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Abstract

Estimates statistics of the first two power spectrum moments from

the pulse pair covariance are analyzed. The input signal is assumed

to be colored Gaussian and the noise, white Gaussian. Perturbation

formulas for the standard deviation of both mean frequency and

spectrum width are applied to a Gaussian shaped power spectrum,

and so is a perturbation formula for the bias in the width estimate.

Mean frequency estimation from interlaced pulse pairs is pre-

sented. Throughout this study, estimators from independent,

spaced, and contiguous pulse pairs are compared to provide a con-

tinuum of statistics from equispaced tightly correlated to statistically

independent pulse pairs.

Spectral moment estimation by covariance argument
techniques is increasing as an important signal processing
tool in the analysis of pulse Doppler echoes from distributed
scatterers [1].

Hyde and Perry [2] suggested a version of the covariance
technique for first moment estimation, and Woodman and
Hagfors [3] used it to measure mean ionospheric motions.
Independently, Rummler had proposed estimators of both
mean and variance from pulse pair bursts [4], [5] . Hof-
stetter [6] and Miller and Rochwarger [7] established maxi-
mum likelihood properties of these estimators. Furthermore,
Miller and Rochwarger analyzed the first and second order
statistics of the estimators. The probability density of the
mean frequency for a large number of independent pairs
can be found in [3], while Berger [8] calculated the density
for any arbitrary number of independent pairs.

To process independent echo sample pairs requires much
longer observation time; hence it has been suggested [4]
that independence in a uniform pulse train can be created by
changing the carrier frequency on altemate pairs. This, of
course, considerably complicates the system's hardware.
Moment estimation from contiguous pairs with constant
carrier frequency is the most direct technique to implement
on conventional radars. Arithmetic units that calculate
spectral momnents using the fast Fourier transform algorithm
also can be used. Although these units rapidly calculate the
spectrum and its moments, all echo samples comprising the
time series must be stored prior to calculations. When data
fields consist of a thousand sample volumes along a radial
and each volume generates a few hundred samples, the
storage required normally exceeds a million bits.

Estimates from contiguous pairs (with a common pulse
among each two pairs) were analyzed by Benham et al. [9],
and Berger and Groginsky [10] , who found the standard
deviations of the mean and variance. In this paper the per-
turbation analysis of Benham et al. [Appendix A] is ex-
tended to include arbitrarily spaced pulse pairs. Under
appropriate limiting conditions, it is shown how this more
general situation reduces to previous results of Berger and
Groginsky [10] (pair spacing equal to intrapair period),
Miller and Rochwarger [7] (large spacing between pairs or
uncorrelated pairs) and Lank et al. [11] (zero width spec-
trum or fully correlated signal samples). Moreover certain
results not available in [10] are presented. Estimation of
mean frequency from interlaced unequally spaced pulses is
analyzed in detail. Further, the usefulness of such a tech-
nique for staggered PRF radars is discussed briefly.

11. Mean and Width from Correlated Pulse Pairs
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Assume that the detected radar echo is a sample of the
complex envelope Z(t) with Gaussian in-phase and quadra-
ture components that contain both colored signal and white
noise contributions such that the autocorrelation function is

r(7) = S(T) +N60,O (1)
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where s(r) is signal autocorrelation, N is the noise power per
sample, and 6T'O is the Kronecker delta symbol. Assume
that staggered pulses are transmitted and spectral moments
estimated from their sampled returns spaced as depicted by
Fig. 1. These moments are related via the Doppler equation
to the mean velocity and velocity spread.

The complex video signais at times i(Ti + T2) and i(T1 +
T2)+ T, are

PAIRS FOR CALCULATiNG U

h1Ti- rT2 f TIME

O 2 3 2i 2i+ \
PAIRS FOR CALCULATING W

Fig. 1. Staggered pulse train. The number of pairs with T1 and with
T2 separation between pulses is M.

Z2i = Z[i(T1 + T2)] = Z(iT)

Z21+I = Z[i(T, + T2) + T1 ] = Z(iT + Ti) (2)

from which the autocorrelation function for a T1 lag is
estimated as

M-1
u= Z Z (3U 10 2i 2i+1

whereM is the number of pairs that are spaced T seconds
apart. An autocorrelation estimate W for a T2 lag is ob-
tained from pairs also spaced T seconds apart:

M-1
w= Z Z (4

1=0 2i+ 1 2i+2 (

Motivation behind this particular staggered pulse train
and the consideration of two covariance estimates is two-
fold. First, by allowing the ratio T1/T to vary from one to
zero, all cases from contiguous pairs (with a common pulse)
to independent pairs are treated in a single unifying theory.
Second, Doviak et al. [12] have shown that from two co-
variance estimates at different lags some aliased mean veloc-
ities can be retrieved. Each individual unambigruous veloc-
ity is inversely proportional to the corresponding pulse
separation (T1 or T2); the composite maximum unambig-
uous velocity obtained by comparing the two estimates is
increased. An accurate mean velocity estimate can be ob-
tained only if the difference between the velocities is largely
due to different amounts of aliasing associated with the two
time separations. The correlation between to mean veloc-
ity estimates relates to accuracy of ambiguity resolution;
this correlation is evaluated in Section IIB. The following
two mean frequency estimates and a spectrum width esti-
mate are considered:

frequency:

fi = (2rT1')- arg U

f2 = (2irT2) -1 arg W

width:

w2 =(2r2T) _l1-IUI/(Y-N)] (6)

where Y is the total power estimate of the returned pulse
train

L- 1
Y=L-' 1 IZ 12 (7)

k=O k

and L is the number of pulses (L = 2M for independent or
spaced pairs; L =M + 1 for contiguous pairs).

The rationale behind these estimators can be found in
Woodman and Hagfors [3], Rummler [4], [5], or Miller
and Rochwarger [7]. Signal spectrum widths and receiver
noise progressively degrade the estimates.

A. Mean Frequency Estimate Variance

To proceed further with the analysis, we need specific
autocorrelation functions. A Gaussian shaped power
spectrum represents various turbulent media very well and
hence will be used throughout this study. Its autocorrela-
tion is

r(T)= Sß((r)ew ° +N (8)

where

-2 W2 72

Here S andN are the signal and noise power per sample, o =
2lTfo the mean radian frequency, and w the spectral width.
With this autocorrelation the variance [see Appendix (B7)]
becomes

varf1 = [8r2T23(T1)]-1 {M-2 [1 _ ß2(T1)]

M- i
* (z j3ß2(mT)(M- Im1) +N2/MS2 +(2N/MS)

* [1 -ß(2 7bT-T +0 [ß3(277M]T Ti,0]} (9)

Note that the Kronecker delta symbol in (9) is always zero
for the spacing of pairs as in Fig. 1. The reason we include

(5.a) it is to show that (9) reduces exactly to Berger and Groginsky
[10, eq. (45)] when pairs are contiguous (T1 = T). For in-

(5.b) dependent pairs (T =» oo), (9) simplifies to

var fi = (87r2T2M- [(1 +N/S)2 -32(T1)]/2(T1) (10)

which is identical to Miller and Rochwarger [7, eq. (17)].
Expression (9) can be evaluated exactly for various number
of pairs M; normalized widths wT, and various signal-to-
noise ratios S/N. For a large number of pulse pairs, the
only significant term in the summation (9) is the one
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Fig. 2. Standard deviations of the mean frequency estimates for
both independent (dashed line) and contiguous (solid line) pulse
pairs. Note the almost constant deviation values between 0 and 0.1
and the doubling in value at about 0.2.

multiplied by M, and the variance is

M-1
var f = [8Mrr2 T,ß2(T1)] 1 {[1 - ß2 (T,)] -(MT 1)

obT-T 90j32(MT) +N2/S2 + 2(N/S)

[1 -ß(271T_Tro ] } + O(M2).

spaced pairs are well correlated, the signal-to-noise ratio is
large, and wT< (2rr)'-' .

The normalized standard deviation, V§fMYSD (f T1),
given in (9) is plotted in Fig. 2 which reveals that normalized
spectrum widths wT, should be less than about 0.2 if var-
iance is not to be strongly dependent on width. The curves
for contiguous pairs give a standard deviation that is larger
(about 3 times at wT, = 0.3) than those plotted by Berger
and Groginsky [10] , because the approximate formula (13)
used in [10] is only valid for wT, < (2ir). The estimate
standard deviation is smaller for independent pairs when
the signal-to-noise ratio (S/IN) is large, but with increased
spectrum widths both deviations are nearly equal. However,
at low signal-to-noise ratios, mean frequency estimates from
contiguous pairs are better. This behavior perhaps can be
best understood if one considers a perfect sinusoid imbedded
in noise at the input. Substitute the autocorrelation

j mT
r(mT,)=Se" +Nö5, (16)

into the variance expression (B7) to obtain*

var (fl T, )= (87r2M)-'{2(N/S) -2(N/S) [(M- 1)!MIT6 T- 0O

(17)
(11) For contiguous pairs (T, = T) this reduces to

Furthermore, when wT < (2ir)- 1 but MwT> (27r)-',
the summation can be approximated with the integral

4ß2(mT) rf exp(-2 * 2r2 w2 m2 T2) dm= (2 wT-'1

(12)

to yield the following approximate variance equation:

var f,1 [87r2M2(T )T2] 1 {2ir3 2wT2/T

+ N2/S2 + 2(N/S) [ 1 -1ß(2T»T T- O] (13)

At large signal-to-noise ratios (13) becomes

var f, w/4FMT32 (T,)- (14)

Under noiseless conditions, it is instructive to compare the
number of samples needed to achieve equal variance reduc-
tion (of the mean estimate) when contiguous pairs are
used with the number when spaced but correlated pairs are
employed (sample pair separation equals T,). The ratio of
the two numbers is

MC/Ms = T/T1 (15)

where M, is the number of contiguous pairs and Ms is the
number of spaced pairs. Since the total dwell times are
equal,MT, = MsT, spaced pairs (which are fewer in num-
ber) achieve the same variance reduction during the dwell
time as do the contiguous pairs. This is true only when

var (fi T,) = (8nr2M)- [(2/M)(N/S) +N2/S2] (18)

which is identical to Lank et al. [11, eq. (75)]. When pulse
pairs are spaced, the variance is larger:

var (fTi) = (8ir2M)-' [2(N/S) + N2/S2 ] (1 9)

because the noise decorrelates more the sample pairs, i.e.,
there is not a common pulse which partially cancels the
noise effects.

Various T1 /T values (Fig. 3) show the standard deviation
behavior between the two extremes, independent and con-
tiguous pairs. As expected, when the signal-to-noise ratios
are large, the standard deviation improves with an increase
in separation between pairs T (i.e., longer dwell or observa-
tion time). At low S/N (S/N< 10 dB) two regions on the
wT, axis are evident: in one where wT, < 0.1, contiguous
pairs yield better mean estimates, while with larger wT1,
independent pairs are superior.

Perturbation analysis shows a variance that monotonically
increases whereas it is known that the upper bound for the
variance (white noise input wT, > 1) is (12)-1. The dis-
crepancy is due to the fact that the error ie(T1)i >lr(T1)i so
that the perturbation expansion [see Appendix (A3a)] is
not valid.

*Note that (B5) and (B8) are not valid for sinusoidal signals be-
cause expansion into moments (B3) is not directly applicable; it
doubles the power of deterministic signals. However in all the
derived statisties, differences of (B5) and (B8), (and similar expres-
sions) are taken so that the excess sinusoidal power cancels out.
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Fig. 3. Mean frequency estimate standard deviations for all three
pulse pairs: independent, spaced, and contiguous pairs. At infinite
signal-to-noise ratios, independent pairs are best at all wT1 values.
At lower ratios (SIN < 3 dB) the contiguous pairs are superior in the
region wT1 < 0.1. The improvement in standard deviation can be
over 50 percent and is largest for sinusoidal signals.

B. Correlation Between Mean Frequency Estimates

The correlation between two frequency estimates f and
f2 (5a), (5b) and the standard deviation of their difference
is computed in this section.

With a Gaussian spectrum shape (8), the correlation
equation (BIO) is

M-1

E(601 602) = [2M2(T1)ß(T2)] { m=-M- 1)

(ß(mT+T1) ß(mT+T2)

-ß[(m + 1)T] ß(MT) (M-mi)

E - 5 F T,-T, ~~~ORMLIZED SPECTUM WIDTH, wT,

-10 _

Fig. 4. Correlation coefficient between two mean frequency est;-
mates obtained from interlaced pulse pairs (T, T2 )- The corre-
lation for a sinusoid at an infinite'signal-to-noise ratio is -1. Note
that for wT1 > 0.3 correiation is virtualJy zero.

M-1
Mz 1ß2 [(m + 0-5)T] -2ß(T (N/S)}/{[[1 - 12( )

M-1

-M 132ß(mj+N2/S2 +2N/SI½1/

-(-1

M-1

[[ _ß2(T2)]MN22N(M1)ß2 (mT) +N2 /S +2NS2 }. (22)

Further simplification of (22) is possible when wT, and
wT2 are small:

cor (fl, f2) - {exp[-72W2(T1 - T2)2]2r3/2 wT, T2/T

- 2 exp(-2ir2w2 r)(N/S)}/(2rr3/2wT, T2/T

-(2M - 1) (N/S) (T)}. (20)

For large M, we retain terms next to M in the summation
(20) to obtain

E(601 602) = 1[2Mß(T1))ß(T2)1 {exp[-ir2w2(T1 - T2]21
- [1 -exp (-4ir2w2T1 T2)]

M-1

- ( 1ß2 [(m +0.5)T]
-(M-1)

- 2ß(T) (N/S)} + O(M-2) (21)

which yields the correlation coefficient

cor (fi, f2) ; {exp [-ir2w2(T1 T2)2 ]

[ 1 -exp(-41r2W2 T1 T2 )]

+N2S2 + 2N/S). (23)

When the input signal is sinusoidal, the correlation [from
(20) and (18)] simplifies to

cor (fl,f2) =-(l -l1/22M)/(l -N/2S). (24)

lt is anticipated that in most applications T1 and T2 will
not differ by much; hence the correlation (21) for T, = T2
was computed. At wT, > 0.3 the two estimates (Fig. 4)
are uncorrelated. Almost identical results were obtained
for ratios T1IT = 4/9 and T1IT = 3/7. Next, the standard
deviation SD is found:

NkYo SD (fh - f2)T1 = --vM [fSD2f1

-2 cor (fl, f2) SDf1 SDf2 + SD212]l/2 (25)

From symmetry considerations it is deduced that, for T a
constant, the SD(fl -f2) is smallest when T1 = T2. Also
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+ ß2 (T1) m - (ß2 (mT [2 +[Lß2 (Ti)]

m -(M 1)

+f32(mT+T1) -4ß3(mT+ TI)ß3(mT)/ß(T1)

* (1 - mi/M)}.
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Fig. 5. Standard deviation of the difference between two mean fre-
quency estimates obtained from interlaced pulse pairs (Tl = T2 )-
The deviations are welt behaved (constant) until wT1 ; 0.12 and are

double in value at wTJ 0.2.

Note that (27) reduces exactly to Miller and Roclhwarger
[7, eq. (19)1 when pairs are independent:

Mvar (QwZTI) = {[1 -ß2(T)]2 + 2[1 -32(T )1(N/S)

+ [1 + ß2 (T1)] (N2 /S2 )}/{1 6ir2 [1-ß(T, )] }. (28)

At narrow spectrum widths [wT, < (21r)-' ], the following
approximations for the variances are possible.

Independent Pairs:

M var (6öwZT) = 1 (wT, )2 + 1 [r-2 - (wT, )2 1 (N/S)

+ {[[rr4(wT)2 ]-f _ IT-2 + (wT7)2}(N2)
for this sample spacing the SD is almost constant at wT, <
0.1 (Fig. 5). Because the correlation between estimates is
poor and each individual standard deviation increases with
wT1, the SD of the difference grows very rapidly for wT, >
0.25. Other ratios T,/T yield somewhat larger standard de-
viations that still retain the above general behavior. When a

sinusoid is corrupted with additive noise, the SD is found to
be

V§MSD(1 -f2)T1 = (27r)-1 {(N/S +N2/2S2)

[ 1 + T2, /T22 + 2T1 (1-l1/2M)/T2 (1 + N/2S)] } ,/2 . (26)

As expected with no noise, the deviation is zero, and at
low signal-to-noise ratios, it is inversely proportional to that
ratio. Again the optimum time spacings are T, = T2 at
other spacings the variance of the difference is larger.

C. Variance of the Width Estimate

Spectrum width estimator (6) is independent of the
mean frequency (A9); therefore, there is no motivation to
consider samples spaced T, and T2 seconds apart. Only the
spacing T, with distance between pairs T= T1 + T2 is
treated in this section.
A formula for the width variance is derived in (B1 5).

Specifically for a Gaussian autocorrelation function (8), it
is

M var (6iwT1) = {167r2 [l 1-ß(T)] i'

- {2 [1 -(1 + T-T o)ß (T )

+5T-T, 4(T,)](NS)+ [1 +(1 + TT o)

+ 0 [(wT, )3 ]. (29a)

Spaced Pairs:

M var (6iw T7, ) = 3wTl /32\ET + ' [§-2 (wT, )2 ](N/S)

+ J- {[Jr4(wT,)2 _ g-2 + (wT, )2}(N2/S2)

+ 0[(wT1)3]. (29b)

Contiguous Pairs:

Mvar (wT1 ) = (3/32V7) wT1 + (wT7 )2(N/S)

+ [3/7r4 (wT, )2 - 5/-r2 + 9 (wT, )2 ](N2/S2)

+0 [(wT, )3 ]. (29c)

The last three expressions differ slightly in that the
width estimates, for equal M, from independent pairs have
the smallest variance while contiguous pairs produce the
largest variance. Furthermore, the terms multiplyinglN/S
and N2/S2 are equal in (29a) and (29b), whereas the terms
next to wT, in (29b) and (29c) differ by a multiplying factor
T /7T.

Note, however, that the derived variance formulas can be
used as long as their dominant terms are smaller than
M(wT,)2; otherwise the perturbation equations take a dif-
ferent form (A12) through (A16). When the input signal
is a sinusoid, one finds the variance from (A16b):

var (wTi)=(2r5/2)-1(2+T T1, )/2(N/S)

+ O(M-3 2) (29d)

We note with relief that the variance is bounded and for
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Fig. 6. Standard deviation of the asymptotically unbiased width
estimate from contiguous pulse pairs. Note the poor quality of the
estimators at widths wT1 2ir- 1 and low signal-to-noise ratios. The
left portion of curves is valid when M is about 100 or larger and can-

not be extended, for arbitrary large M, to the origin because the
standard deviation there follows the M-1 /4 law.

zero noise the estimate is perfect. Contrary to theM' de-
pendence at larger widths the variance now has aM-
dependence. Equation (29d) for contiguous pairs T= T
was verified on a simulated time series.

Perturbation analysis determines a width estimate that
has both an asymptotic (A9) and a number of samplesM
dependent bias (B 16):

A(w) + B(w, M) = E(w')/w -1 (30a)

where we have defined the asymptotic bias as

A(w)= lün E(w')/w -1 = w~/w-1

= [1 -ß(T )]/V32vrwT, -1 (30b)

and theM dependent bias as

B(w, M) = E(6w )/w. (30c)

The asymptotically unbiased standard deviation

./WSD(8whT1)[l + A(w'1)]/lß(wT,) (31)

of the width estimate from contiguous pairs (27) shows
(Fig. 6) the poor quality of the estimators at large spectrum
widths wT, > (2ir)- 1 . At smaller widths, independent
pairs [7] and spaced pairs are somewhat better, but with
broad spectra all three have almost identical variances.
Although percentage standard deviation SD(6w'Tl)/wT, - 1
is large at small widths, it is not of great consequence. In
practice it is possible for a moderate range of widths (10
to 1) to choose an interpulse spacing T1 that yields accept-
able measurement accuracy.

Fig. 7. Normalized M dependent bias in the width estimate from

contiguous pulse pairs. This bias is very large at wT, > 0.5; hence
the number of samples at these widths must be several hundred in
order to obtain a useful estimate. Results towards the origin are

valid forM > 100.

TheM dependent bias of the width estimator (B1 6) is

B(wT", M) =-«T, )l8MirwT,%f2[l- ß(Tl ] 2

*(2 [ß-32(T1) _ ß2 (T1)6T- T (N/S)
1,0

+[ß2 (T1)+2(l+6TT )](N2/S2
1,0

M-1
+ 1 fß2(mT)[l +ß-2(T1)] +2ß2(mT+TI)
m = -(M- 1)

-4ß(mT + T1) ß(mT)ßW1 (T1)}(1 - Im I/M))

(32)

lt is seen from (32) that B(wT,) « (M- 1) + O(M-2); thereby
it is convenient to calculateMB(wT", M). This was done
for various pulse pair estimators. The results, when con-

tiguous pairs are used (Fig. 7), suggest that this bias can

ruin the estimate if the widths are wT, > 0.3 even for
M > 10. Moreover, determination of the unbiased estimate
is not accomplished easily because B is a complicated func-
tion of w.

For independent pairs, (32) simplifies to

B(wT,M)=- [MrwT 16 2(T1)]- 1

{[1 -ß(T1)]312 [3ß2(T1) + 5ß(T1) + 2]

+ 2[1 1ß(T )]-1/2[ß2(T1) + ß(T1) + 2] (N/S)

+ [1 -ß(T,)]- 312 [-3ß3 (T1) + 4ß2(T1)

- 3(T1) + 2] (N2/S2)} + O(M-2) (33)
which agrees with Miller and Rochwarger's results [7].
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At small spectrum widths [wT, < (271r)1 , the following
equations approximate the M dependent bias.

Independent Pairs:

MB(wT" M) =- (7rwT, )2 - 4[(rwT,)-2 + 1 ] (N/S)

- [(rwT1Y)-4 + 1 1 /2(rrwT1)2 +4j(N/S2)

+ 0 [(wT, )2 ]- (34a)

Spaced Pairs:

MB(wT,M) 3/64g3/2wT- [(-rwTi)-2 + 1](N/S)

-j [(irwT,)4 + 1 1 /2(TwT1 )2 +4](N/S2)

+ 0 [(wT, )2 1- (34b)

Contiguous Pairs:

MB(wTi, M) =-3/647r312wT, - ' (N/S) - [(7rwT,)-4

+ 6/(7rwT1 )2 + ] (N2/S2) + OU(wT,)2 ]. (34c)

The similarity between (34a), (34b), and (34c) is evident.
Terms next to NIS and N2/S2 in (34a) and (34b) are identi-
cal and slightly different from corresponding terms in (34c).
The noise independent term in (34a) is proportional to w2
while in (34b) and (34c) it is proportional to w 1.

Again expressions for the bias are valid as long as
M(wT1 )4 S2/N2 > 3/(32ir4). A pure sinusoid has an infi-
niteM dependent bias (30c) since the expected value E(öw')
differs from zero when even a slight noise is present. This
expected value reads (A16a)

E(Sw'T1) =[2(I - _5 (NIS)/2

+ (3 + 25 T- o) (N/S)312] 1

[M34(27u)r8I(3/4)(2+6 )1/4]

+ O(M- 3 /2)

and is not significant since it is proportional to M- 3/4
whereas standard deviation decays as M- h4.

111. Conclusions

Investigators developed formulas for the standard devia-
tions of mean frequency and spectrum width estimates
from both independent and contiguous samples pairs. More
general expressions (for correlated pairs) are presented in
this paper. In the limit when separation between pairs is
very large, the formulas reduce to previous results [7] for
independent pairs; at the other extreme when pairs are
contiguous, the formulas agree exactly with the Berger and
Groginsky [10] results. Throughout the study, pulse
samples are assumed to form a narrowband complex

Gaussian process. In order to obtain quantitative results,
a signal with a Gaussian power spectrum of variable width
immersed in white noise was analyzed. This signal often rep-
resents radar echoes from random media; hereafter these
reported results can be used whenever mean velocity and
variance from such media are estimated by means of
.pulse pair technique."

lt is shown that independent, spaced, and contiguous
pulse pairs are very comparable mean frequency estimators.
They are unbiased when the signal spectrum is symmetric.
For noiseless signals, spectrum width is responsible for the
mean frequency standard deviation. Therefore, estimates
from independent pairs yield the smallest standard devia-
tion (for fixed M) and those from contiguous pairs the largest.
Furthermore, it is demonstrated that at small spectrum widths
[wT, < (2ir)-1 1 the total acquisition times for contiguous
pairs and spaced pairs should be equal in order to achieve
the same standard deviation. At low signal-to-noise ratios
(S/N< 10 dB), the noise is the dominant factor in the mea-
surement uncertainty; therefore, contiguous pairs with the
noise effect partially cancelled are superior provided the
spectrum width is small, wT, < 0. 1. The improvement
(over 50 percent) in the standard deviation depends on the
spectrum width and is best for sinusoidal signals because
errors are due exclusively to noise. All three estimators
perform well (standard deviation gradually increases) for
widths wT, < 0.25. At wT1 = 0.25 the standard deviations
are about twice the value at zero. With larger wT", the
variance increases rapidly due to the loss of coherency, i.e.,
broader spectrum increases aliasing effects until in the limit
the signal becomes white noise throughout the Nyquist in-
terval.

The correlation coefficient between two mean frequency
estimates from interlaced pulse pairs with variable separa-
tion between samples depends on the signal-to-noise ratio
and the spectrum width. At widths wT1 > 0.3, it is negligibly
small; while at smaller widths and large signal-to-noise ratios,
it is positive; otherwise the correlation is negative. When a
frequency of a sinusoid is estimated, the correlation coeffi-
cient is negative for all signal-to-noise ratios. The standard
deviations of the difference in the two mean frequency
estimates are almost constant as long as wT1 < 0. 1; past
that value they double at about wT1 0.2. Equal pulse
spacing among interlaced pairs is optimum in that it mini-
mizes the difference standard deviation. lt is anticipated
that equally spaced interlaced pairs will not be used in
practice since regular pulse pairs are simpler to implement.
Unequally spaced pulse pairs do offer the advantage of larger
maximum unambiguous range and velocity.

The spectrum width estimator from pulse pairs is not as
well behaved as the mean frequency estimator. This is
expected since the estimate of the autocorrelation second
derivative is more prone to noise degradation than the first
derivative. In addition, the width estimator is biased even
when input signal spectrum is symmetric, whereas the
mean frequency estimator is not. Standard deviations for
all three (independent, spaced and contiguous pairs) width
estimators are very close, yet independent pairs reduce most
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the standard deviation. Variance increased at small widths
is due mainly to noise while at larger widths it depends
about equally on noise and spectrum width. Perturbation
equations for a degenerate case (sinusoidal signals) differ
from those of regular narrowband signals. Sinusoids without
noise produce zero variance; noise creates bounded variances
that are inversely proportional to the square root of the
number of pairs, in contrast to the M-1 dependence at
larger widths.

The asymptotic bias, equal for all three estimators, is
positive and increases with the speetrum width. On the other
hand, the number of sample dependent bias is negative and
also high at large spectrum widths. Although this bias is
inversely proportional to the number of pairs, its high values
(about -100) require a large number of pairs. With sinu-
soidal inputs and no noise, mean value for all three estima-
tors is zero; additive white noise causes slight negative biases
that are proportional to M- 314.

All calculations, for Figs. 2 through 7, were carried with
at least 20 terms in the summations. Most curves in Figs. 2
through 6 were verified with simulated data [131 and some
real data [1], [14].

In summary, independent, spaced, and contiguous
sample pairs yield good mean frequency estimators. Due to
ease of implementation and good properties at lower signal-
to-noise ratios, contiguous pairs offer advantages. On the
other hand, interlaced spaced pulse pairs can be used to in-
crease the range velocity ambiguity region if signal spectra
are not too broad. The spectrum width estimator from
pulse pairs is weaker, especially at narrow widths (wT1 <
0.01) where precision is poor, and large widths where the
bias and standard deviation become excessive. Considerable
caution must be exercised when data reduced by this esti-
mator are interpreted. In order to get reliabile moments
with the pulse pair technique, systems ought to be designed
such that normalized input spectrum widths seldom exceed
0.25.

Appendix A

Perturbation Analysis

Perturbation analysis is applied to derive the variance
of the spectrum mean and width estimators and the corre-
lation between the two mean frequency estimates. Inherent
assumptions for the validity of the perturbation statistics
are that the probability densities of the estimates are smooth
functions around the mean and that the perturbations are
not excessive. The first condition is always true in our
applications while the second improves with increased
number of samples [see Appendix (B1 7)].

that 01 = 0 1 + b 1 with the corresponding perturbation
equation for the autocorrelation F(T1) = r(T1) + e(T1). Re-
call that U = r(T1) and let U = rT1). Both U and e(T1)
are complex:

U= U +UJU

e er ie- (A2)

Benham et al. have shown [9] that second order expansion
of arg U, with respect to the real and imaginary error com-
ponents Er and ei (with e = U- U), yields the following
mean frequency variance:

varfl= (2rT1)-2 E[(601) ]

= (2rT1)-2 J Re {E [ IÜU/UI2] - E [(Ü/U)2]}.
(A3a)

Similarly, the variance of the second mean frequency esti-
mate [W = r(T2)] is

varf2 = (2rT2)-2 ERe{E[IW/W 2]-E[(W/W2j}. (A3b)

B. Correlation Between Two Mean Frequency Estimates

Perturbation analysis for the correlation between the
two frequency estimates is very similar to (A1), (A2), and
(A3) with the exception that now two estimates 01 and 02
must be combined:

01 = tan- [(U. + Ec)/(U + er)]

02 = tan [(W, + ei)/(Wr + erl -

(A4a)

(A4b)

The correlation coefficient, cor, can be found directly:

cor (01, 02)=E(601 602) N/[EPS01 ) E(602)]. (A5)

Since the variances E(601 ) and E(602) are given in (A3), it
is necessary to determine only E(601 602) From (A3) we
have

601 = Im (U/L and 602 = Im (W/W) (A6)

so that the expected value of the product becomes

E(601 602)=1- Re[E(U/U, W /W ) -E(U/U, W/W)].
(A7)

C. Width Estimate Variance

A. Mean Frequency Estimate Variance

Let the phase estimate be 01 = 27rf1 T1 such that

01 = arg U.

The perturbation equation for width estimate is [91

(A8)

(A1)

Assume small perturbation around the mean phase 01 such
where y is the error in the mean signal power estimate and
w is the asymptotic mean width
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w = lim E(W') = (Vh2rT) -1U1I/S] /2.
M°°>0

(A9) where F is the gamma function and erf the error function
defined by

Note the width is independent of the arg (U) and thus is not x - t'
affected by the spectrum position within the Nyquist inter- erf(x) = (2/1v4) f e dt.
val.

From (A8) the variance of the width is obtained (neglect- Appendix B
ingM dependent bias terms):

Statistics of
(41r2 TW)2 var (8iw) = (1 UI/S)2 E[y/s - Re(U/U- 1)] 2

In order t
- U/S i2 {var (Y/S) -2 Re [cov (Y/S, U/S)] the two meai

the following
4 Re E[IÜ/U-1 12 + (Ü/U 1)21} (A1O) are needed:

Recall that Yis the total signal plus noise power estimate E(Z2i Z2+1lj
(7). Finally, the bias of the width to second order in e and
,y is also obtained from (A8): E(Z2+1 Zi

(Al 7)

Pulse Pair Estimators for Correlated Data

to calculate various statistical parameters of
n frequency estimates and the width estimate,
g relationships for complex Gaussian processes

(Bl a)

(Blb)

(B 1 c)E(ii) = -(47r2Tiw)' l U/SI{var (Y/S)-Re[cov (Y/S, U/U) E(ZkZ) for all k and n

+4ReE[IÜIU/U 12 _ (Ü/U 1)2]} E(Z2 Z) = r[(f- i)T]

(All) E(Z2i+ Z2* ")=r[(j- i)T]

For extremely small spectrum widths [w1 « E(biw)] the
perturbation is singular and (A8) degenerates to

(A1 2)

from here:

= (27r2 T) U/SI{var (Y/S) -Re [cov (Y/S, U/U)]

+ ReE[IU/U- 112 (/U 1)2]}. (A13)

Note that the estimated width squared is negative, and
thus the width estimate is defined as

E(Z2 Z2 ) = r[(i - i)T + T1 ]

E(Z2 Z* ) = r[( - i)T + T2 ].

(B1 f)

(B1 g)

These expressions are used to evaluate terms that enter into
equations (A3), (A7), (AIO), and (A1 1). We start by find-
ing El U2 and E(U)2:

Eil 12 =M-2E(ZZ z zj1EZ2*i Z2i+ 1 Z2j Z2j+d (B2)

The expected value of the product of four complex Gaus-
sian variables can be expressed in terms of second order
moments:

(A14) E(Z* Z Z Z1 1 ) = E(Z* z )E(Z Z )
"2 2i+I j2+1 2i 2i+1)E 2/ 2j+1

There is nothing unusual with negative width estimates; they
are simply a predictable bias that can be accounted for.

With a large number of pairs, first order perturbations
in 5iw2 (A12) are Gaussian with mean j = E(«ii)2 (A13)
and variance u2

var(6W2) =a2 _ (44 )-1 (I Ul/S)2 E[y/S -Re(U/U- 1)]2.

+(* Z )E(Z Z~ )+ E(Z2i Z2/ 2i+1 2j+1

Insert (Bla), (Bld), and (Ble) in (B3) to obtain

E(Z2i/Z2+1 2i 2j+ 1) = )

+ r* [(i -i)T] r[(j -i)T].

(A' 5) Finally the sum (B2) yields

The Gaussian assurnption allows us to determine the bias
and variance of the estimator at extremely narrow widths:

E( W) = [,12F4I(3/2)/ar½F(3/4)] exp(- ,2 /4u2) +O(M- 3/2)
(Al6a)

var (8«') = (2/N/\i) a exp(_p2/2au2)

+ g erf(i/V/2 ) E2(6«') + O(M-312) (A16b)

E(ÜlU2) = Ir(T1)12 +M2
M-1

m = -(M- 1) r(M (M m 1).
(B5)

Calculation of E(U2) parallels the derivation leading to
(B5):

M-1
E(2) = r2(T1) +M-2 r(mT + T1)m*-(M-1)
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) = r(T1) = U

i+2)=T2)w=w

(Bld)

(Ble)

(B3)

(B4)

(B6)

(2w-)-' var (5 iV).

5 % 2 2Tj-1)-1 [l U+ eil(S +,y)1w = (2-ff

5 w' = 6 w' sign (5 l.v).
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Insert (B5) and (B6) into (A3a) to find the variance directly:

varf1= (2lrTTi)-2 1Re{-L - (Ir(mT)/r(T, )12
M2 m=-(M-1)

- r(mT + T, ) r*(mT - T1)/r2(T, )](M - Im 1)}. (B7)

The second mean frequency estimate variance is found by
substituting T2 for T, in (B7).

To evaluate the correlation (A7), we need the two ex-
pected values E(UW*) and E(UW) which are found follow-
ing the previous procedure:

+ ir(mT)lr(T1) 12 + r(mT + T )rr (mT - T71)/r2 (T1 )

4 r(mT + Ti) r*(mT^)ISrTi)] (M - Im 1)} (B15)

bias:
M-1

E(6w) =-[ Ir(T1) /4M2i 277IwS] Re{ ( 1 r(mT) 12/S2
-(M-1)

+ Ir(mT + T1) 12/S2 +i Ir(mT)/r(T )I12

-' r(mT + TD) r* (mT-T1i)/r2 (T1)
M-1

E(UÜW) = r(T1) r(T2) +Mm=2 1
-(M-1)

r*[(m +1)TI r(m7)(M- ImI1) (B8)

EÜ)= r(T1) r*(T2)+m2E(uw ~~M=-(M-1)
- r(mT + Ti) r*(mT + T2) (M - Im i). (B9)

Insert (B8) and (B9) in (A7) to obtain

M-1
E(601 602)=(2 )- Re{ - [1lmT + T )2 ~~m=-(M- 1)

* r(mT + T2)/r(T1) r* (T2)

- r[(m +1) T] r*(mT)/r(7T1) r(T2)](M - Im i)}. (B1 O)

The width estimate variance (Al 0) and bias (Al 1) are con-
sidered next. For both, the following four quantities are
needed:

M-1
var (Y/S) = (2M2S2)1{ (-1 [IimT

-2 r(mT + T ) r((mT)/Sr(T1)] (M - im 1)}

(B16)

The derived statistics are correct when the perturbation
variables e and y (Appendix A) are concentrated near their
origin. A large number of samples and a good signal-to-noise
ratio help the concentration. To insure a sufficient number
of independent samples the dwell time must be long com-
pared to decorrelation time:

2irMwT> 1. (B1 7a)

Relationships between S, N, and Mwhich insure the de-
rived statistics are valid will now be established. Note that
the variances of the normalized errors are given by (B1 1),
(B13), and (B14). lt can be shown those variances will be
much smaller than one if

[ß2 (T1)M]-1 (N/S + 1)2 < 1. (B17b)

The lower limit on wT, for which the statistics are usable
is given by

+ ir(mT+ T1)12](M- ImI)} (B1 1) (wT,)2 > var (6w'T1)
M-1

cov (Y/S, /U) = [M2St(T1)] 1 )
(M- 1)

-r(mT+ Ti)r*(mT)(M Im )

M-1
EIÜ /U-_ 112 =ÜU/2 1 =M-2 1

-(M-1)
- r(mT)/r(T1 )12 (M_ Iml)

which when used in conjunction with the dominant term
of (29c) becomes

(B12)
M(S2/N2) (wT, )4 > 3/32ir4. (B18b)

Extremely small widths for which this inequality does not

(B13) hold require use of (Al 6a) and (A16b) for the bias and
standard deviation of the width estimate.

M-1

E(U/U- 1)2 =E(/U2- 1 =M2 (
-(M-i1)

*[r(mT + T1 ) r*(mT- T1 )I2(Tl )] (M-Im l. (B14)

Finally, the variance (Al 0) and the bias (Al 1) are as

follows:
variance:

(4ir2 TiW)2 var (6w)=2 (Ir(T1)I/MS)2
M-1

Re{ [Ir(mT) 2/S2 + ilmT + T1) 12/S2
-(M-1)
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