as the previous case. As there is a pair of pure 
imaginary eigenvalues, we have a one-paramet.er family of periodic orbits centred on 
FP2. 
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71 

FIQURE 3. (T,, L)-plane. Lines C, and C,  show the period of the infinitesimal waves at the fixed 
points versus T~ (c, = -0.01). 

Region I I I  (c ,  < 0 ,  T~ > ( -8c,/45)$ 
FP1 has four real eigenvalues (Al ,  = a,). No families of periodic orbits 

coming from FP1 are possible in this region. On the other hand, FP2 has two real 
and two pure imaginary eigenvalues. Hence, a one-parameter family of periodic orbits 
comes from FP2. 

Korteweg & de Vries (1895) showed that solitary waves of depression exist for 
sufficiently large values of the surface tension. Actually the KdV equation shows that 
depression solitary waves exist for r > 5. The derivation was formalized by Vanden- 
Broeck & Shen (1983) using a systematic perturbation calculation. In  the KdV limit, 
the phase space is two-dimensional and the two fixed points FP1 and FP2 still exist. 
For T > 5 there is a one-parameter family of periodic orbits centred on FP2. FP1 is 
a saddle (two real eigenvalues). 

We expect our results to match with these previous results when the wavelength 
is increased and T > 4. In particular we expect that if the period is increased in the 
family of periodic orbits that is created at  FP2, the family ends up with an orbit that 
is homoclinic to FP1. 

With all these local considerations in mind, we can start the global analysis of the 
system. 

al, A, = 

4. Symmetric waves 
When considering periodic waves of our system for fixed r1 and a given value of 

c,, the periodic orbits appear as one-parameter families, having the physical period 
L (the shortest distance over which a solution repeats exactly) as parameter. This 
degeneracy of the system, owing to its Hamiltonian structure, makes it necessary to 
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give three parameters (c2, rl, L )  to determine a periodic orbit. Note that in the analysis 
performed below, when 71 or c2 are changed the phase space is changed. But when 
L is changed the phase space remains the same and we just move along one of the 
one-parameter families of periodic orbits that  exist in phase space. 

We start the global analysis by studying region I. As discussed above, in phase 
space there are two one-parameter families of periodic orbits centred on FP1. These 
families start at FP1 with periods 2n/w1 and 2n/w2 respectively. If we take w1 > w2 
then the family corresponding to w1 has a short,er physical plane period than the other 
family. We call these families the long-wave family and short-wave family, with 
respective periods L, = 27c/w2 and L, = 2n/w1, where (L ,  > I,,). L, and L, can be 
regarded as the periods of the infinitesimal waves for fixed 71 and a given value of 
c2. 

The phase speed c2 determines the location of the fixed points and gives a measure 
of the amplitude of the waves. The capillarity parameter 7, determines for a given 
fluid and given gravity the depth of the fluid layer. 

I n  the present analysis we fix the phase speed c2, and we study the structure of 
the phase space varying only the capillarity parameter 71 and the physical period L. 
Using these two parameters, the fixed points FP1 and FP2 are represented in the 
(71, L)-plane by two lines C, and C, as can be seen in figure 3. These lines represent, 
for a given value of c2, the initial period of the families of periodic orbits versus 71, 

i.e. L = L(r1;c2) .  We can see that in region I for a given value of 71, C, gives two 
periods corresponding to the two families that  come out of FP1. We can also see that 
the periods are ordered such that L, > L, > L,, where (Ey = &J. 45 - 8 ~ ~  

For large period L the two lines C, and C, match asymptotically with the equivalent 
lines obtained using the KdV approximation, which is valid for very large wave- 
lengths and away from the resonance region. 

To study the possible bifurcations of the families of periodic orbits we need to  
compute the Floquet multipliers of the orbits. The multipliers are the eigenvalues 
of the linearized Poincar6 map of the flow around a periodic orbit. These eigenvalues 
can be thought as the magnification of a perturbation in one period (Hartman 1964). 
The necessary and sufficient condition for a bifurcation is that  a multiplier crosses 
the unit circle. 

A periodic orbit always has a multiplier + 1 corresponding to sliding a little along 
the orbit. For Hamiltonian systems, the Hamiltonian is conserved so there is another 
multiplier at + 1. Also in a Hamiltonian system the flow preserves volume in phase 
space, thus the product of all four multipliers is + 1 .  It follows, from the reality of 
the Hamiltonian, that the two other multipliers will be conjugate points a, a* on the 
unit circle or reciprocal points a, l/a on the real axis (Green et al. 1981). When the 
two multipliers are on the unit circle, we have possible bifurcation to new orbits. For 
example if u = eznirnln, a t  that point there is a possible bifurcation to a period-n wave. 
When arg (a)/2n is an irrational number we can still talk about bifurcations but the 
new branch corresponds to a quasi-periodic permanent-form travelling wave. Notice 
that from this point of view bifurcations appear within continunous intervals of the 
parameter values. When approaches that allow only periodic waves, like the ones used 
by Chen & Saffman (1980), Toland & Jones (1 985), cJones & Toland ( 1986) and Jones 
(1987), are considered, only the bifurcations that lead to periodic waves can be 
detected and they appear in a discrete way. The works by Chen & Saffman (1980) 
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and Jones & Toland (1987) cover the cases where u = ezninIm for deep-water waves. 
While Jones (1987) covers the bifurcations of the type u = eznin/(n+l) for finite-depth 
water. 

Performing a local analysis of the system around FP1, we can compute analytically 
the Floquet multipliers for the beginning of the families of periodic orbits. We find 
that for the short-wave family the multipliers a t  FP1 (zero-amplitude wave) are 

ul,2 = + 1, u3,4 = e2niwz/w~. (27) 

Hence the multipliers are on the unit circle, and FP1 is a bifurcation point in this 
region. This means that we can have bifurcation at zero amplitude. We already knew 
this because a t  FP1 two different families of periodic orbits cross. When studying 
gravity waves Zufiria ( 1 9 8 7 ~ )  found that the multipliers go onto the unit circle 
only for high-amplitude waves. Here we have one parameter more, and we can bring 
the bifurcations to zero amplitude. For example if 71 and c2 are chosen such that 
w2/w1 = + then u3,4 = - 1, and we have a period-doubling bifurcation a t  zero 
amplitude. I n  general w2/w1 = m/n corresponds to a bifurcation from a family of 
period L, to  a family of period nL,. Notice that this relation is equivalent to  a 
resonance relation. In figure 2(d) we show lines where bifurcations occur a t  zero 
amplitude. 

To understand the global structure of the phase space, we continued numerically 
the families of periodic orbits by using the program AUTO developed by Doedel &, 
Kernevez ( 1986). This program performs continuation along families of periodic 
orbits for dynamical systems by using a collocation method. 

In the present analysis, we kept the value of the phase speed fixed a t  c2 = -0.01. 
We started a t  the fixed point FP1 by taking 71 = -0.06. These values correspond 
to region I .  Starting from a fixed point there are basically two ways for performing 
the continuation. One is to continue in the period L keeping the capillarity parameter 
71 constant (vertical lines in figure 3). The other possibility is to continue in the 
capillarity parameter keeping the period constant (horizontal lines in figure 3). I n  the 
present section we consider the latter case. 

We began continuing along the short-wave family coming out from FP1 (point A 
figures 3 and 4). Following the branch with the period L constant, we found that 71 
increases monotonically and the family ends in the fixed point FP2 (point B figures 3 
and 4). Hence the unique family coming out from FP2 is connected to  the short-wave 
family that starts a t  FP1. Along the whole branch the wave is basically sinusoidal 
with only one crest per period. The wavelength of this family is always less than L,. 
This branch is represented in figure 3 by the A-B line. 

The long-wabe family (L,) was found to  finish in a period-half bifurcation. It starts 
with a sinusoidal waveform with only one crest per period (point A' figures 3 and 4), 
but as we go along the branch another crest appears. The branch ends when the two 
crests are equal, which corresponds to a period-half bifurcation (point C figures 3 and 
4). This point corresponds to  a period-doubling bifurcation on the short-wave family 
of period L, = iLl (point C' figures 3 and 4). Notice that this is true only if +L, < L,. 
If this relation does not hold, the structure is much more complicated and will not 
be considered further here. The three branches of periods L,, L, and $L, are shown 
in figure 4. 

As can be seen in figure 4, along these branches the Floquet multipliers of the orbits 
go onto the unit circle several times. When the multipliers are on the unit circle, 
bifurcations to families with larger period are possible. I n  the following section we 
study some of these larger-period families. 

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 09 Aug 2009 IP address: 134.246.166.17

194 J .  A .  ZuJiria 

0.010 

- 0.005 

-0.010 

-0.015 

FIQURE 4. Amplil 
versus T ~ .  Solid li 
Shape of the wal 

0.010 

0.008 

Max ( 7 0 )  

0.005 

0.003 

0 

-0.003 

Ll 
Me- - - - - -  - 

\ 
-7 -* 

- f iJ---  %. *::>k ',- 

A A  
FPl '\FPl .a. fL,  

\ 
\ 
\ 

Ls ', - '., \ 
\ 
\ 
\ 
8 
\ - I 
I 
I 
I 

FP2 FP2 
BI  B': 

1 1 I I I I I 

-0.06 - 0.05 - 0.04 -0.03 
71 

ide of short-wave and long-wave branches of periodic orbits with constant period 
ie denotes u on the unit circle, dashed line u negative and dotted line u positive. 
: is sketched next to curve. 

A" - i  D 
I 1 1 I 1 I I 

- 0.08 -0.06 -0.04 - 0.02 
71 

FIGURE 5 ( a 4 ) .  For caption see facing page. 

5. Non-symmetric waves 
All the gravity-capillary waves that we have studied in $4, as well as all the ones 

studied by other authors (Wilton 1915; Nayfeh 1970a, b ;  Chen & Saffman 1980; 
Hunter 6 Vanden-Broeck 1983) are symmetric. 

Recently, Zufiria (1987a, b )  found that for gravity waves on shallow and deep 
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FIQURE 5. P-3 branch arising from the period tripling P, on branch A-B shown in figure 4. (a)  
Maximum amplitude of the wave versus T~ along the branch. (a) Shape of the wave at different 
points along the branch. The numerals refer to the location of the points shown in (a).  Vertical 
lines show symmetry axes. 

water, the symmetry can be broken via a spontaneous symmetry-breaking bifurca- 
tion. He found that the sequence of bifurcations that needs to be followed to find 
the symmetry breaking is the same as that found by Green et al. (1981) for breaking 
the symmetry of fixed points of area-preserving maps with symmetries. We want to  
determine if non-symmetric gravity-capillary waves are possible and if the same 
bifurcation tree is repeated here. 

We started again at FP1 and took the short-wave branch. Keeping the period 
constant we continued in the capillarity parameter 71 as before. A t  the beginning of 
the branch the Floquet multipliers are on the unit circle, and as 71 is increased they 
leave the unit circle through - 1 (see figure 4). The point where the multipliers are 
at  - 1 corresponds to a period-doubling bifurcation to a long-wave family of period 
L, = 2L,. When the multipliers are at 120" we have a period tripling (point P3 in 
figures 3, 4 and 5 ) .  

We took the new branch of period 3L,, that we call P-3 branch. Keeping the period 

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 09 Aug 2009 IP address: 134.246.166.17

196 J .  A .  ZuJiria 

'y#/ K b  

I I 

0.0087 

0.0085 

0.0083 

0.0080 
Max (w) 

0.0078 

0.0075 

0.0073 

0.0070 

P-6 

\ 
\ 

\ 

' ' '. 

71 

FIGURE 6(a-c). For caption see p. 198. 

constant, we continued in T~ finding that this new branch is just the long-wave branch 
coming out from FP1 for L, = 3L,. Following the branch in one direction we found 
that the branch ends in FP1 (point A figures3 and 5 ) ,  and going in the other 
direction the branch ends in a period-half bifurcation (point D figures 3 and 5). The 
whole branch is plotted in figure 5(a ) .  The cusp that appears in the figure because 
we are plotting the maximum of the amplitude 7. Even though the height of each 
crest changes smoothly with T ~ ,  the maximum does not change smoothly a t  the points 
where our crest becomes higher than another. For example looking a t  waves 4 , 5  and 
6 of figure 6 ( b ) ,  we can see that on wave 4 the third crest is the highest. Wave 5 
corresponds to  the point p3 where the three crests are equal. And for wave 6 the first 
two crests are the highest. Hence, the transition through P3 is not smooth for 
maximum of 7. As we can see in the figure the branch is not single valued in T ~ .  This 
means that the solution is not unique for a given value of the period and the 
parameters. 

At the beginning of the branch, close to FP1, the wave is sinusoidal and there is 
only one crest per period. I n  the region of the non-uniqueness, there are three crests 
per period. The branch finishes with two equal crests at the half-period bifurcation. 

On this P-3 branch, at p3 the four multipliers are a t  + 1 as we expected because 
along this branch p3 is a normal bifurcation point. Along the branch there are four 
regions where the Floquet multipliers lie on the unit circle. Every time that the 
multipliers leave the unit circle through - 1, we have a period-doubling bifurcation 
into a family of waves of period 6L,. Following Zufiria (1987 a)  we took the new branch 
of period 6L, (P-6 branch) that starts a t  the period-doubling bifurcation closer to P3, 
which corresponds to the point P3, in figure 5 (a) .  

Following figure 6 ( a ) ,  starting at P3, and continuing along the new P-6 branch we 
found that the branch finishes in a half-period bifurcation, which corresponds to 
another period doubling (point Ph9 in figures 5 and 6) of the P-3 branch. The whole 
branch and the behaviour of the Floquet multipliers along the branch are shown in 
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figure 6. We can see in the figure that the behaviour found by Zufiria (1987a) for 
gravity waves appears here again. At 4, on the P-6 branch the four multipliers are 
at  + 1.  As we go along the branch, they move along the unit circle and leave the unit 
circle through - 1. A t  this point we have another period-doubling bifurcation to a 
period 12L, wave. If we keep going along the P-6 branch the multipliers become 
negative and increases in absolute value up to a maximum and starts decreasing 
again. The multipliers go back onto the unit circle through -1 giving an inverse 
period doubling. Continuing on the P-6 branch, we find a point where the four Floquet 
multipliers are at + 1. This kind of bifurcation was studied by Rimmer (1978) (see 
also Zufiria 1987a). In the present case we found that the bifurcation is a symmetry- 
breaking bifurcation. 

Starting at  Pj, and following the P-6 branch, we find the same structure again. 
At  P j ,  the four multipliers are at  + 1. As we go along the branch they leave the unit 
circle through - 1, going back to the unit circle later to give a new symmetry-breaking 
bifurcation at  Fsb.  Thus, we find two symmetry-breaking bifurcations, points eb and 

Switching to the non-symmetric branch, that we call the P-6a branch, we found 
Eb- 
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FIGURE 6. P-6 and P-6 a branches arising from the period-doubling bifurcations of the P-3 branch 
shown in figure 5(a)  and from symmetry-breaking bifurcations of P-6 respectively. (a) Maximum 
amplitude of the wave versus T~ along the branches. (b) Plots of the shape of the wave at different 
points along the P-6 branch. (e) Plots of the shape of the wave along the non-symmetric P-6a branch. 
The numerals refer to the location of the points shown in (a). 

that the branch starts at  f& and finishes a t  Psb. So the non-symmetric branch 
connects the two symmetry-breaking bifurcations. 

In figure S(c), we show non-symmetric waves a t  several points along the branch. 
We found that, in the present case of gravity-capillary waves, non-symmetric waves 
of less than six crests are possible. Zufiria (1987a,b) found that for gravity waves six 
is the minimum number of crests that is needed to have non-symmetric waves. When 
capillarity is introduced, crests can appear and disappear along the branches as the 
capillarity is changed. In the present case, we can even have non-symmetric waves 
with only two crests. 

Keeping 71 constant we tried to continue in the period with the idea of determining 
whether solutions with very large period were possible. We found that the period 
cannot be increased arbitrarily because the branch ends on a symmetry-breaking 
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FIGURE 7. Family of periodic orbits coming from FP2 for 71 = 0.05 and c2 = -0.01 with the 
period as parameter. 

bifurcation similar to P3, 6. This suggests that non-symmetric solitary waves are not 
possible in region I, and non-symmetric solutions exist only in a bounded domain 
on the L)-plane. 

6. Solitary-wave solutions 
The problem of solitary waves travelling on finite-depth water with surface tension 

was first considered by Korteweg & de Vries (1895). They showed that solitary waves 
exist for sufficiently large values of the surface tension. The waves that they obtained 
are actually depression waves. Recently, these results have been rederived by 
Vanden-Broeck & Shen (1983) and Benjamin (1982), using a systematic perturbation 
expansion. These results left open the question of what happens to the solitary wave 
as the capillarity is decreased. Hunter & Vanden-Broeck (1983) performed 
computations for the solitary wave with surface tension using the full water-wave 
equations. They found that as 7 tends to t from above the solitary wave develops 
a large number of inflexion points, and the computation becomes very difficult. They 
were not able to compute solutions for 7 < 0.21 with c = 0.954 because too many 
points were required for convergence. 

Another apparent result that follows from the studies described above is that for 
a given value of the capillarity parameter and phase speed or amplitude, there exists 
a unique solitary wave. 

In the present section we use our model to provide evidence that the solitary wave 
is not unique, and different solutions are possible for the same values of the 
parameters close to the resonance point, i.e. 7 x t. We also analyse the influence of 
the capillarity on the solitary wave and the possibility of non-symmetric solutions. 

Consider the FP2 point. As already seen in the previous section, for all values of 
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71, there is a one-parameter family of periodic orbits coming out from the fixed point. 
We found that for wavelengths L such that L < L,, as capillarity is changed keeping 
the period fixed, the family connects the two fixed points. Let us now analyse what 
happens when larger wavelengths are considered. 

We fixed the value of the capillarity parameter at r1 = 0.05 and the phase speed 
at  c2 = -0.01, which corresponds to a point in region 111. Starting at FP2 (point B” 
figure 3), we continued along the one-parameter family in the period, i.e. following 
a vertical path in figure 3. We found that the family ends up in an orbit that is 
homoclinic to the origin FP1. This homoclinic orbit corresponds to the depression 
solitary wave observed by the other authors. In our computations we were able to 
increase the period of the orbits up to values of order lo6. We found that the orbit 
had already converged to the homoclinic one for periods of order lo2. Hence, we 
considered this as good evidence that the orbit being computed corresponds to the 
homoclinic one. 

Several orbits of the family are shown in figure 7 .  We can see how the homoclinic 
connection appears as the limiting wave for the family as the period is increased. 

In order to find the effect of the capillarity on this family, we took an orbit of the 
family, that corresponded to a wavelength L = 17.7 (point G figures 3 and 8), and 
we continued it in the capillarity parameters rl, keeping the period constant. In  
figure 8 we plot the norm of the solution versus 71. The norm that has been used is 
defined as 

llu112 = Jo (u;+ui+ui+ui)dz. 

In the direction of increasing capillarity we found, as we already knew, that the family 
ends in the fixed point FP2 (point B”’ figures 3 and 8). Decreasing 71, we first found 
a fold, a minimum in T~ (point E figures 3 and 8), and after that the branch finishes 
in a half-period bifurcation (point F figures 3 and 8). Hence for this wavelength, for 
a given value of 71 and cl, the solution is not unique. This suggests that the solitary 
wave might not be unique (see figure 8). Therefore we fixed the value of 71, and we 
continued in the period for the two different solutions (points a and b in figure 8). 
We found that both solutions converged to solitary waves, and they were different. 
Hence depression solitary waves are not unique. In figure 9 we show the two solitary 
waves that we obtained. Computations were again carried out up to periods of order 
lo6, finding again convergence for periods of order lo2. 

Notice that the two homoclinic connections lie in region 11, where the origin FP1 
has four complex eigenvalues. Therefore we find oscillations at the beginning of the 
tails of the solitary waves. The number of crests is finite because the real part of the 
eigenvalues kills the crests and causes the exponentially decaying behaviour. The 
number of crests increases as the capillarity decreases. 

Notice that the minimum of 71 along the branch is located exactly at the separation 
point between regions I and 11, this being true for whole range of values of c2 and L. 
A t  this minimum, the real part of the eigenvalues of the origin is zero and the solitary 
wave has an infinite number of crests. These oscillations explain Hunter & Vanden- 
Broeck’s (1983) numerical results, and their problems of convergence as capillarity 
was decreased below 7 = $. 

Going back to the period L = 17.7 branch and looking at the Floquet multipliers, 
we found that at  FP2 the multipliers are real and positive. As 71 is decreased we find 
a point where the four multipliers are at + 1, and after that they become real and 
positive again. This is the same behaviour as we found on the branch P-3 of the 
previous section. Examining the solution at  this point, we found that the wave has 

(28) 
l L  
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FIGURE 11. Approximate non-symmetric solitary wave for L = 100, T~ = - 0.039 and 
c2 = -0.01. 

three equal crests per period. Thus it corresponds to a period tripling on a branch 
of period +L = 5.9. The period +L branch is a short-wave branch. Recall that in our 
computations of 35 we found that on a short-wave branch there is only one 
period-tripling bifurcation, and this bifurcation gives a wave corresponding to a 
long-wave branch coming out from FP1. But those computations were performed 
using a period of L, = 4.138. When the period is larger, on the short-wave branch 
another region appears where the Floquet multipliers are on the unit circle, and 
therefore there are two period-tripling bifurcations. The new one is the one that we 
have found in the branch coming out from FP2. 

Going along the branch beyond the period-tripling point, we found that the 
multipliers went onto the unit circle. Again we found the same behaviour as on the 
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branch P-3. This suggests the possibility of existence of non-symmetric solitary 
waves. On this branch where the multipliers leave the unit circle through - 1, we 
have a period doubling. We took the new branch that corresponds to a wave of period 
2L = 35.5, and computing along it with the period constant, we again found the same 
behaviour as along the branch P-6 and correspondingly a symmetry-breaking 
bifurcation. The bifurcation diagram is shown in figure 10. We took the new branch 
and computed some points on it. For one of these points, we fixed the capillarity and 
continued in the period, and we found that the orbit converges to a non-symmetric 
orbit homoclinic to the origin. This orbit corresponds to a non-symmetric solitary 
wave. In figure 1 I we show this approximation to a solitary wave for a period of 100. 

The non-symmetric branch was found to finish on another symmetry-breaking 
bifurcation, as happened in the case studied in the previous section. 

7. Conclusions 
In the present work, we have developed a weakly nonlinear model to describe 

low-amplitude and small-dispersion gravity-capillary waves on water of finite depth. 
The model has been obtained from the Hamiltonian formulation of the water-wave 
problem. We have found that the analysis of permanent-form travelling waves using 
this model reduces to the study of the properties of a discrete Hamiltonian system 
of two degrees of freedom. 

Using the dynamical systems theory for Hamiltonian systems, we have studied the 
bifurcation structure of our model. We have been able to reproduce results on the 
non-uniqueness of solutions in addition to showing that non-symmetric Wilton’s 
ripples are possible. They appear, as happened in the case of gravity waves (Zufiria 
1987a, b ) ,  via a spontaneous symmetry-breaking bifurcation. We have found again 
the same bifurcation tree as the one found by Zufiria ( 1 9 8 7 ~ )  for finite-depth gravity 
waves, Zufiria (1987b) for infinite-depth gravity waves and Green et al. (1981) for the 
fixed point of area-preserving maps in the presence of symmetries. This gives one 
more example of the universality of this structure in Hamiltonian systems. We have 
also seen that the symmetric solutions that were known previously are just a subset 
of the solutions coming from the complex bifurcation structure of Hamiltonian 
systems. 

Numerical evidence is presented showing that solitary waves with sufficiently large 
surface tension exist. For 7 > 4 the solitary wave is a depression wave. When the 
surface-tension parameter 7 is decreased below i, inflexion points appear in the profile 
of the wave. The tails of the solitary wave start having oscillations, the number of 
crests being finite. It seems from our results that the solitary wave does not exist 
in region I, i.e. 7 < 4-(-8(c-1)/45):. For this value of 7 ,  we found a fold in the 
branch of solutions. This means that the solitary wave is not unique. Actually, we 
have computed two different solitary waves for the same value of the parameters. 
Both solitary waves travel with the same speed but have a different crest structure. 
We have also seen that this is just the beginning of a more complicated structure 
of solutions. In  particular, we have found that a symmetry-breaking bifurcation is 
possible for the solitary-wave solution. We have computed solitary waves starting 
from periodic non-symmetric solutions by increasing the period up to very large 
values (L x lo6). We have found that the solution converges very fast to a 
non-symmetric solitary wave. 

Once again we have found that the bifurcation properties of water waves are related 
to the Hamiltonian structure of the problem and its symmetries, and that the 
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Hamiltonian formulation seems to  be a powerful tool to analyse this kind of problem. 
The stability of all these solutions is an interesting open problem, which we leave as 
the subject of a future study. 

Let us consider the possibility of an experimental check of all these solutions. All 
these phenomena appear close to the resonance point 7 = $, which corresponds to a 
depth 

h = (3'. 
The typical phase speed c of the waves for this depth is given by 

(29) 

From Bernoulli's equation it follows that for waves of amplitude a and wavelength 
A,  the characteristic velocity vC in the flow is 

a 
V, = - (gh):. 

h 

Given the above definitions, the Reynolds number of the flow can be defined as 
follows : 

Inertial forces v2 /h  h a 
Viscous forces vu,/h2 v A 

Re = - -c- - - - (gh):, 

where v is the kinematic viscosity. Using (29) the Reynolds number Re can be 
rewritten as 

Assuming a x p2 we find that the characteristic frequency in the flow, which is 
important in order to generate the waves, can be written as 

Another parameter which gives a good idea of the validity of the irrotational 
hypothesis and the possibility of performing experiments is the damping coefficient 
y (Landau & Lifshitz 1978, p. LOO). This coefficient measures the exponential 
dissipation of the mechanical energy of the wave with time ( E  oc e-zYt). For the 
present case this coefficient is 

(35) 

I n  table 1 we show the values of these parameters for four different fluids taking 
a l h  = lop2 and two values of the acceleration due to gravity. For an experiment 
using water on the surface of the Earth we have that h = 4.76 mm, and c = 21.6 cm/s. 
The Reynolds number Re = 10. Evidently, the Reynolds number is too low to neglect 
viscosity in the model and assume potential flow. As was experimentally checked by 
Benjamin (1982), the waves are damped too rapidly for an unequivocal investigation 
of results of an inviscid theory. We can also see that for liquid helium I11 the situation 
is a little bit better, but still not satisfactory. 

The possibility of performing experiments in a weightless environment in space has 
completely changed the problem. I n  a spacecraft the gravity can be reduced by 
several orders of magnitude, in which case the potential-flow hypothesis is better. For 
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Water 

74.0 
10-2 

21.61 
10 

113.7 

14.9 

58 

0.475 

0.55 

3.86 

0.648 
0.563 x 

Mercury Helium I11 Helium IV 

36.8 2.5 1.9 
10-2 2.46 x 10-4 2.31 x 10-4 

0.335 0.088 0.077 

6 33 29 
135.4 264.3 282.4 

1.11 0.40 0.49 

10.51 2.67 2.42 
3.24 1.66 1.55 

34 186 163 
0.772 1.506 1.610 
1.134 x 0.405 x 0.495 x 

18.14 9.29 8.70 

TABLE 1. Values of some parameters for different fluids and different values of the acceleration due 
to gravity close to the critical point r = j. The values of T and u for the helium were taken from 
Keller ( 1969). 

example if g = m/s2, we find that the typical depth on water is h = 14.9 ern and 
the phase speed of the waves c = 3.86 cm/s. For this case Re = 58. As the gravity 
is decreased, the Reynolds number increases, and the model is better. The typical 
length of the problem also increases as the gravity decreases. We find that for liquid 
helium I11 Re = 186 and h = 2.75 em. It seems from the results shown in table 1 that 
liquid helium is the best candidate for an experiment among the fluids that we have 
considered. It seems to be possible to find a compromise solution in the scales, that 
could make an experiment in space possible. 
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