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Abstract

The planetary boundary layer (PBL) resistance and heat-transfer laws express the
surface fluxes of momentum and heat through the PBL governing parameters. Since
the late sixties, the dimensionless coefficients (A, B and C) in these laws were
considered as single-valued functions of internal stability parameters: x=u,/| f |L,

in the steady state PBLS, or h/Ls in the evolving PBLs (u, is the friction velocity, f is
the Coriolis parameter, Ls is the Monin-Obukhov length, and h is the PBL depth).
Numerous studies revealed very wide spread of data in empirical plots of A, B and C
versus u or h/Ls. It is not surprising that the above laws, although included in all
modern textbooks on boundary-layer meteorology, are not practically used. In the
present paper the resistance and heat-transfer laws are revised accounting for the free-
flow stability, baroclinicity and the rise of capping inversion. The coefficients A, B
and C become functions not only of u or h/Ls, but also of the external stability

parameter g, =N/|f| (where N is the Brunt Vaisala frequency in the free
atmosphere above the PBL), the parameter of baroclinicity x. =T'/N (or the free-
flow Richardson number Ri =(N /T")*= %, where T is the geostrophic wind shear),
and the ratio h/h; of the actual h and the equilibrium h. PBL depths. Moreover the

coefficient C is redefined to account for the effect of capping inversion. It follows that
A, B and C can be considered as single-valued functions of x only in the steady-state,

barotropic, nocturnal (that is short-lived) PBL. On the contrary, the advanced laws
cover a wide range of the PBL regimes. They are validated through large-eddy
simulation (LES) of different types of PBLs: truly neutral, conventionally neutral,
nocturnal and long-lived. This new development explains why prior formulations
performed so poor and promotes advanced resistance and heat transfer laws as a
practical tool for use in environmental modelling applications.



1. Introduction

The resistance laws for the barotropic planetary boundary layer (PBL) are presented
in modern textbooks on boundary-layer meteorology (e.g., Garratt, 1992) and
comprehensively discussed in recent papers of Hess and Garratt (2002a,b) and
Zilitinkevich and Esau (2002); so they do not require detailed introductory

explanations. These laws express the absolute value of the surface stress | 7| _,=u’
(u, is the friction velocity, and z is the height) and the cross-isobaric angle « (the

angle between that surface stress and the geostrophic wind) through the PBL
governing parameters:

LCOSazln(CgRO)—,&, K sina =78, 1)
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where C; and Ro are the geostrophic drag coefficient and the surface Rossby number:

c =% Ro=_C (2)
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u

Here, k is the von Karman constant (conventional value: k =0.4), A and B are
dimensionless coefficients, f is the Coriolis parameter, z,, is the surface roughness

length for momentum, G is the geostrophic wind speed: G?=uj+v;,
u, =—(pf ) "op/dy =Gceosar and v, =(pf )"op/ox =Gsine are the geostrophic

wind components (depth-constant in the barotropic PBL), o is the air density, and p

is the atmospheric pressure. On the right hand side (r.h.s.) of Eq. (1b), minus is
applied to the Northern Hemisphere and plus to the Southern Hemisphere. Equations
(1) correspond

The potential-temperature resistance law analogous to Eq. (1) reads

k_T == In(CgRO)_ 6 y CTR = 9* 1] (3)
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where k; is the von Karman constant for the temperature (conventional value:
k; =0.4), C is the same type of dimensionless coefficient as A and B, C,s Is the
thermal resistance coefficient, 8, =—F,u_" is the temperature scale based on the near-
surface turbulent flux of potential temperature F,|, ,=F,, A6, =6, — 6, is the bulk
increment in potential temperature across the boundary layer, 6,=6|,_, is the

potential temperature at the PBL upper boundary (considered as given parameter), and
6, is the aerodynamic potential surface temperature.

The latter is defined through the logarithmic extrapolation of &(z) down to the level
z=1,,. Needless to say, 6, differs from the actual surface temperature &, (often



referred to as the radiometric temperature). The difference 6,- 6, ranges up to several
Kelvins over rough surfaces. Traditionally, it is expressed as

00_63 _iln Zoy (4)
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where z,; is the roughness length for temperature (e.g., Zilitinkevich et al., 2001).
When z,, becomes very uncertain (over partially vegetated land and some other very

complex land surfaces) alternative approaches should be applied (see Mahrt and
Vickers, 2002). In any case, introducing the aerodynamic surface temperature allows
separate consideration of the thermal resistances of the two layers of essentially
different nature:

e the PBL —interms of A6, =6, —6,, EQ. (3),

e the roughness layer —in terms of 6,—-6,, Eq. (4), or using other schemes.
The present paper focuses on the PBL resistance laws.

Equation (3) in combination with Eq. (1) provides the PBL heat transfer law:

Fy = —U,0, = —C,C1rGAby, . ()

Equations (1) for the neutral PBL (with A and B treated as universal constants:
A=A, and B=B,) were derived by Rossby and Montgomery (1935) from a

turbulence closure model and later by Kazanski and Monin (1961) from more general
similarity-theory reasoning. An overview of further studies of the resistance law for
the atmospheric neutral PBL is given by Hess and Garratt (2002a,b) and Hess (2004).

Zilitinkevich et al. (1967) and Zilitinkevich and Chalikov (1968) extended Eq. (1) to
the stratified PBLs affected by the non-zero buoyancy fluxes at the surface. They

showed that A and B depend on the internal stability parameter x based on the
Monin-Obukhov length scale L,:
3

u, —u;
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where S =g/T is the buoyancy parameter, g is the acceleration due to gravity, and T
is the absolute temperature. They also derived the temperature resistance law, Eqg. (3),

with C dependent on «, and made the first attempt to empirically determine the

resistance-law coefficients A, B, C and the similar type of coefficient D in the
resistance law for humidity. In this context, the neutral stratification was defined as
the regime in which g is sufficiently small ( 2 < 10). According to this point of view,

the temperature flux F, could be non-zero (and the heat transfer law keeps it sense)
when the stratification is practically neutral.



Zilitinkevich and Deardorff (1974) reformulated the resistance laws employing the
actual boundary-layer depth h instead of the equilibrium PBL depth h. [or its basic

scale u, /| f | employed in Egs. (1)-(3)]. The generalised laws read

LCOSO(=|HL—A, Lsinoz:—mB. (7)
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Here, the resistance-law coefficients A, B and C are considered as functions of h/L,
rather than x, which allows extending the theory to non-steady boundary layers with
time/space-dependent depths'. Equation (7b) is derived below in Section 2. In contrast
to the prior formulation, kCg’lsina:ﬂg, it explicitly shows that the cross isobaric

angle « is controlled by the Coriolis parameter f.

As for the stable stratification, all the above analyses were limited to the nocturnal
PBLs, namely, the stable PBLs developed after the sun set on the background of much
deeper residual layers, neutrally stratified due to intensive mixing during the day-time.
In the steady-state, nocturnal PBL [when the PBL depth h is fully determined by u,, f

and Ls: h =ho=(u,/| f|)f,(«)] Eas. (7)-(8) reduce to Egs. (1)-(3), wherein the
coefficients A, B and C are expressed through A, B and C:
| fIhe
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Zilitinkevich  (1975) determined asymptotic behaviours of the resistance-law
coefficients in Egs. (1)-(3) and (7)-(8) at large values of x and h/L,, respectively.

In the truly neutral boundary layer, when the Monin-Obukhov length is large: L, — o
(so that «, h/L, — 0) and the static stability in the air flow above the PBL is neutral,

the equilibrium boundary layer depth is expressed by the classical Rossby and
Montgomery (1935) formula: h, =Cu, /| f |, where C, is a dimensionless constant

(C, =0.7, after laboratory experiments and LES?). Then the resistance law coefficients

! Recall that convective PBLs never approach the steady state: they go on growing until the positive
buoyancy flux is maintained. Contrastingly, stable PBLs tend to develop towards the steady state. The

ratio h/h; of the actual PBL depth, h, to the equilibrium stable PBL depth, h., is an important
governing parameter for this type of turbulent boundary layers. Alternatively the deviation of the PBL
from the steady state could be characterised by the dimensionless parameter | f | h/u, (Arya, 1975).

2 Atmospheric data give much lower and very uncertain estimates of Cy (e.g. Tjernstrom and
Smedman, 1993). This is due to the fact that the atmospheric boundary layers usually considered as
neutral (according to the criteria L, — o0 or 1 —0) are in fact only conventionally neutral.

Zilitinkevich and Esau (2002) and Hess (2004) have demonstrated that their depths are strongly
affected by the static stability in the free atmosphere.



,Zb, 50,50, A = ,&0 +InC;, B, = CF;1I§o and C, = 50 +InC; become constants (the
subscript “0” stands for the truly neutral stratification).

Since the late sixties, particular cases of the above laws were independently derived
(e.g., by Gill, 1968), discussed and compared with experimental data in a large
number of papers (see overviews in Byun, 1991; Zilitinkevich, 1989; Hess and
Garratt, 2002a,b; Hess, 2004). In the majority of these works, the PBL is considered
as neutral when g or h/L, is zero or sufficiently small. In the seventies and early

eighties, much work focused on experimental determination of the resistance-law
coefficients A,B,C and D supposed to be single-valued functions of . However,

empirical relationships of this type showed so wide spread of data that any interest in
practical application of the resistance laws gradually decayed.

To some extent, large spread of data on empirical plots of the coefficients A and B
was explained at the expense of baroclinicity (e.g., Arya and Wynggard, 1975; Joffre,
1982, 1984). The baroclinic correction to the resistance law was formulated in a linear
approximation, neglecting the effect of baroclinic shear on turbulent mixing. It
included the following two steps. First, employing the surface values of the
geostrophic wind components (U, =U, [,_4,Vyo =V, |, ), the barotropic resistance

law (with A and B dependent on ) was applied to determine u, and the
“parotropic part”, «, of the full wind-turn angle, «+«,. Second, the “baroclinic
part” of this angle, ¢, , was determined as the full turn of the geostrophic wind across

the PBL. Recent version of this model and an overview of prior works are given by
Djolov et al. (2004).

It was recognised long ago that not only baroclinicity, but the depth and the strength
of the capping inversions and the static stability in the free atmosphere affect bulk
features of stable PBLs (e.g., Csanady, 1973; Byun, 1991; Overland and Davidson,
1992; King and Turner, 1997). But the fist attempts to quantify these effects were
made only recently (Zilitinkevich et al., 1998b; Zilitinkevich and Esau, 2002, 2003).

A new theoretical model presented in this paper goes further and extends the
resistance and heat transfer laws to long-lived, stable PBLs accounting for the
following mechanisms:

e damping effect of the static stability in the free atmosphere on the PBL

turbulent length scale,

e development of capping inversions at the PBL upper boundary,

e enhancing effect of the baroclinic shear on the PBL turbulent velocity scale.
Prior models overlooked these mechanisms and therefore were applicable only to the
nocturnal PBLs. This explains enormous spread of data points in old empirical plots

of A,B,C and D versus .

In this paper, the free atmosphere is characterised by the Brunt-Vaisala frequency, N,
and the baroclinic shears, I, =0u,/éz and T, =0v,/oz, which involve the

dimensionless parameters of the external stability «, and baroclinicity ;. :



1/2
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Alternatively, the role of baroclinicity can be characterised by the free-flow
Richardson number Ri = z. On the r.h.s. of Eq. (10) for I", the geostrophic shear is

expressed through the large-scale horizontal temperature gradient using the thermal

wind equation. N and T" are taken depth-constant in a reasonable correspondence with
real properties observations of the Earth’s atmosphere: N=102 s! and

I'~(3-6)-10° s™ that correspond to sz, ~10°and u.~(3-6)-107".

Following Zilitinkevich and Esau (2003), the PBL baroclinic turbulent velocity scale
u; is defined as

2
2 u*

u? TR ~UZ(1+C,Ri™?)=uZ(1+Cyt,.), (11)
where C,= 0.67 is a dimensionless constant determined through LES validation of the
baroclinic PBL depth formulation®. In the barotropic PBLs, u, reduces to the
universally accepted scale u, .

Accounting for the u, -dependence, Zilitinkevich and Esau (2002) have explained
wide spread of empirical data on A and B, as well as a seemingly paradoxical
dlsagreement between the atmospheric estimates and the LES, DNS or lab-experiment

estimates of A and B in the boundary layers traditionally considered as neutral. The
key point is that numerical or lab models deal with the truly neutral PBLs (=0 and

4y =0), whereas atmospheric PBLs treated as neutral (| «|<<10) are nearly always
strongly affected by the free-flow stability ( «,, ~10%). These two types of the PBL are

essentially different in nature. To distinguish between them, Zilitinkevich and Calanca
(2000) have proposed the following definitions: The PBL is called “conventionally
neutral” when the buoyancy flux gF, approaches zero at the surface but the free flow

above the PBL is stably stratified. When both the surface buoyancy flux gF, and the
free flow Brunt Véisala frequency N are zero, the PBL is called “truly neutral”.

In the present paper the theory is further advanced and validated against new LES.

® In the imaginary case that the free atmosphere is neutrally stratified (N =0) but baroclinic
(I" > 0), the baroclinic shear causes the overall turbulisation, so that the very concepts of the turbulent
boundary layer and the PBL turbulent velocity scale become inapplicable.



2. Theoretical model
2.1. TURBULENT LENGTH SCALES

Earlier versions of the resistance and heat transfer laws were derived through
asymptotic matching of the near-surface profiles of the wind velocity components
u(z), v(z) and the potential temperature 6(z) with the defect-functions u(z) —u(h),

v(z) — v(h) and &(z) —6(h) in the overlapping height interval z,, <<z <<h. Thus the
surface layer model represented an essential starting point of the theory.

Prior derivations employed the Monin-Obukhov (1954) similarity theory for the
surface-layer profiles and the defect-functions based on the PBL-depth formulations
of Rossby and Montgomery (1935) and Zilitinkevich (1972) — for the neutral and
stable boundary layers, respectively.

This approach is justified when applied to nocturnal stable PBLs, namely, to the
comparatively short-lived PBLs separated from the free flow by a neutrally stratified
residual layer, which keeps memory of the day-time mixing. In such PBLs, except for
the thin log-boundary layer close to the surface, the turbulent length scale is limited to
the “local Monin-Obukhov length” L defined similarly to Eqg. (6b) but employing
local (z-dependent) values of the turbulent fluxes of momentum z(z) and potential

temperature F,(z) (Nieuwstadt, 1984).

More generally, including the truly neutral PBLs (in which L' =0) and the long-
lived stable PBLs (that is the PBLs bordering upon the stably stratified free
atmosphere, without any intermediate residual layer), the turbulent length scales are
restricted by the following alternative limits: local (z-dependent) static stability scale
L, non-local external static stability scale L, , and the rotational scale L, , namely,

3/2
T

L=——,
- pF,

Ly =

u,

N T (12)
In baroclinic PBLs, the baroclinic turbulent velocity scale u;, Eq. (11), should be
substituted for u, in the above expression for L, .

The scales L and L, are inherent to the nocturnal and to the conventionally neutral
PBLs and reflect the damping effect on turbulence of the turbulent buoyancy flux
within the PBL and the static stability in the free flow, respectively. Clearly, in each
concrete case the basic role is played by the stronger effect, that is by the smaller
scale: L, L, or L,;. Moreover, their relative importance is different at different

heights because L depends on z through the dependences 7(z) and F,(z).

In further analysis, we employ a recently created LES data base representing three
different types of the stable PBL: nocturnal, long-lived and conventionally neutral,
and the truly neutral PBL (see Section 3). LES data shown in Figure 1 demonstrates



that the normalised fluxes of momentum and potential temperature can to a reasonable
accuracy be considered as self-similar functions of the dimensionless height ¢ =z/h:

T _ F, _
U_f_fr(g)’ F_BS‘fFa(g)- (13)

As shown in Appendix, such a self-similarity is consistent with scaling analysis of the
Ekman equations. It has been disclosed in prior analyses of field data (e.g., Sorbjan,
1988; Lenshow et al., 1988; Wittich, 1991). Within the PBL, the power-law
approximations based on the field experiments over Great Plains of the USA,

f(¢)=@-¢)**and f.,(¢) =1-¢, are quantitatively quite close to the exponential

approximations: f_(¢) =exp(-%¢°) and f.,(¢) =exp(-25*), which better fit LES
data in Figure 1.

It follows that the ratio L/ L,, and therefore the role of L, is small in the upper part of
the PBL and increase towards the surface. In other words, the role of the scale L, is

most pronounces in the surface layer. This non-trivial conclusion is consistent with
analysis of data from observations in presumably long-lived stable PBLs over
Greenlad (Zilitinkevich and Calanca, 2000) and Antarctica (Sodemann and Foken,
2004). New LES data shown in Figures 2 and 5 strongly support this conclusion.

It is worth emphasising that our derivation of the resistance and heat-transfer laws is
based on the assumption that the ratios z/u? and F,/F, are universal functions of
¢, but concrete forms of these functions are not required.

Accounting for the alternative limits, L, L, and L,, generalised turbulent length
scales, Ly ;. can be determined through the interpolation:

5 2 1/2
1 — (ij +[C{NM,NH}J +[C{fM,fH}J
Lo ) L L, L,
) o L2
L L
[1+C{2NMNH}[L_) +C{2fM,fH}(L_J:| ) (14)
N f

which gives priority to the smaller scales. Dimensionless coefficients Cyyy, \q, and

|~

Cim.m) can be different for the turbulent transports of momentum (M) and heat (H).

Recall that the scale L, was already applied to measure the PBL depth
(Kitaigorodskii and Joffre, 1988) and to generalise the Monin-Obukhov similarity
theory for the surface layer (Zilitinkevich and Calanca, 2000; Zilitinkevich, 2002).
The inverse quadratic interpolation between Ls=L|,_, and L, was employed to

derive an advanced PBL depth model (Zilitinkevich at al., 2002; Zilitinkevich and
Baklanov, 2002; Zilitinkevich and Esau, 2002, 2003).



Now, using the composite scale L,, instead of L and matching the log layer in close

vicinity of the surface and the z-less stratification layer aloft, the familiar velocity
gradient formulation becomes

1/2 1/2
M_T g, 2] (15)
oz kz Ly KL,

where C, is a dimensionless constant. Recall that the “z-less stratification layer” is

the height interval within the stably stratified turbulent flow, in which the vertical size
of turbulent eddies is controlled by negative buoyancy forces rather than the distance
from the surface. Equation (15) differs from the Nieuwstadt (1984) formulation only
due to the difference between L, and L.

Eqg. (15) affords an analytical expression of the eddy-viscosity:

-1

T z

K, = =kr*?z |1+C,— | ~kC 7L, . (16)
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Its approximate version, K,, ~kC;'z"’L,,, corresponds to the z-less stratification
layer (z>>C;'L). Principally similar formulations for the potential temperature
gradient 06/0z and the eddy conductivity K,, are derived in Section 2.4.

In the surface layer (at z<107'h), substituting u, for %> and F, for F, (then
Ly — Ly ), and neglecting the effects of the free flow stability and Earth’s rotation
by taking C,,,,Cq =0 (then L, =L,), Egs. (15) and (16) reduce to the traditional
Monin-Obukhov similarity theory formulation. The latter was verified against
experimental data in numerous papers, which gave estimates of C, in the interval
2<C, <83. As evident from Eq. (14), this uncertainty can, at least partially, be caused
by the difference between Ls and L, and — in shallow PBLs — by unnoticed use of
data beyond the surface layer. Indeed, factual length scales L and L,, decrease with

increasing height (see Figure 1), which inevitably leads to artificial overestimation of
the coefficient C, if data analysis is based on the traditional, depth-constant Monin-

Obukhov length scale L,.

Eq. (15) is applied to the absolute value of the wind speed |u|=(u® +v2)“2 rather that
to its longitudinal component u (aligned with the turbulent stress at the very surface).
The contribution to |u| from the transverse component v caused by the Coriolis force
is small in the surface layer but becomes significant above it.

kz ou

Figure 2 shows the dimensionless velocity gradient @, =y, as dependent on
7% dz

the two versions of the dimensionless height, z/L in Figure 2a and z/L,, in Figure 2b,
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and include LES data from the entire PBL. It is seen that the generalised length scale
L, (employed in Figure 2b) provides uniform representation of the three different

types of the stable PBL (conventionally neutral, nocturnal and long-lived), and by this
means leads to a better collapse of LES data than the traditional scale L. Moreover,
this Figure confirms applicability of Eqg. (15) throughout the PBL and gives quite
certain estimates of empirical constants: k =0.47, C,=2.5 and C,,, =0.1.

To derive a general form of the resistance law, we begin with the nocturnal PBL (N=0
and L;>>L, so that L, =L), then consider the conventionally neutral PBL

(pF,=0 and L, >>L, so that L,, =Ly), and the truly neutral PBL (N = 0 and
PF, =0, so that L, =L,), and finally interpolate between the resistance laws
inherent to these three types of the PBL.

2.2. RESISTANCE LAW FOR NOCTURNAL PBLs

In the surface layer (z <107"h) within the barotropic nocturnal PBL (I'=0, N = 0,
L, >> L), taking "?=u, and L=L_, Eq. (15) yields the following expressions for
the longitudinal velocity component u:

j Y oat 2<C;'L,

@=£(1+Cui ~ é(Zu (17)
oz kz L, —u=r atz>C.'L,,

S

%Ini at z<C,'L,
z
20 L " z (18)
~(In——+C,-—-1) atz>C;L,.
k~ C,z,, L,

u

Assuming that the vertical profiles of turbulent fluxes are self-similar, Egs. (13) and
(15) in the z-less stratification layer yield ou/oz =k™'C,u,L;*f,(c), where f, (c)
= f., .. Then, to account for the effect of baroclinicity, we simply add the baroclinic
wind shear T :

ou Cuu,

oz kL

f.(c) +T5,. (19)
This additional term ensures the required upper boundary condition ou/oz — T,

whereas in the surface layer the term T, is practically negligible compared to the

main term (see Appendix in Zilitinkevich and Esau, 2003). Integrating Eq. (19) over z
from an arbitrary height z to the PBL upper boundary z=h yields

11



) -u@) ==, () +1h-). (20)

Here, the function @, is defines as CDU:J.1 f,(¢)dg, and u(h)=uy is the u-
S

component of the geostrophic wind at the PBL upper boundary. The latter consist of
the barotropic and baroclinic parts:

u(h) =u,, +I,h=Gceosa+T,h, (21)

where G and « are the surface values of the geostrophic wind speed and the cross-
isobaric angle. Substituting Eq. (21) for u(h) in Eg. (20) yields the longitudinal
velocity defect function:

Gceosa —u(z) = Cli*h

@, (¢) -T,hg, (22)

S

which is valid in the height interval L,/h<g¢ <1.

Consider Eq. (22) in the z-less stratification part of the surface layer: L /h <¢ <<1.
Here, the term T h¢ is negligible because ¢ << 1. Then substituting the lower line on
the r.h.s. of Eq. (18) for u(z) yields

Gceosa L h h
-INn——+1=C, —|c+D =a— a = constant).
. = 0T [c+@,()] = ) (23)

u“=0u S S

k

The left hand side of Eq. (23) does not depend on ¢ . Thus, in the overlapping region,
the combination C, [g—HI)u(g)] on the right hand side must be a dimensionless

constant (assigned a). Rearranging the terms in Eq. (23) yields the resistance law
Equation (7a) with the following A-coefficient:

A=—a£+|n£+lncu+1=—a£+|n£+constant, (24)
L L L L

S S S S

which holds true asymptotically at h/L, >>1.

To determine the transverse velocity component, v, consider the Ekman equations:

or, T 5L_
f(v—vg)+ po =0, f(u ug)+ 6zy =0. (25)

Here, z, and z, are the components of the vertical flux of momentum along the
horizontal axes x and y. The x-axis is aligned with the surface stress to make r, =0 at
z = 0. Hence the boundary conditions are

12



2

uv=0,7=u;,7,=0atz=0;, u-u,v-v, 7,7, >0atz—>w. (26)

g’ g’

Limiting our analysis to the z-less stratification part of the surface layer, we take u(z)
from the lower line on the r.h.s. of Eq. (18) and u, =Gcosa from Eq. (23). This
gives the longitudinal velocity-defect function:

_Cu, h a
U_UQNTL_S G—C— - (27)

u

Then substituting Eq. (27) for u—u, in Eqg. (25b), integrating over z and accounting
for the boundary condition z |,_,=0 gives the transverse component of the
momentum flux:

T. =

kL

afuh h C, afuh h
e et | g e 28
(g Zagj . Lsg (28)

In the surface layer, the longitudinal component of this flux can be taken depth-
constant: 7, ~ 7, |,_,=Uu’. Then Eq. (16) for the eddy viscosity reduces to

-1
_ z
Ky = ku*z(1+ C, L_] . (29)

S

Next, ov/oz and v are determined:

2
CANSIINNC BN IR PURSTLY (L I (30)
oz K, k'L L, k? (L,
calhY
Vre——| —| fhe?, (31)
ZKZ[LJ °

where approximate expressions (=) correspond to the z-less stratification part of the
surface layer.

To extend the surface-layer formulation Eq. (30) to the upper portion of the PBL, we
substitute L(z) for L, and add to the r.h.s. the baroclinic wind shear T, :

2
ov Caf h
v__Cafh) e, (32)
P % [LJ ¢ f,(c) +T,

S

where f, = 2, f~° [recall similar reasoning used in the derivation of Eq. (19)].
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Integrating Eq. (32) over z from z to h yields

v(h) —v(z) = 2 (Lﬂj tha, (¢) +T,h(-¢). (33)

S

1 . i . .
Here, @, =J' f,(¢)s dg is a universal function of ¢, and v(h)=v,, is the v-component
S

of the geostrophic wind at the PBL upper boundary, which consists of the barotropic
and baroclinic parts:

v(h) =v, +TLh=Gsina+T h. (34)

Substituting Eq. (34) for v(h) in Eq. (33) yields the transverse velocity defect function:

2

2
Gsina—v(z) = - Ckua (LLJ fhd, (¢) -T,he, (35)

S

valid in the height interval L/h, <¢ <1. In the z-less stratification part of the surface
layer, substituting Eq. (31) for v(z) and neglecting the term T',hg, Eq. (35) reduces to

u, 2k L

* S

( Gsina _ Ca( th[ +2(D()]__b_(£J (b = constant). (36)

Here, the combination Cua(Zk)‘l[g2 +2(Dv(g)] turns into a universal dimensionless
constant (assigned b) because the left hand side of Egs. (36) does not depend on ¢.
Eqg. (36) is nothing but the resistance law Equation (7b) with the resistance-law

coefficient
h 2
B=b — | . 37
& @)

S

Likewise Eq. (24), this expression holds true asymptotically at h/L,>>1.

In the barotropic steady state, the nocturnal PBL depth becomes h. =C (L, /| f |),
where Cg =1 (e.g., Zilitinkevich and Esau, 2003); so the dimensionless parameter in
Egs. (35)-(37) becomes h/L, =C,u"*, where 4 is the traditional internal stability
parameter, Eq. (6).

Recall that the very concept of the nocturnal PBL (that is the stable PBL with zero
static stability in the free flow: N=0) loses its sense in the baroclinic atmosphere.
Indeed in the case that N=0 but T">0 the shear-generated turbulence would appear
throughout the troposphere.
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2.3. EXTENSION OF THE THEORY TO OTHER TYPES OF PBLs

The above analysis is immediately applicable to the conventionally neutral PBL with
the only principal difference that the local Monin-Obukhov length scale L(z), Eq.

(12a), and its surface value L, =-u’(BF,)™" are both substituted by the depth-
constant length scale C, L, , where C,,, is a dimensionless constant (after Figure 2,
Cyv =0.1). Thus in the conventionally neutral PBL, the vertical gradients of the

velocity components are expressed by formulas similar to Egs. (19) and (32) but
based on the length scale L, :

2
ou C,Cyu ov  C/.Cil,al h
—— — _u~NM -+ § +0, —=—-2uw"W7) | f~ f +T
62 kLN uN (g) u 62 kz [LNJ g VN (g) v (38)

with the correction functions f, (¢) and f,(s) different from the functions

f,(5)=fe, () f., M (s) and f,(¢)=12,(c)f>(¢) that appeared in Eq. (19) and (32). It
follows that the resistance law Equations (7) hold true, but the coefficients A and B
become functions of h/L,:

N N N

2
A=-a, CEM N i Cl’i“" h +constant, B =b, (CEM hj (39)

with the dimensionless constants a, and b, different from a and b. Equations (39)
hold true asymptotically at C,,,h/L,>>1.

In the barotropic steady state, the conventionally neutral PBL depth becomes
he =Ccu,(| f [N)"?, where C. ~1.3 (see Zilitinkevich and Esau, 2003); so the

dimensionless parameter in Eq. (39) becomes h/L, =C.u°, where u, is the

external stability parameter, Eq. (10a). This result holds true also in the baroclinic
regime, when h. =C.u, (| f|N)"? and L, =u, /N . Thus the effect of baroclinicity

on the resistance-law coefficients manifests itself only through the dependence of h on
the parameter of baroclinicity 4, Eq. (10b).

To link the alternative resistance-law formulations Eqgs. (24),(37) — for the nocturnal
PBL, and Eq. (39a,b) — for the conventionally neutral PBL, we employ the same as in
Eq. (14) inverse quadratic interpolation between the turbulent length scales. This
yields

A=—am, +Inm,+ constant, B=bm?, (40)

where m, and m, are composite stratification parameters:
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S

_(h) &ﬂzyll i1 41
mA_[[LJ +( L J] 1 [1+(CNAF|)]1 , (41)

m=[(|_£] {CL_“]] =L£S[1+(<:NBH)2]“2. @2)

-1 -1 - -
Here, C,,=Cuaya and C,;=C,,byb™ are dimensionless constants,

L, =-u(BF,)™" is the Monin-Obukhov length, and Fi =NL.u;" is an inverse Froude

number — already introduced in a generalised surface-layer scaling (Zilitinkevich and
Calanca, 2000; Zilitinkevich, 2002).

Finally, in the truly neural stratification (I", N, gF,, h/L,, h/L,, m,, my—0),
taking h=h. ~L; =u,/| f|), the resistance law coefficients A =A(m,) and B
=B(mj;) become universal constants:

A(0)=A,, B(0)=B,. (43)

As already mentioned, the Rossby-Montgomery formula for the truly neutral PBL
depth: h. =Cgu, /| f | is very well confirmed by LES and lab-experiment data, which

give C, =0.7. The effect of baroclinicity is not relevant to this regime because the

baroclinic shear (I">0) on the background of the neutral static stability (N=0) would
inevitably result in the appearance of developed turbulence throughout the
troposphere.

A reasonable interpolation linking Eq. (40) with Eq. (43) is
A=-am, +In(e® +m,), B=B,+bm}. (44)

LES data shown in Figures 3 and 4 confirm Egs. (44) and give estimates of the
dimensionless constants a =1.4, A,=0.5, C,,=0.09; b =10, B,=1.5, C,;=0.15.

The theoretical dependence shown in Figure 4 is nothing but the interpolation
between the two asymptotes: B—>B, at m; >0 and B-—>bmi at m, >

(factually applicable already at m; > 2). Hence, for practical purposes the form of the

function B(mj;) in the intermediate interval 0 <m, <2 can be corrected without any
violation of the theory.

Recall that the traditional approach did not distinguish between the truly neutral and
the conventionally neutral PBLs. Accordingly, in the traditional format (with
m,=h/L,), all data representing different conventionally neutral PBLs would

correspond to h/L =0, thus causing considerable spread of data points (cf. Figures 10
and 11).
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Equations (7), (41)-(42), (44) comprise the resistance law covering a range of neutral
and stable PBL regimes, including long-lived stable PBLsS, in which both scales L and
Ly play important roles, and baroclinic PBLs.

In this context, h is considered as a given parameter. In the steady state, it is equal to
the equilibrium stable PBL depth, h=h., controlled by the three dimensionless

parameters: g, u, and g (Zilitinkevich and Esau, 2003). Thus our formulation

accounts for the effect of baroclinicity on the resistance law coefficients A and B
through the dependence of h. on u., Eq. (10). In non-steady regimes, h can be

calculated using prognostic relaxation-type equation: dh/dt~t*(h; —h), where
t,~h/u, is the PBL relaxation time scale (see Section 3.2 in Zilitinkevich and
Baklanov, 2002).

2.4. PROPER PBL AND CAPPING INVERSION

Notice that stable PBLs experience persistent cooling due to the negative (downward)
heat flux at the surface F, =F,|,_,<0. This cooling results in rising of the capping

temperature inversion at the PBL upper boundary. Hence the temperature profile
inevitably changes its shape in the course of time and the steady state is never
achieved. At the same time, numerous experimental studies convincingly demonstrate
that the temperature profile in the surface layer (at z<0.1h) is at least approximately
self-similar.

It looks reasonable to assume that the non-stationary changes are basically related to
the capping inversion, whereas the temperature profile in the proper PBL shifts quasi-
stationary, keeping it self-similar shape. This approach allows considering separately
the two mechanisms of essentially different nature:

e maintaining of a self-similar temperature profile in the proper PBL, controlled
by instantaneous values of the turbulent fluxes of temperature and momentum
and the free-flow Brunt-Vaiséla frequency,

e rising of the capping inversion and strengthening of the temperature increment
A6, acrossiit.

In the present paper we focus on the heat transfer law for the proper PBL. Recall that
the potential temperature in the free atmosphere (outside the PBL) is specified as a

linear function of height: &=6,, + #'N?z. Then, given the PBL depth h, the basic-

state potential temperature at the PBL upper boundary is an easily determined external
parameter”:

NZ

9h054900+7h, (45)

+

* Inour LES, @y, is nothing but the initial value of € at the surface: Gy, =8|, .
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To distinguish between the proper PBL and the capping inversion, we determine the
inversion half-depth, %, , as the height interval between the PBL upper boundary,

z=h, and the inflaction point just below this level, that is the height z=h-%4,,, at

which 86/6z approaches minimum (6°0/6z°=0) and start increasing (then no
inflaction point means no capping inversion). Considering the potential temperature at
this height, 6, , =6 |z:h—%o‘c. , as a reference value of ¢ at the upper boundary of the

proper PBL, the potential temperature increment across the capping inversion, Aé,,,
is defined as

AO, =606, - (46)

As already mentioned we leave determining Aé,, for a separate paper and limit our

analysis to the derivation of the heat transfer law for the proper PBL in terms of the
potential temperature increment across the PBL.:

Ay =6, , —6,. (47)

Clearly, in the PBLs with no capping inversions (e.g., in the nocturnal PBLS), this
definition reduces to the traditional one: A6, =6, —6,= 6,.,—6,.

Consider the similarity-theory formulation for the potential temperature gradient:

00 _ 6. [1,C (48)
o0z kz L,

based on the traditional turbulent temperature scale 8,=—F,z "'* and the generalised
z-dependent turbulent length scale L, Eq. (14). Eq. (48) is derived similarly to Eq.
(15) through matching the temperature-gradient scales 6,/z and 6,/L,, for the log-
layer and the z-less stratification layer, respectively.
. k;z 00 . .
Figure 5 shows LES data on @, 276_ as dependent on either z/L (Figure 5a) or
z
z/L,, (Figure 5b) in the height interval 0<z<h -} ¢, for the nocturnal (x) and long-
lived (o) stable PBLs>. It confirms applicability of Eq. (48) throughout the proper
PBL and demonstrates that the generalised scaling provides reasonably good collapse
of practically all LES data taking the following values of dimensionless constants:
k; =0.47, C,= 2 and C,,, = 1.5. In other words, the scale L, is applicable to both

nocturnal and long-lived PBLs in contrast to the traditional scale L applicable only to
the nocturnal PBLs.

*

® In the conventionally neutral PBLs the potential temperature flux approaches zero at the surface:
F, |Z:0: 0. Hence, the temperature scale &, is inappropriate and data representing these PBLs cannot
be shown in Figure 5.
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Recalling the turbulent-flux profile approximations (given in Figure 1), Figure 5
supports an analytical eddy-conductivity formulation®:

-1
- F z _
K =Ggre a7 [“Ca L ) <k Gl (49)

where approximate expression (=) corresponds to the z-less stratification layer
(z>>C,'L).

In further analysis we exclude the capping inversion layer and derive the heat transfer
law for the proper PBL.

2.5. HEAT TRANSFER LAW

Consider first the nocturnal PBL. In the surface layer within this PBL, Eq. (48) yields

50 o kHi at z<C,'L,
20 _ 0., (Hcgijz Sz (50)
(32 kTZ LS 9Yxs at ZZC;LLS,

T

0 z
*In— at z<C,'L,

0-0~1, lf “ou (51)
—*S[ln : +Cgi—1J at z>C;'L,.
kT CHZOU Ls

In the z-less stratification part of the PBL [at L (z)<<z<h], accounting for the self-
similarity of the normalised turbulent fluxes, z/u’=f_(¢) and F,/F,=f.,(¢), and

employing the formula &, (z) = 6, (see Figure 1), Eq (48) reduces to

08 C,0,
=0 f9(§)1

o0z kL

(52)

S

where f,=f2, f? >1at ¢ —0. Integrating Eq. (52) from z to h— %6, yields the
potential-temperature defect function:

6, ,—0(z) = Cy(h—%200)0. ®,(c)~ C,hd,

~ 25O (),
oL §)= S l) (53)

® Similar scaling reasoning in combination with analysis of LES data could be applied to derive a
simple analytical formulation for the eddy diffusivity. Such a formulation could be useful in pollution
dispersion modelling, especially in strong static stability regimes, when traditional formulations often
give poor results.
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where CDH:J'1 f,(¢)ds. The approximate expression on the r.h.s. of Eq. (53) is
S

justified when the capping inversion layer is comparatively shallow: ¥% 6., <<h.

Considering Eg. (53) in the z-less stratification part of the surface layer and
substituting the lower line of Eq. (51) for #(z) on the L.h.s. of Eq. (53) yields

6 -0 L h h
k.0 0 _pn——-1=C,—|c+®D =c— (c = constant). 54
T g C, 20, n [g a(g)] L ( ) (54)

*S

S S

The r.h.s. of Eq. (54) is nothing but universal constant (assigned c) because the l.h.s.
of this Equation does not depend on z.

Eq. (54) is consistent with the temperature resistance law Eq. (8) [provided that the
temperature increment across the PBL is defined after Eq. (47)] and implies the
following asymptotic expression of the C-coefficientat h/L, >>1:

h h h h
C=—Cc—+In—+InC, +1= —c—+In— +constant.
L L ¢ L L (55)

S S S S

Employing the same approach as in Section 2.3, Eq. (55) is immediately extended to
include both the near-neutral and the long-lived stable PBLSs:

C =-cme +In(e®™ +m.) ~—cm. +C,, (56)

where m is a composite stratification parameter:

[y (e VT e et o7
me _[(L] +[ - ]] 5 i+ c\ Fiy’ ], (57)

S

and C,=C(0) is the limiting value of the coefficient C in the near-neutral stratification
(when m¢ <<1).

Recall that the baroclinic versions of the turbulent length scale and the equilibrium
PBL depth are L, =u, /N, and ho~u, (| f |N)™?, where u, in given by Eq. (11).
Hence the effect of baroclinicity on the ratio h/L,, can be neglected, at least as a first

approximation [cf. the same conclusion in the discussion of Eg. (39) and in the very
end of Section 2.3].

Equations (5), (8), (12), (56) and (57) comprise the heat transfer law. LES data shown
in Figure 6 confirm Egs. (56), (57) with reasonable accuracy and give estimates of the
dimensionless constants C,.=1.2, ¢ = 4.1 and C,=12. Quite large value of C,

justifies the approximate version of Eq. (56).
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3. Large-eddy simulations

In this paper we systematically use data from numerical simulations based on a new
LES code (Esau, 2004a). This code solves the momentum, temperature and continuity
equations for incompressible Boussinesq fluid:

%z—luj%—i(luiUﬁp5u+rij]—fa)j—g®5i3, (58)
ot 2 T ox; 0x;\2 To
and

00 0 ou,

—=—WUO+7y), —=0

at axj(' ) o (59)

Here, u, ={u,v,w}, ®, p are large scale velocity, potential temperature and pressure;
T Tg  are sub-grid scale turbulence stress and diffusivity tensors;
fo, ={f(v, -v-w-cotp), f(-u,+u), fu-cotp)} are the components of the
Coriolis force; f is the Coriolis parameter; ¢ is the latitude; o; =1 at i=j and
o; =0andi# j; the repeating indexes imply summation.

The code uses the fully conservative second order central difference scheme
(Morinishi et al., 1998) for advection and the forth order Runge-Kutta scheme
(Jameson et al., 1981) for time stepping. The direct fractional-step pressure correction
scheme (Armfield and Street, 1999) ensures incompressibility in the code. This set of
numerical schemes is a kind of standard in computational fluid dynamics. Moreover,
Andren et al. (1994) concluded that differences in numerical schemes have a minor
effect on LES results. Later, Brown et al. (2000) reported that LES results are
encouragingly insensitive to the choice of numerical schemes, as long as simulations
resolve some part of the inertial sub-range of scales. The computational mesh is the
staggered C-type mesh. The grid spacing is uniform and almost isotropic. The
horizontal grid size A, is larger than the vertical grid size A, , but their ratio A, /A,

is always less than four.

An important part of the LES technique is a sub-grid turbulence closure. This LES
code employs a dynamic mixed closure (Vreman et al