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SUMMARY

Until recently the concern of the traditional theory of the atmospheric stable boundary layer (SBL) was,
almost without exception, the nocturnal SBL developing after sunset on the background of a neutral or slightly
stable residual layer. In the nocturnal SBLs the nature of turbulence is basically local. Its lower portion is well
described by the classical Monin–Obukhov surface-layer similarity theory. Things are different in long-lived SBLs
situated immediately below the stably strati� ed free � ow. Here, the surface-layer turbulence is affected by the
free-� ow Brunt–Väisälä frequency, N . The surface layer represents approximately one-tenth of the SBL, so that
it is separated from the free atmosphere by the upper nine-tenths of the SBL comprising hundreds of metres.
Traditional concepts fail to explain such distant links. Zilitinkevich and Calanca extended the traditional Monin–
Obukhov similarity theory by including N in the surface-layer scaling, and provided experimental evidence in
support of this extension. In the present paper, physical mechanisms responsible for non-local features of the
long-lived SBL turbulence are identi� ed as: radiation of internal waves from the SBL upper boundary to the free
atmosphere, and the internal-wave transport of the squared � uctuations of velocity and potential temperature. The
third-order wave-induced � uxes are included in an advanced turbulence-closure model to correct the wind and
temperature pro� les in the surface layer. The model explains why developed turbulence in the surface layer can
exist at much larger Richardson numbers than the classical theory predicts. Results from the new model are in
good agreement with the extended similarity theory and experimental data.
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1. INTRODUCTION

An attempt is made to develop a theoretical model which would explain non-
local features of the surface-layer turbulence disclosed recently by Zilitinkevich and
Calanca (2000; henceforth Z&C). In this approach two essentially different types of
stable boundary layer (SBL) are distinguished, namely nocturnal and long-lived (see
Fig. 1).

The nocturnal midlatitudinal SBLs are disconnected from the stably strati� ed free
atmosphere by a thick neutral or weakly stable residual layer (e.g. Kim and Mahrt
1992). The latter results from the daytime convection and is usually kept well-mixed
during the � rst hours of the night. Clearly, the residual layer prevents internal-wave
interactions between the SBL and the free atmosphere. As a result, the nocturnal SBL
is basically governed by locally generated small-scale turbulence. Then the nature
of turbulence is basically local, the structure of the surface layer obeys the Monin–
Obukhov similarity theory (Obukhov 1946; Monin and Obukhov 1954) and the SBL is
successfully modelled employing local-scaling reasoning or turbulence-closure schemes
(Brost and Wyngaard 1978; Nieuwstadt 1984; Derbyshire 1990). It is believed that
non-local features, although occasionally observed (Cuxart et al. 2000), are rather
exceptional for nocturnal SBLs.

On the contrary, in persisting stable strati� cation typical of cold weather and often
observed in coastal zones, the SBLs live long enough to achieve immediate contact
with the stably strati� ed free atmosphere. In this case the SBL and the free atmosphere
could interact due to the vertical propagation of internal gravity waves (IGWs) and non-
local IGW-induced transports. The key parameter characterizing this mechanism is the
¤ Corresponding address: Department of Earth Sciences–Meteorology (MIUU), Uppsala University, Villavägen
16, SE-752 36 Uppsala, Sweden. e-mail: sergej@met.uu.se
c° Royal Meteorological Society, 2002.
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Figure 1. A sketch of the potential-temperature pro� les and relevant sub-layers in (a) the nocturnal, and (b) the
long-lived stable boundary layers.

Brunt–Väisälä frequency in the free atmosphere, N . Traditional local theories are insuf-
� ciently advanced to reproduce realistically such long-lived SBLs. They systematically
overestimate the SBL height (Kitaigorodskii and Joffre 1988; Zilitinkevich and Mironov
1996; Zilitinkevich et al. 2002) and in some cases dramatically underestimate the level
of turbulent mixing in the surface layer (Sempreviva et al. 1992; Z&C).

The fact that the free-� ow stability generally affects the SBL is well documented.
The effect of N on the structure of the Antarctic SBL was recognized by King (1990).
Olesen et al. (1984) and Larsen et al. (1985, 1990) disclosed that the velocity spectra
in the lower part of the SBL depend on N . One could consider these observations as
indirectly indicative of the role of the vertical propagation of IGWs and the IGW–
turbulence interaction in the physical nature of long-lived SBLs. Some mechanisms of
possible in� uence of IGWs on SBLs have already been considered (Finnigan et al. 1984;
Hooke and Jones 1986; Weinstock 1987; Finnigan 1998). Mahrt (1998, 1999) gave a
comprehensive presentation of the modern state-of-the-art in this � eld.

In a new theoretical model presented below in sections 2 and 3 the IGW-induced
third-order � uxes within the long-lived SBL are parametrized and incorporated in the
context of a turbulence-closure model. This allows the earlier Z&C heuristic arguments
and experimental � ndings to be justi� ed.

Z&C extended the classical Monin–Obukhov similarity theory to the surface layers
within long-lived SBLs. They provided a qualitative physical reasoning for including
N in the list of the governing parameters and received convincing experimental support
for this extension. The Z&C similarity theory includes, besides the familiar Monin–
Obukhov length-scale, L, one more length-scale, LN , and consequently a dimensionless
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number, Fi, which can be treated as an inverse Froude number:

L D
¡u3

¤
B

; LN D
u¤
N

; Fi D
L

LN

D
LN

u¤
: (1)

Here, u¤ ´
p

j sj is the friction velocity; s, B D ¯Fµ s and Fµ s are the near-surface
values of vertical turbulent � uxes of momentum, buoyancy and virtual potential tem-
perature (here and below the subscript s stands for near-surface values); ¯ D g=T is the
buoyancy parameter; g is the acceleration due to gravity; T is a reference value of the
absolute temperature; N is given by:

N 2 D ¯
@µ

@z


z>h

; (2)

where @µ=@z is the vertical gradient of potential temperature, and h is the boundary-
layer height. The inverse Froude number, Fi, quanti� es the extent to which the surface-
layer turbulence is affected by the free-� ow stability.

In further analysis the surface layer is considered as an integral part of the SBL.
Here, the vertical turbulent � uxes of momentum, D .¿x; ¿y/, and potential tempera-
ture, Fµ , decrease towards the SBL upper boundary:

j j D u2
¤.1 ¡ &/m; Fµ D Fµ s.1 ¡ &/n where & ´

z

h
: (3)

The surface layer is the lower portion of the SBL where z ¿ h and consequently
j j ¼ u2

¤ and Fµ ¼ Fµ s.
For the exponents in Eq. (3), Nieuwstadt (1984) suggested n D 1 and deduced

m D 3=2 from his nocturnal SBL model. Derbyshire (1990) observed that n D 1 is
inconsistent with his large-eddy simulations and hardly realistic. Indeed, taking n D
1, the heat conductivity equation, @µ=@t D ¡@Fµ =@z, immediately suggests that the
cooling rate is constant with depth, @µ=@t D Fµ s=h < 0. If so, the potential temperature
immediately below the SBL height, µh¡0, should decrease linearly with time. Then,
bearing in mind that the temperature immediately above the SBL, µh¡0, is kept constant,
a temperature jump at the top of the SBL should develop. In reality no jumps of this sort
are observed. To avoid this inconsistency, n should be taken larger than unity.

2. VELOCITY GRADIENT

In stable strati� cation, the shear generation of turbulent kinetic energy (TKE),
EK D 1

2 .u02 C v02 C w02/, is the major (positive) term in the TKE budget. This makes it
reasonable to derive the velocity gradient from the TKE budget equation:

¢
@u
@z

¼ u2
¤
@u

@z
D ¡B C " C

@FKE

@z
: (4)

Here, u D .u; v/ is the wind velocity vector, " is the dissipation rate of the TKE,
FKE D 1

2.u02 C v02 C w02/w0 C ½¡1
0 p0w0 is the sum of the third moments representing

vertical � uxes of the TKE and the � uctuations of pressure, p0; ½0 is the reference density.
The terms ¢ @u=@z and B represent, respectively, the generation rate of the TKE due
to the shear and the TKE loss due to the negative buoyancy forces. The x-axis is aligned
with the near-surface wind; hence u D .u; 0/ and D .¿s; 0/. Assuming that z ¿ h,
the surface-layer approximation is applied to the � uxes of momentum and potential
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temperature, .u2
¤; 0/ and B D ¯Fµ s, such that height-independent values are used.

Certainly, when vertically differentiating, the height-dependence of the � uxes should
be taken into account.

For the dissipation rate of TKE, the conventional Kolmogorov–Heisenberg closure
hypothesis reads:

" D
E

3=2
K

lE
D

EK

tE
; (5)

where lE and tE D lE=E
1=2
K are the energy-dissipation length- and time-scales, respec-

tively.
In the stably strati� ed surface layer, the ratio of the TKE to the momentum � ux

modulus does not exhibit any dependence on z=L:

EK D CK j¿ j ¼ CKu2
¤; (6)

where CK ¼ 5 is an empirical constant (e.g. Fig. 1.24 in Zilitinkevich 1970; Fig. 75 in
Monin and Yaglom 1971).

For the length- and time-scales, two asymptotic formulas are known: lE » z,
tE » z=u¤ close to the surface, and lE » L, tE » L=u¤ far away from the surface—
in the so-called z-less strati� cation layer (e.g. section 7 in Monin and Yaglom 1971).
Interpolation between the above asymptotes for t¡1

E yields:

1

tE
D Ct1

u¤
z

C Ct2
u¤
L

; (7)

where Ct1 and Ct2 are dimensionless coef� cients. Then the dissipation rate of the TKE
becomes:

" D CK Ct1
u3

¤
z

³
1 C

Ct2

Ct1

z

L

´
: (8)

Substituting Eq. (8) for " and neglecting @FKE=@z, Eq. (4) would immediately yield
the familiar log–linear velocity pro� le:

@u

@z
D

u¤
kz

±
1 C Cu

z

L

²
: (9)

Here, k D 1=CKCt1 ¼ 0:4 is the von Karman constant and Cu D k.CKCt2 C 1/ ¼ 2:1 is
one more empirical constant (taken after Högström 1995). Remember that L is speci� ed
here by Eq. (1) and does not include k. Accordingly the above estimate of Cu ¼ 2:1 is
consistent with the habitual value of the constant in the log–linear wind pro� le, which
is equal to Cu=k ¼ 5. Equation (9) is known to be a reasonable approximation for the
surface layers within the nocturnal SBLs.

To extend the analysis to long-lived SBLs, consider the TKE � ux divergence. Close
to the surface (in the logarithmic boundary layer) the local energy generation u2

¤@u=@z
is, to a high accuracy, balanced by its local dissipation ", so that the buoyancy and the
� ux divergence terms in Eq. (4) become negligible. Moreover, at the very surface the
total energy � ux should turn to zero. Therefore the lower boundary condition for this
� ux reads:

FKEjzD0 ´ FKEs D 0: (10)
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This condition is consistent with the widely used turbulent-diffusion approximation
for FKE, namely FKE D ¡K@EK=@z, assuming that the eddy diffusivity K is propor-
tional to the eddy viscosity, K » u¤z, and taking the kinetic energy EK after Eqs. (6)
and (3).

At the upper boundary of the long-lived SBL, turbulent disturbances may interact
with the IGW � elds inherent in the free atmosphere. Consider the case when the IGWs
are excited by the above disturbances¤. Then the IGWs propagate upward into adjacent
stably strati� ed layer of the free atmosphere and generate their vertical � uxes of the
kinetic energy and pressure � uctuations. Consider � rst the wave-induced kinetic energy
� ux. Let the typical horizontal scale of disturbances be ¸, therefore the typical horizontal
wave number of the IGW is 2¼=¸. Generally, a variety of wave harmonics with a
wide range of wave numbers is produced. Each of these components is responsible
for a certain vertical energy transport. The maximum energy � ux caused by a single
wave harmonic is .3¼

p
3/¡1l2¸N 3, where l is the wave amplitude (e.g. Thorpe 1973).

The wave-induced vertical � ux of the pressure disturbances is given by precisely the
same expression (Soomere and Zilitinkevich 2001). Hence the total � ux afforded by the
entire wave spectrum can be taken to be » l2¸N 3, with the proportionality coef� cient
generally larger than .3¼

p
3/¡1. The wave length ¸ and amplitude l typical of the

dominant waves can be taken to avoid integration over the spectrum (cf. Carruthers
and Hunt 1986).

On the requirement of continuity at z D h, the energy � ux provided by joint actions
of the IGW and turbulence immediately below the SBL height should coincide with the
above wave-induced � ux in the free atmosphere:

FKEjzDh ´ FKEh » l2¸N 3: (11)

The role of this � ux in the TKE budget is shown schematically in Fig. 2.
A natural scale for the horizontal wavelength, ¸, is given by the horizontal sizes

of the largest eddies in the SBL. The latter are controlled by the SBL height h. Then a
simple estimate can be taken as a � rst approximation:

¸ » h: (12)

The omitted ‘anisotropy factor’ on the right-hand side (r.h.s.) of Eq. (12) is of order ten
or even larger (e.g. Mason and Thomson 1987). Strong anisotropy of turbulent eddies in
boundary layers due to asymmetry of the stretching mechanism is clearly understood.
It is characterized in the vertical by the turbulent velocity, u¤, and in the horizontal by
the increment in mean wind velocity, u, across the layer. Then the omitted factor on the
r.h.s. of Eq. (12) should be of the order of the inverse drag coef� cient, u=u¤, which is
large but not very variable†.

Obviously l should be close to the vertical scale of disturbances at the SBL upper
boundary. The latter is immediately estimated from simple energy budget reasoning.
Indeed, the potential energy acquired by a portion of � uid displaced in the vertical by
the distance l is » l2¯@µ=@z D l2N 2, whereas its initial kinetic energy is »u2

¤. Equating
the two energies yields:

l »
u¤
N

: (13)

¤ Clearly, an alternative process when the IGW � eld inherent in the free atmosphere generates turbulent
disturbances in the SBL would affect the SBL structure in an essentially different way (see Hooke and Jones
1986; Weinstock 1987). This interesting regime is not considered in the present paper and left for future work.
† A more advanced estimate of ¸ accounting for the effect of the static stability on horizontal stretching of large
eddies is left for future work (see section 6).
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Figure 2. Vertical structure and budgets of the kinetic energy (KE) and the ‘energy’ of potential-temperature
� uctuations (PE) in the long-lived stable boundary layer. See text for discussion.

The r.h.s. of Eq. (13) is precisely the length-scale LN , Eq. (1).
Equations (11)–(13) specify the energy � ux at the upper boundary of the long-lived

SBL. It is worth mentioning that nothing of this kind could be derived from traditional
energy-� ux parametrizations currently used within turbulence closure schemes, in par-
ticular from the turbulent-diffusion approximation already mentioned in the discussion
of Eq. (10). For better understanding and parametrization of the turbulence–IGW inter-
actions within the SBL, the divergence of the energy � ux can be roughly approximated
through the � nite difference across the SBL as @FKE=@z » .FKEh ¡ FKEs/=h. Substi-
tuting here FKEs after Eq. (10) and FKEh after Eqs. (11)–(13) yields:

@FKE

@z
D CWKu2

¤N; (14)

where CWK is a dimensionless coef� cient to be determined empirically.
Now, substituting Eq. (14) for @FE=@z and Eq. (8) for " in Eq. (4), yields precisely

the same velocity-gradient formulation as that derived heuristically by Z&C:

@u

@z
D

u¤
kz

n
1 C Cu.1 C CuN Fi/

z

L

o
: (15)

Here, CuN D CWK=.CK Ct2 C 1/ ¼ 0:1 ¥ 0:4 is a new coef� cient introduced and rough-
ly estimated by Z&C¤. At Fi D 0, Eq. (15) reduces to the traditional Monin–Obukhov
theory formulation.

Figure 3(a) shows the Z&C plot of the wind slope factor, su D .kL=u¤/@u=@z ¡
L=z, versus Fi. According to the classical theory, Eq. (9), this factor should be a
¤ In Z&C, the notations Cu1 and Cu2 were used instead of Cu and CuN . In the present paper the notations have
been changed to avoid confusion, insofar that the temperature-gradient formulation derived here differs from the
Z&C formulation.
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Figure 3. Slope factors: (a) su D .kL=u¤/@u=@z ¡ L=z for the wind pro� le; and (b) sµ ´ .kT L=µ¤/@µ=@z for
the temperature pro� le, versus the inverse Froude number Fi. See text for details.

universal constant, su D Cu, which evidently contradicts the data. Equation (15) predicts
a generally realistic behaviour, su D Cu C CuCuN Fi. The line is calculated for Cu D 2
and CuN D 0:3. The wide spread of data is probably caused by the variability of the
‘anisotropy factor’ neglected in Eq. (12).

3. TEMPERATURE GRADIENT

In the same way as the velocity gradient is derived in section 2 from the TKE budget
equation, the potential-temperature gradient is derived below from the budget equation
for the squared potential-temperature � uctuations, in other words for the ‘energy’ of
these � uctuations, EP D 1

2µ 02. In the surface layer, this equation reads:

¡Fµ s
@µ

@z
D "µ C

@FPE

@z
: (16)

Here, the left-hand side (l.h.s.) represents the production of the potential-temperature
� uctuations. On the r.h.s. "µ is their decay rate (dissipation), and the second term is
the divergence of their vertical � ux represented by the third moment FPE D 1

2µ 02w0.
When multiplied by ¯2, Eq. (16) becomes the budget equation for squared � uctuations
of buoyancy.

For "µ , the conventional parametrization reads:

"µ D
EP

tµ
; (17)

where tµ is the dissipation time-scale for the temperature � uctuations (cf. Eq. (5) for "/.
In the stably strati� ed surface layer, the ratio of EP to the squared potential-temperature-
scale µ 2

¤ does not exhibit any dependence on z=L:

EP D CP

F 2
µ

j¿ j
¼ CP µ2

¤ ; µ¤ ´
¡Fµ s

u¤
; (18)

where CP ¼ 0:3 is an empirical constant (e.g. Fig. 1.25 in Zilitinkevich 1970; Fig. 76
in Monin and Yaglom 1971). Similarly to Eq. (7), the time-scale tµ is given by the
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interpolation formula:

1

tµ
D Ct3

u¤
z

C Ct4
u¤
L

; (19)

where Ct3 and Ct4 are dimensionless coef� cients. Then the temperature-� uctuation
decay rate becomes:

"µ D CP Ct3
µ 2

¤ u¤
z

³
1 C

Ct4

Ct3

z

L

´
: (20)

Neglecting @FPE=@z, Eqs. (16) and (20) yield the familiar log–linear temperature
pro� le:

@µ

@z
D

µ¤
kT z

±
1 C Cµ

z

L

²
; (21)

where kT D 1=CP Ct3 ¼ 0:42 is the von Karman constant for temperature, and Cµ D
Ct4=Ct3 ¼ 3:2 is the same type of constant as Cu in Eq. (9). Its value (taken here after
Högström 1995) differs from the usual one by the factor k, as the Monin–Obukhov
length speci� ed by Eqs. (1) does not include k. Equation (21) is essentially the local
formulation applicable to the surface layers within nocturnal SBLs.

To account for the effect of IGWs, consider the vertical � ux of the squared potential-
temperature � uctuations, FPE. Close to the surface its role in Eq. (16) is negligible. At
the very surface this � ux tends to zero for the same reasons as the kinetic energy � ux:

FPEjzD0 ´ FPEs D 0: (22)

In the free atmosphere, the ‘energy’ of the buoyancy � uctuations, 1
2.¯µ 0/2, is

transported by the same internal-wave mechanism as the kinetic energy. The linear wave
theory offers that the maximum ‘buoyancy-energy’ � ux due to a single wave component
is .3¼

p
3/¡1l2¸N 5 (Soomere and Zilitinkevich 2001). Then the total squared buoyancy

� uctuation � ux is »l2¸N 5, and the total squared potential-temperature � uctuation � ux
is »¯¡2l2¸N 5, with a proportionality coef� cient generally larger than .3¼

p
3/¡1.

Employing Eq. (12) for ¸ and Eq. (13) for l, the total vertical � ux of squared potential-
temperature � uctuations due to internal waves radiated from the SBL upper boundary
becomes:

FPEh »
l2¸N 5

¯2
»

u2
¤hN 3

¯2
: (23)

Then the � ux divergence approximated through the � nite difference across the SBL,
@FPE=@z » .FPEh ¡ FPEs/=h, is immediately deduced from Eqs. (22) and (23):

@FPE

@z
D CWP

u2
¤N 3

¯2
; (24)

where CWP is the same type of dimensionless coef� cient as CWK in Eq. (14) (generally
these coef� cients can differ due to the difference in the shape of the energy and the
squared buoyancy spectra).

Clearly, Eq. (22) is consistent with the turbulent-diffusion approximation, FPE D
¡K@EP =@z, whereas Eq. (23) and consequently Eq. (24) cannot be derived from
traditional turbulence closures (see Fig. 2).
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Substituting Eq. (20) for "µ and Eq. (24) for @FPE=@z in Eq. (16) yields the
potential-temperature-gradient equation:

@µ

@z
D

µ¤
kT z

f1 C Cµ .1 C CµN Fi3/z=Lg; (25)

where CµN D CWP=CP Ct4 is a new coef� cient to be determined empirically.
Equation (25) speci� es the temperature slope factor, sµ ´ .kT L=µ¤/@µ=@z ¡ L=z,

as a cubic function of Fi, sµ D Cµ C Cµ CµN Fi3, rather than the quadratic function
proposed by Z&C. In this context it should be remembered that dimensional analysis
used by Z&C did not pursue determination of the exponent. Moreover, the Z&C
empirical data on sµ versus Fi presented in Fig. 3(b) de� nitely � t the Fi3 dependence
(solid line calculated for CµN D 0:3) better than the Z&C Fi2 dependence (dotted line).
Thus, in terms of the Z&C similarity theory, Eq. (25) suggests that the coef� cient Cµ2
considered by Z&C as an unknown function of Fi, is in fact a linear function, Cµ2 D
CµN Fi. It is worth mentioning that the classical theory predicts sµ D Cµ D constant,
which becomes absolutely inconsistent with experimental data at Fi > 2.

4. THE RICHARDSON AND THE PRANDTL NUMBERS

As follows from Eqs. (15) and (25), the eddy viscosity, KM , and the eddy conduc-
tivity, KH , in the surface layer are:

KM D
¿

@u=@z
D

ku¤z

1 C Cu.1 C CuN Fi/z=L
»

ku¤L

Cu.1 C CuN Fi/
; (26)

KH D
¡Fµ s

@µ=@z
D

kT u¤z

1 C Cµ .1 C CµN Fi3/z=L
»

kT u¤L

Cµ .1 C CµN Fi3/
: (27)

Here, approximations on the r.h.s. of both equations hold true at large values of z=L, in
the z-less strati� cation layer.

In the nocturnal SBL regimes (Fi D 0), these approximations reduce to KM D
ku¤L=Cu and KH D kT u¤L=Cµ . Then the Prandtl number, Pr, and Richardson number,
Ri, become constants:

Pr ´
KM

KH
»

kCµ

kT Cu
¼ 1:5; Ri ´

¯@µ=@z

.@u=@z/2
»

k2Cµ

kT C2
u

¼ 0:28: (28)

By contrast, in the surface layers within long-lived SBLs, when both the dimen-
sionless height z=L and Fi (Eq. (1)) are large, Pr and Ri become functions of Fi:

Pr ´
KM

KH
»

kCµ CµN

kT CuCuN
Fi2; Ri ´

¯@µ=@z

.@u=@z/2 »
k2Cµ CµN

kT C2
uC2

uN

Fi; (29)

which suggest a quadratic dependence Pr » Ri2. In other words, in strongly stable
long-lived boundary layers, the eddy viscosity becomes Ri2 times larger than the eddy
conductivity. This conclusion is consistent with the quite natural expectation that the
IGWs in long-lived SBLs contribute more to the momentum transport than to the heat
transport (cf. Schumann 1991).

Thus, in contrast with the classical local theory, the proposed model suggests that
developed turbulence in the stably strati� ed atmospheric surface layer can exist at
very large Richardson numbers. This conclusion is con� rmed by recent experimental
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evidence (e.g. Sempreviva et al. 1992; Mahrt et al. 1998; Z&C). A rather common
expectation that the surface-layer turbulence should decay at Richardson numbers larger
than the critical one (Ric » 0:25 ¥ 0:3/ is neither supported by data nor theoretically
founded. Indeed, the well-known upper limit, Ri < Ric D 0:25, for � ow instability and
the generation of turbulence holds true for essentially local consideration relevant to
a homogeneous strati� ed sheared � ow. There are no reasons to extend this limit to
the surface layer, representing a part of the SBL, which is inhomogeneous in the
vertical and whose nature can be essentially non-local. Notice that the proposed model
does not exclude the existence of critical Richardson numbers for the surface layer; it
only indicates that these numbers should not be confused with the conventional � ow
instability limit Ric D 0:25.

5. LIMITS OF APPLICABILITY

Integrating Eqs. (15) and (25) over z, the wind and temperature pro� les become

u D
u¤
k

³
ln

z

z0u

C Cu

z

L

´
C auNz; (30)

µ ¡ µs D
µ¤
kT

³
ln

z

z0T
C Cµ

z

L

´
C aµ

N 2

¯
Sz: (31)

Here, z0u and z0T are the roughness lengths for momentum and temperature, respec-
tively, µs is the potential temperature at the very surface; au D CuCuN =k and aµ D
Cµ CµN =kT are combinations of empirical constants considered above.

As seen from Eqs. (30) and (31), the proposed model does not cover the whole
range of the SBL regimes. It addresses a speci� c type of long-lived SBL overlooked in
the classical local theory. An obvious requirement for consistency of Eqs. (30) and (31)
is:

u.z/ > auNz; µ.z/ ¡ µs > aµ

N 2

¯
Sz: (32)

The above restriction on the wind speed argues that the wind shear is suf� cient to
generate turbulence only if auN < u=z. The latter inequality is nothing but a non-local
Richardson number criterion:

¯.@µ=@z/free-� ow

.u=z/2
surface-layer

< a2
u: (33)

One more requirement should be imposed to guarantee the very fact of radiation of
internal waves from the SBL upper boundary to the free atmosphere. It takes place only
when the Brunt–Väisälä frequency is larger in the layer immediately above the SBL
than in the upper portion of the SBL, namely, when N 2 > ¯.@µ=@z/z<h. Although the
potential-temperature gradient usually decreases towards the SBL upper boundary, this
requirement should be checked before the model is applied.

Thus Eqs. (30) and (31) represent a model which is complementary rather than
alternative to the classical formulation. Besides the above restrictions, these equations
do not reduce to the conventional neutral stability formulation when L ! 1 and N 6D 0.
For modelling applications, a reasonable combination of the classical and the proposed
formulations is needed to cover the range of stability conditions including both nocturnal
and long-lived SBLs.
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6. CONCLUDING REMARKS

The proposed theoretical model identi� es key mechanisms responsible for the
recently discovered effect of the free-� ow stability on the wind and temperature pro� les
in the surface layer. These are the radiation of IGWs from the SBL upper boundary into
the stably strati� ed free atmosphere, and the wave-induced third-order transports within
the SBL.

An important result from the new model is a theoretical explanation of the well-
known empirical fact that developed turbulence in the stably strati� ed surface layers
can exist at much larger Richardson numbers than the classical theories predict. This
‘drawing’ of developed turbulence towards very strong temperature gradients is shown
to be inherent in long-lived SBLs. Here, radiation of internal waves from the SBL upper
boundary results in a very ef� cient withdrawal of the potential-temperature variance
from the surface layer (/N 5/, which in turn essentially reduces the negative buoyancy
� ux and eventually gives more room for generation of turbulence by the velocity shear.
Accompanying internal-wave withdrawal of TKE is much less ef� cient (/N 3/, so that
the overall effect of internal waves results in the strengthening of turbulence in the lower
portions of long-lived SBLs.

The model allows clari� cation of the physical meaning of the two length-scales, L
and LN (Eq. (1)) relevant to the surface-layer scaling. The Monin–Obukhov-scale, L;
imposes an upper limit on vertical displacements of chaotically moving � uid particles
affected by the negative buoyancy forces. It represents an essentially local scale based on
the near-surface buoyancy � ux, B , and the friction velocity, u¤. The scale LN imposes a
limit on the amplitudes of internal waves radiated from the SBL upper boundary to the
stably strati� ed non-turbulent layer aloft. It is based on the Brunt–Väisälä frequency in
the free atmosphere, N , and the friction velocity (which appears as a turbulence velocity-
scale for the entire SBL). It is precisely the length-scale that re� ects the links between
the surface layer and the free atmosphere.

As speci� ed by Eq. (32), the model is not applicable when the wind speed in the
surface layer is very low whereas the static stability in the free atmosphere is very
strong. It is also not applicable when the temperature gradient in the free atmosphere
is essentially stronger than the bulk temperature gradient in the near-surface layer. The
model does not reduce to the conventional neutral stability formulation when L ! 1
and N 6D 0. These restrictions call for further investigation.

The proposed approach is an attempt to incorporate the internal-wave transport of
kinetic energy and potential-temperature variance in the context of turbulence closures
for stably strati� ed sheared � ows. The present version of the model is deliberately made
very simple—to illustrate the basic idea clearly, and to create links between the earlier
analysis (Z&C) and more rigorous physical theory.

In future work a more advanced model should be developed. First of all, Eqs. (12)
and (13) for the horizontal and vertical length-scales, ¸ and l, need re� nement. In the
present theory they are identi� ed with the scales of large eddies inherent to the upper
portion of the SBL.

Equation (13) for the vertical scale of disturbances at the SBL upper boundary,
¸ » u¤=N , employs u¤ as a turbulent-velocity-scale. This is justi� ed in barotropic � ows.
In baroclinic � ows, an alternative velocity-scale accounting for the geostrophic wind
shear j@ug=@zj should be used in the upper portion of the SBL instead of u¤.

Equation (12) for the horizontal length-scale of the largest eddies in the SBL, ¸ » h,
is probably an acceptable approximation in near-neutral strati� cation. Here, the ratio
of the horizontal to vertical extension of eddies, ¸=h, should be proportional to the
inverse drag coef� cient C¡1

D D u=u¤, which is not too variable (C¡1
D ¼ 30). Then the
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volume of a typical large eddy is ¸2h » h3C¡2
D . In essentially stable strati� cation, large

eddies which initially have the same volume squeeze in the vertical and extend in the
horizontal. Taking instead of h the barotropic SBL vertical-turbulence-scale l » u¤=N ,
the conservation of the eddy volume suggests ¸2u¤=N » h3C¡2

D . Consequently, the
horizontal length-scale becomes ¸ » h3=2C¡1

D .N=u¤/1=2. The horizontal length-scale
for baroclinic SBLs could be derived similarly by employing a corrected turbulent-
velocity-scale.

One more reasonable re� nement could concern the divergences of the third-order
� uxes, @FKE=PE=@z, in the energy budget equations, Eqs. (4) and (16). In the present
simple model they are approximated through � nite differences across the SBL, as
@FKE=PE=@z D FKEh=PEh=h. It follows that the divergences are constant with depth
throughout the SBL. However, at the SBL upper boundary they should tend to zero
together with all other terms in Eqs. (4) and (16), otherwise the equations would become
inconsistent. Moreover, in the logarithmic layer close to the surface the third-order � uxes
are maintained by the small-scale turbulence rather than by internal waves. Accordingly,
not only the � uxes but the � ux divergences should vanish as z ! 0. Hence a more
realistic approximation of @FKE=PE=@z in the SBL should be applied, with particular
attention to the accuracy of approximation in the logarithmic and the z-less strati� cation
layers. This would hopefully allow extension of the model to a wider range of the SBL
regimes, including the neutral stability limit.
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