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Abstract 
 
The planetary boundary layer (PBL) resistance and heat-transfer laws express the 
surface fluxes of momentum and heat through the PBL governing parameters. Since 
the late sixties, the dimensionless coefficients (A, B and C) in these laws were 
considered as single-valued functions of internal stability parameters: sLfu ||/∗=µ  
in the steady state PBLs, or h/Ls in the evolving PBLs ( ∗u  is the friction velocity, f is 
the Coriolis parameter, Ls is the Monin-Obukhov length, and h is the PBL depth). 
Numerous studies revealed very wide spread of data in empirical plots of A, B and C 
versus µ  or h/Ls. It is not surprising that the above laws, although included in all 
modern textbooks on boundary-layer meteorology, are not practically used. In the 
present paper the resistance and heat-transfer laws are revised accounting for the free-
flow stability, baroclinicity and the rise of capping inversion. The coefficients A, B 
and C become functions not only of µ  or h/Ls, but also of the external stability 
parameter ||/ fNN =µ  (where N is the Brunt Väisälä frequency in the free 
atmosphere above the PBL), the parameter of baroclinicity N/Γ=Γµ  (or the free-
flow Richardson number Ri = 2)/( ΓN = 2−

Γµ , where Γ  is the geostrophic wind shear), 
and the ratio Ehh /  of the actual h and the equilibrium Eh  PBL depths. Moreover the 
coefficient C is redefined to account for the effect of capping inversion. It follows that 
A, B and C can be considered as single-valued functions of µ  only in the steady-state, 
barotropic, nocturnal (that is short-lived) PBL. On the contrary, the advanced laws 
cover a wide range of the PBL regimes. They are validated through large-eddy 
simulation (LES) of different types of PBLs: truly neutral, conventionally neutral, 
nocturnal and long-lived. This new development explains why prior formulations 
performed so poor and promotes advanced resistance and heat transfer laws as a 
practical tool for use in environmental modelling applications.  
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1. Introduction 
 
The resistance laws for the barotropic planetary boundary layer (PBL) are presented 
in modern textbooks on boundary-layer meteorology (e.g., Garratt, 1992) and 
comprehensively discussed in recent papers of Hess and Garratt (2002a,b) and 
Zilitinkevich and Esau (2002); so they do not require detailed introductory 
explanations. These laws express the absolute value of the surface stress 0|| =zτr = 2

∗u  
( ∗u  is the friction velocity, and z is the height) and the cross-isobaric angle α  (the 
angle between that surface stress and the geostrophic wind) through the PBL 
governing parameters: 

 

( ) AC
C
k

g
g

~Rolncos −=α ,     B
C
k

g

~sin m=α ,       
 
 

(1)

 
where gC  and Ro are the geostrophic drag coefficient and the surface Rossby number: 

 

G
uCg

∗= ,     Ro = 
uzf

G

0||
. 

 
 

(2)

 
Here, k  is the von Karman constant (conventional value: k =0.4), A~  and B~  are 
dimensionless coefficients, f is the Coriolis parameter, uz0  is the surface roughness 
length for momentum, G is the geostrophic wind speed: 222

gg vuG += , 

( ) ypfug ∂∂−≡ − /1ρ αcosG=  and ( ) xpfvg ∂∂≡ − /1ρ αsinG=  are the geostrophic 
wind components (depth-constant in the barotropic PBL), ρ  is the air density, and p 
is the atmospheric pressure. On the right hand side (r.h.s.) of Eq. (1b), minus is 
applied to the Northern Hemisphere and plus to the Southern Hemisphere. Equations 
(1) correspond  
 
The potential-temperature resistance law analogous to Eq. (1) reads  

 

( ) CC
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θ
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∆
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(3)

 
where Tk  is the von Karman constant for the temperature (conventional value: 

Tk =0.4), C~  is the same type of dimensionless coefficient as A~  and B~ , TRC  is the 
thermal resistance coefficient, ∗θ = 1−

∗− uF sθ  is the temperature scale based on the near-
surface turbulent flux of potential temperature 0| =zFθ = sFθ , PBLθ∆ = 0θθ −h  is the bulk 
increment in potential temperature across the boundary layer, hθ = hz=|θ  is the 
potential temperature at the PBL upper boundary (considered as given parameter), and 

0θ  is the aerodynamic potential surface temperature.  
 
The latter is defined through the logarithmic extrapolation of )(zθ down to the level 

uzz 0= . Needless to say, 0θ  differs from the actual surface temperature sθ  (often 
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referred to as the radiometric temperature). The difference 0θ - sθ  ranges up to several 
Kelvins over rough surfaces. Traditionally, it is expressed as 
 

∗

−
θ

θθ s0

T

u

T z
z

k 0

0ln1
= , 

 
 

(4)

 
where Tz0  is the roughness length for temperature (e.g., Zilitinkevich et al., 2001). 
When Tz0  becomes very uncertain (over partially vegetated land and some other very 
complex land surfaces) alternative approaches should be applied (see Mahrt and 
Vickers, 2002). In any case, introducing the aerodynamic surface temperature allows 
separate consideration of the thermal resistances of the two layers of essentially 
different nature:  

• the PBL – in terms of PBLθ∆ = 0θθ −h , Eq. (3),  
• the roughness layer – in terms of 0θ – sθ , Eq. (4), or using other schemes.  

The present paper focuses on the PBL resistance laws. 
 
Equation (3) in combination with Eq. (1) provides the PBL heat transfer law:  

 
PBLTRgs GCCuF θθθ ∆−=−= ∗∗ . (5)

 
Equations (1) for the neutral PBL (with A~  and B~  treated as universal constants: 
A~ = 0

~A  and B~ = 0
~B ) were derived by Rossby and Montgomery (1935) from a 

turbulence closure model and later by Kazanski and Monin (1961) from more general 
similarity-theory reasoning. An overview of further studies of the resistance law for 
the atmospheric neutral PBL is given by Hess and Garratt (2002a,b) and Hess (2004).  
 
Zilitinkevich et al. (1967) and Zilitinkevich and Chalikov (1968) extended Eq. (1) to 
the stratified PBLs affected by the non-zero buoyancy fluxes at the surface. They 
showed that A~  and B~  depend on the internal stability parameter µ  based on the 
Monin-Obukhov length scale sL : 

 

µ =
sLf

u
||
∗ ,     

s
s F

uL
θβ

3
∗−

= , (6)

 
where Tg /=β  is the buoyancy parameter, g is the acceleration due to gravity, and T 
is the absolute temperature. They also derived the temperature resistance law, Eq. (3), 
with C~  dependent on µ , and made the first attempt to empirically determine the 
resistance-law coefficients A~ , B~ , C~  and the similar type of coefficient D~  in the 
resistance law for humidity. In this context, the neutral stratification was defined as 
the regime in which µ  is sufficiently small ( µ < 10). According to this point of view, 
the temperature flux sFθ  could be non-zero (and the heat transfer law keeps it sense) 
when the stratification is practically neutral. 
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Zilitinkevich and Deardorff (1974) reformulated the resistance laws employing the 
actual boundary-layer depth h instead of the equilibrium PBL depth Eh  [or its basic 
scale ||/ fu∗  employed in Eqs. (1)-(3)]. The generalised laws read 

 

A
z
h
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(7)
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(8)

 
Here, the resistance-law coefficients A, B and C are considered as functions of sLh /  
rather than µ , which allows extending the theory to non-steady boundary layers with 
time/space-dependent depths1. Equation (7b) is derived below in Section 2. In contrast 
to the prior formulation, BkCg

~sin1 m=− α , it explicitly shows that the cross isobaric 
angle α  is controlled by the Coriolis parameter f. 
 
As for the stable stratification, all the above analyses were limited to the nocturnal 
PBLs, namely, the stable PBLs developed after the sun set on the background of much 
deeper residual layers, neutrally stratified due to intensive mixing during the day-time. 
In the steady-state, nocturnal PBL [when the PBL depth h is fully determined by ∗u , f 
and Ls: h = Eh = )(|)|/( µhffu∗ ] Eqs. (7)-(8) reduce to Eqs. (1)-(3), wherein the 

coefficients A, B and C are expressed through A~ , B~  and C~ :   
 

∗

+=
u

hfAA E||ln~ ,     B
fh
uB

E

~∗±= ,     
∗

+=
u

hfCC E||ln~ . 
 
 

(9)

 
Zilitinkevich (1975) determined asymptotic behaviours of the resistance-law 
coefficients in Eqs. (1)-(3) and (7)-(8) at large values of µ  and sLh / , respectively.  
 
In the truly neutral boundary layer, when the Monin-Obukhov length is large: ∞→sL  
(so that µ , sLh / 0→ ) and the static stability in the air flow above the PBL is neutral, 
the equilibrium boundary layer depth is expressed by the classical Rossby and 
Montgomery (1935) formula: ||/ fuCh RE ∗= , where RC  is a dimensionless constant 
( RC =0.7, after laboratory experiments and LES2). Then the resistance law coefficients 

                                                 
1 Recall that convective PBLs never approach the steady state: they go on growing until the positive 
buoyancy flux is maintained. Contrastingly, stable PBLs tend to develop towards the steady state. The 
ratio h/ Eh  of the actual PBL depth, h, to the equilibrium stable PBL depth, Eh , is an important 
governing parameter for this type of turbulent boundary layers. Alternatively the deviation of the PBL 
from the steady state could be characterised by the dimensionless parameter ∗uhf /||  (Arya, 1975). 
2 Atmospheric data give much lower and very uncertain estimates of RC  (e.g. Tjernstrom and 
Smedman, 1993). This is due to the fact that the atmospheric boundary layers usually considered as 
neutral (according to the criteria ∞→sL  or 0→µ ) are in fact only conventionally neutral. 
Zilitinkevich and Esau (2002) and Hess (2004) have demonstrated that their depths are strongly 
affected by the static stability in the free atmosphere.  
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000
~ ,~ ,~ CBA , RCAA ln~

00 += , =0B 0
1 ~BCR

−  and RCCC ln~
00 +=  become constants (the 

subscript “0” stands for the truly neutral stratification).  
 
Since the late sixties, particular cases of the above laws were independently derived 
(e.g., by Gill, 1968), discussed and compared with experimental data in a large 
number of papers (see overviews in Byun, 1991; Zilitinkevich, 1989; Hess and 
Garratt, 2002a,b; Hess, 2004). In the majority of these works, the PBL is considered 
as neutral when µ  or sLh /  is zero or sufficiently small. In the seventies and early 
eighties, much work focused on experimental determination of the resistance-law 
coefficients A~ , B~ ,C~  and D~  supposed to be single-valued functions of µ . However, 
empirical relationships of this type showed so wide spread of data that any interest in 
practical application of the resistance laws gradually decayed. 
 
To some extent, large spread of data on empirical plots of the coefficients A~  and B~  
was explained at the expense of baroclinicity (e.g., Arya and Wynggard, 1975; Joffre, 
1982, 1984). The baroclinic correction to the resistance law was formulated in a linear 
approximation, neglecting the effect of baroclinic shear on turbulent mixing. It 
included the following two steps. First, employing the surface values of the 
geostrophic wind components ( 00 | == zgg uu , 00 | == zgg vv ), the barotropic resistance 

law (with A~  and B~  dependent on µ ) was applied to determine ∗u  and the 
“barotropic part”, α , of the full wind-turn angle, 1αα + . Second, the “baroclinic 
part” of this angle, 1α , was determined as the full turn of the geostrophic wind across 
the PBL. Recent version of this model and an overview of prior works are given by 
Djolov et al. (2004).  
 
It was recognised long ago that not only baroclinicity, but the depth and the strength 
of the capping inversions and the static stability in the free atmosphere affect bulk 
features of stable PBLs (e.g., Csanady, 1973; Byun, 1991; Overland and Davidson, 
1992; King and Turner, 1997). But the fist attempts to quantify these effects were 
made only recently (Zilitinkevich et al., 1998b; Zilitinkevich and Esau, 2002, 2003).  
 
A new theoretical model presented in this paper goes further and extends the 
resistance and heat transfer laws to long-lived, stable PBLs accounting for the 
following mechanisms:  

• damping effect of the static stability in the free atmosphere on the PBL 
turbulent length scale,  

• development of capping inversions at the PBL upper boundary, 
• enhancing effect of the baroclinic shear on the PBL turbulent velocity scale. 

Prior models overlooked these mechanisms and therefore were applicable only to the 
nocturnal PBLs. This explains enormous spread of data points in old empirical plots 
of A~ , B~ ,C~  and D~  versus µ .  
 
In this paper, the free atmosphere is characterised by the Brunt-Väisälä frequency, N, 
and the baroclinic shears, zugu ∂∂=Γ /  and zvgv ∂∂=Γ / , which involve the 
dimensionless parameters of the external stability Nµ  and baroclinicity Γµ : 
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(10)

 
Alternatively, the role of baroclinicity can be characterised by the free-flow 
Richardson number Ri = 2−

Γµ . On the r.h.s. of Eq. (10) for Γ , the geostrophic shear is 
expressed through the large-scale horizontal temperature gradient using the thermal 
wind equation. N and Γ  are taken depth-constant in a reasonable correspondence with 
real properties observations of the Earth’s atmosphere: N 210−=  s-1 and 
Γ ~ 310)63( −⋅−  s-1 that correspond to Nµ ~102 and Γµ ~ 110)63( −⋅− . 
 
Following Zilitinkevich and Esau (2003), the PBL baroclinic turbulent velocity scale 

Tu  is defined as 
 

2/1
0

2
2

Ri1 −
∗

−
=

C
uuT )Ri1( 2/1

0
2 −
∗ +≈ Cu = ( )Γ∗ + µ0

2 1 Cu ,    
 
 
 
 

 

(11)

 
where 0C = 0.67 is a dimensionless constant determined through LES validation of the 
baroclinic PBL depth formulation3. In the barotropic PBLs, Tu  reduces to the 
universally accepted scale ∗u . 
 
Accounting for the Nµ -dependence, Zilitinkevich and Esau (2002) have explained 

wide spread of empirical data on A~  and B~ , as well as a seemingly paradoxical 
disagreement between the atmospheric estimates and the LES, DNS or lab-experiment 
estimates of A~  and B~  in the boundary layers traditionally considered as neutral. The 
key point is that numerical or lab models deal with the truly neutral PBLs ( µ =0 and 

Nµ =0), whereas atmospheric PBLs treated as neutral (| µ |<<10) are nearly always 
strongly affected by the free-flow stability ( Nµ ~ 210 ). These two types of the PBL are 
essentially different in nature. To distinguish between them, Zilitinkevich and Calanca 
(2000) have proposed the following definitions: The PBL is called “conventionally 
neutral” when the buoyancy flux θβF  approaches zero at the surface but the free flow 
above the PBL is stably stratified. When both the surface buoyancy flux sFθβ  and the 
free flow Brunt Väisälä frequency N are zero, the PBL is called “truly neutral”. 
 
In the present paper the theory is further advanced and validated against new LES. 
 
 

                                                 
3 In the imaginary case that the free atmosphere is neutrally stratified ( 0=N ) but baroclinic 
( )0>Γ , the baroclinic shear causes the overall turbulisation, so that the very concepts of the turbulent 
boundary layer and the PBL turbulent velocity scale become inapplicable.  
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2. Theoretical model 
 

2.1. TURBULENT LENGTH SCALES  
 
Earlier versions of the resistance and heat transfer laws were derived through 
asymptotic matching of the near-surface profiles of the wind velocity components 
u(z), v(z) and the potential temperature )(zθ  with the defect-functions )()( huzu − , 
v(z) – v(h) and )()( hz θθ −  in the overlapping height interval hzz u <<<<0 . Thus the 
surface layer model represented an essential starting point of the theory. 
 
Prior derivations employed the Monin-Obukhov (1954) similarity theory for the 
surface-layer profiles and the defect-functions based on the PBL-depth formulations 
of Rossby and Montgomery (1935) and Zilitinkevich (1972) – for the neutral and 
stable boundary layers, respectively.  
 
This approach is justified when applied to nocturnal stable PBLs, namely, to the 
comparatively short-lived PBLs separated from the free flow by a neutrally stratified 
residual layer, which keeps memory of the day-time mixing. In such PBLs, except for 
the thin log-boundary layer close to the surface, the turbulent length scale is limited to 
the “local Monin-Obukhov length” L defined similarly to Eq. (6b) but employing 
local (z-dependent) values of the turbulent fluxes of momentum )(zτ  and potential 
temperature )(zFθ  (Nieuwstadt, 1984).  
 
More generally, including the truly neutral PBLs (in which 01 =−L ) and the long-
lived stable PBLs (that is the PBLs bordering upon the stably stratified free 
atmosphere, without any intermediate residual layer), the turbulent length scales are 
restricted by the following alternative limits: local (z-dependent) static stability scale 
L, non-local external static stability scale NL , and the rotational scale fL , namely, 
 

θβ
τ

F
L

−
=

2/3

,    NL =
N
u∗ ,    fL =

|| f
u∗ . 

 
 
 
 
 

(12)

 
In baroclinic PBLs, the baroclinic turbulent velocity scale Tu , Eq. (11), should be 
substituted for ∗u  in the above expression for NL .  
 
The scales L and NL  are inherent to the nocturnal and to the conventionally neutral 
PBLs and reflect the damping effect on turbulence of the turbulent buoyancy flux 
within the PBL and the static stability in the free flow, respectively. Clearly, in each 
concrete case the basic role is played by the stronger effect, that is by the smaller 
scale: L, NL  or fL . Moreover, their relative importance is different at different 
heights because L depends on z through the dependences )(zτ  and )(zFθ . 
 
In further analysis, we employ a recently created LES data base representing three 
different types of the stable PBL: nocturnal, long-lived and conventionally neutral, 
and the truly neutral PBL (see Section 3). LES data shown in Figure 1 demonstrates 



 9

that the normalised fluxes of momentum and potential temperature can to a reasonable 
accuracy be considered as self-similar functions of the dimensionless height hz /=ς :  
 

2
∗u

τ = )(ςτf ,   
sF

F

θ

θ = )(ςθFf . 
 
 
 
 
 

(13)

 
As shown in Appendix, such a self-similarity is consistent with scaling analysis of the 
Ekman equations. It has been disclosed in prior analyses of field data (e.g., Sorbjan, 
1988; Lenshow et al., 1988; Wittich, 1991). Within the PBL, the power-law 
approximations based on the field experiments over Great Plains of the USA, 

)(ςτf
2/3)1( ς−=  and )(ςθFf ς−= 1 , are quantitatively quite close to the exponential 

approximations: )(ςτf )exp( 2
3

8 ς−=  and )(ςθFf )2exp( 2ς−= , which better fit LES 
data in Figure 1. 
 
It follows that the ratio L/ NL  and therefore the role of NL  is small in the upper part of 
the PBL and increase towards the surface. In other words, the role of the scale NL  is 
most pronounces in the surface layer. This non-trivial conclusion is consistent with 
analysis of data from observations in presumably long-lived stable PBLs over 
Greenlad (Zilitinkevich and Calanca, 2000) and Antarctica (Sodemann and Foken, 
2004). New LES data shown in Figures 2 and 5 strongly support this conclusion.  
 
It is worth emphasising that our derivation of the resistance and heat-transfer laws is 
based on the assumption that the ratios 2/ ∗uτ  and sFF θθ /  are universal functions of 
ς , but concrete forms of these functions are not required. 
 
Accounting for the alternative limits, L, NL  and fL , generalised turbulent length 
scales, { }HML , , can be determined through the interpolation: 
 

{ }HML ,

1 = { } { }
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(14)

 
which gives priority to the smaller scales. Dimensionless coefficients { }NHNMC ,  and 

{ }fHfMC ,  can be different for the turbulent transports of momentum (M) and heat (H).  
 
Recall that the scale NL  was already applied to measure the PBL depth 
(Kitaigorodskii and Joffre, 1988) and to generalise the Monin-Obukhov similarity 
theory for the surface layer (Zilitinkevich and Calanca, 2000; Zilitinkevich, 2002). 
The inverse quadratic interpolation between Ls 0| =≡ zL  and NL  was employed to 
derive an advanced PBL depth model (Zilitinkevich at al., 2002; Zilitinkevich and 
Baklanov, 2002; Zilitinkevich and Esau, 2002, 2003).  
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Now, using the composite scale ML  instead of L and matching the log layer in close 
vicinity of the surface and the z-less stratification layer aloft, the familiar velocity 
gradient formulation becomes  
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

∂
∂

M
u L

zC
kzz

u 1
2/1τ

M

u

kL
C 2/1τ

≈ ,      

 
 
 
 
 

(15)

 
where uC  is a dimensionless constant. Recall that the “z-less stratification layer” is 
the height interval within the stably stratified turbulent flow, in which the vertical size 
of turbulent eddies is controlled by negative buoyancy forces rather than the distance 
from the surface. Equation (15) differs from the Nieuwstadt (1984) formulation only 
due to the difference between ML  and L.  
 
Eq. (15) affords an analytical expression of the eddy-viscosity: 
 

zk
zu

KM
2/1

/
ττ

=
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=
1

1
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

M
u L

zC Mu LkC 2/11τ−≈ .      

 
 
 
 
 

(16)

 
Its approximate version, MK Mu LkC 2/11τ−≈ , corresponds to the z-less stratification 
layer (z>> LCu

1− ). Principally similar formulations for the potential temperature 
gradient z∂∂ /θ  and the eddy conductivity MK  are derived in Section 2.4. 
 
In the surface layer (at hz 110−< ), substituting ∗u  for 2/1τ  and sFθ  for θF  (then 

→ML MsL ), and neglecting the effects of the free flow stability and Earth’s rotation 
by taking 0, =fMNM CC  (then MsL = sL ), Eqs. (15) and (16) reduce to the traditional 
Monin-Obukhov similarity theory formulation. The latter was verified against 
experimental data in numerous papers, which gave estimates of uC  in the interval 
2< uC <3. As evident from Eq. (14), this uncertainty can, at least partially, be caused 
by the difference between Ls and MsL , and – in shallow PBLs – by unnoticed use of 
data beyond the surface layer. Indeed, factual length scales L and ML  decrease with 
increasing height (see Figure 1), which inevitably leads to artificial overestimation of 
the coefficient uC  if data analysis is based on the traditional, depth-constant Monin-
Obukhov length scale sL .  
 
Eq. (15) is applied to the absolute value of the wind speed |u|=

2/1

)( 22 vu +  rather that 
to its longitudinal component u (aligned with the turbulent stress at the very surface). 
The contribution to |u| from the transverse component v caused by the Coriolis force 
is small in the surface layer but becomes significant above it.  
 

Figure 2 shows the dimensionless velocity gradient 
dz
ukz

M
∂

=Φ 2/1τ
 as dependent on 

the two versions of the dimensionless height, z/L in Figure 2a and z/ ML  in Figure 2b, 
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and include LES data from the entire PBL. It is seen that the generalised length scale 
ML  (employed in Figure 2b) provides uniform representation of the three different 

types of the stable PBL (conventionally neutral, nocturnal and long-lived), and by this 
means leads to a better collapse of LES data than the traditional scale L. Moreover, 
this Figure confirms applicability of Eq. (15) throughout the PBL and gives quite 
certain estimates of empirical constants: k =0.47, uC =2.5 and NMC =0.1.  
 
To derive a general form of the resistance law, we begin with the nocturnal PBL (N=0 
and LLf >> , so that LLM = ), then consider the conventionally neutral PBL 
( 0=sFθβ  and LLf >> , so that NM LL = ), and the truly neutral PBL (N = 0 and 

0=sFθβ , so that fM LL = ), and finally interpolate between the resistance laws  
inherent to these three types of the PBL.  
 
 

2.2. RESISTANCE LAW FOR NOCTURNAL PBLs  
 
In the surface layer ( hz 110−< ) within the barotropic nocturnal PBL ( 0=Γ , N = 0, 

LLf >> ), taking 2/1τ = ∗u  and L = sL , Eq. (15) yields the following expressions for 
the longitudinal velocity component u: 
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(18)

 
Assuming that the vertical profiles of turbulent fluxes are self-similar, Eqs. (13) and 
(15) in the z-less stratification layer yield )(/ 11 ςusu fLuCkzu −

∗
−=∂∂ , where uf (ς ) 

= 1−
τθ ffF . Then, to account for the effect of baroclinicity, we simply add the baroclinic 

wind shear uΓ : 
 

s

u

kL
uC

z
u ∗=

∂
∂ )(ςuf uΓ+ .  

 
 
 
 
 

(19)

 
This additional term ensures the required upper boundary condition uzu Γ→∂∂ / , 
whereas in the surface layer the term uΓ  is practically negligible compared to the 
main term (see Appendix in Zilitinkevich and Esau, 2003). Integrating Eq. (19) over z 
from an arbitrary height z to the PBL upper boundary z=h yields  
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)()()( ςu
s

u

kL
huCzuhu Φ=− ∗ + ( )ς−Γ 1hu . 

 
 
 
 

(20)

 

Here, the function uΦ  is defines as ∫=Φ
1

)(
ς

ςς dfuu , and u(h)= ghu  is the u-

component of the geostrophic wind at the PBL upper boundary. The latter consist of 
the barotropic and baroclinic parts: 
 

huhu ug Γ+= 0)( = hG uΓ+αcos ,    (21)
 
where G and α  are the surface values of the geostrophic wind speed and the cross-
isobaric angle. Substituting Eq. (21) for u(h) in Eq. (20) yields the longitudinal 
velocity defect function: 
 

)()(cos ςα u
s

u

kL
huCzuG Φ=− ∗ ςhuΓ− , 

 
 
 
 

(22)

 
which is valid in the height interval 1/ << ςhLs .  
 
Consider Eq. (22) in the z-less stratification part of the surface layer: hLs / 1<<< ς . 
Here, the term ςhuΓ  is negligible because 1<<ς . Then substituting the lower line on 
the r.h.s. of Eq. (18) for )(zu  yields  
 

[ ]
s

u
s

u
uu

s

L
ha

L
hC

zC
L

u
Gk ≡Φ+=+−

∗

)(1lncos

0

ςςα      ( a = constant).   
 
 
 
 

(23)

 
The left hand side of Eq. (23) does not depend on ς . Thus, in the overlapping region, 
the combination uC [ ])(ςς uΦ+  on the right hand side must be a dimensionless 
constant (assigned a ). Rearranging the terms in Eq. (23) yields the resistance law 
Equation (7a) with the following A-coefficient:  
 

1lnln +++−= u
ss

C
L
h

L
haA

ss L
h

L
ha ln+−= +constant,           

 
 

(24)

 
which holds true asymptotically at 1/ >>sLh .  
 
To determine the transverse velocity component, v, consider the Ekman equations:  
 

( ) 0=
∂

∂
+−

z
vvf x

g
τ ,     ( ) 0=

∂

∂
+−−

z
uuf y

g

τ
.    

 
 
 
 
 
 
 
 
 

(25)

 
Here, xτ  and yτ  are the components of the vertical flux of momentum along the 
horizontal axes x and y. The x-axis is aligned with the surface stress to make 0=yτ  at 
z = 0. Hence the boundary conditions are 
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0, =vu , 2
∗= uxτ , 0=yτ  at 0=z ;   guu → , gvv → , 0, →yx ττ  at ∞→z . 

 

 

(26)

 
Limiting our analysis to the z-less stratification part of the surface layer, we take )(zu  
from the lower line on the r.h.s. of Eq. (18) and αcosGug =  from Eq. (23). This 
gives the longitudinal velocity-defect function: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−≈− ∗

us

u
g C

a
L
h

k
uCuu ς . (27)

 
Then substituting Eq. (27) for guu −  in Eq. (25b), integrating over z and accounting 
for the boundary condition 0| 0 ==zyτ  gives the transverse component of the 
momentum flux:  
 

≈⎟
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⎛ −−= ∗ 2

2
ςςτ

a
C

L
h

k
hafu u

s
y ς

sL
h

k
hafu∗− . 

 
 
 
 

(28)

 
In the surface layer, the longitudinal component of this flux can be taken depth-
constant: ≈xτ 2

0| ∗= = uzxτ . Then Eq. (16) for the eddy viscosity reduces to  
 

MK =
1

1
−

∗ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

s
u L

zCzku  .  

 
 

(29)

 
Next, zv ∂∂ /  and v are determined: 
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(30)

  

v 2
2

22
ςfh

L
h

k
aC

s

u
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−≈ ,  

 
 
 
 
 

(31)

 
where approximate expressions ( ≈ ) correspond to the z-less stratification part of the 
surface layer.  
 
To extend the surface-layer formulation Eq. (30) to the upper portion of the PBL, we 
substitute )(zL  for sL  and add to the r.h.s. the baroclinic wind shear vΓ :  
 

=
∂
∂

z
v ςf

L
h

k
aC

s

u

2

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− )(ςvf vΓ+ ,      

 
 
 
 

(32)

 
where 32 −= τθ fff Fv  [recall similar reasoning used in the derivation of Eq. (19)]. 
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Integrating Eq. (32) over z from z to h yields  
 

)()()(
2

2 ςv
s

u fh
L
h

k
aCzvhv Φ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=− + )1( ς−Γ hv .  

 
 
 
 

(33)

 

Here, ∫=Φ
1

 )(
ς

ςςς dfvv  is a universal function of ς , and v(h)= ghv  is the v-component 

of the geostrophic wind at the PBL upper boundary, which consists of the barotropic 
and baroclinic parts: 
 

hvhv vg Γ+= 0)( = hG vΓ+αsin . (34)
 
Substituting Eq. (34) for v(h) in Eq. (33) yields the transverse velocity defect function: 
 

)()(sin
2

2 ςα v
s

u fh
L
h

k
aCzvG Φ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=− - ςhvΓ ,  

 
 
 
 

(35)

 
valid in the height interval 1/ << ςshL . In the z-less stratification part of the surface 
layer, substituting Eq. (31) for v(z) and neglecting the term ςhvΓ , Eq. (35) reduces to  
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Gk ςςα      (b = constant).   

 
 
 
 
 
 

(36)

 
Here, the combination [ ])(2)2( 21 ςς vu kaC Φ+−  turns into a universal dimensionless 
constant (assigned b) because the left hand side of Eqs. (36) does not depend on ς . 
Eq. (36) is nothing but the resistance law Equation (7b) with the resistance-law 
coefficient 
 

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

sL
hbB .      (37)

 
Likewise Eq. (24), this expression holds true asymptotically at sLh / >>1.   
 
In the barotropic steady state, the nocturnal PBL depth becomes |)|/( fuLCh sSE ∗= , 
where SC ≈ 1 (e.g., Zilitinkevich and Esau, 2003); so  the dimensionless parameter in 
Eqs. (35)-(37) becomes sLh / 2/1µSC= , where µ  is the traditional internal stability 
parameter, Eq. (6).  
 
Recall that the very concept of the nocturnal PBL (that is the stable PBL with zero 
static stability in the free flow: N=0) loses its sense in the baroclinic atmosphere. 
Indeed in the case that N=0 but Γ >0 the shear-generated turbulence would appear 
throughout the troposphere.  
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2.3. EXTENSION OF THE THEORY TO OTHER TYPES OF PBLs  
 
The above analysis is immediately applicable to the conventionally neutral PBL with 
the only principal difference that the local Monin-Obukhov length scale L(z), Eq. 
(12a), and its surface value sL = 13 )( −

∗− sFu θβ  are both substituted by the depth-
constant length scale 1−

NMC NL , where NMC  is a dimensionless constant (after Figure 2, 

NMC =0.1). Thus in the conventionally neutral PBL, the vertical gradients of the 
velocity components are expressed by formulas similar to Eqs. (19) and (32) but 
based on the length scale NL :  
 

N

NMu

kL
uCC

z
u ∗=

∂
∂ )(ςuNf uΓ+ ,   =

∂
∂

z
v ςf

L
h

k
aCC

N

NMu

2

2

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− )(ςvNf vΓ+ , (38)

 
with the correction functions )(ςuNf  and )(ςvNf  different from the functions 

)(ςuf = )()( 1 ςς τθ
−ffF  and )(ςvf = )()( 32 ςς τθ

−ffF  that appeared in Eq. (19) and (32). It 
follows that the resistance law Equations (7) hold true, but the coefficients A and B 
become functions of NLh / :  
 

=A
N

NM

N

NM
N L

hC
L

hCa ln+− +constant,   
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

N

NM
N L

hCbB  (39)

 
with the dimensionless constants Na  and Nb  different from a and b. Equations (39) 
hold true asymptotically at NNM LhC / >>1.   
 
In the barotropic steady state, the conventionally neutral PBL depth becomes 

2/1)|(| NfuCh CE ∗= , where CC ≈ 1.3 (see  Zilitinkevich and Esau, 2003); so the 
dimensionless parameter in Eq. (39) becomes NLh / 2/1

NCC µ= , where Nµ  is the 
external stability parameter, Eq. (10a). This result holds true also in the baroclinic 
regime, when 2/1)|(| NfuCh TCE =  and NuL TN /= . Thus the effect of baroclinicity 
on the resistance-law coefficients manifests itself only through the dependence of h on 
the parameter of baroclinicity Γµ , Eq. (10b).  
 
To link the alternative resistance-law formulations Eqs. (24),(37) – for the nocturnal 
PBL, and Eq. (39a,b) – for the conventionally neutral PBL, we employ the same as in 
Eq. (14) inverse quadratic interpolation between the turbulent length scales. This 
yields  
 

=A AA mam ln+− + constant,   2
BbmB = , (40)

 
where Am  and Bm  are composite stratification parameters: 
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Here, 1−= aaCC NNMNA  and 1−= bbCC NNMNB  are dimensionless constants, 

13 )( −
∗−= ss FuL θβ  is the Monin-Obukhov length, and Fi = 1−

∗uNLs  is an inverse Froude 
number – already introduced in a generalised surface-layer scaling (Zilitinkevich and 
Calanca, 2000; Zilitinkevich, 2002).  
 
Finally, in the truly neural stratification ( Γ , N, sFθβ , sLh / , NLh / , Am , Bm 0→ ), 
taking ||/~ fuLhh fE ∗== ), the resistance law coefficients A =A( Am ) and B 
=B( Bm ) become universal constants:  
 

0)0( AA = ,   0)0( BB = .   (43)
 
As already mentioned, the Rossby-Montgomery formula for the truly neutral PBL 
depth: ||/ fuCh RE ∗=  is very well confirmed by LES and lab-experiment data, which 
give 7.0=RC .  The effect of baroclinicity is not relevant to this regime because the 
baroclinic shear ( Γ >0) on the background of the neutral static stability (N=0) would 
inevitably result in the appearance of developed turbulence throughout the 
troposphere.  
 
A reasonable interpolation linking Eq. (40) with Eq. (43) is 
 

)ln( 0
A

A
A meamA ++−= ,   2

0 BbmBB += .   (44)
 
LES data shown in Figures 3 and 4 confirm Eqs. (44) and give estimates of the 
dimensionless constants  a =1.4, 0A =0.5, NAC =0.09; b =10, 0B =1.5, NBC =0.15.  
 
The theoretical dependence shown in Figure 4 is nothing but the interpolation 
between the two asymptotes: 0BB →  at 0→Bm  and 2

BbmB →  at ∞→Bm  
(factually applicable already at 2>Bm ). Hence, for practical purposes the form of the 
function )( BmB  in the intermediate interval 20 << Bm  can be corrected without any 
violation of the theory. 
 
Recall that the traditional approach did not distinguish between the truly neutral and 
the conventionally neutral PBLs. Accordingly, in the traditional format (with 

Am sLh /= ), all data representing different conventionally neutral PBLs would 
correspond to sLh / =0, thus causing considerable spread of data points (cf. Figures 10 
and 11).  
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Equations (7), (41)-(42), (44) comprise the resistance law covering a range of neutral 
and stable PBL regimes, including long-lived stable PBLs, in which both scales L and 
LN  play important roles, and baroclinic PBLs. 
 
In this context, h is considered as a given parameter. In the steady state, it is equal to 
the equilibrium stable PBL depth, h= Eh , controlled by the three dimensionless 
parameters: µ , Nµ  and Γµ  (Zilitinkevich and Esau, 2003). Thus our formulation 
accounts for the effect of baroclinicity on the resistance law coefficients A and B 
through the dependence of Eh  on Γµ , Eq. (10). In non-steady regimes, h can be 
calculated using prognostic relaxation-type equation: )(~/ 1 hhtdtdh E −−

∗ , where 

∗t ~ ∗uh /  is the PBL relaxation time scale (see Section 3.2 in Zilitinkevich and 
Baklanov, 2002). 
 
 

2.4. PROPER PBL AND CAPPING INVERSION  
 
Notice that stable PBLs experience persistent cooling due to the negative (downward) 
heat flux at the surface 0| == zs FF θθ <0. This cooling results in rising of the capping 
temperature inversion at the PBL upper boundary. Hence the temperature profile 
inevitably changes its shape in the course of time and the steady state is never 
achieved. At the same time, numerous experimental studies convincingly demonstrate 
that the temperature profile in the surface layer (at z<0.1h) is at least approximately 
self-similar.  
 
It looks reasonable to assume that the non-stationary changes are basically related to 
the capping inversion, whereas the temperature profile in the proper PBL shifts quasi-
stationary, keeping it self-similar shape. This approach allows considering separately 
the two mechanisms of essentially different nature: 

• maintaining of a self-similar temperature profile in the proper PBL, controlled 
by instantaneous values of the turbulent fluxes of temperature and momentum 
and the free-flow Brunt-Väisälä frequency,  

• rising of the capping inversion and strengthening of the temperature increment 
CIθ∆  across it. 

 
In the present paper we focus on the heat transfer law for the proper PBL. Recall that 
the potential temperature in the free atmosphere (outside the PBL) is specified as a 
linear function of height: θ = zN 21

00
−+ βθ . Then, given the PBL depth h, the basic-

state potential temperature at the PBL upper boundary is an easily determined external 
parameter4: 
 

hN
h β

θθ
2

000 +≡+ ,       
 
 
 
 

(45)

 

                                                 
4  In our LES,  00θ  is nothing but the initial value of θ  at the surface: 00θ = 0 ,0| == tzθ . 
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To distinguish between the proper PBL and the capping inversion, we determine the 
inversion half-depth, CIδ2

1 , as the height interval between the PBL upper boundary, 
z=h, and the inflaction point just below this level, that is the height CIhz δ2

1−= , at 
which z∂∂ /θ  approaches minimum ( 22 / z∂∂ θ =0) and start increasing (then no 
inflaction point means no capping inversion). Considering the potential temperature at 
this height, 

CIhzh δθθ
2

1|0 −=− ≡ , as a reference value of θ  at the upper boundary of the 

proper PBL, the potential temperature increment across the capping inversion, CIθ∆ , 
is defined as  
 

CIθ∆ = 0+hθ 0−− hθ .    (46)
 
As already mentioned we leave determining CIθ∆  for a separate paper and limit our 
analysis to the derivation of the heat transfer law for the proper PBL in terms of the 
potential temperature increment across the PBL:  
 

PBLθ∆ = 0−hθ 0θ− .    (47)
 
Clearly, in the PBLs with no capping inversions (e.g., in the nocturnal PBLs), this 
definition reduces to the traditional one: PBLθ∆ = 0θθ −h = 00 θθ −+h .  
 
Consider the similarity-theory formulation for the potential temperature gradient:  
 

zkz T

∗=
∂
∂ θθ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

HL
zCθ1  

 
 
 
 

(48)

 
based on the traditional turbulent temperature scale ∗θ = 2/1−− τθF  and the generalised 
z-dependent turbulent length scale HL , Eq. (14). Eq. (48) is derived similarly to Eq. 
(15) through matching the temperature-gradient scales z/∗θ  and HL/∗θ  for the log-
layer and the z-less stratification layer, respectively.  
 

Figure 5 shows LES data on 
z

zkT
H ∂

∂
=Φ

∗

θ
θ

 as dependent on either z/L (Figure 5a) or 

z/ HL  (Figure 5b) in the height interval 0<z< CIh δ2
1−  for the nocturnal (x) and long-

lived (ο) stable PBLs5. It confirms applicability of Eq. (48) throughout the proper 
PBL and demonstrates that the generalised scaling provides reasonably good collapse 
of practically all LES data taking the following values of dimensionless constants: 

Tk =0.47, θC = 2 and NHC = 1.5. In other words, the scale HL  is applicable to both 
nocturnal and long-lived PBLs in contrast to the traditional scale L applicable only to 
the nocturnal PBLs.  
 

                                                 
5 In the conventionally neutral PBLs the potential temperature flux approaches zero at the surface: 

0| 0 ==zFθ . Hence, the temperature scale ∗θ  is inappropriate and data representing these PBLs cannot 
be shown in Figure 5.  
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Recalling the turbulent-flux profile approximations (given in Figure 1), Figure 5 
supports an analytical eddy-conductivity formulation6:  
 

zk
z

FK TH
2/1

/
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θ
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zCθ HT LCk 2/11τθ

−≈ ,      

 
 
 
 
 

(49)

 
where approximate expression ( ≈ ) corresponds to the z-less stratification layer 
(z>> LC 1−

θ ).  
 
In further analysis we exclude the capping inversion layer and derive the heat transfer 
law for the proper PBL.  
 
 

2.5. HEAT TRANSFER LAW  
 
Consider first the nocturnal PBL. In the surface layer within this PBL, Eq. (48) yields 
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(50)
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(51)

 
In the z-less stratification part of the PBL [at L (z)<<z<h], accounting for the self-
similarity of the normalised turbulent fluxes, 2/ ∗uτ = )(ςτf  and sFF θθ / = )(ςθFf , and 
employing the formula sz ∗∗ ≈ θθ )( (see Figure 1), Eq (48) reduces to 
 

 ( )ςθθ
θ

θ f
Lk

C
z sT

s∗=
∂
∂ ,        

 
 
 
 

(52)

 
where θf = 2

θFf 2
τf → 1 at ς → 0. Integrating Eq. (52) from z to h CIδ2

1−  yields the 
potential-temperature defect function: 
 

 ( )ςθδθθ θ
θ Φ

−
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−
sT

sCI
h Lk

hCz )()( 2
1

0 ≈   ( )ςθ
θ

θ Φ∗

sT

s

Lk
hC ,     

 
 
 
 

(53)

 

                                                 
6 Similar scaling reasoning in combination with analysis of LES data could be applied to derive a 
simple analytical formulation for the eddy diffusivity. Such a formulation could be useful in pollution 
dispersion modelling, especially in strong static stability regimes, when traditional formulations often 
give poor results. 
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where θΦ = ∫
1

)(
ς θ ςς df . The approximate expression on the r.h.s. of Eq. (53) is 

justified when the capping inversion layer is comparatively shallow: hCI <<δ2
1 .  

 
Considering Eq. (53) in the z-less stratification part of the surface layer and 
substituting the lower line of Eq. (51) for )(zθ  on the l.h.s. of Eq. (53) yields  
 

 [ ])(1ln
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hc=      (c = constant).     
 
 
 
 

(54)

 
The r.h.s. of Eq. (54) is nothing but universal constant (assigned c) because the l.h.s. 
of this Equation does not depend on z.  
 
Eq. (54) is consistent with the temperature resistance law Eq. (8) [provided that the 
temperature increment across the PBL is defined after Eq. (47)] and implies the 
following asymptotic expression of the C-coefficient at 1/ >>sLh :  
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(55)

 
Employing the same approach as in Section 2.3, Eq. (55) is immediately extended to 
include both the near-neutral and the long-lived stable PBLs: 
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(56)
 
where Cm  is a composite stratification parameter:  
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(57)

 
and 0C =C(0) is the limiting value of the coefficient C in the near-neutral stratification 
(when Cm <<1).   
 
Recall that the baroclinic versions of the turbulent length scale and the equilibrium 
PBL depth are NuL TN /= , and Eh ~ 2/1)|(| −NfuT , where Tu  in given by Eq. (11). 
Hence the effect of baroclinicity on the ratio NLh /  can be neglected, at least as a first 
approximation [cf. the same conclusion in the discussion of Eq. (39) and in the very 
end of Section 2.3].  
 
Equations (5), (8), (12), (56) and (57) comprise the heat transfer law. LES data shown 
in Figure 6 confirm Eqs. (56), (57) with reasonable accuracy and give estimates of the 
dimensionless constants NCC =1.2, c = 4.1 and 0C =12. Quite large value of 0C  
justifies the approximate version of Eq. (56).  
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3. Large-eddy simulations 
 
In this paper we systematically use data from numerical simulations based on a new 
LES code (Esau, 2004a). This code solves the momentum, temperature and continuity 
equations for incompressible Boussinesq fluid:  
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Here, pwvuui ,},,,{ Θ=  are large scale velocity, potential temperature and pressure; 

jij Θττ ,  are sub-grid scale turbulence stress and diffusivity tensors; 
f )}cot  ),( ),cot({ ϕϕω ⋅+−⋅−−= fuuufwvvf ggj  are the components of the 
Coriolis force; f is the Coriolis parameter; ϕ  is the latitude; jiij == at   1δ  and 

jiij ≠=  and 0δ ; the repeating indexes imply summation. 
 
The code uses the fully conservative second order central difference scheme 
(Morinishi et al., 1998) for advection and the forth order Runge-Kutta scheme 
(Jameson et al., 1981) for time stepping. The direct fractional-step pressure correction 
scheme (Armfield and Street, 1999) ensures incompressibility in the code. This set of 
numerical schemes is a kind of standard in computational fluid dynamics. Moreover, 
Andren et al. (1994) concluded that differences in numerical schemes have a minor 
effect on LES results. Later, Brown et al. (2000) reported that LES results are 
encouragingly insensitive to the choice of numerical schemes, as long as simulations 
resolve some part of the inertial sub-range of scales. The computational mesh is the 
staggered C-type mesh. The grid spacing is uniform and almost isotropic. The 
horizontal grid size x∆  is larger than the vertical grid size z∆ , but their ratio x∆ / z∆  
is always less than four. 
 
An important part of the LES technique is a sub-grid turbulence closure. This LES 
code employs a dynamic mixed closure (Vreman et al., 1994): 
 

( ) ( ) ( )[ ] [ ] ,
2
1, 2 2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂
∂

=−+−=
i

j

j

i
ijijijsjijiij x

u
x
uSSSluuuuτ     (60)

j
ijstj x

Sl
∂

Θ∂
−= −

Θ
21Pr2τ  ,  (61)

 
where, tPr is an empirical turbulent Prandtl number taken after Kondo et al. (1978). 
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The first term ( ) ( ) ( )[ ]jiji uuuu −  represents the direct dissipation of energy in non-
linear interactions of large eddies. The filter (denoted by overbar) determines the scale 
interval in which this direct energy dissipation is possible. In the present LES code, 
the interval has the size of two grid cells. This term was not included in prior 
environmental LES codes. Its importance has been recognised only recently through 
analyses of data from the HATS atmospheric field experiment (Sullivan et al., 2003).  
 

The second term ijijs SSl 22−  in Eq.(60) and the term 
j

ijst x
Sl

∂
Θ∂

− − 21Pr2  in Eq. (61) 

represent a Smagorinsky type of the eddy-viscosity closure (Smagorinsky, 1963). It 
parameterises local and instant energy dissipation by small eddies through numerical 
solution of a variation problem for the mixing length scale ),( txl is  at every time step. 
Comparative tests of this LES code are presented by Esau (2004a).  
 
It is worth mentioning that advantages of the dynamic mixed closure become 
important only in the case of strong flow anisotropy or very strong static stability. 
Both cases are actually equivalent since the strong static stability increases the eddy 
anisotropy. In these cases, the first term in Eq. (60a) becomes large or even dominant. 
The most of the LES runs in our database correspond to moderate flow anisotropy and 
static stability, thus, the sub-grid turbulence closure should not be considered as a 
critical component of the present study. 
 
The design of all LES runs followed a standard scheme. The LES domain had 64 grid 
points in each direction. Chapman (1978) provided the following criterion of a well-
resolved boundary-layer flow: 15-30 computational levels within the PBL. We 
followed this criterion. The PBL always comprised about 1/2 to 2/3 of the LES 
domain. Accordingly, the physical resolution varied from about 0.5 m (for very stable 
PBL runs) to more than 50 m (for truly neutral PBL runs).  
 
Figure 7 shows the quality of the LES in terms of the ratio EQ  of the sub-grid 

turbulent kinetic energy (TKE) to the resolved TKE: ∫ ∫=
h REShSGS

E dzEdzEQ
0 0

/ , 

presented as dependent on the dimensionless resolution */ Lz∆ , where z∆  is the 
vertical grid size, and *L  is the turbulent length scale. Clearly, both ratios EQ  and 

*/ Lz∆  should be small in well-resolved LES. Our LES runs satisfied the conditions 
4

1<EQ  and 1/ * <∆ Lz , which gives grounds to expect that the sub-grid scale effects 
were negligible.  
 
The upper boundary conditions are of von Neumann type or stressless rigid lid, 

0,0 ==∇=Θ∇=∇ wpu zziz .  
 
The bottom boundary conditions are 

• prescribed sub-grid scale turbulent flux of potential temperature jΘτ ,  

• logarithmic wall-law: ( ) 0,)2/ln(/)2/( 21
2

03 ==∆∆== iizzii zzu ττκτ , 
where 2/z∆  is the height of the first computational level. 
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The initial mean profiles are specified as linearly increasing potential temperature (a 
prescribed depth-constant temperature gradient) and a prescribed depth-constant wind 
velocity at all levels down to the surface. The initial flow is laminar with imposed 
very small random perturbations at the first 3-5 computational levels. The initial 
profiles, perturbations, surface fluxes and the Coriolis force are not adjusted to each 
other. Hence every run goes through a spin up phase. During this period (usually 3-5 
model hours) all turbulence characteristics are statistically unsteady. As an example, 
Figures 8 and 9 show the temporal evolution of the A, B and C coefficients in the truly 
neutral and the long-lived stable PBL runs.  
 
The typical run duration is 64800 s. (18 model hours). We accept that the basic 
characteristics of turbulence reach the steady state in the last 7 model hours. 
Averaging over this time interval is used to create the database.  
 
To account for the residual, long-term variations of turbulent characteristics, we 
(probably for the first time in LES practice) calculated and plotted not only the mean 
values of the modelled parameters (in particular the A, B and C coefficients) but also 
their standard deviations. These residual variations are partially caused by incomplete 
achievement of the steady state. This effect is especially pronounced for such 
sensitive parameters as the cross-isobaric angle α  (therefore the B-coefficient) and 
the temperature increment across the proper PBL PBLθ∆  (therefore the C-coefficient). 
It causes rather large scatter of data points in Figures 4 and 6. In very stable PBLs, the 
scatter could also be caused by the turbulence intermittency (Mahrt, 1985).  
 
 

4. Verification of resistance and heat transfer laws against LES data 
 
Earlier atmospheric measurements gave very uncertain estimates of the A~ , B~ and C~  
(or A, B and C) coefficients, considered – according to the theoretical expectations of 
the time – as single-valued functions of sLfu ||/∗=µ  (or sLh / ). Although data from 
one particular field-experiment programme, such as Cabauw (Nieuwstadt, 1981) or 
Wangara (Yamada, 1976), could show reasonable collapses, data summaries 
including results from different experimental sites always exhibited enormously huge 
scatter (e.g., Zilitinkevich and Chalikov, 1968; Zilitinkevich, 1975). Besides 
insufficient accuracy of earlier experiments, this huge scatter could be to some extent 
caused by the newly recognised effects, namely the free-flow stability, baroclinicity 
and deviations from the equilibrium state, overlooked in the prior resistance and heat-
transfer formulations.   
 
As illustrations, Figures 10-12 present the A~ , B~ and C~  coefficients in the traditional 
way – as functions µ , putting together data from earlier atmospheric measurements, 
earlier LES and new LES database. In this old format, the earlier and the new LES 
data, although showed reasonably good results in Figures 3, 4 and 6, only added to the 
scatter. It is not surprising that the old theoretical curves for )(~ µA , )(~ µB and )(~ µC  
taken from Byun (1991) reflect this scatter and look rather chaotic. Unfortunately the 
earlier atmospheric data did not include sufficient information to present them in the 
new format. Anyhow, striking difference between Figures 10-12 based on the old 
theory and Figures 3, 4 and 6 based on the advanced theory catches the eye. 
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The advantage of new theory is very clearly seen at the weak- and moderate-stability 
regimes. Indeed, the traditional type of functions )(~ µA , )(~ µB  and )(~ µC  exhibit 
incomparably larger scatter at small values of the internal stability parameter µ  than 
the new functions )( AmA , )( BmB  and )( CmC  at small values of the composite 
stability parameters Am , Bm  and Cm . Pronounced scatter of data on )( CmC  at very 
small Cm  is not surprising because small values of Cm  imply very small temperature 
fluxes and temperature increments across the PBL, which inevitably results in 
considerable errors in the estimates of *θ , PBLθ∆  and Cm . 
 
Probably for the first time, quite certain estimates of A and B are obtained from LES 
runs for the truly neutral PBL. This allows determining the dimensionless constants 

00 | ==
AmAA  and 00 | ==

BmBB  with a reasonably high accuracy. Figures 13 and 14 
show all data on 0A  and 0B  from our database versus the surface Rossby number 
Ro= ouzfG ||/ . The graphs do not exhibit any dependence on Ro and demonstrate 
that 0A  and 0B  can be treated as universal constants: 9.09.10 ±=A  and 

5.05.10 ±=B . It is obvious that the constant 00 | →=
CmCC  cannot be deduced in the 

same way from LES runs for the truly neutral PBLs. Instead, it is determined from the 
best fit of the theoretical curve ( )C

C
C mecmC ++−= 0ln  to all available LES data, 

which gives 0C =12. All dimensionless empirical constants appeared in the new 
theory are summarised in Table 1.  

 
 

5. Conclusions 
 
In the traditional context, the terms “stably stratified atmospheric PBL” and 
“nocturnal PBL” were considered as synonyms, whereas the term “neutrally stratified 
PBL” was applied to all PBLs characterised by the zero buoyancy flux at the surface 
( sFθ =0) without any regard to the Brunt-Väisälä frequency N in the free atmosphere 
above the PBL. In contrast, we distinguish between the following essentially different 
types of the stable PBLs: 

• Short-lived PBLs, namely, the nocturnal stable ( sFθ <0, N=0) and the truly 
neutral ( sFθ =0, N=0) PBLs that develop against neutrally stratified residual 
layers. They exhibit basically local nature. In these regimes, the Monin-
Obukhov similarity theory realistically describes the surface layer turbulence. 

• Long-lived PBLs, namely, the thoroughly stable ( sFθ <0, N>0) and the 
conventionally neutral ( sFθ =0, N>0) PBLs that develop during sufficiently 
long period to approach the stably stratified free atmosphere. Their basic 
features (including the surface-layer scaling) are essentially controlled by the 
non-local effect of N. In these regimes, the classical similarity theory is no 
longer: besides the familiar Monin-Obukhov length scale L, an important role 
is played by the external stability scale NuLN /∗= .  

 



 25

At N=0, the effect of baroclinicity would result in the overall turbulisation of the 
troposphere. It is not surprising that the traditional short-lived PBL models did not 
account for this effect. On the contrary, additional mixing due to the baroclinic shear 
( |/| zg ∂∂=Γ u ) is very naturally included in the long-lived PBL model through the 

baroclinic turbulent velocity scale Tu = ( ) 2/1
0 /1 NCu Γ+∗ .  

 
In the present paper, the resistance and heat transfer laws are advanced accounting for 
the effects of the N and Γ  disregarded in prior models and now reflected through 
composite stratification parameters Am , Bm  and Cm , Eq. (41), (42) and (57), and the 
baroclinic PBL depth formulation (Zilitinkevich and Esau, 2003).  
 
The newly derived resistance-law formulation for the cross-isobaric angle, Eq. (7b), 
explicitly shows the role of the Coriolis parameter f.  
 
The proposed theory sheds light on the cause of a very wide spread of data in prior 
empirical graphs presenting the resistance-law coefficients as single-valued functions 
of a sole stratification parameter, such as sLfu ||/∗=µ  or h/Ls. It is shown that this 
spread was to a large extent caused by the effects uncounted in the traditional context. 
Analogous graphs based on the new theory exhibit considerable collapse of LES data.  
 
The resistance and heat transfer laws given by Eqs. (5), (7), (8), (41), (42), (44), (56) 
and (57) provide physical background for an advanced surface-flux calculation 
scheme applicable to a wide range of PBLs including very shallow boundary layers. 
Such a scheme would respond to urgent demand from operational modelling. Indeed, 
all currently used surface-flux schemes are based on the concept of the surface layer, 
which implies that the turbulent fluxes are taken depth-constant ( 2

∗= uτ , sFF θθ = ) 
from the surface z=0 up to the lowest computational level z= 1z . Clearly, this 
assumption is justified only when the PBL height h is an order of magnitude larger 
than 1z . However, in operational models 1z  cannot be taken too small (in particular, 

1z  is close to 30 m in the most advanced numerical weather prediction and climate 
models ECMWF, HIRLAM and ECHAM). At the same time, as recognised recently, 
the typical height of long-lived stable PBLs is just a few dozen metres (Zilitinkevich 
and Esau, 2003). Traditional surface-flux schemes completely fail in such cases (see 
Esau, 2004b); so the resistance-law based approach simply has no alternative. 
 
New advancement of the resistance and heat-transfer laws makes them principally 
applicable to the oceanic upper and bottom PBLs. Notice that the role of the external 
stability parameter Nµ , Eq. (10), is absolutely dominant in the upper layer of water, 
because of the very strong static stability typically observed in the thermocline below 
the PBL. It is conceivable that the advanced laws – reformulated and validated against 
oceanographic data – can be used as the physical basis for improved calculations of 
the key parameters characterising the oceanic PBLs: turbulent fluxes of momentum 
and scalars at the ocean bottom; velocity and direction of the surface drift currents; 
increments in the temperature, salinity and other scalar admixtures across thin films at 
the water surface (see Zilitinkevich and Kreiman, 1991). Such calculations are 
required in a number of practical problems, such as modelling of CO2 exchanges 
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between the atmosphere and the ocean, modelling of transport and dispersion of oil 
films at the water surface, etc. 
 
LES data analyses performed here to support our background assumptions and to 
validate final results (and LES data base as such) could be of interest beyond this 
research. In particular, they reveal well-pronounced self-similarity of normalised 
turbulent-flux profiles (Figure 1) and confirm feasibility of the generalised scaling 
based on Eq. (14) for all kinds of stable PBLs (Figures 2 and 5).  
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 Table 1. LES estimates of empirical constants 
 

Constant Empirical 
value 

In formula Equation 
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Appendix: Self-similarity of the vertical profile of the momentum flux 
 
In the nocturnal PBLs, the assumption of self-similarity of the vertical turbulent flux 
of momentum is consistent with the following scaling analysis of the Ekman 
equations. Taking 2/ ∗uτ = )(ςτf  and sFF θθ / = )(ςθFf , the approximate eddy viscosity 
formulation Eq. (16) becomes MK = ∗

MK )(ςKMf , where ∗
MK = su LukC ∗

−1  is a depth-
constant eddy-viscosity scale and )(ςKMf = 12 −

θτ Fff  is a universal function decreeing 
towards the PBL upper boundary [our LES-based analytical approximations give 

)exp( 2
3

10 ς−=KMf ]. Then, differentiating Eq. (25) over z, multiplying by MK , using 
the PBL height scale h~ 2/1|)|/( fKM

∗  and going to dimensionless variables hz /=ς  
and  { }yx,τ̂ = { }

2
, / ∗uyxτ , yields  
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∂

∂
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ς
τ

ςτ y
KMx f .     

 
 
 

 
The boundary conditions, Eq. (26), take the form xτ̂ =1, yτ̂ =0 at ς =0 and xτ̂ =0, 

yτ̂ =0 at ς ∞→ . Thus the problem becomes self-similar, which ensures that xτ̂  and  

yτ̂  are single-valued functions of ς . Figure 1 confirms this conclusion and gives 
grounds to extend it to long-lived and conventionally neural PBLs. 
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Figure captions 
 
Figure 1. Normalised vertical profiles: (a) turbulent flux of momentum 2/ ∗uτ , (b) 
turbulent flux of potential temperature θF / sFθ , (c) length scale sLL / , and (d) 
temperature scale ∗θ / s∗θ . The dimensionless height ς = z/h is based on the PBL depth 
h. LES data represent nocturnal (crosses), long-lived (circles) and conventionally 
neutral (squares) PBLs. The lines are (a) 2/ ∗uτ = )exp( 2

3
8 ς−  or 2/3)1( ς− ; (b) 

θF / sFθ = )2exp( 2ς−  or )1( ς− ; (c) sLL / = )2exp( 2ς−  or 4/5)1( ς− ; (d) 

∗θ / s∗θ = )exp( 2
3

2 ς−  or 4/1)1( ς− . Solid and dashed lines represent exponential- and 
power-law approximations, respectively. 
 
 

Figure 2. Dimensionless velocity gradient 
z
ukz

M ∂
∂

=Φ 2/1τ
 versus alternative 

dimensionless heights based on different z-dependent turbulent length scales: (a) z/L, 
Eq. (12a); (b) z/ ML , Eq. (14) with 1.0=NMC , fMC =1. LES data represent three 
different types of the stable PBLs: nocturnal (crosses), long-lived (circles) and 
conventionally neutral (squares). The lines are (a) traditional scaling 

LzM /5.21+=Φ ; (b) multi-limit scaling MM Lz /5.21+=Φ . The best fit is achieved 
with k=0.47. 
 
 
Figure 3. LES data on the geostrophic-drag resistance-law coefficient 

∗

−=
u
u

k
z
hA g

u0

ln  (with k =0.47) versus the composite stratification parameter Am , Eq. 

(41), with NAC =0.09. Data points ×, ο  and � represent new LES for nocturnal, long-
lived and conventionally neutral PBLs, respectively. Earlier LES data, namely, ◊ 
(Brown et al., 1994) and  (Kosovic and Curry, 2000) does not show any systematic 
deviations from new LES. Larger spread in old data from Brown et al. (1994) is only 
natural because of inevitably lower quality of the LES of that time. Error bars in 
Figure 3a show the ±3 standard deviation intervals for each LES run (with 96% 
statistical confidence). Figure 3b employing semi-log coordinates demonstrates how 
the theory performs in near-neutral and moderate-stability regimes. The line is 

)ln(4.1 5.0
AA memA ++−= .  

 
 
Figure 4. Same as in Figure 3, but for the cross-isobaric-angle resistance-law 

coefficient 
fh
v

kB g=  (with k =0.47) versus Bm , Eq. (42), with NBC =0.15. The line is 

2105.1 BmB += . Notice that data points ◊ are taken from old and lower quality LES, 
which causes their large spread.  
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Figure 5. The dimensionless potential temperature gradient 
zF

zkT
H ∂

∂
−

=Φ
θτ

θ

2/1

 versus 

alternative dimensionless heights: (a) z/L and (b) z/ HL  with 5.1=NHC  and 1=fHC  
Crosses and circles represent nocturnal and long-lived PBLs, respectively. Data on 
conventionally neutral PBLs are not included. The lines are: (a) LzH /21+=Φ ; (b) 

HH Lz /21+=Φ . The best fit is achieved with kT =0.47. 
 
 
Figure 6. Same as in Figures 3 and 4, but for the potential-temperature resistance-law 

coefficient 
s

PBL
T

u

k
z
hC

∗

∆
−=

θ
θ

0

ln  (with kT =0.47) versus Cm , Eq. (57) with NCC =1.2. 

Data points × and ο represent new LES for nocturnal and long-lived PBLs, 
respectively. LES data for conventionally neutral PBLs are not included (here 

0→∗sθ , which is why the temperature resistance law loses physical meaning). The 
line is )ln(1.4 12

CC memC ++−= .  
 
Figure 7. The ratio ∫ ∫=

h REShSGS
E dzEdzEQ

0 0
/  of the sub-grid to the resolved 

portions of the turbulent kinetic energy as dependent on the dimensionless vertical 
resolution Mz L/∆ . The smaller are EQ  and Mz L/∆ , the higher is the quality of the 
LES run.  
 
 
Figure 8. Temporal evolution of the resistance-law coefficients A0, B0 and the PBL 
depth PBLh  in the LES-generated truly neutral PBL (G = 5 m s-1, z0u = 0.1 m, f=10-4 s–

1, Fθs = 0, N = 0). Squares show mean values averaged over one-hour intervals. Error 
bars show the ±3 standard deviation intervals for each hour. The sold line shows 
filtered 10-minute data. 
 
 
Figure 9. Same as in Figure 8, but for the resistance-law coefficients A, B, C and the 
PBL depth PBLh  in the LES-generated long-lived stable PBL (G = 5 m s-1, z0u = 0.1 m, 
f = 10-4 s–1, Fθs = 0.005 K m s–1, N = 0.01 s–1).  
 
 
Figure 10. Traditional presentation of the geostrophic-drag resistance-law coefficient  

( )∗−≡ uhfAA E /ln~  as a single-valued function of the internal stability parameter 

Lfu /*=µ . Data points are taken from different sources: ×, ο  and � are new LES 
data for the nocturnal, long-lived and conventionally neutral PBLs, respectively; ◊ and 

 are earlier LES data from Brown et al. (1994) and Kosovic and Curry (2000), 
respectively; other symbols are field data: * Cabauw (Nieuwstadt, 1981), ∆ Wangara 
(Yamada, 1976), + different Russian sites (Zilitinkevich and Chalikov, 1968). The 
curves show old analytical approximations (summarised by Byun, 1991): ⎯⎯ Vachat 
and Musson-Genon, ⎯ ⎯ Arya, ⎯ • ⎯ Long and Guffey, ⎯+⎯ Brost and 
Wyngaard, ⎯◊⎯ Derbyshire. Error bars show the ±3 standard deviation intervals. 
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Figure 11. Same as in Figure 10, but for the cross-isobaric-angle resistance-law 
coefficient ≡)(~ µB ( )Buhf E ∗/ .   
 
 
Figure 12. Same as in Figures 10 and 11, but for the temperature resistance-law 
coefficient )(~ µC ( )∗−≡ uhfC E /ln . 
 
 
Figure 13. LES data on the geostrophic-drag resistance-law coefficient in truly 
neutral stratification 00 | →= mAA  versus the surface Rossby number uzfG 0/ . The line 
is 0A = 0.51. 
 
 
Figure 14. Same as in Fig. 13, but for the cross-isobaric-angle coefficient 

00 | →= mBB . The line is 0B = 1.5. 
 
 
 
 



 35

 
Figure 1    

 
 
 

 
 



 36

Figure 2    
         
 

 



 37

 
Figure 3    
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 38

Figure 4    
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 39

 
Figure 5    
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 40

 
Figure 6    
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 41

  
Figure 7    
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 42

 
Figure 8  
 
 

 
 
 



 43

 
Figure 9   
 
 

 
 
 
 



 44

 
Figure 10    
 

 
 
 



 45

 
Figure 11  
 

 
 
 
 



 46

 
Figure 12   
 
 

 
 
 



 47

 
Figure 13   
 

 
 
 
 
 



 48

 
Figure 14   
 

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 


