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ABSTRACT

Two striking empirical facts represent a starting point of the discussion: (i) vertical temperature profile in a
thermocline, a region of supercritical stability adjoining a mixed layer, proves to be self-similar in a series of
laboratory experiments and, though with much less accuracy, in natural water reservoirs; (ii) comparison of
the experimental data on kinematic heat flux Q and vertical temperature gradient 47/93z shows that the effective
heat conductivity K = —Q/(8T/3z) is much higher than the molecular one, and, rather unexpectedly, increases
with the increase of |7/8z}, in contrast with the well-known inverse dependence of K on |87/dz|, which
takes place in weakly stable shear flows.

A theoretical model of a regime under consideration is proposed based on the hypothesis on governing
parameters of intermittent turbulence generated on the background of strongly stable stratification by breaking
of internal waves and turbulence/wave interactions, the heat transfer equation and the balance equation for
turbulent kinetic energy. The solution of the problem of a propagating-wave type coincides with the empirical
approximation of a dimensionless, self-similar temperature profile only in the special case of pronounced deepening
of the mixed layer. This explains the fact of much better accuracy of similarity representation of the temperature
profile in laboratory thermoclines. Indeed, all known experiments just dealt with development of a thermocline
under the condition of a deepening mixed layer.

The model contains two dimensionless constants whose values are found by means of comparison of the
solution with the results of laboratory experiments on penetrative convection. Using these constants, a numerical
simulation of the thermocline in laboratory experiments by Deardorff and Willis on shear currents in an annulus
appears to be quite realistic. This result confirms applicability of the model to different types of laboratory
thermoclines.
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1. Introduction

In vertical structure of oceans, seas, lakes, ponds—
of all natural water bodies and manmade reservoirs
with the free surface subjected to atmospheric effects—
two essentially different layers are observed. First, the
upper quasi-homogeneous well-mixed layer, and sec-
ond, the underlying thermocline, a layer characterized
by an abrupt increase of density with increasing depth,
i.e., by a sharply stable stratification. Similarly, the
lower atmospheric layer may be generally divided into

* On leave from: Institute of Limnology of the Academy of Sci-
ences, 196199 St. Petersburg, Russia.

Corresponding author address: Dr. Sergej S. Zilitinkevich, Max
Planck Institut fiir Meteorologie, Bundesstr, 55, 2000 Hamburg 13,
Germany.

© 1992 American Meteorological Society

two essentially different parts: the near-surface, well-
mixed layer and the capping temperature inversion,
which may be called an atmospheric thermocline.
Richardson numbers in a thermocline considerably
exceed critical values. Therefore, well-developed tur-
bulence cannot be permanently maintained here due
to mean-flow instability. Nevertheless, measurements
prove that turbulence really exists in the thermocline,
not fully developed but intermittent, localized in sep-
arate irregularly scattered spots, which form a so-called
microstructure (Fedorov 1976; Kraus 1977; Monin and
Ozmidov 1981). Each turbulence spot has a limited
life, but degenerated spots are replaced by new ones,
so there is always a multitude of such spots. Its sum-
mary action results in transport of heat, salt, and buoy-
ancy much more effective than due to molecular heat
conductivity and diffusion. The main unsolved prob-
lem connected with the thermocline is how to calculate
this transport and to explain the energetics of inter-
mittent turbulence.
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2. Self-similarity of temperature profile
in thermocline

For calculations of the thermal regime of oceans,
seas, lakes, and ponds the following expression for the
vertical profile of temperature T is widely used:

T_{Ts, at 0<z<h
Ts —(Ty — TN, at h<z< h+ Ah.

Here, z is the depth; 4 is the thickness of the mixed
layer (the temperature is actually constant with depth
within this layer, so it may be assumed to be equal to
the water surface temperature, T';); Ah is the thickness
of the thermocline; T, is the temperature at the depth
z = h+ Ah; and ¢ is a function of dimensionless vari-
able

(1)

§=(z—h)/Ah, (2)
satisfying the following boundary conditions:
H0)=0, ¥(1)=1. (3)

Figure 1 illustrates schematically the temperature
profile that corresponds to such an expression. If the
function ¢ is known, this profile is completely char-
acterized by four parameters: T, T,, #, Ah, which
may be functions of time ¢ and horizontal coordinates
x and y. Certainly, instead of T, one can use the tem-
perature difference across the thermocline AT = T;
— T, as a characteristic parameter.

The use of the model of a well-mixed (and therefore
temperature-uniform) upper layer in natural water ba-
sins was initiated by Kraus and Turner (1967). The
self-similarity concept of the temperature profile in a
thermocline was introduced by Kitaigorodskii and
Miropolsky (1970). They suggested the expression
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FIG. 1. Schematic temperature profile in the
mixed layer and thermocline.
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and confirmed it as a first approximation by processing
data from measurements in the oceanic active layer.

Laboratory experiments (Linden 1975; Wyatt 1978)
confirmed the concept of self-similarity of thermocline
much better than field measurements.

The simplest reasonable a priori expression for the
function ¥ was derived by Arsenyev and Felzenbaum
(1977). They used the third-order polynomial whose
four coeflicients are determined from the boundary
conditions (3) and naturally looking conditions of
conjugation at the lower boundary of a thermocline.
In case of homogeneity of the underlying layer, the
latter conditions have the form 4'(1) = §"(1) = 0.
These boundary conditions result in the formula

d=1-(1-2¢)> (4)
which rather slightly differs from the formula of Ki-
taigorodskii and Miropolsky against the background
of data scatter.

The subsequent processing of oceanic data (Miro-
polsky et al. 1970; Reshetova and Chalikov 1977) re-
vealed so great a scatter of points on the empirical
curves 9( ¢) that the concept of thermocline self-simi-
larity became doubtful. Tamsalu ( 1982) rehabilitated
this idea to a certain degree on the phenomenological
basis. He noted that the form of the function ¥({) de-
pends considerably on the behavior of the mixed layer
and identified two alternative situations that differ
sharply from one another: (i) growth of the mixed layer
(h = dh/dr > 0) and (ii) its steady state or collapse
(h < 0). These cases exhibit different self-similarity,
and Milkki and Tamsalu (1985) obtained two expres-
sions for ¢ from processing Baltic Sea data:

~ 1—(1-2¢)3 at >0 (5a)
) 1 - 41— 03+ 3(1 =04 at h<0. (5b)

Equation (52) coincides with Eq. (4), but Eq. (5b)
has essentially different form in which the mixed layer
interfaces the thermocline smoothly. Thus, the sharp-
ening of the temperature gradient at z = 4 + 0 (ie.,
something similar to a discontinuity at the lower
boundary of the mixed layer) was confirmed only in
the case of its growth. The data from Lake Ladoga and
Lake Sevan confirmed the existence of two types of
self-similar temperature profiles in a thermocline (Zil-
itinkevich 1991).

The theoretical explanation of a possible thermocline
self-similarity during the mixed-layer growth was given
in simultaneously published papers of Turner (1978)
and Barenblatt (1978). These authors noted that the
heat transfer equation

oT

oT

a
Pl hral (6)
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where K is the turbulent heat conductivity, may have
the following self-similar solution of a propagating-
wave type in the region z > A(t) at h > 0:

T(z,t) = T(z), (7)
where z’ = z — h(t), which is easily reduced to the
form of Egs. (1) and (2).

Barenblatt supposed K to be constant, while Turner

examined both this case and one other, more interesting
case:

Ky = —(I’h/AT)dT/ 8z,

where / is a length scale.

When a thermacline is developing in a two-layer
fluid (i.e., when the underlying layer is homogeneous)
the following boundary conditions must hold:

T=T, at z=h, T=T, dT/3z=0
at z=h+ Ah.

(8)

(%)

Only two of these boundary conditions are usually
satisfied, because the heat transfer equation is of second
order with respect to z. The extra one allows the ther-
mocline thickness A/ to be determined.

It is easy to see that, at 7, = const and with two
additional restrictions that T, = const and / = const,
the solution of the problem (6), (8), and (9) belongs
to the same class as Eq. (7) and can be written as a
second line of Eq. (1), where

d=1—(1-93> Ah=2lL (10)
If T'; varies slowly with time, such that
dT,/dt < 2hAT/ Ah, (11)

Eq. (10) is no longer exact but an approximate solution.
If the condition (11) is not valid, neither exact nor
approximate self-similarity of the temperature profile
in a thermocline exists.

In support of his formula (8) Turner refers to the
unpublished paper by Gill and Trefethen, who com-
pared the experimental data on kinematic heat flux Q
and vertical temperature gradient d7/9z. They came
to the conclusion that the effective heat conductivity,
Ky = —Q/(8T/3z), in a thermocline is, first, much
higher than the molecular heat conductivity and, sec-
ond, increases when —d7/9dz increases (in contrast to
the well-known inverse dependence of Ky on —9377/
0z, which takes place at subcritical Richardson num-
bers, i.e., in weakly stable shear flows). Assuming that
Ky oc —9T/9dz, Turner apparently added the factor
I2h/ AT on the right-hand side of his expression for Ky
so that it acquires the proper dimensionality.

3. Governing parameters of wave-generated
intermittent turbulence

The direct dependence of Ky on —37T/0dz in the
thermocline could be the result of the following mech-
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anism, which seems to be the only possible one. The
disturbances at the lower boundary of the mixed layer
generate internal gravity waves, which propagate in dif-
ferent directions and cause the transfer of kinetic energy
downwards. The occurrence of breaking waves mani-
fests itself in generation of turbulence spots; i.e., waves
expend a part of their energy for maintenance of in-
termittent turbulence. It is precisely the same mecha-
nism that was implied in the work of Turner. Nev-
ertheless, in Turner’s formula for K the buoyancy pa-
rameter 8 = gay (where g is gravitational acceleration
and ay is thermal expansion coefficient) was missed.
It obviously must be taken into account. Indeed, if ar
= (0 (and consequently, 8 = 0), there would be no
density stratification associated with temperature
stratification, and therefore no buoyancy effect on tur-
bulence and no internal gravity waves, i.e., nothing
similar to considered phenomenon.

Thus, the list of parameters determining the inter-
mittent turbulence in a thermocline must include the
buoyancy parameter 3 along with the temperature gra-
dient d7/9dz and the length scale / [in which capacity
Zilitinkevich et al. (1988) assumed the amplitude of
disturbances at the mixed layer-thermocline interface,
since it determines a typical amplitude of generated
waves]. Using these three parameters, the following
formula for the effective heat conductivity K is ob-
tained from dimensional arguments:

Ky = C.°N, (12)
where C, is a dimensionless constant, N = (—837T/
dz)'/? is the buoyancy frequency. This expression for
Ky can be presented in a traditional form: Ky
oc le'’?, where e is the statistically averaged turbulent
kinetic energy per unit of mass. Indeed, if we apply
our dimensional analysis to derive the expression for
e, then

e=(IN)?, (13)

where the omitted dimensionless constant is included
into the definition of /. Hence, K} oc le'/? is equivalent
to Eq. (12).

Exactly the same expression for kinetic energy within
the turbulence spot was obtained by Ozmidov (1983).
It is worth mentioning also that the formula /
= N~ 'e'/?, which immediately follows from Eq. (13),
coincides with the expression for the depth of penetra-
tion of vertically moving fluid particle with the energy
e into the stratified layer with the buoyancy frequency
N (Zeman 1975; Zeman and Tennekes 1977).

Now we consider the development of a thermocline
in a two-layer fluid system on the basis of Egs. (6) and
(12) with the boundary conditions (9). The propa-
gating-wave-type solution of the problem is

9=1-(1-{)73 Ah=3CY3*3(BAT) PR3,
(14)
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The former formula coincides with the polynomial
approximation (4) and with the empirical formula (5a)
at h> 0.

Using (7), Eq. (6) may be written in the following
form:

hdT/dz' = dQ/dz’. (15)

It follows from Eq. (15) that in case of a propagating-
wave-type solution, the vertical profiles of temperature
T and of heat flux Q in the layer 2 < z < h + Ah are
similar; that is, the thermocline and the turbulent en-
trainment layer coincide. Therefore, we can identify
the half thickness of thermocline 4 Ak with the vertical
scale / for disturbances at the external boundary of the
mixed layer (cf. Deardorff et al. 1980; Zilitinkevich
1987). Then the second formula (14) is reduced to

16

Ah/h=2I/h= 7] C2(BAThY 'R (16)

Equation (16) was verified by Zilitinkevich et al.
(1988) using the data of laboratory experiments on
development of the mixed layer and thermocline in
case of (1) drift current in an annulus (Kreiman 1982)
and (ii) penetrative convection { Deardorff et al. 1980).
Although the turbulization mechanisms were essen-
tially different in these experiments, both sets of points
follow one and the same curve:

Ah/h = 7600(BATh)'h* + 0.33

at (BATH)'A*> 1075, (17)

The empirical Eq. (17) evidently agrees with Eq.
(16) at sufficiently high values of A, which gives
the estimate C,, = 9 X 107>, Note that the limitation
on A given in Eq. (17) is of the same nature as Eq.
(11) and corresponds to applicability of the propagat-
ing-wave-type solution.

4. Energy balance of turbulence

Turbulence energetics was not considered explicitly
in section 3. Actually, the turbulence length scale / was
taken to be depth-constant. Such a hypothesis can
probably serve as reliable approximation, but only in
case of a comparatively thin thermocline associated
with very intensive deepening of the mixed layer. In a
more general model, both basic characteristics of tur-
bulence, viz., the length scale / and kinetic energy e,
must be considered as unknown depth-dependent
variables. We derive such a model by supplementing
the heat transfer equation with the turbulent energy
balance equation

de/dt = ~3F/dz — B0 — e, (18)

where Q is the kinematic heat flux (8Q is the rate of
turbulent energy loss for overcoming the buoyancy
forces), ¢ is the viscous dissipation rate of the energy,

AND MIRONOYV 991

and F is the vertical energy flux. We close the equations
in a traditional way by means of the concept of tur-
bulent exchange coefficients for heat, K;;, and kinetic
energy, Kg:

Q= —KydT/dz, F= —Kgde/oz, (19)

and the Kolmogorov (1942)-Heisenberg ( 1948) hy-
pothesis:

3/2
K Ke_ 2 =&,
Cu Ckg /

where Cy, Cg, and C, are dimensionless constants.

Finally, we use the expression (13), which reflects
the specific features of turbulence in case of extremely
strong stability. It can be interpreted now as the defi-
nition of the turbulence length scale /.

The system (6), (13), (18)~(20) is closed. With
respect to the vertical coordinate, it is of the second
order relative to temperature 7" and kinetic energy e.
Therefore, two boundary conditions are required for
T and e, say, prescribing them at the upper and lower
boundaries of the thermocline:

T=Tsatz=h, T=T,at z=h+ Ah, (21)
e=e,=(L,N)> at z=h, e=0 at z=h+ Ah,
(22)

where ¢, is expressed in terms of the amplitude of tur-
bulent disturbances and the buoyancy frequency at the
mixed layer-thermocline interface.

(20)

5. Analytical solution

Let the mixed-layer depth /4 be a monotonically in-
creasing function of time. Our system of equations (6),
(13), (18)-(20) is written in the form

oT e]
— = —-Cy—eN 23
ﬁ at Haze ) ( )
de 4 (e de
_1—_= . i _
(Cy+C) 5 Ceé)z (Naz) eN, (24)

where Cyy, C., and C, = Cg(Cy + C)! are dimen-
sionless constants.

We search for the solution of Egs. (23) and (24) of
a propagating-wave type in the half space z > A (i.e.,
Ah - o0). Then, the dependence of unknown variables
on z and t is expressed through a self-similar coordinate
z' =z — h(t) [cf. Eq. (7)], and the following expres-
sions hold true for partial derivatives:

d d d . d

—=—, —==—h—, 25
dz dz'° ot dz’ (25)
where h > 0. Such a solution is exact if T, T, €, and
h do not change with time, and is the approximate one
if they do change, but not very quickly.
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Substituting (25) into Eq. (23), then integrating it
over z” and using the boundary conditions (21) and
(22), we obtain

T—T,=Q/h=(Cn/Bh)eN. (26)

Then, the heat flux O, and the buoyancy frequency
N, at the thermocline upper boundary are

ﬁh( Ts - Ta)
CHe;, ’

According to (25), the left-hand sides of Egs. (23)
and (24) take the form

On=hT,—T,), N,= (27)

de
iz’
(28)

In this way, the problem is reduced to solution of a
system of two ordinary differential equations relative
to e(z’) and N(z’), taking prescribed values of these
variables at z” = 0 and satisfying the condition ¢ > 0
atz’— 0.

The following sets of parameters are considered as
known: T, h, ey, T,, or, according to (22a), (27b),
Ts, h, I, N,. Using the second one, we determine the
following dimensionless variables:

Q": * A2 —1‘9_9__ -1z
ﬁat hAN?, (Cy+ C.) Pyl (Cu+CH)h

£=z'/(C?y), N=1/l,, v=NIN,. (29)
Then, Egs. (23) and (24) become
d

d_f A = —Ew?, (30)

d Cy d
__)\2_)\22=23_ —_— 32,2
df( Tag ) N Gty &N
(31)

where E, is the dimensionless entrainment rate:

CY? h

= -_— 2
*=Ch N, (32)

The second term in the right-hand side of Eq. (31)
reflects nonstationarity of the turbulent energy budget,
which is considered usually as being of minor impor-
tance. Neglecting this term, we obtain

_i 2_f{ 22\ _ 2,3
df()\ydi)\y) Ay,

Asto Eq. (30), it is clear that the term E, »? cannot
be neglected, no matter how small E, is.
The boundary conditions for A and » are

£=O’

§—> .

(33)

(34)
(35)

=p=1 at

A2 =0 at
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The solution of the problem (30), (33), (34), (35)
has the form

A =n’exp(V6E,/n — V6E,),
v=1n"2exp(V6E, — V6E,/n), (36)

1
f w2 exp(V6 Ey /')’ = —= exp(V6EL)E, (37)

13

where 52 = ( }\v)z is the dimensionless energy.

According to (37), n is a monotonically decreasing
function of £ at any E, > 0. Behavior of A and v is
more complicated. The dimensionless turbulence
length scale A is a monotonically increasing function
oftatE, > Vm, and, at £, < V2/3, it first decreases,
reaching a minimum at the depth £ = £,, and only
then increases unlimitingly. The dimensionless buoy-
ancy frequency » is a monotonically decreasing func-
tion of £ at E, > V2/3, and, at E, < V2/3, first it
increases, reaching a maximum at the depth £ = §,,
and only then monotonically tends to zero. Dimen-
sionless depths of extrema, £, and £,, are

36E;

f(‘/gE:)_l )
=—r— 2 exp(1/n")dy’ —
CXD(VEE*) { n p( /77) n

1/3,1/2}

E()\,V}
V2/3 + E,, (38)

which differ one from another only by the lower limits
in the integral. The limit in the right side of (38) cor-
responds to E, — 0.

The following asymptotic formulas hold true at
& —> o0

e 1/2
(W) =n(& Ey) —>

V6E, N
In(E,£) + 4 In[(V6E,) ™" In(E£)]

/1= A& Ey) >

E[In(E,£)1*
V6 {In(Ey¢)
+ 4 In[(V6E,) ™ In(EL£)]}3
N/Ny = W&, Ey) >

6E, {In(E,£)
+ 4 In[(V6E,) " In(E,£)]}?
E[In(EL£)]*

Such a behavior of / and N in an infinitely deep fluid
seems to be quite realistic (cf. high amplitude of in-
ternal waves, large thickness of turbulence spots, and
very low density gradients in the deep ocean). As for
the limit e — 0 in (39), it immediately follows from
the boundary condition (35).

0, (39)

(40)

- 0,

- 0. (41)
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Combining (26), (27) with (36), (39)-(41), we
obtain

T-7,_0 _
=T, 0 0(¢, Ey)
36Ei
= exp(V6E, — V6E,/n) —> m , (42)

where the asymptotic expression corresponds to § —
00 . According to (42) and (37), (T — T,) oc Qisa
monotonically decreasing function of £ at any E,. If
E, < V2/3, it has a bend at the point £ = £,. The
function (£, E,) has the following value at this point:

8, = exp(V6E, — 2). (43)

The expression for § = 1 — 9 given by (42) and (37)
and the third-order polynomial in (5a) may be quite
similar at certain values of E,.

6. Comparison with laboratory experiments

The vertical temperature profiles in thermocline
were carefully examined in the Deardorff et al. (1980)
laboratory experiments on penetrative convection. In
those experiments, transition of temperature 7 from
its value in the mixed layer to a certain value charac-
teristic for the undisturbed layer (i.e., to T, in the ex-
periments with the initially two-layer fluid) is described
by a monotonic function of z. As to the heat flux Q,
in both cases of two-layer and linear background strat-
ification, its profile is as follows: in the main part of
the well-mixed layer, Q is a linearly decreasing function
of z; it passes through zero and changes the sign at
some level z = h_; at the level z = h > h_ it has the
extremum, and then it monotonously drops practically
to zero by the level z = A, > h. Certainly, it is reason-
able to interpret the observed profiles of 7" and @ in
terms of the solution (42) only in the layer z > A,
which should just be called as the thermocline. So the
values of /,, (characteristic amplitude of turbulent dis-
turbances at the mixed layer-thermocline interface,
which is proportional to the thickness of the turbulent
entrainment layer in case of penetrative convection),
T (the mixed-layer temperature), and 7', (the undis-
turbed-layer temperature) required for such an inter-
pretation can be naturally determined by

lh=h—h_, Ty=T(h), T,=T(h). (44)

The empirical graph on Fig,. 2, taken from Deardorff
et al. (1980), presents the dependence of

8 = [T(h-) — T(2))/|T(h-) = T(hs)]
on £=(z-h)/(hy—h) (45)

in the experiment E2 with two-layer fluid. The set of
parameters measured in this experiment, and the es-
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FIG. 2. Dimensionless temperature profiles in the penetrative con-
vection experiment E2 (with a two-layer fluid) of Deardorff et al.
(1980): dashed line represents the measured profile; solid line cal-
culated from (37) and (42) at C. = 0.7, E, = 0.66. The thermocline
is the region above the horizontal line £ = 0.33; £, and 6, are coor-
dinates of the point of bend.

timates of the dimensionless entrainment rate £, and
our dimensionless constants C, and Cy, are presented
in Table 1. Deardorff et al. (1980) did not specify the
moment of time corresponding to the published di-
mensionless temperature curve. That is why particular
values of very approximate estimates of both constants
were found for each count. .

It was done as follows. First, # can be expressed in
terms of Eq. (42):

0=1—(T,— T)/[T(h) — T,16.  (46)

Taking off the empirical value of g at the point of
bend (i.e., §,) from the graph and using the measured
T(h-), T, = T(h), and T, = T(h,) values, we obtain
the estimate of 6, from (46) and the estimate of E,
from (43). Next, knowing E,, we can find the theo-
retical values of £, from (38). Then, since the formula
holds true [according to definition (29a), (44a), and
(45b)]:

[(hy = h)/(h— h))E =1+ CJ?E (47)

Taking off the empirical value of £ at the point of bend
(i.e., &) from the graph, substituting it and the
theoretical value of £, found above into (47), and using
the measured 4., s, and A_ values, we obtain the es-
timate of C.,. Finally, substituting our estimates of E,
and C, into (27) and (32) and using the measured
valuesof 8, h, Ty — T, = T(h)— T(hy),and [, = h —
h_, we obtain the estimate of Cj. The data of the four
counts show the great scatter. In addition to the above
comment about approximate character of our esti-
mates, it may reflect very low accuracy in determining
the point of bend from the empirical curve. In fact,
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TABLE 1. Measured values of parameters in experiment E2 of
Deardorff et al. (1980), and estimates of dimensionless entrainment
rate E, and dimensionless constants C, and Cy,.

Count

1 2 3 4
Data of measurements
s 277 389 502 577
h_,cm 21.8 23.1 24.8 26.2
h,cm 24.3 26.0 28.0 29.5
h,,cm 294 317 347 36.8
h,cm-c™! 0.0166 0.0181 0.0230 0.0239
B,cm-s'.K™! 0.234 0.238 0.243 0.247
T(h), °C 22.50 23.19 23.98 24.22
T(h), °C 23.15 23.70 24,17 24.45
T(hy), °C 24.82 25.00 24.98 25.10
Estimates
E, 0.668 0.669 0.662 0.657
C. 0.713 0.596 0.756 0.919
Cy 0.0239 0.0237 0.0436 0.0579

new measurements are needed for convincing verifi-
cation of the model. Anyway, on the average, the data
mentioned above give the rough estimates

C.,=0.7, Cu=0.04 (48)

The solution given in section S is illustrated by theo-
retical profiles of A, v, 5, and 8 at E, = 0.66 (corre-
sponding to the experiments examined above) and E,
= 0.4, presented in Fig. 3.
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Figure 4 shows the results of numerical simulation
of the temperature profile evolution in the Deardorff
and Willis (1982) laboratory experiments on mixed-
layer and thermocline formation under the action of
shear current developing in an annulus on the back-
ground of initially linear stratification. Unfortunately,
there were no data in the work cited for immediate
evaluation of /, or ¢;,. That is why we had to use the
ad hoc formula /, = 0.4h, where 0.4 is the fitting coef-
ficient. Notwithstanding the arbitrariness of the appli-
cation of this formula, the observed and simulated be-
havior of temperature profiles revealed reasonable
qualitative resemblance.

7. Conclusion

(i) Self-similarity formulation of the vertical tem-
perature profile in the region of supercritical stability
adjoining a well-mixed layer was suggested by Kita-
igorodskii and Miropolsky (1970) as applied to the
oceanic seasonal thermocline. It appears, however, that
the formulation is confirmed much better by laboratory
experiments (e.g., Linden 1975; Wyatt 1978) than by
field measurements. Two different versions of dimen-
sionless temperature profiles in thermocline were ob-
served in natural water reservoirs in alternative cases
of the mixed-layer deepening and collapsing (Malkki
and Tamsalu 1985).

(ii) Comparison of the experimental data on heat
flux and vertical temperature gradient showed that the
effective heat conductivity is much higher than the

(@) (b)
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F1G. 3. Dimensionless vertical profiles of the turbulence length scale A, buoyancy frequency », energetic
parameter 7, and temperature (or heat flux) 8, according to the solution given by (36), (37), (42): (a) E,

=0.66, (b) E, = 0.4.
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FIG. 4. Successive temperature profiles in Deardorff and Willis (1982) laboratory experiments: (a)
experiment 1, (b) experiment 2. Dotted lines represent measured profiles; solid lines are plotted after
the solution of the heat transfer equation (23) and the stationary version of the turbulent energy budget
equation (24}, The horizontal lines indicate the mixed-layer depths at different times (given in seconds ).

molecular one and, rather unexpectedly, can increase
with the increase of temperature gradient, in contrast
with the usual behavior characteristic for weakly stable
shear flows (Gill and Trefethen, unpublished).

(iii) Self-similarity of the temperature profile in a
thermocline was explained, in the case of mixed-layer
deepening, as being equivalent to the propagating-
wave~type solution of the heat transfer equation
(Turner 1978; Barenblatt 1978).

(iv) A simple theoretical model of the heat transfer
due to intermittent turbulence produced by internal
waves breaking and wave-turbulence interaction is
suggested. The expression for the effective heat con-
ductivity is derived from dimensional arguments using
the following governing parameters: buoyancy param-
eter, temperature gradient, turbulence length scale. The
model produces the shape of temperature profile in
thermocline observed by Milkki and Tamsalu in the
case of mixed-layer deepening.

(v) A more advanced model is derived from con-
sideration of turbulent energy budget and the afore-
mentioned dimensional arguments. Analytical and
numerical solutions are obtained simulating temper-
ature profiles in thermocline in laboratory experiments
on mixed-layer deepening (Deardorff et al. 1980;
Deardorff and Willis 1982). The given energy balance
model must be applicable to the problem of recon-
struction of thermocline not only in the considered
case of the mixed-layer deepening, but also in case of
its steady state or collapse.
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