
A MULTI-LIMIT FORMULATION FOR THE EQUILIBRIUM DEPTH 
OF A STABLY STRATIFIED BOUNDARY LAYER 

SERGEJ ZILITINKEVICH’~2 and DMITRII V MIRONOV’ 
‘Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 

Bremerhaven, Germany 
‘Max Planck Institute for Meteorology, Bundesstl: 55, 20146 Hamburg, Germany 

Abstract. Currently no expression for the equilibrium depth ofthe turbulent stably-stratified boundary 
layer is available that accounts for the combined effects of rotation, surface buoyancy flux and static 
stability in the free flow. Various expressions proposed to date are reviewed in the light of what 
is meant by the stable boundary layer. Two major definitions are thoroughly discussed. The first 
emphasises turbulence and specifies the boundary layer as a continuously and vigorously turbulent 
layer adjacent to the surface. The second specifies the boundary layer in terms of the mean velocity 
profile, e.g. by the proximity of the actual velocity to the geostrophic velocity. It is shown that the 
expressions based on the second definition are relevant to the Ekman layer and portray the depth of 
the turbulence in the intermediate regimes, when the effects of static stability and rotation essentially 
interfere. Limiting asymptotic regimes dominated by either stratification or rotation are examined 
using the energy considerations. As a result, a simple equation for the depth of the equilibrium stable 
boundary layer is developed. It is valid throughout the range of stability conditions and remains in 
force in the limits of a perfectly neutral layer subjected to rotation and a rotation-free boundary layer 
dominated by surface buoyancy flux or stable density stratification at its outer edge. Dimensionless 
coefficients are estimated using data from observations and large-eddy simulations. Well-known and 
widely used formulae proposed earlier by Zilitinkevich and by Pollard, Rhines and Thompson are 
shown to be characteristic of the above interference regimes, when the effects of rotation and static 
stability (due to either surface buoyancy flux, or stratification at the outer edge of the boundary layer) 
are roughly equally important. 
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1. Introduction 

Stably stratified boundary layers (SBLs) are often encountered over a land surface 
during the night and in the upper ocean during periods of heating. One more 
geophysical example of the SBL is the bottom boundary layer in the ocean. It is 
only slightly, if at all, affected by the heat flux through the bottom but strongly 
influenced by stable density stratification aloft (this type in the atmosphere is known 
as an inversion-capped neutral layer). Although a lot of studies have been devoted 
to the SBL, it is not well understood. There is still confusion in the definition of its 
external boundary and thus in the definition of its depth. In this paper we consider 
various definitions of the SBL depth and show that different definitions should be 
used to examine different regimes. Then we attempt to develop a simple formula 
for the equilibrium depth of the stably (and neutrally) stratified boundary layer. The 
formula should be valid in specific cases of a truly neutral layer subject to rotation 
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and rotation-free boundary layers influenced by stable density stratification near 
its bottom or/and top. 

Strictly speaking, the SBL can hardly be in a perfectly steady state due to 
changes in large-scale flow. However, an inversion at the top of the atmospheric 
boundary layer, increasing in strength due to the cooling, would prevent strong 
energy and momentum exchange between the boundary layer and the rest of the 
troposphere. The SBL thus cannot grow unboundedly. Given enough time, it would 
evolve towards a quasi-equilibrium state. This is also true for the oceanic upper 
layer heated from above and affected by the underlying thermocline. Therefore, 
a diagnostic formula for the SBL depth is valid if synoptic variations are not too 
rapid (Derbyshire, 1990). 

When external forcings, such as the pressure gradient and the surface heat flux, 
change rapidly, no diagnostic expression is valid. Then the boundary-layer depth 
should be determined from a rate equation that describes the SBL growth and 
decay. In this case, however, consideration of the equilibrium steady state is also 
useful. Although it does not define the instantaneous SBL depth, the equilibrium 
depth enters the rate equation for the boundary layer and sets the limit of a relax- 
ation process. Without knowledge of the equilibrium solution, the rate equation 
is difficult to formulate. Note that, should this equilibrium solution depend on the 
instantaneous values of changing external parameters, it would itself be an implicit 
function of time and would, therefore, account for the complete time history of a 
relaxation process (see, e.g., Nieuwstadt and Tennekes, 198 1). 

2. Background 

Clearly, modelling the equilibrium SBL depth requires a definition of what is meant 
by the boundary layer. Therefore, considering one or the other expression for the 
SBL depth, one must always keep in mind the definition this expression is based 
upon, or, if not clearly stated, implies. A number of definitions have been proposed. 
Among them, two should be highlighted, for they have very clear physical meaning 
and are fundamental for modelling the SBL depth. 

(1) The first emphasises turbulence. The SBL is determined as a layer of con- 
tinuous turbulence adjacent to the surface. Its external boundary is a level at which 
turbulence disappears or is a small portion of the surface value. Wyngaard (1983, 
1988) adhered to this definition in his discussions of the atmospheric planetary 
boundary layer. It was used to estimate the SBL depth from measurements (e.g., 
Lenschow et al., 1988a) and from results of numerical modelling (e.g., Richards, 
1982). The energy considerations form the basis for several theoretical expres- 
sions for the equilibrium SBL depth. They have been proposed by Kitaigorodskii 
(1960), Kraus and Turner (1967), Deardorff (1972), Resnyansky (1975), Felzen- 
baum (1980), and Kitaigorodskii and Joffre (1988), to mention a few. Some of 
them, vitally important for the present analysis, are thoroughly discussed below. 
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(2) The second definition of the stable boundary layer employs the vertical 
profile of mean velocity. The SBL upper boundary is determined as a level at which 
the mean velocity approaches, or nearly approaches, the geostrophic velocity (in 
case of the wind-driven oceanic upper layer the formulation is given in terms of 
surface drift). This actually means that the boundary layer is identified with the 
Ekman layer. Since the Ekman layer owes its existence to the earth’s rotation, any 
expression for the boundary-layer depth is likely to include the Coriolis parameter 
no matter how important the effect of rotation relative to that of static stability. 
This is indeed the case for the expressions proposed by Rossby and Montgomery 
(1935), Zilitinkevich (1972), Pollard et al. (1973), Weatherly and Martin (1978), 
and Nieuwstadt (198 l), among others. It is shown below that the expressions based 
on this definition portray the depth of the turbulence in the intermediate regimes, 
when the effects of static stability and rotation essentially interfere. 

When determining the SBL depth from measurements, a few alternative defin- 
itions have been invoked (Yu, 1978). Four of them are briefly discussed here. The 
boundary-layer top (bottom) was determined as a level at/to which 

(3) the momentum flux (e.g., Businger and Arya, 1974), or, 
(4) the heat flux (e.g., Caughey et al., 1979) reduces to a small portion of its 

surface value, 
(5) the lowest wind maximum occurs (e.g., Melgarejo and Deardorff, 1974, 

1975), 
(6) the surface temperature inversion extends (e.g., Yamada, 1976). 
If the momentum flux is purely turbulent, (1) and (3) may give close results. It is 

not always so, however. Wavelike motions are often present in the stably stratified 
boundary layer. In the presence of shear these motions can carry momentum. Thus 
the depths determined from turbulence energy and momentum flux profiles may be 
different. Both the heat flux and temperature profile can vary due to the effects of 
radiation and may not correctly portray the depth of the turbulence (Mahrt, 198 1). 
Definition (5), based on the mean velocity profile, is conceptually similar to (2). 

We will not further discuss the alternative definitions of the SBL depth since they 
are not as important for the point in question as (1) and (2). It is these two definitions 
that stand behind the majority of theoretical formulae for the equilibrium SBL 
depth. And it is the difference between the two that leads to different formulations 
for seemingly similar cases. Let us now consider these formulations in some detail. 

The following expression for the equilibrium boundary-layer depth was often 
used: 

h=&$, (14 

where U* is the surface friction velocity, f is the Coriolis parameter, and C, 
is a proportionality factor whose estimates reported in literature range from 0.1 
(Gill, 1967; Kitaigorodskii, 1970) to 0.5 (Mason and Thomson, 1987; Andren and 
Moeng, 1993). 
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Equation (1 a) was suggested by Rossby and Montgomery (1935) who examined 
the effect of friction on the structure of atmospheric and oceanic boundary layers 
subjected to the earth’s rotation. In the light of the present discussion, it should have 
been based on definition (2) and must hold for the perfectly neutral Ekman layer. 
It is worth noting, however, that the mid-latitude neutral-static-stability boundary 
layer represents the simplest case where the Ekman layer depth is an appropriate 
scale for the depth of the boundary layer determined by the turbulence energy. The 
physical basis for this is quite clear. There are no parameters governing the steady 
turbulence regime in a perfectly neutral boundary layer, other than r~* and f, so 
that u*/ 1 f 1 is the only length scale that can be composed out of the two. Therefore, 
the Ekman layer depth and the depth of the turbulence should be quite close. 

Analysing data from measurements in the oceanic upper layer heated from 
above, Kitaigorodskii (1960) held the viewpoint that the SBL depth should be 
defined as the depth of the turbulence, i.e. using definition (1). He came to the con- 
clusion that the Obukhov length, L = -ui/Bs, where B, is the surface buoyancy 
flux, is an appropriate scale for the depth of the surface-flux-dominated SBL: 

h = C,L. (lb) 

The dimensionless factor Cs was reported to range from 1.2 (Stigebrandt, 1985) 
to 100 (Kitaigorodskii and Joffre, 1988). Note that we do not include the von 
Karman constant in the definition of L. The reason Kitaigorodskii gives to justify 
the validity of Equation (1 b) is that in the case of very strong static stability induced 
by the surface buoyancy flux the SBL is not deep enough for the Coriolis force to 
significantly affect the shear production of turbulence energy, 

More recent attempts to model the depth of the surface-flux-dominated SBL 
using the balance equation for turbulence energy led to either Equation (lb) (e.g., 
Kraus and Turner, 1967; Niiler, 1975; Niiler and Kraus, 1977), or to expressions 
that combine Equations (la) and (1 b) (e.g., Resnyansky, 1975; Garwood, 1977). 
Deardorff (1972) proposed a reasonable interpolation between the two (the sum of 
inverse values) that includes an additional scale, the height of the tropopause, as 
an ultimate limit for the SBL depth. Stigebrandt (1985) simply chose the shortest 
of the lengths scales given by Equation (la), Equation (1 b) and the depth to the 
pycnocline as the SBL depth in his seasonal pycnocline model for the Baltic Sea 
proper. 

Zilitinkevich (1972) adopted definition (2) to determine the equilibrium SBL 
depth in the case of strong static stability due to surface buoyancy flux. Using the 
Ekman length scale, (K/lf1)‘/2, where K is an effective eddy viscosity, and the 
concept of a limiting Richardson number at the boundary layer top to estimate K, 
he derived the expression 

UC) 
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where C,, is a dimensionless parameter of order one (see the summary table in 
Zilitinkevich, 1989). Equation (lc) has been used for more than two decades, 
especially by meteorologists who often utilised it in observational and modelling 
studies (e.g., Nieuwstadt, 1981, 1984, 1985; Caughey, 1982; Byun, 1991; Grant, 
1994). Interpolation formulae that reduce to either (la) or (lc) in the limits of 
either no or very large surface buoyancy flux were suggested by Nieuwstadt (198 l), 
Zilitinkevich (1989), Derbyshire (1990). An essential feature of Equation (lc) and 
the interpolations based on Equations (la) and (lc) is that the Coriolis parameter 
is always present in the denominator. It is a direct consequence of the use of the 
definition (2) that the effect of rotation remains crucial for the SBL depth even in 
the limiting case of very strong stability. 

Two more expressions could be mentioned here in relation to the Zilitinkevich 
formula. Brost and Wyngaard (1978) proposed hc&/(fGsincu), where G is the 
magnitude of the geostrophic wind and a is the angle of wind turning in the bound- 
ary layer. Nieuwstadt and Tennekes (198 1) proposed hoof G* sin (Y cos o/(pd0/dt), 
where p = g/T is the buoyancy parameter, g is the acceleration of gravity, T and 
0 are absolute temperature and potential temperature, and deldt is the cooling rate. 
Using the geostrophic drag law and assuming a constant cooling rate within the 
bulk of the SBL (a frequently used assumption for the nocturnal boundary layer), 
the latter authors showed both expressions to be equivalent to Equation (1 c) for 
large values of the surface buoyancy flux. 

In an attempt to explore the response of the upper ocean to an imposed wind 
stress Pollard et al. (1973) adhered to definition (2). They used the Ekman equa- 
tions, the heat conservation equation, and the overall Richardson number, Ri,, 
stability criterion to close the problem. Assuming quite arbitrarily that the flow is 
marginally hydrodynamically unstable at Ri = 1, they simulated the mixed layer 
growth in a linearly stratified fluid with the buoyancy frequency N in response to 
the instantaneous onset of wind. Assuming further that the surface heating is small, 
they found that after one-half inertial period the deepening is arrested by rotation 
at the depth h determined as 

h = c&u* 
If Nj’/*’ 

where Ci, is dimensionless parameter (equal to 1.7, according to Pollard et al., 
1973). It is worth noting that Equation (Id) can also be derived using the same 
arguments as those that led to Equation (1~). The only difference is that the static 
stability is due to the imposed density stratification rather than due to the surface 
buoyancy flux. 

Using the assumption that the entrainment rate is the reciprocal of the overall 
Richardson number, Phillips (1977) obtained h = l.l~,/(f*/~N’/~), which is, in 
fact, a particular case of the more general theory considered by Pollard et al. (1973) 
in the Appendix to their paper. An interpolation between Equations (1 a) and (1 d) 
was suggested, e.g., by Weatherly and Martin (1978). 
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One more expression should be particularly mentioned. It reads 

h = Ci$, Ue> 

where Ci is a dimensionless constant. To the best of our knowledge, Deardorff 
(1972) was the first to point out that the boundary-layer depth can be limited by 
the background density stratification but he did not suggest Equation (le) in its 
explicit form. We also make reference to Kitaigorodskii and Joffre (1988; see also 
Kitaigorodskii, 1988) who adduced arguments in favour of Equation (le) as the 
SBL depth scale. Considering the turbulence energy balance, i.e. using definition 
(l), they found that f drops out from the set ofparameters governing the equilibrium 
SBL depth if the background density stratification is strong. More recent studies 
of the atmospheric boundary layer over sea ice (Overland and Davidson, 1992) 
and the benthic boundary layer (Rahm and Svensson, 1989; Kitaigorodskii, 1990, 
1992) have added considerable support for Equation (le). The estimates for Ci 
given by Kitaigorodskii and JoRre (1988) and Kitaigorodskii (1992) vary from 4 
to 13. Data from Overland and Davidson (1992) suggest Ci of order 20, though 
with considerable scatter. 

An interpolation equation that includes Equations (la), (lb) and (le), along 
with a number of asymptotic regimes of the mixed-layer deepening was derived 
by Felzenbaum (1980) from consideration of the turbulence energy budget in the 
oceanic upper layer. 

Mahrt (198 1) tried to avoid use of surface fluxes and formulated his model of the 
boundary-layer growth and decay in terms of bulk quantities. The equilibrium SBL 
depth is expressed through the wind at the boundary-layer top and the temperature 
difference across the layer. The validity of the model is still to be verified. We 
believe that models of that kind can be reformulated in terms of surface quantities 
through the use of appropriate resistance and heat transfer laws. 

3. Motivation for the Present Study 

As is evident from the above discussion, no consensus has been achieved so far as to 
the definition of the stable boundary layer. There is no expression for its equilibrium 
depth that is valid throughout the entire range of stability conditions and close to the 
equator. However, the SBL depth is required for many applications including air- 
sea/air-land interaction, pollution dispersion, and mesoscale and climate modelling. 
Here we attempt to derive an expression for the equilibrium depth of the SBL that 
holds in both the general case and in the limits of the rotation-free stable layer and 
perfectly neutral layer subjected to rotation. 

Toward this goal we start with definition (1) considered above, i.e. we define the 
SBL as a continuously turbulent boundary layer adjacent to the surface. In support 
of our choice we refer to the fact that the turbulent boundary layer is universal in 
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occurrence while the Ekman layer is peculiar to mid-latitudes. Using definition (l), 
we derive an expression for the equilibrium boundary-layer depth that holds in the 
limiting asymptotic cases. Then we classify the SBL regimes, show the place of the 
formulations based on definition (2) in the hierarchy of the SBL depth scales, and 
derive a general equation for the equilibrium SBL depth that includes both limiting 
and intermediate asymptotes. 

We realise that the structure of the turbulent boundary layer may be complicated 
by longwave radiation (see e.g., Garratt and Brost, 1981; Andre and Mahrt, 1982) 
and internal gravity waves (e.g., Finnigan et al., 1984). Consideration of these 
processes is basically beyond the scope of this paper, although the gross effect of 
waves on the integral turbulence energy budget in the SBL will be considered. We 
thus concentrate on the stable boundary layer dominated by turbulence. For the 
sake of clarity the derivations in the next section are carried out for a temperature 
stratified barotropic SBL. 

4. Basic Model 

4.1. BALANCEEQUATIONFORTURBULENCEENERGY 

Let us consider the turbulence energy budget for a horizontally homogeneous stable 
boundary layer of depth h. We utilise a right-hand Cartesian co-ordinate system 
with the origin at the surface, the z-axis vertically upward and the z-axis aligned 
with the surface stress. This corresponds to either the atmospheric or benthic 
boundary layer. The final result, however, is also valid for the oceanic upper layer. 
In the steady-state limit, the balance equation for turbulence energy integrated over 
the boundary layer depth reads 

h 

J( au av h h 

0 
T”Z + TYdX > J dz + Bdz+F, -Fh - J Edz = 0. 

0 0 
(2) 

Here, u and v, rx and 7y are horizontal components of the mean velocity and the 
shear stress, respectively; B = PQ is the vertical buoyancy flux, Q is the potential 
temperature flux; F, and Fh are the energy fluxes at x = 0 and z = h, respectively; 
and & is the dissipation rate of turbulence energy. The first term on the 1.h.s. of 
Equation (2) represents the work of the stress on the mean flow and is a source of 
turbulence energy. The buoyancy and dissipation terms are sinks in the SBL, while 
the flux terms describe the energy input/escape to/from the boundary layer. These 
terms are considered separately in the following. 
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4.2. SHEARPRODUCTION 

Using the equations of motion for a rotating fluid, it can be shown that the total 
shear production of turbulence energy in the stationary horizontally homogeneous 
boundary layer of depth h is given by 

where rxs and rys are the surface values of the shear stress components along the CC 
and y horizontal axes, respectively; and 0 and v are the u and v horizontal velocity 
components averaged over the boundary-layer depth. The stress components at the 
boundary-layer top are neglected as being small compared to the surface stresses 
(a usual simplification that may not, however, be possible in the case of strong 
entrainment). With the z-axis aligned with the surface stress, only the term with 
rxs remains, leading to the second equality on the r.h.s. of Equation (3). Exact 
manipulations that lead to Equation (3) are straightforward but cumbersome. We 
will not present them here. For the sake of simplicity, we illustrate the issue by 
considering a non-rotating boundary layer where both the velocity and the stress 
along the y-axis are zero. Integrating the 1.h.s. of Equation (3) by parts with due 
regard to the lower boundary condition for u, then neglecting the stress at the 
boundary-layer top and estimating, to a leading order, the vertical gradient of rX as 
&-,/a~ = -ul/h, the result given by Equation (3) is recovered. 

The shear production of the turbulence energy, u: i?, is conveniently determined 
from the resistance law. This law is derived by matching the velocity defect profile 
in the upper part of the boundary layer with the surface-layer velocity profile (see, 
e.g., Zilitinkevich, 1975; Tennekes, 1982). The resistance law is formulated either 
in terms of the velocity at the boundary-layer top uh, or in terms of the layer-average 
velocity 0. These formulations differ in the values of dimensionless constants they 
include. The functional dependencies on the governing parameters are, however, 
the same. We consider here the formulation in terms of the layer- average velocity, 

where Ic is the von Karman constant, zo is the roughness length with respect to 
momentum, and B, is a dimensionless function of the boundary-layer stability 
parameters. We use unconventional notation with the asterisk in lieu of simply B 
to avoid confusion with the vertical buoyancy flux. The resistance law contains the 
other equation that relates the mean v-component of velocity, or alternatively the 
veering angle, to the other dimensionless function, the so-called A, function. We 
do not discuss it here since the v-component does not enter the r.h.s. of the second 
equality of Equation (3). 
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The B, function for the near-neutral and surface-flux-dominated boundary lay- 
ers has been evaluated by numerous researchers. A summary is given by Zilitinke- 
vich (1989). Almost no attention has been paid to the inversion-capped neutral 
layer. Here we attempt to derive a reasonable approximation of this function that 
incorporates three basic limiting asymptotic regimes characteristic of the SBL. 

In the case of static stability caused by the surface buoyancy flux the well-known 
log-linear velocity profile holds true in the surface layer: 

where PUS is dimensionless constant of order 5 (e.g., Hogstrom, 1988), and L, = 
L/k is the conventional Obukhov length. It is obtained by means of interpolation 
between the near-surface logarithmic profile and the Monin-Obukhov linear profile 
valid at some height above the surface, i.e. at z/L, >> 1 in terms of dimensionless 
height. An alternative interpolation that provides for the logarithmic and linear 
behaviour close to and away from the surface, respectively, reads 

7 ln Z L at zc 5 z 5 - 
zo P us 

u(z) = (6) 

&z<h. 
P us 

The second equation of (6) corresponds to the so-called limiting-Richardson- 
number stratification. It can be matched with the limiting-Richardson-number 
velocity defect law for the SBL interior. The latter is formulated in terms of either 
Uh or 0. We use the formulation in terms of the layer-average velocity’ 

where @, is a dimensionless function. The reasons why as does not explicitly 
depend upon the Coriolis parameter and local stability, and is a function of z/h 
only, are as follows (see also Zilitinkevich, 1975). Since the equilibrium boundary 
layer depth is uniquely determined by the SBL governing parameters, h itself can 
be used instead of any one of those parameters. We eliminate f, keeping in mind 
that the effect of rotation is implicitly accounted for through h. As for local stability 
conditions, they are characterised by the Richardson number that increases with 
height in the surface layer but remains nearly constant (close to its limiting value 
Ri = 0.2) in the upper part of the SBL. Observational evidence for this is given by 

’ The two formulations are equivalent. Indeed, subtracting from Equation (7) this equation taken 
at z = h, we obtain the velocity defect law in terms of the velocity at the boundary-layer top, 
uh - u(z) = u,(h/l)@b(a/h), where the functions @‘, and *, differ by dimensionless constant, 
@((z/h) = @,(z/h) -*S(1). 
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Mahrt et al. (1979), Garratt (1982), and Nieuwstadt (1985). Due to this feature of 
the SBL, known as z-less (or limiting Richardson number) stratification, ip, ceases 
to depend on local stability in the explicit form. 

Overlapping Equations (6b) and (7) in the region zc < z < k results in the 
following expression for the B, function: 

where Czls is a dimensionless coefficient. The expression on the r.h.s. of Equation 
(8), retaining only the main term, is a familiar approximation that corresponds to 
the limit of strong stability induced by the surface buoyancy flux. 

The resistance law for the inversion-capped neutral layer has not been thorough- 
ly discussed in the literature. We could mention the work of Kitaigorodskii (1988) 
who pointed out that the B, and A, functions must depend on the background 
stratification but he did not suggest any specific form for that dependence. 

Considering the inversion-capped SBL, it is advantageous to draw an analo- 
gy with the surface-flux-dominated SBL. We suppose that the nature of steady 
turbulence regimes in these cases is the same, with the only difference that the 
Obukhov length pertinent to the surface-flux-induced static stability is replaced 
by the length scale u,/N characterising the effect of imposed stable stratification. 
Using the same arguments as those that led to Equation (7), the velocity defect for 
the inversion-capped layer is 

U-u(z) = N/&i ; ) 0 
where @i is a dimensionless function. 

For the surface layer, again by analogy with the surface-flux-dominated SBL, 
the following velocity profile can be proposed: 

U(Z) = 2 ( ZN 
lnE+P,iz 

> 
, 

where & is dimensionless parameter. Equation (10) is a reasonable extension of 
the traditional Monin-Obukhov similarity to the case of the surface layer affected 
by the static stability in the free flow. Just as Equation (5), it is derived by means 
of interpolation between the logarithmic profile valid in the near vicinity of the 
surface, and the linear profile well above the surface at zN/u* >> 1, where the 
height is made dimensionless with the length scale u,/N appropriate for the 
inversion-capped layer. Notice that away from the surface, Equation (10) implies 
that &L/~z cx N, i.e. the limiting-Richardson-number stratification, in agreement 
with some observations (Mahrt, 1995, private communication) and results of large- 
eddy simulations (Derbyshire, 1995a,b). 
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The interpolation alternative to Equation (10) reads 

!!tf ln Z 
ZO 

u(2) = 

$$--g+&$- 1 
(11) 

ZL*Cz<<h. 
ua PuiN - 

Overlapping Equations (9) and (1 lb) at zo < z << h yields the following 
expression for the B, function: 

where CUi is a dimensionless coefficient, and the approximation on the r.h.s. 
corresponds to the strong static stability at the SBL top. 

Equations (9)(12), obtained here from heuristic arguments, certainly require 
verification against observational data. Apart from references given above in sup- 
port of Equation (lo), we do not have data at the moment to quantitatively verify 
the components of the model, i.e. the velocity defect law Equation (9) and the 
surface layer profile Equation (10). However the final integrated result, to which 
the above relations contribute, will be validated. Nevertheless, Equations (9)--( 12), 
which are the assumptions at present rather than established facts, seem to be a 
plausible generalisation of traditional similarity laws to the inversion-capped SBL. 

The resistance law, Equation (4), should remain in force for the truly neutral 
boundary layer, one with zero buoyancy flux throughout. In this case, ~*/lf 1 is 
the only appropriate length scale, and the Rossby-Montgomery formula (1 a) holds 
true. Separating out the logarithmic term, the B, function in the resistance law (the 
“correction function” as termed by Hinze, 1959) can be expressed as a power series 
in hf /u*: 

(13) 

where C., is a (positive) dimensionless constant, and dots on the r.h.s. indicate 
that only the leading order term is retained. The physical reason behind Equation 
(13) is as follows. The velocity component parallel to the surface stress, although 
dependent upon the rate of rotation, should be independent of the sign of the 
Coriolis parameter, and is, therefore, an even function off (Long, 1974). 

In order to account for the three basic asymptotic cases discussed above, we 
interpolate between Equations (8), (12), (13) and propose the B, function in the 
form 

B, = c* + cu, kf 2 
( > 

- -c II c.hN us u* L - Ii2 u* 7 (14) 
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where C, is a dimensionless constant that accounts for the case of a non-rotating 
truly neutral boundary layer (e.g., the boundary layer over a flat surface in a 
non-rotating laboratory tank). Since its behaviour in the limiting cases is the major 
concern, only the main terms are retained in the expression for B,, and the simplest 
linear interpolation between the limiting cases is used. The reason is also that we 
have used a method of asymptotic matching to derive the resistance law, i.e. an 
approximate method that cannot give an exact solution in intermediate regimes. 
The latter regimes are considered separately in Section 5. 

In principle the same basic resistance law can be obtained using the momentum 
equations with any realistic turbulence closure. The simplest is the two-layer eddy- 
viscosity model with the eddy viscosity K = ku*z near the surface to account for 
the logarithmic velocity profile, and height-constant K dependent upon relevant 
stability parameters, such as L, u,/N and the SBL depth h itself, far from the 
surface. The resulting expression for the B, function would differ from Equation 
(14) in the intermediate regime, when the effects of rotation, surface cooling and 
stratification aloft are roughly equally important (and the terms containing both 
f and L, and/or f and N, would appear in the resistance law). Nevertheless, it 
would reveal the same asymptotic behaviour independent of any specific features 
of closure in all three limiting cases discussed above. We therefore adopt Equations 
(3), (4) and (14) to parameterize the shear production term in Equation (2). 

4.3. BUOYANCYDESTRUCTION 

The vertical profile of the buoyancy flux B = /3&, where /? is the buoyancy 
parameter and Q is the flux of virtual potential temperature, is obtained using the 
equation of heat transfer: 

139 i3Q --- 
z- dz' (15) 

We assume that the quasi-stationary stable boundary layer is characterised by a 
height-constant cooling rate. This assumption is often used to study the nocturnal 
boundary layer in the atmosphere (e.g., Nieuwstadt, 1985). Then differentiation 
and subsequent double integration of Equation (15) with respect to x results in the 
linear heat flux profile: 

Q=Q”(‘-f)+Qh;, 

where Qs and Qh are the fluxes at the boundary-layer bottom and top, respectively. 
The latter flux is determined through the effective temperature conductivity 

and the temperature gradient at the SBL top, Qh = -KhN*/p. The temperature 
conductivity can be estimated as Kh c( eh /N, where eh is the turbulence energy at 
z = h (e.g., Zilitinkevich and Mironov, 1992). Scaling eh with the surface friction 
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velocity, we get Qh oc -uzN/,& With this estimate, the buoyancy term in Equation 
(2) becomes 

(17) 

where I!& is a dimensionless constant. 

4.4. ENERGY FLUXES 

The kinetic energy flux through the surface F, is evidently zero in the atmospheric 
and benthic boundary layers. In the oceanic upper layer it may occur as an additional 
source of energy, e.g. as a result of breaking of the surface gravity waves. The 
simplest approximation in that case would be to relate F, to the cube of surface 
friction velocity through an empirical coefficient. We do not pursue this issue 
further, however, as the velocity shear is typically a dominating source of energy 
in stably stratified boundary layers. Thus we take 

F, = 0. (18) 

The energy flux at the boundary-layer top Fh occurs due to internal gravity waves 
which may transfer energy from the turbulence to the stably stratified fluid aloft 
(Carruthers and Hunt, 1986). Following Thorpe (1973), this flux can be roughly 
estimated as 

F,pA2XN3, (19) 

where A and X are a typical amplitude and a typical horizontal wave length, 
respectively of internal waves generated at the SBL top. 

Kantha (1977) proposed X o( h. The assumption is plausible since large semi- 
organised eddies with the integral length scale of order h are often present in 
boundary layers. The wave amplitude should scale with the amplitude of distur- 
bances caused by eddies impinging on a stably stratified fluid, and can be taken to 
be proportional to IV,/N, where IV, is a characteristic vertical velocity of turbu- 
lent eddies (Townsend, 1966; Kantha, 1977). Since the only source of turbulence 
energy in the stably stratified boundary layer is the instability of mean flow, the 
only velocity scale relevant to shear generated turbulence is U* . We therefore take 
IV, 0: u* and hence A o( u*/N. With these estimates, the energy flux due to the 
radiation of internal gravity waves from the SBL upper boundary is 

Fh = C,u;hN, (20) 

where C, is dimensionless coefficient. 
In case when internal waves are already excited in the free flow (e.g., over 

complex terrain) and SBL is stratified strongly enough (Nsu~ > N), the wave 
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energy could be pumped into the SBL, which could lead to its sporadic breakdowns 
(Nappo, 199 1; Nappo and E&man, 1995). This phenomenon, however, is not 
considered in the present paper. 

4.5. DISSIPATION 

The integral energy dissipation in the SBL is estimated as follows. We first consider 
the near-surface layer. The Monin-Obukhov similarity theory states that in the 
vicinity of the surface the balance is between the shear production of turbulence 
energy, the buoyancy destruction and the dissipation, the energy transport being of 
minor importance. Hence E can be determined using the log-linear velocity profile 
and the surface values of momentum and buoyancy fluxes throughout the surface 
layer, a usual surface-layer approximation: 

For the dissipation rate at the boundary layer top, the following expression can 
be deduced from dimensionality arguments [cf. the Brost and Wyngaard (1978) 
parameterization, and also the discussion of the potential temperature flux at the 
SBL top given with the derivation of Equation (17)]: 

E cx u;N. (22) 

Equation (2 1) is valid at z/h < 1, while Equation (22) at (h - z)/h < 1. They 
can be generalised for the entire boundary layer as follows: 

where iPEt, @)E2 and @Es are dimensionless functions of < - z/h obeying boundary 
conditions Qp,t (0) = l/k, aE2(0) = ,& - 1 and @,3(O) = 0. Again, as in the case 
of the resistance law, only the main terms are included in the above expression, 
which is, in fact, an interpolation between the limiting asymptotic cases. In the 
intermediate regimes, the terms containing both f and L, and/or f and N, could 
also appear. 

Integrating Equation (23) over the boundary layer depth and separating out the 
logarithmic term [through the use of zo as the lower limit when integrating the first 
term on the r.h.s. of Equation (23)], we get 

J’ 
h u: h 

0 
E dz = T In z - CEtu5 - &hB, + C&hN, 

0 
(24) 

where 
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are dimensionless constants. 

4.6. THELIMITINGASYMPTOTEEQUATIONFORTHE SBL DEPTH 

Substituting Equations (3), (4), (14), (17), (18), (20) and (24) into Equation (2) and 
rearranging the terms, we obtain the following equation for the equilibrium depth 
of the stably stratified boundary layer: 

(>- fh 2 h Nh I 

cnu* +c,L+ciu,= ’ 

with the following relations between dimensionless constants: 

cl-c* 
1 = ci. 
-Cbh + c, + cE3 
2 

- &i 

(26) 

(27) 

One can see that Equations (la), (1 b) and (le) hold true in the asymptotic cases 
of a truly neutral, surface-flux-dominated and inversion-capped boundary layers, 
respectively. The constants CUn, &s, &i, G, Cbh, &, &I, &2, and (7~3 as such 

are not required. Only their combinations, as they appear in Equations (27), i.e. 
C,, C, and Ci, should be evaluated. 

The truly neutral boundary layer is rarely met in nature (Wyngaard, 1988,1992). 
Even in the case of negligibly small surface buoyancy flux, stability conditions aloft 
are very seldom neutral. In the upper ocean the boundary layer normally occurs 
with a background of stable density stratification in the underlying thermocline. Its 
atmospheric and benthic counterparts are affected by the capping inversion. This 
fact suggests a plausible explanation for substantial difference between estimates 
of C, based on atmospheric and oceanic data and those derived from laboratory 
and numerical simulations, see Table I. Geophysical values average between 0.1 
and 0.3 (Zilitinkevich, 1989) and are likely to implicitly account for the effect of 
background stable stratification. With neutral conditions, as it is in the laboratory 
experiments of Caldwell et al. (1972) and large-eddy simulations (LES) of Mason 
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Table I 
Dimensionless constant C, in the Rossby and Montgomery (1935) formula, Equa- 
tion (l), for the depth of neutrally stratified boundary layers 

Reference cn 

h4eusuremenfs in the atmosphere and the ocean, Zilitinkevich (1989) 0.1-0.3 
Laboratory experiment, Caldwell et al. (1972) 0.4 
Large-eddy simulations, Mason and Thomson (1987), 
And& and Moeng ( 1993) 0.5 

and Thomson (1987) and Andren and Moeng (1993), the C, values prove to be 
higher, about 0.4 and 0.5, respectively. 

We adopt the LES value C, = 0.5 for the remainder of this study. The following 
points favour this estimate. 

The Reynolds number and the radius of curvature of the flow in the laboratory 
experiments of Caldwell et al. (1972) are fairly small. The Rossby-number similar- 
ity assumes large Reynolds number and geostrophic balance outside the boundary 
layer. Due to a small radius of curvature of the laboratory apparatus, however, the 
gradient flow is significant and departures from geostrophy are large. Furthermore, 
Caldwell et al. defined the boundary-layer thickness as the height at which the 
magnitude of the velocity is 99% of its geostrophic value. Although the Ekman 
layer depth and the depth of the turbulence are of the same order for a truly neutral 
boundary layer, they do not necessarily coincide. No data are given in op. cit. to 
evaluate h by turbulence energy. 

Mason and Thomson (1987) used a mesh of 40 x 40 x 48 points to produce 
a series of LES runs, changing domain size and resolution simultaneously. Their 
case B 10 is the best compromise that “considers the most relevant range of scales”. 
Mason and Thomson do not present an estimate of the boundary-layer depth from 
the turbulence energy profile. They report that “the boundary-layer stresses extend 
up to the heights of about 0.5u,/lfl”. Th is value is consistent with the estimate 
that can be obtained using vertical profiles of the velocity variances (Figures 13-l 6 
of Mason and Thomson, 1987), e.g. at a level of 5% of the surface value judged by 
eye. Andren and Moeng (1993) used a smaller domain (2 km x 2 km x 3.6 km as 
compared to 6 km x 3 km x 10 km in Mason and Thomson’s case B 10) but higher 
resolution (80 x 80 x 120 grid points). As their Figure 2 suggests, C, = 0.5 gives 
a good estimate of the height at which turbulence energy is 5% of its surface value. 
Thus C, = 0.5 is borne out by both LES data sets. 

Estimates of the constant C, reported in the literature vary over two orders of 
magnitude. By applying his one-dimensional model of the seasonal pycnocline to 
the Baltic Sea proper, Stigebrandt (1985) found the best overall agreement with 
observations at C, = 1.2. Values as high as 100 were obtained by Kitaigorodskii 
and Jo!Tre (1988) using the data of Wangara (Clarke et al., 197 1) and ICE-77 
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(Joffre, 1981). The value Cs = 75, close to that of Kitaigorodskii and Jofie, was 
proposed by Deardorff (1972). Resnyansky (1975) found C, = 12. The LESS of 
Mason and Derbyshire (1990; see also Derbyshire, 1990) and Brown et al. (1994) 
suggest C, = 10. The boundary layer in case B of Mason and Derbyshire and 
in the cases BAlO, BAlOHR, BClO(12k6) and BClO(28k8) of Brown et al. was, 
perhaps, the closest to the quasi-stationary SBL dominated by the surface flux 
[from the LES study of Brown et al. (1994) we use only the results consistent 
with this assumption]. By contrast, atmospheric measurements may not be free 
of the effects of non-stationarity and stable stratification aloft. This might be the 
reason why the points on the Kitaigorodskii and Joffre (1988) graphs reveal very 
large scatter. Stigebrandt (1985) estimated C, by fitting the simulated yearly cycles 
of sea-surface temperature, heat content and potential energy to observations. His 
estimate is likely to include a number of side effects (horizontal inhomogeneity, 
uncertainties in the input data, and most probably, strong static stability in the 
thermocline) and is not quite appropriate for use in Equation (26). Thus, as a first 
approximation, we adopt the LES estimate Cs = 10. 

Finally, we examine the inversion-capped neutral layer. Estimates of the constant 
Ci are scarce. We can refer to Kitaigorodskii and Joffre (1988) whose analysis of 
the atmospheric data suggests Ci of order 10, and to Overland and Davidson (1992) 
whose data are very scattered but support the value of order 20 on the average. A 
LES study of And& (1995) deals with the SBL affected by both surface buoyancy 
flux and static stability aloft. Using the above estimates C, = 0.5 and C, = 10, 
and the results of the simulation SGSM2 of Andren (1995), we estimate Ci at 20. 
For lack of better data we adopt this estimate. More rigorous evaluation of Ci, and 
also of C, and C,, is needed. 

5. Intermediate Asymptotes 

We have developed a simple expression, Equation (26), for the equilibrium depth 
of the stably (and neutrally) stratified boundary layer. In doing so, we have adopted 
the definition of a boundary layer that emphasises turbulence, and considered the 
integral turbulence energy budget in the SBL. Equation (26) is, therefore, likely to 
correctly account for the asymptotic limiting cases. In the intermediate regimes, 
however, when the effects of rotation and static stability essentially interfere, a 
simple linear combination adopted in the resistance law, Equations (4) and (14), 
may not be the best functional form. As a result, Equation (26) does not incorporate 
the well-known scales proposed by Zilitinkevich (1972), Equation (lc), and Pollard 
et al. (1973), Equation (Id). 

As distinct from the limiting cases, the Zilitinkevich and Pollard et al. formulae 
account for the interplay of rotation and stratification. In such regimes, small scale 
turbulence is suppressed predominantly by stratification, so that the eddy viscosity, 
K, does not immediately depend on the Coriolis parameter, f. Then, using the 
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concept of a limiting Richardson number, K is scaled with r2/pQ (Zilitinkevich, 
1972). However, the boundary layer in the interference regimes is still deep enough 
to be influenced by rotation. Hence, the SBL growth is arrested predominantly 
by rotation, and the Ekman scale, (K/f)‘j2, is an appropriate limit for h. As a 
result, for the surface-flux-dominated SBL, ro$ and QxQs, which yields the 
Zilitinkevich formula, and for the inversion-capped SBL, rocu$ and /3Qc&jN, 
which yields the Pollard et al. formula. The question about their place in the 
hierarchy of the SBL depth scales can be considered using the following simple 
heuristic arguments. 

For the rotating boundary layer affected by the surface buoyancy flux, Equation 
(26) predicts two asymptotic limits that follow from simple dimensionality argu- 
ments. The Rossby-Montgomery formula, Equation (la), is valid when rotation 
strongly dominates over the stabilising effect of the surface buoyancy flux, and the 
Kitaigorodskii formula (which would, perhaps, be more correctly referred to as the 
Kitaigorodskii/Monin-Cbukhov formula), Equation (1 b), is valid in the opposite 
case. To put this another way, the SBL depth is simply given by the shortest of 
the above two scales. Let us examine whether there is a field of application for the 
Zilitinkevich (1972) formula, when the SBL depth given by Equation (1 c) is much 
smaller than the depths given by Equations (1 a) and (1 b). Comparing these three 
expressions, we find that Equation (lc) holds as an appropriate SBL depth scale if 

4 < p < 100, (28) 

where ,LL = u*/lfL] is the conventional Kazanski and Monin (1960) stability 
parameter that accounts for the combined effects of rotation and surface buoy- 
ancy flux. Equation (28) gives typical “meteorological” values of ~1 very often 
encountered over the cooled land surface in mid-latitudes. It is, therefore, not sur- 
prising that the Zilitinkevich (1972) formula, Equation (lc), though not valid in 
the asymptotic limits of a truly neutral and surface-flux-dominated boundary lay- 
er, was fairly successful in numerous meteorological applications. Thus, Equation 
(1 c) is an intermediate asymptote, whereas Equations (1 a) and (1 b) are the limiting 
asymptotes. 

Using similar arguments to examine the applicability of the Pollard et al. (1973) 
expression to the rotating boundary layer affected by the imposed static stability, 
we find that Equation (Id) holds as an appropriate scale for the inversion-capped 
SBL [i.e. predicts smaller SBL depth than both Equations (la) and (le)] if 

10 << N/If1 << 100, (29) 

where only one significant digit is kept in both lower and upper limits. 
The ratio N/If I is typically of order 100 or greater in both the earth’s atmosphere 

and the ocean, suggesting that Equation (Id), which is the intermediate asymptote 
for the inversion-capped SBL, is of comparatively minor practical interest. Note also 
that the limits of applicability set by Equations (28) and (29) for the Zilitinkevich 
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Dimensionless constants in Equations (26) and (30) 

Constant Estimate Reference 

0.5 LES data 
10 LES data 
20 LES data 
1.0 Atmospheric data (Zilitinkevich, 1989) 
1.7 Theoretical estimate (Pollard et al., 1973) 

(1972) and the Pollard et al. (1973) formulae, respectively, are not very wide. This 
suggests that the simple linear combination given by Equation (26) could serve 
as a sufficient approximation for many practical purposes even in the intermediate 
regimes (this is further discussed below and is illustrated in Figures 3). 

In case one were to take better account of the intermediate regimes, Equation 
(26) is modified as follows in order to incorporate the intermediate asymptotes 
given by Equations (1 c) and (1 d): 

h Nh hlf l”2 h[Nf 11j2 -- 
+ CSL + CiU* + CS,(U*L)‘/~ + CirU* = ” 

This equation is a reasonable approximation over the entire range of stability 
conditions, from truly neutral to very stable due to surface flux or/and capping 
inversion. It gives a finite depth of the stably stratified boundary layer close to 
the equator where the Coriolis parameter tends to zero (a truly neutral equatorial 
boundary layer should be considered in the framework of a more sophisticated 
theory including horizontal inhomogeneity and non-stationarity). The equation 
remains in force in the asymptotic cases of a truly neutral rotating layer where it 
reduces to Equation (la), surface-flux-dominated SBL, Equations (lb) and (lc), 
and inversion-capped neutral layer, Equations (1 d) and (1 e). 

Estimates of dimensionless constants are summarised in Table II. Note, however, 
that for use in Equation (30) the C,, and Ci, constants should be somewhat adjusted 
to our estimates of C, and Ci so that the intermediate regimes are best described 
by a combination of scales in Equation (30), not by the Zilitinkevich (1972) or the 
Pollard et al. (1973) formula alone. 

6. Concluding Remarks 

As discussed above, the limits of applicability of the Zilitinkevich (1972) and 
especially the Pollard et al. (1973) formulae for the SBL depth are not too wide. 
For a number of practical purposes Equation (26) that does not incorporate these 
scales is a sufficient approximation. Its performance is illustrated by Figures l-3. 
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Figure 1. Reciprocal of the height of the surface-flux-dominated SBL made dimensionless with 
‘1~: /( f*L) versus conventional stability parameter p = ‘1~~ /I fL[ . The data points are from Nieuwstadt 
(1981). Solid curves are obtained from Equation (26) with C, = 0.5, C, = 10 and Ci = 20 at 
N//f1 = 0 (right curve), N/If1 = 100 (middle) and N/If1 = 300 (left). Dashed curve corresponds 
to the Zihtinkevich (1972) formula, Equation (lc), with C,, = 1. 

In Figure 1 the dimensionless depth of the surface-flux-dominated SBL is 
plotted versus the conventional stability parameter ~1 = u*/jfLj. The unusual 
y-coordinate was used by Nieuwstadt (198 1) to eliminate artificial correlation 
between dimensionless quantities containing common scaling variables. The scat- 
ter of data points is quite large. It may, however, be partly explained by static 
stability at the boundary-layer top. Indeed, the curves drawn using Equation (26) 
with different N/If/ account for a considerable part of the spread in empirical 
points. The Zilitinkevich (1972) formula, Equation (lc), is also shown for com- 
parison. Its overall agreement with observational data is about the same as that of 
Equation (26) at N = 0 (right solid curve). Note that both formulae prove to be 
somewhat inconsistent with the cloud of points to the right of the curves. 

Figure 2 illustrates the effect of static stability aloft. Most data points lie to the 
right of the line corresponding to the inversion-capped SBL (B, = 0 and f = 0). 
This suggests that the SBL was affected by the surface flux and rotation (the latter 
effect is relatively small when the static stability is strong). Equation (26) with non- 
zero terms that account for the effects of the surface buoyancy flux and rotation is 
able to cover the bulk of the area filled with empirical points. 

Figure 3a shows the SBL depth h made dimensionless with the Obukhov length 
L as a function of the composite stability parameter Lhf2/(Cnu,)2 + LN/Ciu,. 
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Figure 2. Depth of the inversion-capped SBL versus scaling depth u+ /N. Diamond crosses depict 
the data from Overland and Davidson (1992). Circled crosses and open circles are the Wangara data 
(Clarke et al., 1971) and the ICE-77 data (Jofie, 1981), respectively, taken from Kitaigorodskii 
and Joffre (1988). Lines correspond to Equation (26), with C, = 0.5, Cg = 10 and ci = 20 at 
three different values of the stability parameter Ciu,/(C,LN) + C&~*/(C~NU,): 0 (left line), 1 
(middle) and 5 (right). 

The LES data of Brown et al. (1994) represented by the group of circled crosses 
close to the ordinate correspond to the rotating SBL affected by the surface cooling. 
The numerically simulated SBL of Andren (1995), as well as atmospheric boundary 
layers measured by Lenschow et al. (1988a, 1988b), correspond to the general case 
of a rotating SBL affected by both surface buoyancy flux and static stability aloft. 
The point from Weatherly and Martin (1978) shows the inversion-capped benthic 
boundary layer. The buoyancy flux through the bottom was not given by Weatherly 
and Martin (1978) but was presumably very small. Therefore, in order to show 
this data point together with the others, we use a very large value of the Monin- 
Obukhov length, thus eliminating the dependence of h on L [when L is large 
it drops out from Equation (26), and the position of this data point relative to the 
theoretical curve is independent of L]. Although the SBLs depicted in Figure 3a are 
quite different in nature, comparison between data and prediction from Equation 
(26) is obviously favourable. The Zilitinkevich (1972) formula, Equation (lc), is 
shown for comparison with the dashed line. In the intermediate regime, when the 
SBL is affected by both rotation and surface cooling, Equations (1 c) and (26) give 
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Figure 3a. Dimensionless SBL depth, h/L, as function of the composite stability parameter 
Lh(f/Cnu,)2+LN/Ciu, . Solid curve is obtained from Equation (26) with C,, = 0.5, C, = 10 and 
Ci = 20. Dashed line corresponds to the Zilitinkevich (1972) formula, Equation (Ic), with Cs,. = 1. 
Circled crosses are the LES data of Brown et al. (1994) and Andren (1995), diamond crosses are data 
from measurements in the atmospheric SBL taken from Lenschow et al. (1988a, 1988b), filled circle 
is the height of benthic boundary layer from Weatherly and Martin (1978). 
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Figure 3b. Dimensionless SBL depth, hN/u,, as a function of the composite stability parameter 
hf ‘/Ci Nu, + ut /C, LN. Solid curve is obtained from Equation (26) with C, = 0.5, C, = IO 
and Ci = 20. Dashed line corresponds to the Pollard et al. (1973) formula, Equation (Id), with 
Ci,. = 1.7. Symbols are the same as in Figure 3a. 
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Figure 4. The SBL regime diagram. The regions of applicability of the asymptotic formulae, Equations 
(IaHle), are marked with the abbreviations that refer to the authors of these formulae and are 
composed out of the first letters of the authors’ names: RM is Rossby and Montgomery (1935), Z is 
Zilitinkevich (1972), PRT is Pollard, Rhines and Thompson (1973), K/MO is due to Kitaigorodskii 
(1960) and MO emphasises the fact that the depth of the surface-flux-dominated SBL scales on 
the Obukhov length, and D/KJ is due to Deardorff (1972) and KJ emphasises the contribution of 
Kitaigorodskii and Joffre (1988). 

close results. In the limiting cases, the SBL depth computed from Equation (lc) 
is strongly overestimated, and it is infinite close to the equator where the Coriolis 
parameter tends to zero. For the stably stratified equatorial boundary layer, Equation 
(26) predicts finite depth. In case the equatorial SBL is strongly dominated by the 
surface buoyancy flux Equation (26) reduces to Equation (1 b). Some experimental 
evidence for Equation (1 b) as applied to low latitudes is provided by Garwood et 
al. (1985a, 1985b). 

In Figure 3b the same data as in Figure 3a are presented in terms of the SBL depth 
h made dimensionless with the length scale u*/N appropriate for the inversion- 
capped SBL, and the composite stability parameter hf2/CzNu, + u*/Cs LN. The 
group of circled crosses close to the abscissa represent the LES data for the SBL 
with no imposed stratification. These data are shown by using a very large value 
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of u*/N, thus eliminating the dependence of h on N [when N is small it drops 
out from Equation (26), and the position of data points relative to the theoretical 
curve is independent of N]. The Pollard et al. (1973) formula, Equation (1 d), is 
shown by the dashed line. Again, the limiting asymptotic regimes are not described 
by this formula, while its performance in the intermediate regime is very close to 
that of Equation (26). Thus, for practical purposes, Equation (26) seems to be a 
sufficient approximation of the SBL depth. It would be advantageous to further test 
Equation (26) against data from SBLs with different rotation rates (e.g. equatorial 
and laboratory boundary layers) and with different stability aloft. 

Finally, Figure 4 presents the SBL regime in terms of the two stability para- 
meters, where ~1 = u*/lfLI accounts for the effect of the surface-flux-induced 
static stability relative to the effect of rotation and X = N/If] accounts for the 
effects of imposed static stability relative to the effect of rotation. The diagram 
shows the regions of applicability of the asymptotic formulae, Equations (la)- 
(le). Each bounding curve corresponds to 55% contribution to h, Equation (30), 
from the individual depth scale given by one of the asymptotic formulae, Equations 
(la)-(le). 
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