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ABSTRACT

Second-order analytical solutions are constructed for various long waves generated by a gravity wave train

propagating over finite variable depth h(x) using a multiphase Wentzel–Kramers–Brillouin (WKB) method.

It is found that, along with the well-known long wave, locked to the envelope of the wave train and traveling

at the group velocity Cg, a forced long wave and free long waves are induced by the depth variation in this

region. The forced long wave depends on the depth derivatives hx and hxx and travels at Cg, whereas the free

long waves depend on h, hx, and hxx and travel in the opposite directions at
ffiffiffiffiffiffi
gh

p
. They interfere with each

other and generate free long waves radiating away from this region. The author found that this topography-

induced forced long wave is in quadrature with the short-wave group and that a secondary long-wave orbital

velocity is generated by variable water depth, which is in quadrature with its horizontal bottom counterpart.

Both these processes play an important role in the energy transfer between the short-wave groups and long

waves. These behaviors were not revealed by previous studies on long waves induced by a wave group over

finite topography, which calculated the total amplitude of long-wave components numerically without con-

sideration of the phase of the long waves. The analytical solutions here also indicate that the discontinuity of

hx and hxx at the topography junctions has a significant effect on the scattered long waves. The controlling

factors for the amplitudes of these long waves are identified and the underlying physical processes system-

atically investigated in this presentation.

1. Introduction

As short-wave groups propagate toward the shore,

second-order group bound long waves (often called

infragravity waves, within the frequency band 0.004–

0.04 Hz) can be induced by the quadratic difference

interaction among pairs of primary waves. These long

waves propagate with the wave envelope and evolve over

variable water depth. They play an important role in

many oceanographic and coastal problems such as har-

bor coastal structure resonance. Many efforts devoted to

long waves have also been motivated by the fact that

long waves may contribute more than a half of total

wave energy in the nearshore region and therefore have

significant impact on nearshore morphological change

and shoreline evolution. Recent investigations of long

waves have therefore been focusing on the generation,

shoaling, and dissipation of long waves on a beach (Van

Dongeren et al. 2003; Janssen et al. 2003; Battjes et al.

2004; Henderson et al. 2006).

Relatively less attention has been paid to long-wave

dynamics in the intermediate water depth in the past

decade. Theory on long waves at intermediate water

depth was initiated by Munk (1949), Hasselmann et al.

(1963), and Longuet-Higgins and Stewart (1962) and

later verified against field observations by Tucker (1950),

Elgar and Guza (1985), Okihiro et al. (1992), and Herbers

et al. (1995). These studies assume constant water depth

in an infinite domain. Finite topography such as sloping

shelves, submarine canyons, and ridges are often found

at intermediate water depth. A recent field study on the

Southern California inner shelf however, showed that

more than half of incident long-wave energy could be

reflected by complex coastal bathymetry such as sub-

marine canyons before entering beaches (Thomson et al.
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2006). Therefore, this study is concerned with the gen-

eration, transformation, and scattering of long waves

when a short-wave group propagates over a finite variable

water depth, which is intermediate relative to the wave-

length of the short waves. Special attention is paid to the

free long waves generated by the discontinuity of depth

derivatives hx and hxx at the edge of the topography.

The envelope evolution of a gravity wave train for

uniform depth has been extensively studied theoreti-

cally. Using a variational method, Whitham (1967, 1974)

derived the modulation equations of hyperbolic/elliptic

type for wave trains at a relative water depth kh smaller/

larger than 1.36, indicating that wave trains are stable/

unstable at these water depths. Hasimoto and Ono

(1972) showed that the envelope evolution is governed

by a nonlinear Schrodinger equation at lowest order

and obtained the same instability criterion. Davey and

Stewartson (1974) extended Hasimoto and Ono’s results

to two-dimensional (2D) wave packets, and Djordjevic

and Redekopp (1977) extended Davey and Stewartson’s

formulation to include capillarity.

For variable bottom topography with a length scale of

the same order as that of the envelope, Chu and Mei

(1970) used a Wentzel–Kramers–Brillouin (WKB) tech-

nique to obtain a set of third-order wave modulation

equations in conservation form, which includes higher-

order derivatives than Whitham’s. Mei and Benmoussa

(1984) applied these equations at the second order to

investigate the long waves induced by short-wave groups

over an uneven bottom. Their numerical results indicate

that, in addition to group bound long waves, new free

long waves are generated and radiate away from the local

topography at a shallow-water speed of
ffiffiffiffiffiffi
gh

p
at directions

that may deviate from those of short-wave groups. Liu

(1989) corrected Mei and Benmoussa’s (1984) boundary

conditions at the edge of the variable water depth and

obtained the numerical results for a plane shelf that

deviate from Mei and Benmoussa’s (1984) considerably.

We propose that the requirements of continuity of

surface elevation and current at the edges of the finite

topography are the physical interpretation of Liu’s (1989)

corrected matching conditions Unfortunately, Liu (1989)

did not present any results for canyon and ridge, which

are essential to our understanding of scattering of wave

groups by complex topography. Over the finite topogra-

phy, unlike Mei and Benmoussa (1984) and Liu (1989),

who calculated the total amplitude of long waves nu-

merically, we will construct the closed-form analytical

solutions as a sum of 1) a forced long wave locked to

the envelope of the wave train described by Longuet-

Higgins and Stewart’s (1962) solution for uniform water

depth; 2) a topography-induced forced long wave bound

to the wave group; and 3) two free long waves propagating

at opposite directions. Over the constant water depth on

the either side of the topography, we will obtain the ana-

lytical solutions for the transmitted and reflected free waves

generated by and radiated away from the finite region of

topography as indicated by Mei and Benmoussa’s (1984)

and Liu’s (1989) numerical results.

The objective is to investigate the underlying physi-

cal processes controlling the topographical scattering

of wave trains, the phase shift between these long-wave

components and short-wave groups, and the associated

energy transfer between them. We will also establish the

general trend in amplitude variation of forced and free

long waves over variable water depth and examine how

the topographical scattering of a wave group is affected

by the width and shape of topography and the discon-

tinuity of depth derivatives hx and hxx at the edge of the

topography in particular. In this presentation, we start

with the same evolution equations as those of Mei and

Benmoussa (1984) in section 2, derive the analytical so-

lutions to wave evolution equations using a multiphase

WKB method in section 3, apply the corrected boundary

conditions in section 4, and then give some examples of

analytical results for typical topography in section 5.

Finally, in section 6, we conclude by summarizing the

main findings in this study.

2. Governing equations

Following Whitham (1967), we take x and z as the

horizontal and vertical coordinates, with z 5 0 on the

undisturbed free surface and z 5 2h(x) on the bottom

(see Fig. 1 for coordinate system and primary variables).

We consider a train of slowly modulated, progressive

waves over mild slope topography,

§(1)(x, t) 5 Re A(X, T) exp

�
i

�ðx

k dx 2 vt

���
,

�
(2.1)

where §(1) is the first-order free surface displacement

associated with short waves, wavenumber k and wave

frequency v are O(1) functions of the slowly varying

coordinate X 5 «x and the slow time T 5 «t, wave am-

plitude A is an O(«) function of X and T, «� 1, and Re

signifies the real part of the variable and will be omitted

hereafter. For simplicity, we will focus on the normal

incident wave groups over 1D bottom topography whose

solutions can be readily adapted to 2D topography.

A second-order long-wave component is induced by

the short-wave group over a constant or variable water

depth. The corresponding velocity potential and free

surface displacement including short- and long-wave

components are
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u 5 Ux 2 Pt 2
igA cosh k(z 1 h)

v cosh kh
exp

�
i

�ðx

k dx 2 vt

��

and (2.2)

§(x, t) 5 §(1) 1 §(2), (2.3)

where U(X, T) is the second-order short-wave-induced

horizontal velocity, P(X, T) is the second-order pres-

sure, and §(2) 5 h(X, T) is the second-order short-wave-

induced mean free surface displacement. Through the

average Lagrangian method, we derive the following

three equations with an error factor 1 1 O(«2):

›

›t
(E) 1

›

›x
(CgE) 5 0, (2.4a)

›h

›t
1

›

›x

�
Uh 1

E

C

�
5 0, and (2.4b)

›U

›t
1

›

›x

 
gh 1

Cg 2 C/2

Ch
E

!
5 0, (2.4c)

where

C 5 (gk21 tanh kh)1/2, (2.5a)

Cg 5
1

2
C

�
1 1

2kh

sinh 2kh

�
, and (2.5b)

E 5
1

2
g[Re(A)]2 (2.5c)

are the wave phase velocity, group velocity, and wave

energy respectively (Zou 1995). Equations (2.4a)–(2.4c)

represent wave action, mass, and momentum conserva-

tions, respectively, and are the same as Eqs. (2.6)–(2.8)

of Mei and Benmoussa (1984). Cross-differentiating (2.4b)

and (2.4c) to eliminate U, we have

›2h

›t2
2 g

›

›x

�
h

›h

›x

�
5 2

›

›x

�
›

›t

�
E

C

��

1
›

›x

"
h

›

›x

 
Cg 2 C/2

Ch
E

!#
, (2.6)

which is equivalent to (2.9) in Mei and Benmoussa (1984),

derived by Chu and Mei (1970). Substituting (2.4a) into

governing Eq. (2.6) to eliminate ›(E/C)/›t gives

›

›x

�
gh

›h

›x

�
2

›2h

›t2
5 2

d2S

dx2
, (2.7)

where S 5 (2Cg/C 2 1/2)E is the wave radiation stress.

Equation (2.7) is the same as the governing equations

(2.11) of Mei and Benmoussa (1984) and (7) of Janssen

et al. (2003). In case of constant water depth, Eq. (2.7)

becomes the wave setdown and setup equations for

wave groups proposed by Longuet-Higgins and Stewart

(1960, 1961, 1962) (Mei and Benmoussa 1984). We next

obtain the analytical solution of (2.6) that satisfies

proper boundary conditions at the topography edges.

3. Analytical solutions

In this section, the governing equations are solved for

an incoming wave train of sinusoidal envelope

A(x, t) 5 a exp

�
i

�ðx

K dx 2 Vt

�
2

�
,

	
(3.1a)

where

V 5 «v and (3.1b)

K(x) 5 «v/Cg(x), (3.1c)

traveling from a uniform depth h0 in x , 0, through a

region of variable depth h(x) in 0 , x , L, to a uniform

depth h1 in x . L (cf. Fig. 1).

It follows from (2.5c) and (3.1a) that E may be de-

composed into steady and oscillatory parts

E 5 E(x) 1 ~E(x) exp(2iVt), (3.2a)

where

E 5
1

4

Cg0

Cg

ga2
0, (3.2b)

~E 5
1

4

Cg0

Cg

ga2
0 exp

�
i

ðx

K dx

�
, (3.2c)

FIG. 1. Definition sketch of variables and coordinate system for

a short-wave group propagating over a localized topography con-

necting with constant water depths.
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and a0 and Cg0 are the incident wave amplitude and

group velocity in the incident side x , 0. According to

(2.4b), (2.4c), and (3.2), h should take the form of E;

that is,

h 5
1

4
gCg0a2

0[h(x) 1 ~h(x) exp(2iVt)], (3.3a)

where

h 5 2
Cg 2 C/2

gCgCh
(3.3b)

is the wave setdown. Combined with (3.2) and (3.3), (2.6)

gives

d

dx

�
gh

V2

d~h

dx

�
1 ~h 5

2Cg 2 C/2

C3
g C

1 (iV)21

"
d

dx

 
2Cg 2 C/2

C 2
g C

!
1

h

Cg

d

dx

 
Cg 2 C/2

CCgh

!#
2 V22 d

dx

"
h

d

dx

 
Cg 2 C/2

CgCh

!#)(

3 exp

�
i

ðx

K dx

�
. (3.4)

We assume that the topography has a spatial scale of

many wavelengths of the wave group; that is,

hx

kh
5 O(m), (3.5a)

hxx

k2h
5 O(m2), . . . , and m � 1, (3.5b)

so that the three terms on the right-hand side of (3.4) are

O(m0), O(m1), and O(m2), respectively. We note that

hx/Kh 5 O(m) is the same as the normalized bed slope b

used by Battjes et al. (2004).

The solution of (3.4) is the sum of the particular solu-

tion corresponding to the forced wave ~hF and the ho-

mogeneous solutions corresponding to the forward and

backward propagating free wave components ~h
1

and ~h
2

;

that is,

~h 5 ~hF 1 [~h
1

1 ~h
2

]. (3.6a)

We seek a particular solution of (3.4) corresponding to

the forced wave through the asymptotic expansion of

~hF 5 ~h
(0)
F 1 ~h

(1)
F 1 ~h

(2)
F 1 � � �

5 (h
(0)
F 1 h

(1)
F 1 h

(2)
F 1 � � � ) exp

�
i

ðx

0
K dx

�
, (3.6b)

where

~h
(n)
F (x) 5 h

(n)
F (x) exp

�
i

ðx

0
K dx

�
5 O(mn) (n 5 0, 1, 2).

Substituting (3.6b) into (3.4), we obtain

h
(0)
F (x) 5

2Cg 2 C/2

C3
gC(1 2 gh/C2

g)
, (3.7a)

h
(1)
F (x) 5

(iV)21

(1 2 gh/C2
g)

d

dx

 
2Cg 2 C/2

CC2
g

!(

1
h

Cg

d

dx

 
Cg 2 C/2

CgCh

!

1 g

"
2h

Cg

dh
(0)
F

dx
1 h

(0)
F

d

dx

 
h

Cg

!#)
, and (3.7b)

h
(2)
F (x) 5

2V22

1 2 gh/C2
g

d

dx

"
h

d

dx

 
Cg 2 C/2

CgCh

!#(

1 g
d

dx

 
h

dh
(0)
F

dx

!

1 (iV)g

"
2h

Cg

dh
(1)
F

dx
1 h

(1)
F

d

dx

 
h

Cg

!#)
. (3.7c)

Because C(x) 5 C(k‘, h(x)), Cg(x) 5 (k‘, h(x)), where

k‘ 5 v2/g is the deep-water wavenumber for the short

wave, their gradients are given by

dC

dx
5

dC(k
‘

, h)

dh
hx,

dCg

dx
5

dCg(k
‘

, h)

dh
hx,

(3.7a) can be rewritten as

h
(0)
F (x) 5 h

(0)
F (k

‘
, h(x)), (3.7d)

which depends on the local water depth monotonically.

Therefore,

dh
(0)
F

dx
5

dh
(0)
F

dh
hx.

Similarly, (3.7b) can be rewritten as
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h
(1)
F (x) 5

(iV)21

(1 2 gh/C2
g)

d

dh

 
2Cg 2 C/2

CC 2
g

!
1

h

Cg

d

dh

 
Cg 2 C/2

CgCh

!
1 g

"
2h

Cg

dh
(0)
F

dh
1 h

(0)
F

d

dh

 
h

Cg

!#)
hx

(

5 (iV)21QF(k
‘

, h(x))hx. (3.7e)

Thus, h
(1)
F (x) is linear in hx and in quadrature with the

forced wave solution h
(0)
F (x) for constant water depth.

Equation (3.7c) can be rewritten as

h
(2)
F (x) 5

2V22

1 2 gh/C2
g

*
d

dh

"
h

d

dh

 
Cg 2 C/2

CgCh

!#(

1 g
d

dh

 
h

dh
(0)
F

dh

!
1 g

2h

Cg

dQF

dh
1 QF

d

dh

 
h

Cg

!)
h2

x

1

"
h

d

dh

 
Cg 2 C/2

CgCh

!
1 gh

dh
(0)
F

dh
1 g

2h

Cg

QF

#
hxx

+

(3.7f)

where h
(2)
F (x) is proportional to h2

x and hxx and in phase

with the forced wave solution h
(0)
F (x) for constant water

depth.

Following a similar procedure, we obtain the homoge-

neous solution of Eq. (3.4), which corresponds to free

wave components. Over the constant water depth re-

gions, free waves must propagate away from the zone of

variable depth 0 , x , L; therefore, the homogeneous

solution is the sum of two free waves traveling at oppo-

site directions, ~h
1

and ~h
2

,

~h
1

(x) 5

0 (x,0)

C
1

[h
(0)
1 1 h

(1)
1 ]exp

�
i

ðx

0
Kh dx

�

Th
(0)
1 exp

�
i

ðx

0
Kh dx

�
(x.L)

(0,x,L) and

8>>>>>><
>>>>>>:

(3.8a)

~h
2

(x)5

Rh(0)
2 exp

�
2i

ðx

0
Kh dx

�
(x,0)

C
2

[h(0)
2 1 h(1)

2 ]exp

�
2i

ðx

0
Kh dx

�
0 (x.L)

(0,x,L),

8>>>>><
>>>>>:

(3.8b)

where the plus and minus subscripts symbolize the am-

plitudes of the free waves propagating in the positive

and negative x directions, Kh(x) 5 V/
ffiffiffiffiffiffi
gh

p
is the wave-

number for free waves, and V/Kh 5
ffiffiffiffiffiffi
gh

p
is the mag-

nitude of propagating speed of free waves. Here,

h
(n)
6 5 O(mn) (n 5 0, 1), and C1, C2, R, and T are four

complex coefficients determined by the four boundary

conditions at x 5 0 and x 5 L, which are given in the next

section.

The asymptotic expansion of the homogeneous part of

the Eq. (3.4) gives

2hffiffiffiffiffiffi
gh

p dh
(0)
6

dx
1 h

(0)
6

d

dx

 
hffiffiffiffiffiffi
gh

p
!

5 0 and (3.9a)

d

dx

 
h

dh
(0)
6

dx

!
6 (iV)

"
2hffiffiffiffiffiffi
gh

p dh
(1)
6

dx
1 h

(1)
6

d

dx

 
hffiffiffiffiffiffi
gh

p
!#

5 0,

(3.9b)

The solution for (3.9a) is given by

h
(0)
6 (x) 5 (iV)21h21/4. (3.9c)

Substituting (3.9c) into (3.9b), we obtain

h
(1)
6 (x) 5 6

1

2
V22g1/2h21/4

ðx

0
h21/4 d

dx

�
h

d

dx
(h21/4)

�
dx.

(3.9d)

According to (3.3a), the transient solution to Eq. (2.6) is

therefore the sum of two superimposed components on

the incident and transmission sides of the variable water

depth and four superimposed components over the vari-

able water depth,

~h 5

~h
(0)
F 1 ~h

2
(x , 0)

~h
(0)
F 1 [~h

(1)
F 1 ~h

(2)
F ] 1 ~h

1
1 ~h

2
(0 , x , L)

h
(0)
F 1 ~h

1
(x . L)

,

8>><
>>:

(3.10a)

where

~h
(0)
F (x) 5 h

(0)
F exp

�
i

ðx

0
K dx

�
(3.10b)

is the forced long-wave component locked to the enve-

lope of the wave train, equivalent to Longuet-Higgins

and Stewart’s (1964) long-wave solution for uniform

water depth;

[~h
(1)
F 1 ~h

(2)
F ] 5 [h

(1)
F 1 h

(2)
F ] exp

�
i

ðx

0
K dx

�
(3.10c)
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is the change in the forced long-wave solution induced

by variable water depth, propagating at the wave-group

speed Cg; and ~h
1

and ~h
2

are the forward and backward

propagating free gravity wave defined by (3.9), which

radiate away from the local topography at a shallow-

water wave-group speed
ffiffiffiffiffiffi
gh

p
.

4. Boundary conditions

According to (2.4c), (3.2) and (3.3), U relates to h by

›U

›t
5 2

›

›x

 
gh 1

Cg 2 C/2

Ch
E

!
5 2

›

›x
(ghE),

where

hE 5 h 1
Cg 2 C/2

gCh
E

is the effective surface elevation whose complex ampli-

tude is ~hE 5 ~h 2 h exp(i
Ð x

0 K dx). The boundary condi-

tions follow from the requirement of continuity of surface

elevation h and current U at the topography edges x 5 0

and x 5 L; that is,

~h(01) 5 ~h(02), (4.1a)

~h(L1) 5 ~h(L2), (4.1b)

d~hE(01)

dx
5

d~hE(02)

dx
, and (4.1c)

d~hE(L1)

dx
5

d~hE(L2)

dx
. (4.1d)

Boundary conditions (4.1a) and (4.1b) are the same as

those of Mei and Benmoussa (1984) and Liu (1989),

whereas (4.1c) and (4.1d) are different from those of

Mei and Benmoussa (1984) but identical to those of Liu

(1989). Liu derived the latter boundary conditions by

integrating the governing equation of h equivalent to

(3.4) from x 5 x0 2 d to x0 1 d (x0 5 0, L) and taking the

limit as d / 0. Substituting (3.10a) into (4.1a) and (4.1b)

and considering that ~h
(0)
F is continuous across the topog-

raphy edges x 5 0 and x 5 L, we have

~h
2

(02) 5 [~h
(1)
F (01) 1 ~h

(2)
F (01)] 1 ~h

1
(01) 1 ~h

2
(01)

and (4.1e)

~h
1

(L1) 5 [~h
(1)
F (L2) 1 ~h

(2)
F (L2)] 1 ~h

1
(L2) 1 ~h

2
(L2),

(4.1f)

which implies that the reflected free wave is equal to the

topography-induced forced 1 free waves [~h
(1)
F 1 ~h

(2)
F ] 1

~h
1

1 ~h
2

at the incident edge of the topography and that

the transmitted free wave is equal to [~h
(1)
F 1 ~h

(2)
F ] 1

~h
1

1 ~h
2

at the transmission edge of the topography.

Substituting (3.7)–(3.10) and (3.3b) into (4.1), we de-

rived T and R to the second order as shown in Eqs. (A3)

and (A4) in the appendix. To elucidate the mechanisms

contributing to topographical scattering and generation

of long waves, we only show the first-order approxima-

tion of T and R here,

C
1

5 2
1

2

h

1 1

ffiffiffiffiffiffiffi
gh0

q
/Cg0

�
Q10(01) 1

ffiffiffiffiffiffiffi
gh0

q
Q00(01)/Cg0

i
1 O(h2

x, hxx), (4.2a)

C
2

5 2
1

2

h

1 2

ffiffiffiffiffiffiffi
gh1

q
/Cg1

�
Q10(L2) 2

ffiffiffiffiffiffiffi
gh1

q
Q00(L2)/Cg1

i

3 exp

"
i

ðL2

01

(K 1 Kh) dx

#
1 O(h2

x, hxx), (4.2b)

T 5 2
1

2

h

1 1

ffiffiffiffiffiffiffi
gh0

q
/Cg0

�
Q10(01) 1

ffiffiffiffiffiffiffi
gh0

q
Q00(01)/Cg0

i(

2
h


1 1
ffiffiffiffiffiffiffi
gh1

q
/Cg1

�
Q10(L2) 1

ffiffiffiffiffiffiffi
gh1

q
Q00(L2)/Cg1

i

3 exp

"
i

ðL2

01

(K 2 Kh) dx

#)
1 O(h2

x, hxx), and

(4.3a)

R 5
1

2

h

1 2

ffiffiffiffiffiffiffiffi
gh0

q
/Cg0

�
Q10(01) 2

ffiffiffiffiffiffiffiffi
gh0

q
Q00(01)/Cg0

i(

2
h


1 2
ffiffiffiffiffiffiffi
gh1

q
/Cg1

�
Q10(L2) 2

ffiffiffiffiffiffiffi
gh1

q
Q00(L2)/Cg1

i

3 exp

"
i

ðL2

01

(K 1 Kh) dx

#)
1 O(h2

x, hxx), (4.3b)

where

Q10(x) 5 h
(1)
F /h

(0)
1 5 QF(k

‘
, h)h1/4hx and (4.4a)

Q00(x) 5 (iV)21Cgh
(0)
Ex /h

(0)
1

5 Cgh1/4

"
dh

(0)
F (k

‘
, h)

dh
2

dh(k
‘

, h)

dh

#
hx. (4.4b)

The quantity QF(k‘, h) is defined by (3.7e); h0, Cg0 and

h1, Cg1 are the values taken by h and Cg in the constant

water depth regions x , 0 and x . L; subscript x denotes

the x derivative; and h
(0)
E 5 h

(0)
F 2 h. According to (4.4),
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Q10 and Q00 are proportional to bottom slope hx. Thus,

according to (4.3), T and R are proportional to Q10 and

Q00 at x 5 01 and L2 and therefore to the disconti-

nuity of bottom slope hx at the incident and transmit

edge of the topography, with an oscillatory coefficient

exp[i
ÐL2

0 1(K 1 Kh) dx] due to interference of free and

forced waves with wavenumbers of K and Kh. Because

the bottom slope before and after the topography is

zero, when bottom slope hx is continuous at the edge of

the topography [i.e., hx(01) 5 hx(02) 5 0 and hx(L2) 5

hx(L1) 5 0], we have Q00(01) 5 Q00(L2) 5 0 and

Q10(01) 5 Q10(L2) 5 0; thus T 5 R 5 0 at the first

order. In these cases, as shown by the higher-order ex-

pression of T and R given by Eqs. (A3) and (A4) in the

appendix, the amplitude of reflected and transmitted waves

are then dependent on the second-order depth gradient

hxx at the incident and transmit edge of the topography.

According to (4.3) and (4.4), the amplitudes of re-

flected and transmitted waves, given by R~h(0)
2 and T ~h

(0)
1 ,

are proportional to h
(1)
F and h

(0)
Ex at the edge of the to-

pography, which are proportional to the bottom slope

hx and inversely proportional to (1 2 gh/C2
g) according

to (3.7), so that the reflected and transmitted waves

decrease with the relative water depth k‘h. According

to (3.8) and (3.10), the long wave within the zone of

variable depth 0 # x # L comprises four components:

~h
(0)
F , [~h

(1)
F 1 ~h

(2)
F ], ~h

1
, and ~h

2
. The first two are group

bound and propagate in the same direction as the wave

envelope and short waves themselves at the speed of Cg,

whereas the last two are free gravity waves traveling in

the same and opposite direction to wave groups at the

speed of
ffiffiffiffiffiffi
gh

p
. The last three waves interfere with each

other and generate a reflected free wave at x 5 0 and

a transmitted free wave at x 5 L [cf. (3.10) with (4.1a)

and (4.1b)]. According to (4.3), the transmitted and re-

flected free waves include a slowly varying amplitude that

depends on hx and hxx at the junctions and fast varying

phases exp[i
ÐL2

01(K 2 Kh) dx] and exp[i
ÐL2

01(K 1 Kh) dx].

According to (4.3), the reflected wave amplitude R~h(0)
2

attains local minimum and maximum at x 5 0, whenÐL2

01(K1Kh) dx5
ÐL2

0 1V[(gh)1/2
1Cg] dx5 (n 11/2)p and

np, respectively, and the transmitted wave T ~h
(0)
1 at-

tains its minimum and maximum at x 5 L, whenÐL2

01(K2K
h
) dx5

ÐL2

01V[(gh)1/2
2 C

g
] dx5(n 1 1/2)p and

np, respectively. For a fixed depth function h(x) and

changing L, the amplitudes of radiating waves oscillate

around a value that depends on the discontinuities of hx

and hxx at the junctions. This behavior is similar to

those of gravity waves over a ramp predicted by Miles and

Zou (1992) and over a trench by Kirby and Dalrymple

(1983).

5. Energy transfer to long waves

Assuming steady state and negligible dissipation, the

energy balance of long waves is largely determined by

the energy transfer from the short-wave groups to long

waves, which can be described by (Battjes et al. 2004;

Phillips 1977)

W 5 2

�
Utotal

dS

dx


, (5.1)

where Utotal 5 U 1 E/(Ch) is the total long-wave cur-

rents including the mass flux of the primary wave E/(Ch),

h i is time average, and S 5 (2Cg/C 2 1/2)E is the short-

wave radiation stress.

Substituting (3.3a) and (3.10) into (2.4b), we obtain

the complex amplitude of Utotal,

~Utotal(x) 5
1

4
gCg0a2

0

�
Cg

h
(h

(0)
F 1 h

(1)
F 1 h

(2)
F )

�
exp

�
i

ðx

0
K dx

�
1

ffiffiffiffiffiffi
gh

p
h

�
h

1
exp

�
i

ðx

0
Kh dx

�
2 h

2
exp

�
2i

ðx

0
Kh dx

��(

2

�
Cg

iVh

d

dx
(Cgh

(0)
F )

�
exp

�
i

ðx

0
K dx

�)
, (5.2)

where h1 and h2 are the amplitudes of forward and

backward propagating free waves [cf. (3.8)]. The first

and second square brackets of (5.2) are the currents

induced by the long waves that satisfy the relationship of

U 5 Cg§/h. The third square bracket is the current in-

duced by topographical changes and mass conservation

requirement. Here,

~S 5
1

4
gCg0a2

0

 
2Cg 2 C/2

CCg

!
exp

�
i

ðx

0
K dx

�

is the complex amplitude of shortwave radiation stress.

The complex amplitude of the gradient of wave radia-

tion stress is therefore given by

d ~S(x)

dx
5

1

4
gCg0a2

0

"
(iK)

 
2Cg 2 C/2

CCg

!
1

d

dx

 
2Cg 2 C/2

CCg

!#

3 exp

�
i

ðx

0
K dx

�
5 (iK) ~S exp(iDF ~S

x

), (5.3)
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where DF~Sx
’ 2K21[(2C

g
2C/2)/CC

g
]21f(d/dx)[(2C

g
2

C/2)/CC
g
]g is the phase shift of radiation stress gradient

due to its topography-induced amplitude change.

The energy transfer equation (5.1) may be rewritten

as a function of these complex amplitudes,

W 5 2
1

2
Re

"
~Utotal

�
d ~S

dx

�*#

[
1

2
Kj ~Utotaljj ~Sj sin(F ~U

total
2 F~S 2 DF ~S

x

), (5.4)

where the superscript asterisk denotes the conjugate

of the variable and F ~Utotal
and F ~S are the phases of ~U

total

and ~S. At constant water depth, (5.2) and (5.3) reduce to

~U
(0)
total(x) 5

1

4
gCg0a2

0

�
Cg

h
h

(0)
F

�
exp

�
i

ðx

0
K dx

�
and (5.5)

d ~S(0)(x)

dx
5

1

4
gCg0a2

0(iK)

 
2Cg 2 C/2

CCg

!
exp

�
i

ðx

0
K dx

�

5 iK ~S(0)(x). (5.6)

In the constant water depth, the phase lead of the long

wave relative to the short-wave group, F ~Utotal
2 F ~S is zero

and so is DF~Sx
; therefore, according to (5.4), the energy

transfer from the short-wave groups to the long waves

becomes zero. In the variable water depth, the energy

transfer is no longer zero, because the surface elevation

and radiations stress components induced by variable

water depth are in quadrature with their constant water

depth counterparts. Accordingly, there are three dif-

ferent types of mechanisms that may contribute to the

energy transfer at the leading order:

Mechanism 1: According to (3.7e), the forced long

wave induced by depth variation h
(1)
F (x) is linear in

hx and in quadrature with its constant-depth coun-

terpart h
(0)
F (x); therefore, it contributes to the en-

ergy transfer at the leading order. At variable water

depth, the free long waves in the second square

bracket of (5.2) are also generated, which propa-

gate at a different speed from the short-wave group.

It follows that the phase difference between the

forward/backward free wave and the short-wave

group, F ~U 2 F ~S, has an x-dependent component

of
Ð x

0(Kh 2 K) dx/2
Ð x

0(Kh 1 K) dx [cf. (5.2)]. This

would cause the energy transfer to oscillate along

the variable water depth.

Mechanism 2: The third square bracket of (5.2) is the

U contributed by the topography-induced volume

flux change. It is in quadrature with its constant-

depth counterpart (5.5) and therefore contributes to

the energy transfer to the long waves. This term has

been included in Henderson et al.’s (2006) but not

Battjes et al.’s (2004) studies of energy transfer

between short-wave groups and shoaling long waves

on a natural beach.

Mechanism 3: The second term on the right-hand side

of (5.3) is the radiation stress gradient component

due to topography-induced amplitude change of ra-

diation stress, which is in quadrature with its coun-

terpart for constant water depth (5.6) and therefore

also contributes to the energy transfer to long waves.

This term is assumed to be negligible in the shoal-

ing zone before wave breaking (Battjes et al. 2004).

6. Example results

In this section, we evaluate the forced long waves ~h
(0)
F

and [~h
(1)
F 1 ~h

(2)
F ], free long waves ~h

1
and ~h

2
induced by

short-wave groups over plane and sinusoidal ramps, and

Gaussian and sinusoidal canyons and ridges connecting

with constant depths, with special attention to the effect

of discontinuity in depth derivatives hx and hxx at the

junctions. Each of these pairs has similar h(x) but dif-

ferent hx and hxx at the junctions.

a. Plane ramps

We first consider a sinusoidally modulated wave train

over a downward sloping plane ramp connecting two

constant water depths,

h 5 ~h(1 1 x/L)/2, (0 # x # L)

h 5 ~h/2, (x , 0)

h 5 ~h, (x . L), (6.1a)

and an upward sloping plane ramp connecting two con-

stant water depths,

h 5 3 ~h/2 2 ~h(1 1 x/L)=2, (0 # x # L)

h 5 ~h, (x , 0)

h 5 ~h/2, (x . L), (6.1b)

where L is the width of the ramp. Figures 2a,b illustrate

water depth variation, whereas Figs. 2c,d demonstrate

the amplitude variations of ~h
(0)
F , [~h

(1)
F 1 ~h

(2)
F ] 1 ~h

1
1 ~h

2
,

[~h
(1)
F 1 ~h

(2)
F ], ~h

1
, and ~h

2
over 0 , x , L for a ramp width

of L 5 10/«k‘. We note that the transmitted free wave

is larger than the reflected one for both downward and

upward sloping ramps.

For the downward sloping ramp, the forced wave

(dashed line) attains maximum magnitude at the incident

edge where water depth is at minimum. A forward free

OCTOBER 2011 Z O U 1849



wave (dashed–dotted line) of similar amplitude is gen-

erated here. Then the magnitude of the forced wave

decays rapidly along the ramp, whereas that of free wave

decreases only slightly (Fig. 2c). The backward free

wave is negligible across the ramp in comparison with

these two waves.

For the upward sloping ramp, the forced wave starts

with near-zero amplitude at the incident edge where the

water depth is at maximum, and then it increases in

magnitude rapidly along the ramp and generates a for-

ward free wave of similar amplitude at the transmission

edge. Both the backward and forward free waves are

negligible across the ramp in comparison with the forced

wave (Fig. 2d).

The topography-induced long wave fi.e., forced 1 free

long wave [~h
(1)
F 1 ~h

(2)
F ] 1 ~h

1
1 ~h

2
g is equivalent to jF

of Mei and Benmoussa (1984) and Liu (1989). As shown

by the solid line in Figs. 2c,d, for both upward and down-

ward sloping ramps, the topography-induced forced

wave [~h
(1)
F 1 ~h

(2)
F ] (solid lines) has the same trend as the

constant-depth forced wave ~h
(0)
F (thin solid line) over

the topography between two vertical dashed lines. Here,

[~h
(1)
F 1 ~h

(2)
F ] 1 ~h

1
1 ~h

2
is near zero at the incident edge

(x 5 0) and increases over the ramp toward a much larger

value at the transmission edge (x 5 L). According to

(4.1e) and (4.1f), this leads to the results shown in Figs.

2c,d that, for both types of ramp, the transmitted wave

is larger than the reflected wave. We also note that

[~h
(1)
F 1 ~h

(2)
F ] 1 ~h

1
1 ~h

2
displays a convex/concave trend

over a downward/upward sloping ramp. This is mainly be-

cause [~h
(1)
F 1 ~h

(2)
F ] is inversely proportional to (1 2 gh/C2

g)

according to (3.7), so that they decrease with the rela-

tive water depth k‘h while ~h
1

and ~h
2

are proportional

to h21/4, so that its amplitude only change slightly over

the topography.

To examine the effect of topography width on long

waves, we increase L to L 5 30/«k‘ while keeping the

depth difference Dh 5 h1 2 h0 the same. As shown in

Fig. 3, the magnitudes of all long waves are reduced for

milder bottom slope. Although the trends of amplitude

FIG. 2. Amplitude of group bound long waves induced by variable depth [~h
(1)
F 1 ~h

(2)
F ] (thick dashed lines) and

forward (dashed–dotted lines) and backward (dotted lines) propagating free long waves ~h
1

and ~h
2

, and the sum of

these three waves (thick solid lines) over a (left) downward and (right) upward sloping plane ramp. The thin solid line

denotes the constant-depth forced wave ~h
(0)
F locked to the wave group, and the two vertical dashed lines indicate the

topography edges. The width of the ramp is L 5 10/«k‘.
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variation of these waves resemble those in Fig. 2, an

additional oscillatory variation starts to appear in the

[~h
(1)
F 1 ~h

(2)
F ] 1 ~h

1
1 ~h

2
(solid line) along the downward

sloping ramp. This oscillatory behavior is caused by the

interference between the forward propagating free wave

and the forced waves over the topography discussed in

the last paragraph of section 4. The oscillation is larger

for the downward sloping ramp over which these two

waves become comparable in magnitude; therefore, the

interference is enhanced (Fig. 3c).

To investigate the effect of topography width and water

depth on the amplitude of transmitted and reflected free

waves, we calculate T and R for k
‘

~h 5 2, 3, and 4 and 10 #

«k‘L # 30, and the results are given by Fig. 4. As shown

by Fig. 4, for the upward and downward sloping plane

ramp, the transmitted and reflected waves show similar

magnitude and variations with relative water depth and

width of topography. The reflected wave is much smaller

than the transmitted wave. Small oscillatory variations

in the amplitude start to develop at relatively deeper

water because of the interference between the free

waves and the forced waves (Figs. 4e,f). As discussed

in the last paragraph of section 4, the amplitudes of

reflected and transmitted waves are proportional to the

bottom slope hx and inversely proportional to (1 2 gh/C2
g)

according to (3.7); therefore, they decrease with the rel-

ative water depth k‘h and relative width of topography

k‘L, as shown in Fig. 4.

The energy transfer from the short-wave groups to

long waves according to (5.4) is indicated by the solid

lines in Fig. 5 (middle and bottom) and oscillates be-

tween positive and negative values along the downward

sloping ramp, which corresponds to increase and decrease

in the amplitude of long wave given by Fig. 5 (top). The

energy transfer increases almost monotonically along the

upward sloping ramp, resembling the shoaling behavior of

long-wave amplitude in Fig. 5 (top). Because of the very

mild bottom slope in this case, the topography-induced

FIG. 3. As in Fig. 2, but for a ramp width of L 5 30/«k‘.
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amplitude change of radiation stress has a negligible

contribution to the energy transfer (Fig. 5, middle),

whereas the topography-induced volume flux has a sig-

nificant contribution to the energy transfer (Fig. 5, bot-

tom) only at the shallow part of the topography. These

contributions, however, are expected to increase with

bottom slope and decreasing water depth where the nor-

malized bed slope hx/Kh is larger and become significant

near a bar at a beach (Battjes et al. 2004; Henderson et al.

2006).

b. Sinusoidal ramps

We next consider a wave train over a downward slop-

ing sinusoidal ramp,

h 5 ~hf1 1 sin2[px/(2L)]g=2, (0 # x # L)

h 5 ~h/2, (x , 0)

h 5 ~h, (x . L), (6.2a)

and an upward sloping sinusoidal ramp,

h 5 3 ~h/2 2 ~hf1 1 sin2[px/(2L)]g=2, (0 # x # LÞ

h 5 ~h, (x , 0)

h 5 ~h/2, (x . L), (6.2b)

where L is the width of the ramp. Topography (6.2) is

similar to (6.1), except at the junctions the former has

FIG. 4. Amplitudes of forward (solid lines) and backward (dashed lines) scattered free long waves at the transmission/

incident side of the (left) downward and (right) upward sloping plane ramps (6.1) as a function of relative ramp width

k‘L for water depths of k‘h 5 (top) 2 (h 5 ~h, the maximum water depth), (middle) 3, and (bottom) 4.

1852 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 41



continuous hx and h and discontinuous hxx, whereas the

latter has continuous h and hxx and discontinuous hx.

The amplitudes for transmitted and reflected waves

for k
‘

~h 5 2, 3, and 4 and for 10 # «k‘L # 30 are given by

Fig. 6 for the downward and upward sloping sinusoidal

ramps. The radiating free waves are smaller than their

counterparts for plane ramps shown in Fig. 4, because hx

is zero at the topography junctions so that T and R are

now on the order of O(hxx) [cf. (A3) and (A4)]. In ad-

dition, the oscillatory variation of radiating waves is re-

duced because the forced wave is much stronger than the

free wave over the topography; therefore, the interfer-

ence between them is weakened.

c. Gaussian canyon and ridge

We now consider a Gaussian canyon,

h 5 ~h exp

"
2a

�
x

L
2

1

2

�2
#
, (0 # x # L)

h 5 ~h/2, (x , 0 and x . L), (6.3a)

and a Gaussian ridge,

h 5 ~h
3

2
2 exp

"
2a

�
x

L
2

1

2

�2
#)

, (0 # x # L)

(

h 5 ~h, (x , 0 and x . L), (6.3b)

where a 5 4(log2) and L is the width of the canyon and

ridge. As shown by Fig. 7, the amplitude variations of

free and forced waves along the first half of the canyon/

ridge is similar to those along the downward/upward

sloping plane ramp (cf. Fig. 2). The amplitudes of free

and forced waves are symmetric about the center of the

topography, but the amplitude of the sum of these two,

[~h
(1)
F 1 ~h

(2)
F ] 1 ~h

1
1 ~h

2
, is not. As in the cases of linear

ramp, the transmitted wave is stronger than the re-

flected wave for both canyon and ridge. In addition, the

topography-induced forced wave [~h
(1)
F 1 ~h

(2)
F ] (solid lines)

has the same trend as the constant-depth forced wave

solution ~h
(0)
F (thin solid line) over the topography be-

tween the two vertical dashed lines.

FIG. 5. Long-wave amplitude and energy transfer from short-wave group to long wave for a (left) downward and

(right) upward sloping ramp: (a),(b) amplitude of total long wave (bound 1 force 1 free); (c),(d) energy transfer

from short-wave group to long wave, with (solid lines) and without (dashed lines) amplitude gradient of radiation

stress [cf. Eq. (5.3)]; (e),(f) energy transfer, with (solid lines) and without (dashed lines) amplitude change of U

[cf. Eq. (5.2)]. The width of the ramp is L 5 10/«k‘. Water depth is k‘h 5 2 (h 5 ~h, the maximum water depth).
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For a canyon, the forced wave [~h
(1)
F 1 ~h

(2)
F ] (dashed

line) attains maximum at the incident edge where the

water depth is minimum. A forward propagating free

wave (dashed–dotted line) of similar amplitude is gen-

erated here. Then the magnitude of the forced wave

decays rapidly to a minimum at the center of the canyon

and increases to a maximum at the transmission edge.

The amplitude variation of the forward propagating

free wave has the same trend but at much smaller rate

(Fig. 7). The backward free wave (dotted line) is negligible

across the ramp in comparison with these two waves.

For a ridge, the forced wave starts with near-zero

amplitude at the incident edge where water depth is at

maximum and then increases in magnitude rapidly to

a maximum at the center of the ridge and decreases to

a minimum and generates a forward propagating free

wave of similar amplitude at the transmission edge. Both

the backward and forward free waves are negligible in

the middle of the ridge in comparison with the forced

waves (Fig. 7).

The amplitude of transmitted/reflected free waves

(solid/dashed lines) for a relative water depth k
‘

~h 5 2, 3,

and 4 and relative topography width 10 # «k‘L # 30 are

given in Fig. 8. As shown by Fig. 8, the amplitudes of

transmitted and reflected free waves oscillate between

local maximums and zeros. Similar to the results for

ramps shown in Fig. 4, the amplitudes of transmitted and

reflected waves decrease with relative topography width

FIG. 6. Amplitude of forward (solid lines) and backward (dashed lines) scattered free long waves at the transmission/

incident side of the (left) downward and (right) upward sloping sinusoidal ramps (6.2) as a function of relative ramp

width k‘L for water depths of k‘h 5 (top) 2 (h 5 ~h, the maximum water depth), (middle) 3, and (bottom) 4.
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k‘L and decrease with relative water depth k
‘

~h. How-

ever, the oscillatory variation of amplitude with the rel-

ative topography width is stronger because of enhanced

interference of free and forced waves for canyon and

ridge when these two waves become comparable in mag-

nitude. The local maximums decrease with relative to-

pography width and water depth. The reflected wave is

much smaller than the transmitted one.

Long waves are largely dependent on local water

depth. For a canyon (Fig. 8c) and a ridge (Fig. 8b) that

have the same depths at x 5 6‘, the transmitted and

reflected free waves have the same order of magnitude.

As discussed at the last paragraph of section 4, the

magnitude of transmitted and reflected free wave is de-

termined by that of the free 1 topography-induced force

wave, [~h
(1)
F 1 ~h

(2)
F ] 1 ~h

1
1 ~h

2
, at the edge of the topog-

raphy. As shown in Figs. 8b,c, the canyon would generate

slighter larger free waves because [~h
(1)
F 1 ~h

(2)
F ] 1 ~h

1
1 ~h

2

is more enhanced at the edge of canyon than ridge

(Fig. 7).

The energy transfer from the short-wave groups to

long waves according to (5.4) is indicated by the solid

lines in Fig. 9 (middle and bottom) and oscillates be-

tween positive and negative values along canyon and

ridge corresponding to increase and decrease in the am-

plitude of the long wave in Fig. 6 (top). The topography-

induced amplitude change of radiation stress (dashed

lines in Fig. 9, middle) and volume flux (dashed lines in

Fig. 9, bottom) have a significant contribution to the en-

ergy transfer, especially at the shallow part of the to-

pography and where the bottom slope is at its maximum.

d. Sinusoidal canyon and ridge

Finally, we consider a sinusoidal canyon,

h 5 ~h[1 1 sin2(px/L)]=2 (0 # x # L)

h 5 ~h/2, (x , 0 and x . L), (6.4a)

and a sinusoidal ridge,

FIG. 7. Amplitude of group bound long waves induced by variable depth [~h
(1)
F 1 ~h

(2)
F ] (thick dashed lines) and

forward (dashed–dotted lines) and backward (dotted lines) propagating free long waves ~h
1

and ~h
2

and the sum of

these three waves (thick solid lines) over a Gaussian (left) canyon and (right) ridge. The thin solid line denotes the

constant-depth forced wave ~h
(0)
F locked to the wave group, and the two vertical dashed lines indicate the topography

edges. The width of the ramp is L 5 15/«k‘. The water depth is (a),(c) k
‘

~h 5 2 and (b),(d) k
‘

~h 5 4 ( ~h is the maximum

water depth).

OCTOBER 2011 Z O U 1855



h 5 3 ~h/2 2 ~hf1 1 sin2[px/(L)]g/2, (0 # x # L)

h 5 ~h, (x , 0 and x . L), (6.4b)

where L is the width of the canyon and ridge. The cal-

culated results for T and R for k
‘

~h 5 2, 3, and 4; for 5 #

«k‘L # 30; and for sinusoidal canyon and ridge (not

shown here) indicate that the radiating free waves in

both directions are smaller than their counterparts for

the Gaussian canyon and ridge because hx approaches

zero on both sides of the topography junctions. Similar

to those of sinusoidal ramps (Fig. 6), the oscillatory

variation of radiating free waves with relative topogra-

phy width is reduced by the weakened interference of

forced and free waves because the former is much larger

than the latter.

7. Conclusions and discussion

As short-wave groups encounter a localized topogra-

phy, free long waves radiate away from the region at

a shallow-water wave speed of
ffiffiffiffiffiffi
gh

p
. The transmitted

free wave is stronger than the reflected free wave for

all types of topography because of the mild bottom

slope used in this study. The amplitude of these scat-

tered free waves increases with decreasing water depth

and wave frequency. For canyon/ridge type topography,

the amplitudes of these waves decrease with topography

width in an oscillatory fashion, whereas, for ramp type

topography, their amplitudes decrease with the topog-

raphy width almost monotonically. We also note that

the amplitude of the sum of free and topography-

induced forced waves, [~h
(1)
F 1 ~h

(2)
F ] 1 ~h

1
1 ~h

2
, displays

an oscillatory variation along a topography whose

width is sufficiently larger than the group wavelength.

These oscillatory behaviors are due to the interference

of free and forced waves over the topography. These

behaviors were not resolved by previous numerical

models, which only calculate the total amplitude of the

sum of free and topography-induced forced waves,

[~h
(1)
F 1 ~h

(2)
F ] 1 ~h

1
1 ~h

2
.

Although the variable water depth–induced forced

and free long waves represent a second-order correction

to the total magnitude of long waves over a mild slope,

FIG. 8. Amplitude of forward (solid lines) and backward (dashed lines) scattered free long waves at the transmission/

incident side of Gaussian (left) canyon and (right) ridge as a function of relative topography width k‘L for a water depth

of k‘h 5 2–4 (h 5 ~h, the maximum water depth).
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they contribute to the phase shift and therefore the en-

ergy transfer between the short-wave group and long

wave at the leading order because they are out of phase

with the wave group. In addition, the gradient of short-

wave radiation stress is modified by the presence of

topography, so is the current associated with long waves

as required by mass conservation. These modifications

are in quadrature with their constant water depth

counterparts and therefore result in leading-order con-

tributions to the energy transfer. These three mecha-

nisms for energy transfer between wave group and long

waves for a finite topography have not been explored in

the literature.

Our analytical results indicate that the inclusion of the

bottom slope terms in the long-wave solutions is nec-

essary to fully describe topographic scattering of long

waves. The scattered waves are weakened in the case of

a smooth topography junction where discontinuity of hx

becomes negligible. In the cases of sinusoidal ramp,

canyon, and ridge (cf. Fig. 6), both h and hx are contin-

uous at the junctions, but hxx and the slope of

[~h
(1)
F 1 ~h

(2)
F ] 1 ~h

1
1 ~h

2
are discontinuous. In these cases,

the presence of scattered free waves must be due to the

discontinuities in hxx.

Mei and Benmoussa (1984) and Liu (1989) solved a

governing equation equivalent to (2.6) numerically by

a finite-element method. They assume that the length

scale of the topography is at the same order as the

wavelength of the wave group; that is, hx/Kh 5 O(1),

hxx/Kh 5 O(1). In contrast, our asymptotic expansion

solutions to the problem are valid only if the former

is one order of magnitude larger than the latter; that is,

hx/Kh 5 O(m), hxx/Kh 5 O(m2). Therefore, we are un-

able to conduct quantitative comparisons between the

present analytical solutions and the numerical results by

Mei and Benmoussa (1984) and Liu (1989).

Despite the present solution being only valid for a

mild slope, the tractability of the analytical solution al-

lows us to reveal some new physics described above

regarding wave-group-induced forced and free waves

over varying depth by paying special attention to the

topography-induced phase change of these long waves

and interference between forced and free long waves.

The effect of these processes should be enhanced at

FIG. 9. Long-wave amplitude and energy transfer from short-wave group to long waves for a (left) canyon and

(right) ridge. Lines and symbols are as in Fig. 5. The width of the ramp is L 5 12/«k‘. Water depth is k‘h 5 3 (h 5 ~h,

the maximum water depth).
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a steeper slope and shallower water where the normal-

ized bed slope hx/Kh is large.
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APPENDIX

Second-Order Free Wave Amplitude Coefficients

Substituting (3.7)–(3.10) and (3.3b) into (4.1), at the

second order, we have

C
1

5 2
1

2

 
1 1

ffiffiffiffiffiffiffiffi
gh0

p
Cg0

!
[h

(1)
F (01) 1 h

(2)
F (01)] 1

ffiffiffiffiffiffiffiffi
gh0

q
(iV)21[h

(0)
Ex(01) 1 h(1)

x (01)]

)(

3

�
h

(0)
1 (01) 1 h

(1)
1 (01) 1

1

2

ffiffiffiffiffiffiffiffi
gho

q
(iV)21

h
(0)
1x(01)

�21

1 O(h3
x, hxhxx, hxxx)

[ C
1

(k
‘

, h, L, hx, hxx) 1 O(h3
x, hxhxx, hxxx), (A1)

C
2

5 2
1

2

 
1 2

ffiffiffiffiffiffiffiffi
gh1

p
Cg1

!
[h

(1)
F (L2) 1 h

(2)
F (L2)] 2

ffiffiffiffiffiffiffiffi
gh1

q
(iV)21[h

(0)
Ex(L2) 1 h(1)

x (L2)]

)(

3

�
h(0)

2 (L2) 1 h(1)
2 (L2) 2

1

2

ffiffiffiffiffiffiffiffi
gh1

q
(iV)21

h(0)
2x(L2)

�21

exp

2
64i

ðL2

01

(K 1 Kh) dx

3
751 O(h3

x, hxhxx, hxxx)

[ C
2

(k
‘

, h, L, hx, hxx) 1 O(h3
x, hxhxx, hxxx), (A2)

T 5 [h
(0)
1 (L1)]21 [h

(1)
F (L2) 1 h

(2)
F (L2)] exp

2
64i

ðL2

01

(K 2 Kh) dx

3
75

8><
>:

1 C
1

[h
(0)
1 (L2) 1 h

(1)
1 (L2)] 1 C

2
[h(0)

2 (L2) 1 h(1)
2 (L2)] exp

0
B@22i

ðL2

01

Kh dx

1
CA
9>=
>; 1 O(h3

x, hxhxx, hxxx)

[ T(k
‘

, h, L, hx, hxx) 1 O(h3
x, hxhxx, hxxx), (A3)

and

R 5 [h(0)
2 (01)]21fh(1)

F (01) 1 h
(2)
F (01) 1 C

1
[h

(0)
1 (01) 1 h

(1)
1 (01)] 1 C

2
[h(0)

2 (01) 1 h(1)
2 (01)]g1O(h3

x, hxhxx, hxxx)

[R(k
‘

, h, L, hx, hxx) 1 O(h3
x, hxhxx, hxxx), (A4)

where h0, Cg0 and h1, Cg1 are the values taken by h and

Cg in the regions x , 0 and x . L, respectively, and K 5

V/Cg and Kh 5 V/
ffiffiffiffiffiffi
gh

p
are the wavenumbers for forced

and free waves.

REFERENCES

Battjes, J. A., H. J. Bakkenes, T. T. Janssen, and A. R. van Dongeren,

2004: Shoaling of subharmonic gravity waves. J. Geophys. Res.,

109, C02009, doi:10.1029/2003JC001863.

Chu, V. H., and C. C. Mei, 1970: On slowly varying Stokes waves.

J. Fluid Mech., 41, 873–887.

Davey, A., and K. Stewartson, 1974: On three-dimensional packets

of surface waves. Proc. Roy. Soc. London, 388A, 101–110.

Djordjevic, V. D., and L. G. Redekopp, 1977: On two-dimensional

packets of capillary-gravity waves. J. Fluid Mech., 79, 703–714.

Elgar, S., and R. T. Guza, 1985: Observations of bispectra of

shoaling surface gravity waves. J. Fluid Mech., 161, 425–448.

Hasimoto, H., and H. Ono, 1972: Nonlinear modulation of gravity

waves. J. Phys. Soc. Japan, 33, 805.

Hasselmann, K., W. Munk, and G. MacDonald, 1963: Bispectra of

ocean waves. Proceedings of the Symposium on Time Series

Analysis, M. Rosenblatt, Ed., SIAM Series in Applied Math,

Wiley, 125–139.

1858 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 41



Henderson, S. M., R. T. Guza, S. Elgar, T. H. C. Herbers, and A. J.

Bowen, 2006: Nonlinear generation and loss of infragravity

wave energy. J. Geophys. Res., 111, C12007, doi:10.1029/

2006JC003539.

Herbers, T. H. C., S. Elgar, and R. T. Guza, 1995: Generation and

propagation of infragravity waves. J. Geophys. Res., 100,

24 863–24 872.

Janssen, T. T., J. A. Battjes, and A. R. van Dongeren, 2003: Long

waves induced by short-wave groups over a sloping bottom.

J. Geophys. Res., 108, 3252, doi:10.1029/2002JC001515.

Kirby, J., and R. Dalrymple, 1983: Propagation of obliquely in-

cident water waves over a trench. J. Fluid Mech., 133, 47–63.

Liu, P. L.-F., 1989: A note on long waves induced by short-wave

groups over a shelf. J. Fluid Mech., 205, 163–170.

Longuet-Higgins, M. S., and R. W. Stewart, 1960: Changes in the

form of short gravity waves on long waves and tidal currents.

J. Fluid Mech., 8, 565–583.

——, and ——, 1961: The changes in amplitude of short gravity waves

on steady non-uniform currents. J. Fluid Mech., 10, 529–549.

——, and ——, 1962: Radiation stress and mass transport in

gravity waves, with application to ‘surf beats.’ J. Fluid Mech.,

13, 481–504.

——, and ——, 1964: Radiation stresses in water waves: A physical

discussion, with applications. Deep-Sea Res., 11, 529–562.

Mei, C. C., and C. Benmoussa, 1984: Long waves induced by short-

wave groups over an uneven bottom. J. Fluid Mech., 139,
219–235.

Miles, J., and Q. Zou, 1992: Gravity wave reflection at a disconti-

nuity in bottom slope. J. Phys. Oceanogr., 23, 1870–1871.

Munk, W., 1949: Surf beats. Eos, Trans. Amer. Geophys. Union, 30,

849–854.

Okihiro, M., R. T. Guza, and R. J. Seymour, 1992: Bound in-

fragravity waves. J. Geophys. Res., 97, 11 453–11 469.

Ono, H., 1991: Deformation of nonlinear gravity waves due to

a depth variation. J. Phys. Soc. Japan, 60, 4127–4132.

Phillips, O., 1977: The Dynamics of the Upper Ocean. 2nd ed.

Cambridge University Press, 336 pp.

Thomson, J., S. Elgar, B. Raubenheimer, T. H. C. Herbers, and

R. T. Guza, 2006: Tidal modulation of infragravity waves via

nonlinear energy losses in the surfzone. Geophys. Res. Lett.,

33, L05601, doi:10.1029/2005GL025514.

Tucker, M. J., 1950: Surf beats: Sea waves of 1 to 5 min. period.

Proc. Roy. Soc. London, 202A, 565–573.

Van Dongeren, A. R., A. J. H. M. Reniers, J. A. Battjes, and I. A.

Svendsen, 2003: Numerical modeling of infragravity wave re-

sponse during DELILAH. J. Geophys. Res., 108, 3288,

doi:10.1029/2002JC001332.

Whitham, G. B., 1967: Non-linear dispersion of water waves.

J. Fluid Mech., 27, 399–412.

——, 1974: Linear and Nonlinear Waves. Wiley, 636 pp.

Zou, Q.-P., 1995: A viscoelastic model for turbulent flow over

undulating topography and progressive waves. Ph.D thesis,

Scripps Institution of Oceanography, University of California,

San Diego, 91 pp.

OCTOBER 2011 Z O U 1859


