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Abstract

Irregular convergence behaviour is frequently encountered when computations of wave spectra are performed by means of

the third-generation wind wave model SWAN (Simulating WAve Nearshore). Numerical accuracy is another key issue. The

present paper proposes two techniques that improve the convergence and accuracy properties of SWAN in the prediction of

stationary wave conditions in the nearshore zone. The first is an under-relaxation approach in which the extent of updates during

the iteration process, which underlies a route to steady state, is made proportional to wave frequency. This method complies

with the principle of decreasing time scales at higher frequencies, which is inherent to the evolution of wind waves. As a result,

the improved SWAN model is free from numerical restrictions to spectral shape in the non-equilibrium range. The second

proposed method is a new termination criterion associated with the rate of model convergence, by which the identification of the

point of convergence is improved. The capabilities of these methods are demonstrated by simulations of idealized cases and a

field application featuring fetch- and depth-limited wave growth. It is concluded that the proposed termination criterion

improves numerical accuracy and that the action density limiter, as currently used in SWAN, has minimal negative influence on

stationary model results.
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1. Introduction

The search for reliable wave estimates for assess-

ing the impact of waves on the natural environment,

coastal protection, ship routing, offshore structures

and port and harbour operations has led, over the past

two decades, to the development of advanced spectral
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wind wave models known as third-generation models,

such as WAM (WAMDI Group, 1988; Komen et

al.,1994), WAVEWATCH III (Tolman, 1991) and

SWAN (Booij et al., 1999). These models solve the

spectral action balance equation without any a priori

restrictions on the evolving spectrum during wave

growth. To this end, the processes of generation by

wind, dissipation by whitecapping and nonlinear

wave–wave interactions have been explicitly para-

meterized. Whereas the models WAM and WAVE-

WATCH III consider non-stationary problems on

oceanic scales, with SWAN wave propagation is

usually calculated from deep water to the surf zone

by means of solving the time-independent wave action

balance equation. This is considered to be acceptable,

since the residence time of the waves in the coastal

zone is expected to be far less than the time scale of

variations of the ambient current, the wind or the tide

(Booij et al., 1999).

The accuracy with which physical processes for

wave growth are approximated numerically is of

crucial importance in assessing the predictive

realism of spectral wave models. There is a need

to separate these numerical errors from errors due

to physical modelling. Third-generation wave

models pose a numerical difficulty caused by the

presence of multiple time scales. This is a

reflection of the physical nature of wind waves,

which consist of a wide range of frequencies. The

ratio of the largest to the smallest time scale of

spectral components is often substantially larger

than one. When this is the case, the action

balance equation is called stiff (Press et al.,

1993)1. Taking proper account of these time scales

is a necessary condition for numerical accuracy. This

would require the use of a very small time step in a

numerical algorithm, which may be impractical.

Moreover, the action balance equation is usually so

stiff that its numerical implementation combined with

economically large time steps often prevent a stable

solution. In this respect, nonlinear four-wave inter-

action usually poses the biggest problem, since this

process is associated with high sensitivity to spectral

change.
1 The equivalent situation for such an equation is to have

eigenvalues of very different magnitudes.
In a number of papers concerning spectral wave

computation, numerical measures are proposed to

achieve stable model results economically. WAMDI

Group (1988) suggest to use a semi-implicit time

integration scheme with a time step that matches the

time scale of low-frequency waves. However,

numerically stable solution of the resulting system

of equations cannot be guaranteed (Press et al.,

1993; Hargreaves and Annan (2001)). The ratio of

the largest eigenvalue to the smallest eigenvalue of

the stiff system of equations, called the condition

number, can be so large that even a fully implicit

method combined with large time steps precludes a

stable solution. For counterexamples, see Har-

greaves and Annan (2001). The only remedy is

time step reduction or under-relaxation so that the

modified system of equations has a spectrum of

eigenvalues with a more favourable condition

number.

To guarantee numerical stability at relatively large

time steps, the so-called action density limiter has

been introduced in WAM in the early 1980s

(Hersbach and Janssen, 1999). This limiter restricts

the rate of change of the energy spectrum at each

time step. Because low-frequency waves carry the

most energy, it is desirable to solve the balance

equation in this part of the spectrum accurately

without intervention by the limiter, whereas for high-

frequency waves using an equilibrium level is

sufficient. Although this approach lacks a rigorous

foundation and is not generally applicable or valid, it

appears to guarantee numerical stability at relatively

large time steps even when these do not match the

time scales of wave growth. Moreover, it is believed

that the limiter will not affect the stationary solution

when convergence is reached. This assumption is

widely employed as a justification for the use of

limiters. For an overview, we refer to Hersbach and

Janssen (1999) and Tolman (2002) and the refer-

ences quoted therein. Tolman (1992) proposes an

alternative to the action density limiter in which the

time step is dynamically adjusted where necessary to

ensure accurate wave evolution. The calculation of

this optimal time step is related to the action density

limiter. Further details can be found in Tolman

(1992, 2002).

The steady-state solution in the SWAN model is

obtained in an iterative manner, which can be
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regarded as a time marching method with a pseudo

time step. This pseudo time step generally does not

match the relatively small time scale in frequency

space and consequently, divergence will occur.

Therefore, SWAN makes use of the action density

limiter to stabilize the iteration process (Booij et al.,

1999). However, experience with SWAN has

revealed that the limiter acts not only in the

equilibrium space, but also in the energy-containing

part of the wave spectrum. This finding is also

confirmed by Tolman (2002). Furthermore, the

limiter appears to be active over almost all spectra

in the geographical domain and during the entire

iteration process. This activity has been associated

with poor convergence behaviour, such as small-

amplitude oscillation in frequency space. Ris (1999)

demonstrated that stationary SWAN results are

influenced by the settings of the action limiter while

De Waal (2001) suspects that the limiter acts as a

hidden sink in the source term balance under

equilibrium conditions. The question to what extent

this limiter adversely affects the stationary solution of

SWAN has not been addressed previously, and is

considered here.

An alternative way to restrict the high rate of

change at higher frequencies is under-relaxation, i.e.,

making smaller updates by means of a much smaller

(pseudo) time step (Ferziger and Perić, 1999).

Consequently, a limiter may no longer be needed.

Although this approach may be suitable to SWAN, it

slows down convergence significantly. In this paper,

we propose a new method that finds a compromise

between fast convergence on the one hand and

minimizing the role of the limiter in the energetic

part of the spectrum on the other. The key idea to

achieve this is to link the extent of updating to the

wave frequency—the larger the frequency, the

smaller the update. This approach is therefore called

frequency-dependent under-relaxation.

The second objective of this paper concerns the

formulation and the use of termination criteria

required by the iteration procedure in SWAN. In

principle, the iterative process should be stopped if

the convergence error defined as the difference

between the current iterate and the stationary

solution is smaller than a prescribed tolerance. At

present, the stopping criteria in SWAN make use of

the difference between successive iterates as a
measure of the error in the converged solution.

Experiences in the application of SWAN have shown

that the iteration process is often more erratic and

typically much slower than reported by Booij et al.

(1999). As a result, the current stopping criteria often

lead to premature termination of simulations. This is

characterised by the fact that, due to the relatively

low rate of convergence, the convergence error is

larger than the difference between the successive

iterates. A stopping criterion is proposed that uses

the second derivative or curvature of the series of

successive iterates of the calculated wave height. The

premise is that this curvature approaches zero upon

full convergence.

The outline of this paper is as follows. First,

the mathematical framework of SWAN and its

numerical implementation are presented in Sec-

tions 2 and 3, respectively. Section 4 describes the

implementation of two convergence-enhancing meas-

ures, namely the action density limiter and the

proposed frequency-dependent under-relaxation tech-

nique. Section 5 deals with the proposed stopping

criterion based on the curvature of the iterate series of

the calculated wave height. In Section 6, the impact

and effectiveness of the frequency-dependent under-

relaxation technique and the new termination criterion

are investigated by means of series of SWAN

simulations, featuring idealized fetch-limited cases

and a depth-limited field case. Section 7 closes with a

discussion and conclusions.
2. Model description

In stationary SWAN simulation, the evolution of

the action density N is governed by the time-

independent wave action balance equation, which

reads (Booij et al., 1999):

jYx cYg þ U
Y

� �
N

h i
þ BcrN

Br
þ BchN

Bh
¼ Stot

r
: ð1Þ

The first term denotes the propagation of wave energy

in two-dimensional geographical xY-space, with cYg

the group velocity and U
Y

the ambient current. This

term can be recast in Cartesian, spherical or curvi-

linear coordinates. The second term represents the
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effect of shifting of the radian frequency due to

variations in depth and mean currents. The third term

represents depth-induced and current-induced refrac-

tion. The quantities cr and ch are the propagation

velocities in spectral space (r, h), with r and h
indicating the radian frequency and propagation

direction, respectively. The right-hand side contains

the source term Stot that represents all physical

processes that generate, dissipate or redistribute wave

energy. In shallow water, six processes contribute to

Stot:

Stot ¼ Swind þ Snl3 þ Snl4 þ Swc þ Sbot þ Sdb: ð2Þ

These terms denote, respectively, energy input by

wind, nonlinear transfer of wave energy through

three-wave and four-wave interactions and wave

decay due to whitecapping, bottom friction and

depth-induced wave breaking. Extensive details on

the formulations of these processes can be found in

Holthuijsen et al. (2004).

To obtain a unique solution of Eq. (1), boundary

conditions should be provided. The incoming wave

components at the seaward boundaries are specified

by a two-dimensional spectrum. The closed bounda-

ries (e.g., a coastline) are fully absorbing for wave

energy leaving the geographical domain. The lower

and upper boundaries in frequency space are indicated

by rmin and rmax, respectively. These boundaries are

fully absorbing, although a f�4 diagnostic tail is added

above the high-frequency cut-off, which is used to

compute nonlinear wave–wave interactions and for

computing integral wave parameters. Since the direc-

tional space is a closed circular domain, no boundary

conditions are needed.
2 This is confirmed by some tests with the second order upwind

scheme SORDUP (Rogers et al., 2002) and the first order upwind

scheme in which no differences are found in the model results

obtained with both these schemes.
3. Numerical framework

3.1. Discretization

This section describes the main features of the

discretization and solution method of Eq. (1) in

SWAN. For more information, we refer to Booij et

al. (1999). For the sake of clarity, we restrict ourselves

to Cartesian coordinates. Replacing the horizontal

gradient operator j xY by (B/Bx, B/By) and the
geographic velocity vector cYg þ U
Y

by (cx, cy), Eq.

(1) can be rewritten as

BcxN

Bx
þ BcyN

By
þ BcrN

Br
þ BchN

Bh
¼ Stot

r
: ð3Þ

We choose a rectangular grid with constant mesh

sizes Dx and Dy in x- and y-direction, respectively.

The spectral space is divided into elementary bins

with a constant directional resolution Dh and a

constant relative frequency resolution Dr/r (result-

ing in a logarithmic frequency distribution). We

denote the grid counters as 1ViVNx , 1VjVNy,

1VlVNr and 1VmVNh in x-, y-, r- and h-spaces,
respectively. All variables are located at points

(i,j,l,m). We obtain the following approximation of

Eq. (3):

cxN½ �iþ1=2;j;l;m � cxN½ �i�1=2;j;l;m

Dx

þ
cyN
� �

i;jþ1=2;l;m
� cyN
� �

i;j�1=2;l;m

Dy

þ
crN½ �i;j;lþ1=2;m � crN½ �i;j;l�1=2;m

Dr

þ
chN½ �i;j;l;mþ1=2 � chN½ �i;j;l;m�1=2

Dh
¼ Stot

r
ji;j;l;m:

ð4Þ

Note that locations between consecutive counters are

indicated by half-indices. Since the unknown values

of N and the propagation velocities are only given at

points (i, j,l,m), further approximation is needed. In

Rogers et al. (2002), a number of higher order

upwind schemes are presented for the calculation of

the fluxes cxN at (iF1/2,j,l,m) and cyN at (i,jF1/

2,l,m). In this paper, however, we employ a first-

order upwind scheme in geographical space, since it

is sufficiently accurate for nearshore applications2,

relatively cheap and fully monotone, i.e., it cannot to
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give rise to spurious oscillations in N in the geo-

graphical space:

cxN jiþ1=2;j;l;m ¼ cxN ji;j;l;m; cxji;j;l;mN0
cxN jiþ1;j;l;m; cxjiþ1;j;l;mb0

�
ð5Þ

and

cyN ji;jþ1=2;l;m ¼ cyN ji;j;l;m; cyji;j;l;mN0
cyN ji;jþ1;l;m; cyji;jþ1;l;mb0

:

�
ð6Þ

The fluxes at (i�1/2,j,l,m) and (i,j�1/2,l,m) are

obtained from Eqs. (5) and (6), respectively, by

decreasing the indices by 1 in appropriate manner.

The approximations to the fluxes crN at (i,j,l+1/

2,m) and chN at (i,j,l,m+1/2) are usually obtained by

combining central differences and a first-order upwind

scheme, as follows:

crN ji;j;lþ1=2;m

¼
1� 1

2
l

� 	
crN ji;j;l;m þ 1

2
lcrN ji;j;lþ1;m; crji;j;l;mN0

1� 1

2
l

� 	
crN ji;j;lþ1;m þ 1

2
lcrN ji;j;l;m; crji;j;lþ1;mb0

8>><
>>:

ð7Þ

and

chN ji;j;l;mþ1=2

¼
1� 1

2
m

� 	
chN ji;j;l;m þ 1

2
mchN ji;j;l;mþ1; chji;j;l;mN0

1� 1

2
m

� 	
chN ji;j;l;mþ1 þ

1

2
mchN ji;j;l;m; chji;j;l;mþ1b0

;

8>><
>>:

ð8Þ

where the parameters l and m are still to be chosen.

Similar expressions can be found for the correspond-

ing fluxes at (i,j,l�1/2,m) and (i,j,l,m�1/2).

For all values la[0,1] and ma[0,1], a blended

form arises between first-order upwind differencing

(l=m=0) and central differencing (l=m=1). In the

present study, we choose l=m=1/2.

3.2. Solution algorithm

The discretization of the action balance Eq. (1) as

described in Section 3.1 yields a system of linear

equations that need to be solved. The corresponding
matrix structure can take different forms, mainly

depending on the propagation of wave energy in the

geographic space. For instance, suppose that cxN0 and

cyN0, everywhere. Then, the matrix structure has the

following form:

(9)

One recognizes that the subblocks on the main

diagonal express coupling among the unknowns in

the (r, h)-space for each geographic grid point,

whereas the off-diagonal subblocks represent cou-

pling across geographical grid points. This system can

be solved with a Gauss–Seidel technique in one step

(Wesseling, 1992; Press et al., 1993). Generally, the

velocities cx and cy may have different signs in the

geographical domain and hence, more steps are

needed. However, it is well known that adapting the

ordering of updates of the unknowns N in geo-

graphical space to the propagation direction can

improve the rate of convergence of the Gauss–Seidel

iterative procedure (Wesseling, 1992). This is done as

follows. For each iteration, sweeping through grid

rows and columns in geographical domain are carried

out, starting from each of the four corners of the

computational grid. After four sweeps, wave energy

has been propagated over the entire geographical

domain. During each sweep, only a subset of the

unknown values of N are updated depending on the

sign of cx and cy. For instance, the first sweep starts at

the lower left-hand corner and all grid points with

cxN0 and cyN0 are updated.
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After each propagation update at geographic grid

point, an update in the spectral space is made. Since,

according to Eqs. (5) and (6), the wave energy at a

single spatial location depends on the upwind grid

points only, it is sufficient to carry out the update

within a 908-quadrant of the (r, h)-space, as

illustrated in Fig. 1. Because of the implicit nature

of the spectral propagation terms in Eq. (4), a system

of equations must be formed. Furthermore, due to the

fact that the source term Stot in Eq. (4) is nonlinear in

N, linearization is required in order to find a solution.

Generally, the term Stot in each bin (l,m) is treated by

distinguishing between positive and negative contri-

butions and arranging these in the linear form

(Ferziger and Perić, 1999):

Stot ¼ S
p
tot þ SntotN ; ð10Þ

where Stot
p consists of positive contributions and

Stot
n of negative ones. Both contributions are inde-

pendent of the solution N at the corresponding bin

(l,m). Any negative term that does not contain N as

a multiplier is first divided by N obtained from the

previous iteration level and then added to Stot
n . This

stabilizes the iteration process. Details on the

application of this principle to each source term in

SWAN can be found in Booij et al. (1999). As such,

each difference Eq. (4) using expressions (7), (8) and

(10) provides an algebraic relation between N at the

corresponding bin and its nearest neighbours:

aPNP ¼ aLNL þ aRNR þ aBNB þ aTNT þ bP; ð11Þ

where P corresponds to central bin (l,m) and L(eft),

R(ight), B(ottom) and T(op) correspond to (l�1,m),

(l+1,m), (l,m�1) and (l,m+1), respectively. Further-
SWEEP 1 SWEEP 2

yy

x

y

x

Fig. 1. The solution procedure for wave energy propagation in geographica

area) for each of four sweeps.
more, the coefficients ak, ka{P, L, R, B, T} arise from

the discretizations of the fluxes crN and chN and bP
contains the positive contributions of the source term

Stot
p in Eq. (10) and the updated fluxes cxN (5) and cyN

(6). Note that coefficient aP includes �Stot
n .

The linear system of Eq. (11) for all bins within a

directional quadrant at a particular geographical point

is denoted by

AN
Y¼ b

Y
; ð12Þ

where AaR
K	K contains the coefficients ak, ka{P, L,

R, B, T} (and corresponds to a subblock on the main

diagonal of Eq. (9)), b
YaR

K contains the coefficient

bP and boundary values and N
YaR

K denotes an

algebraic vector containing the unknown action

density values. Matrix A is non-symmetric. The

dimension K of a directional quadrant equals

Nr	(1/4)Nh. Note that linearization of the source

term (10) enhances diagonal dominance of A, thereby

improving numerical stability. Also note that neither

A nor b
Y

depends on the unknowns. Each row in the

matrix A corresponds to a bin (l,m). The main

diagonal contains the coefficients aP and directly to

the left and right are the coefficients �aB and �aT,

respectively. The coefficients �aL and �aR are on the

diagonals that are Nh positions to the left and right of

the main diagonal, respectively.

The solution N
Y

is given by A�1 b
Y
. Since, the only

non-zero matrix elements are situated in five diago-

nals, iterative solution methods that utilize the sparsity

of A optimally are very attractive. In SWAN, the

solution of Eq. (12) is found by means of an

incomplete lower–upper decomposition method fol-

lowed by an iteration process called the Strongly
SWEEP 3 SWEEP 4

y

xx

l space with the appropriate directional quadrant (indicated by shaded
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Implicit Procedure (SIP) (Ferziger and Perić, 1999).

This procedure is specifically designed for (non-

symmetric) penta-diagonal systems and is relatively

fast. Note that in the absence of mean current there are

no shifts in the frequency, and consequently the

structure of A reduces to a tri-diagonal one, i.e.,

aL=aR=0, which can be inverted efficiently with the

Thomas algorithm (Press et al., 1993; Ferziger and

Perić, 1999).

Due to refraction and nonlinear wave energy

transfer, interactions occur between the directional

quadrants. To properly take these interactions into

account and the fact that we employ the Gauss–Seidel

technique and linearization of the source term (10),

the quadrant sweeping and the solution of system (12)

need to be repeated until some convergence criteria

are met. At present, the iteration process runs from

s=1 to s=S and is terminated if the maximum number

of iterations S (usually 15) is reached or the following

criteria for the significant wave height Hm0 and mean

relative wave period Tm01, as given by

Hm0 ¼ 4
ffiffiffiffiffiffi
m0

p
; Tm01 ¼ 2p

m0

m1

;

mj ¼
Z l

0

Z 2p

0

r jE r;hð Þdrdh;
ð13Þ

are both satisfied in at least 98% of all wet grid points

(i,j):

jDHs
m0 i;jð Þj

Hs�1
m0 i;jð Þ berH or jDHs

m0 i; jð ÞjbeaH ð14Þ

and

jDTs
m01 i; jð Þj

Ts�1
m01 i; jð Þ berT or jDTs

m01 i; jð ÞjbeaT : ð15Þ

Here, DQsuQs�Qs�1, with Q some quantity. In this

study, we use the default values: eH
r=eT

r=0.02,

eH
a=0.02 m and eT

a=0.2 s; see Holthuijsen et al.

(2004). The rationale behind the use of the integral

wave parameters Hm0 and Tm01 in the stopping

criteria is that these are the output variables typically

of interest. The iterative solution procedure is

accelerated by calculating a reasonable first guess of

the wave field based on second-generation source

terms of Holthuijsen and De Boer (1988).
4. Convergence-enhancing measures

As explained in Section 1, many time scales are

involved in the evolution of wind waves. The high-

frequency waves have much shorter time scales than

the low-frequency waves, rendering the system of Eq.

(12) stiff. If no special measures are taken, the need to

resolve high-frequency waves at very short time

scales would result in extreme computational time.

For economy, it is desirable that a numerical technique

can be used with a large, fixed time step. Moreover,

we are mainly interested in the evolution of slowly

changing low-frequency waves. For stationary prob-

lems, we are interested in obtaining the steady-state

solution. Unfortunately, the convergence to the steady

state is dominated by the smallest time scale and, in

the absence of remedial measures, destabilizing over-

and undershoots will prevent solution from converg-

ing monotonically during the iteration process. These

oscillations arise because of the off-diagonal terms in

matrix A, which can be dominant over the main

diagonal, particularly when the ratio rmax/rmin is

substantially larger than one. As a consequence,

convergence is slowed down and divergence often

occurs. To accelerate the iteration process without

generating instabilities, appropriately small updates

must be made to the level of action density.

With the development of the WAM model, a so-

called action density limiter was introduced as a

remedy to the abovementioned problem. This action

limiter restricts the net growth or decay of action

density to a maximum change at each geographic grid

point and spectral bin per time step. This maximum

change corresponds to a fraction of the omni-direc-

tional Phillips equilibrium level (Hersbach and Jans-

sen, 1999). In the context of SWAN (Booij et al.,

1999), this is

DNuc
aPM

2rk3cg
; ð16Þ

where cz0 denotes the limitation factor, k is the wave

number and aPM=8.1	10�3 is the Phillips constant

for a Pierson–Moskowitz spectrum (Komen et al.,

1994). Usually, c=0.1 (Tolman, 1992)3. Denoting the
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total change in Ni,j,l,m from one iteration to the next

after Eq. (4) by DNi,j,l,m, the action density at the new

iteration level is given by

Ns
i;j;l;m ¼ Ns�1

i;j;l;m þ DNi;j;l;m

jDNi;j;l;mj
min jDNi;j;l;mj;DN

� �
:

ð17Þ

For wave components at relatively low frequencies,

Eq. (17) yields the pre-limitation outcome of Eq. (4),

because, for these components, the pseudo time step

matches the time scale of their evolution. For high-

frequency waves, however, Eq. (17) gives the upper

limit for the spectrum to change per iteration due to

the limiter (16). For typical coastal engineering

applications, it is sufficient to compute the energy-

containing part of the wave spectrum accurately. In

other words, action densities near and below the

spectral peak should not be imposed by the limiter

(16). However, our experiences with SWAN have

shown that the limiter is active even close to the peak.

Furthermore, during the entire iteration process, the

limiter is typically active at almost every geographic

grid point, as will be shown in Section 6.

The alternative measure to enhance the conver-

gence of the stable iteration process considered here is

so-called false time stepping (Ferziger and Perić,

1999). Under-relaxation terms representing the rate of

change are introduced to enhance the main diagonal

of A and thus stabilize the iteration process. The

system of Eq. (12) is replaced by the following,

iteration-dependent system

N
Ys � N

Ys�1

s
þ AN

Ys ¼ b
Y ð18Þ

with s a pseudo time step. The first term of Eq. (18)

controls the rate of convergence of the iteration

process in the sense that smaller updates are made

due to decreasing s, usually at the cost of increased

computational time. To deal with decreasing time

scales at increasing wave frequency, the amount of

under-relaxation is enlarged in proportion to fre-

quency. This allows a decrease in the computational

cost of under-relaxation, because at lower frequencies

larger updates are made. This frequency-dependent

under-relaxation can be achieved by setting s�1=ar,
where a is a dimensionless parameter. The parameter
a will play an important role in determining the

convergence rate and stability of the iteration process.

Substitution in Eq. (18) gives

Aþ arIð ÞNYs ¼ b
Y þ arNY

s�1
: ð19Þ

When the steady state is reached (i.e., sYl), system

(19) solves AN
Yl ¼ b

Y
since, N

Yl
is a fixed point of

Eq. (19).

Suitable values for a must be determined empiri-

cally and thus robustness is impaired. For increasing

values of a, the change in action density per iteration

will decrease in the whole spectrum. The consequence

of this is twofold. Firstly, it allows a much broader

frequency range in which the action balance Eq. (4) is

actually solved without distorting convergence prop-

erties. Secondly, the use of the limiter will be reduced

because more density changes will not exceed the

maximum change (16). Clearly, this effect may be

augmented by increasing the value of c in Eq. (16).

To allow proper calculation of the second-gener-

ation first guess of the wave field (see Section 3.2),

under-relaxation is temporarily disabled (a=0) during
the first iteration. Whereas this measure is important

in achieving fast convergence, it does not affect

stability, since the second-generation formulations do

not require stabilization.
5. Stopping criteria

In general, the iterative method should be stopped

if the approximate solution is accurate enough. A

good termination criterion is very important, because

if the criterion is too weak the solution obtained may

be useless, whereas if the criterion is too severe the

iteration process may never stop or may cost too much

work. Experiences with SWAN have shown that the

present criteria (14) and (15) are often not strict

enough to obtain accurate results after termination of

the iterative procedure. Thus, criteria (14) and (15) are

necessary but not sufficient. It was found that the

iteration process can converge so slowly that at a

certain iteration s the difference between the succes-

sive iterates, Hm0
s �Hm0

s�1, can be small enough to meet

the convergence criteria, causing the iteration process

to stop, even though the converged solution has not

yet been found. In particular, this happens when
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convergence is non-monotonic such that the process is

terminated at local maxima or minima that may not

coincide with the converged solution.

Furthermore, it became apparent that, unlike Hm0,

the quantity Tm01 is not an effective measure of

convergence. It was found that the relative error in

Tm01, i.e. |Tm01
s �Tm01

s�1|/Tm01
s�1, does not monotonically

decrease near convergence, but keeps oscillating

during the iteration process. This behaviour is due to

small variations in the spectrum at high frequencies, to

which Tm01 is sensitive. This behaviour is problematic

when any form of stricter stopping criterion is

developed based on Tm01. Therefore, in the improved

termination criterion proposed in this paper, Tm01 has

been abandoned as a convergence measure and only

Hm0, which displays more monotonic behaviour near

convergence, is retained.

Stiffness and nonlinearity of the action balance

equation are found to yield less rapid and less

monotone convergence. Ferziger and Perić (1999)

explain the slow convergence in terms of the

eigenvalue or spectral radius of the iteration process

generating the sequence {/0, /1, /2,. . .}. They show

that the actual solution error is given by

/l � /sc
/sþ1 � /s

1� q
; ð20Þ

where /l denotes the steady-state solution and q is

the spectral radius indicating the rate of convergence.

The smaller the q, the faster the convergence. This

result shows that the solution error is larger than the

difference between successive iterates. Furthermore,

the closer q is to 1, the larger the ratio of solution

error to the difference between successive iterates. In

other words, the lower the rate of convergence of the

iteration process, the smaller this difference from one

iteration to the next must be to guarantee conver-

gence. The stopping criterion of SWAN could be

improved by making the maximum allowable relative

increment in Hm0 a function of its spectral radius

instead of imposing a fixed allowable increment. By

decreasing the allowable relative increment as con-

vergence is neared, it would be possible to delay run

termination until a more advanced stage of conver-

gence. Such a stopping criterion was used by, e.g.,

Zijlema and Wesseling (1998). This criterion is

adequate if the iteration process converges in a well-
behaved manner and qb1 for all iterations. However,

due to nonlinearities SWAN typically does not display

such smooth behaviour. Therefore, this criterion may

be less suited for SWAN.

An alternative way to evaluate the level of

convergence is to consider the second derivative or

curvature of the curve traced by the series of iterates

(iteration curve). Since the curvature of the iteration

curve must tend towards zero as convergence is

reached, terminating the iteration process when a

certain minimum curvature has been reached would

be a robust break-off procedure. The curvature of the

iteration curve of Hm0 may be expressed in the

discrete sense as

D DH̃H s
m0

� �s ¼ H̃H s
m0 � 2H̃H s�1

m0 þ H̃H s�2
m0 ; ð21Þ

where H̃H s
m0 is some measure of the significant wave

height at iteration level s. To eliminate the effect of

small amplitude oscillations on the curvature measure,

we define H̃H s
m0u Hs

m0 þ Hs�1
m0

� �
=2. The resulting

curvature-based termination criterion at grid point

(i,j) is then

jHs
m0 i;jð Þ � Hs�1

m0 i;jð Þ þ Hs�2
m0 i;jð Þ

� �
þ Hs�3

m0 i;jð Þj
2Hs

m0 i;jð Þ beC;

s ¼ 3;4;N ; ð22Þ
where eC is a given maximum allowable curvature.

The curvature measure is made non-dimensional

through normalization with H s
m0. Condition (22) must

be satisfied in at least 98% of all wet grid points

before the iterative process stops. This curvature

requirement is considered to be the primary criterion.

However, the curvature passes through zero

between local maxima and minima and, at conver-

gence, the solution may oscillate between two

constant levels due to the action limiter, whereas the

average curvature is zero. As safeguard against such a

situation, the weaker criterion (14) is retained in

addition to the stricter criterion (22).
6. Simulations

In this section, the numerical implementations

described in Sections 4 and 5 are investigated by

means of numerical simulations. To explore the

comparative performance of the convergence-enhanc-



M. Zijlema, A.J. van der Westhuysen / Coastal Engineering 52 (2005) 237–256246
ing methods, two situations are considered: idealized,

fetch-limited wave growth and the field case of Lake

George, Australia (Young and Verhagen, 1996), which

represents depth-limited wave growth. In these tests

the convergence behaviour is of interest. Following

this consideration of iteration behaviour, the attention

is turned to the application of stopping criteria. The

performance of the present and newly proposed

criteria are compared for the field experiment of Lake

George.

6.1. Convergence behaviour studies

The first situation investigated is that of deep-water,

fetch-limited, idealized wave growth over a fetch of 25

km, for spatially uniform wind with speeds of U10=10

and 30 m/s. The depth is set to 105 m. Simulations

were conducted in one-dimensional, stationary mode,

using a spatial discretization of Dx=100 m. The

frequencies ranged from fmin=0.04 Hz to fmax=1.0 Hz

and are discretized into 34 bins on a logarithmic scale

(Df/fc0.1). The wave directions are discretized into

36 sectors each of 10 degrees. For simulations at

U10=10 m/s the frequency range was shifted to 0.06–

3.0 Hz, with a discretization of Df=0.12f, to accom-

modate high-frequency growth. The simulations were

conducted using the default third-generation physics

formulations of SWAN (see Holthuijsen et al., 2004).

For the iteration behaviour up to convergence and

beyond, the stopping criteria (14) and (15) were

disabled and iteration was continued up to a suffi-

ciently large chosen maximum. The method of model

convergence enhancement was varied for various

runs. The following approaches were considered: (a)

the application of the present default action limiter in

SWAN (a=0.0, c=0.1), (b) using frequency-dependent

under-relaxation in addition to the action limiter (a,
cN0) and (c) applying frequency-dependent under-

relaxation without the action limiter (aN0, c=l).

Various values of the under-relaxation parameter a
were considered. To serve as a benchmark in these

comparisons, the test case of idealized wave growth

was also calculated in nonstationary mode, using a

very small time step of Dt=1 s and no limiter4. The
4 For U10=10 m/s, the limiter (16) with c=1.0 was necessary to

maintain stability at the highest frequency bin (3.0 Hz), but its

impact was limited to this bin.
corresponding results, depicted in Fig. 2, can be

regarded as the true numerical solution of the

problem. Note that the stationary solution is reached

after approximately 7000 and 4000 time steps for the

U10=10 and 30 m/s cases, respectively.

Firstly, the convergence behaviour of SWAN is

discussed when using the default value of the action

limiter (c=0.1) and various moderate levels of under-

relaxation (a=0.00–0.05. In these simulations, the run

with a=0 represents the default SWAN result (base

case). Fig. 3 presents the iteration behaviour of Hm0

for U10=10 and 30 m/s at a fetch of 12.5 km. As

reference, the equilibrium-level results of the nonsta-

tionary benchmark simulations have been added. Fig.

4 shows the lowest frequency bin at which the limiter

was active during the simulation, for the various

settings of a. It should be noted that this minimum

appears to be more or less independent of the spectral

direction component. With a=0 convergence is fast

(see Fig. 3) but the limiter was heavily used to obtain

this fast convergence (Fig. 4). Note also the persistent

small oscillations in the curves with a=0. Further-

more, the limiter was active throughout both the

U10=10 and 30 m/s simulations, up to period bins

above the highest values of Tm01 respectively reached.

In comparison, the curves for aN0 in Fig. 3 show three

effects of under-relaxation. First, under-relaxation

considerably slows down the speed of convergence,

with the number of iterations required for convergence

increasing with increasing values of a. Second, the
iterative behaviour is smoothed by under-relaxation.

Third, the overshoot in significant wave height during

iteration is reduced. Another advantage of under-

relaxation is seen in the altered activity of the limiter,

as shown in Fig. 4. At increasing levels of under-

relaxation, the lowest frequency at which the updates

are limited increases. This implies that the influence

of the limiter on model results is reduced. In terms of

numerical accuracy, the solution of the simulations

with aN0 are in agreement with those of the nonsta-

tionary benchmark simulations (especially for higher

values of a), whereas the a=0 simulation slightly

over-estimates Hm0.

Considering the decreasing time scales at higher

frequencies, convergence should be achievable solely

by slowing down the updates of spectral energy

change. This can be achieved by applying strong

frequency-dependent under-relaxation. During such
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simulations, stable behaviour should be possible even

with the limiter deactivated. Therefore, a next set of

simulations was done for the idealized, fetch-limited

case, with under-relaxation of up to a=0.20, with the

limiter deactivated. Figs. 5 and 6 present simulation

results for U10=10 m/s and 30 m/s in which the

nonstationary benchmark results are again displayed.

The curves with a=0 again represent the standard

SWAN result, obtained with the limiter (c=0.1). The
remaining curves (a=0.10 and 0.20) show the effect of

strong under-relaxation, without the use of the limiter

(c=l). At a relatively low level of under-relaxation

(a=0.10), stability could not be achieved without the

limiter. This represents the situation in which the

pseudo time step still exceeds the time scales of

spectral change. However, for intensified under-

relaxation (a=0.20) the simulation does indeed remain
stable, even in the absence of the limiter. As seen

before, under-relaxation results in longer convergence

times. For the strong under-relaxation applied here,

convergence was only reached after 1000 and 4000

iterations for U10=30 m/s and 10 m/s, respectively. It

should be noted that fewer iterations are needed for

the higher wind speed. This is due to the fact that the

ratio rmax/rmin is half that at U10=10 m/s case, so that

the corresponding system of equations is less stiff,

thus improving the convergence rate (see Section 4).

Considering the growth curves (Fig. 6), excellent

agreement is found between the results of the strongly

under-relaxed, unlimited simulations and those of the

nonstationary benchmark simulations. This would

suggest that by using frequency-dependent under-

relaxation, a very good approximation of the true

numerical solution is obtained.
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The results of the unrelaxed, limited simulations

also agree well with those of the other two methods,

with only a slight over-estimation of Hm0 visible.

This is due to the fact that the limiter is always

applied at frequencies where low-frequency energy

resides (see Fig. 4). This implies that the limiter will

systematically impact the solution. Since the limiter

restricts both positive and negative changes to the

spectrum, it can be both a source or sink of wave

energy. It was observed that in the first few iterations

the limiter (c=0.1) allows slightly larger growth of

high-frequency energy compared to the frequency-

dependent under-relaxation and nonstationary

approaches. This energy is partly dissipated by

whitecapping on a relatively long time scale and

partly transported to lower frequencies by four-wave

interactions on a significantly shorter time scale. At
the point of convergence, it was found that the

resulting spectra agree very well, except for a small

amount of energy on the low-frequency face of the

peak, accumulated in the spectrum of the simulation

using the action limiter. It is this accumulated energy

which accounts for the observed small over-estima-

tion of Hm0 results.

Considering the results of the two sets of simu-

lations described above, the setting a=0.05, c=0.5 was
chosen as a practical combination of frequency-

dependent under-relaxation and the action limiter.

With this combination, which lies between the

extremes applied in the first and second simulation

sets, the advantages of improved numerical accuracy

and smooth convergence are obtained, while retaining

a relatively fast convergence speed compared to the

extreme example (a=0.2, c=l). The results of fetch-
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limited simulation with this setting are essentially

similar to the results of the setting a=0.05, c=0.1.
Next, the performance of this setting is investigated

for practical application in the field case of Lake

George.

The Lake George field experiment of Young and

Verhagen (1996) represents near-idealized, depth-

limited wave growth. Lake George is a shallow lake

(depth about 2 m) with a nearly flat bottom and is

approximately 20 km long and 10 km wide. Wave

spectra were measured along the North–South axis of

the lake using an array of eight gauges. The

simulation of one representative case is presented

here, namely case df41lak02T of the ONR Test Bed

(Ris et al., 2002). In this case, wave growth is caused

by a northerly wind of U10=10.8 m/s. The simulations

were conducted in two-dimensional stationary mode
using a spatial discretization of Dx=Dyc200 m, a

directional discretization of 108, a frequency range of

0.125 to 1.0 Hz and a frequency discretization of

Df=0.1f. The simulations were conducted using the

default third-generation physics formulations of

SWAN. Iteration was continued up to convergence

and beyond, with the stopping criteria (14) and (15)

disabled. Simulations were conducted with two

settings of the convergence-enhancing methods,

namely the default action density limiter (a=0.0,
c=0.1) and the combination of under-relaxation and

limiter a=0.05 and c=0.5.
Figs. 7 and 8 present comparative simulation

results of the two convergence-enhancing methods

after 500 iterations. It is striking that both in terms of

spectra (Fig. 7) and integral parameters (Fig. 8) there

is virtually no difference between the results pro-
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duced without under-relaxation (a=0) and the action

limiter at c=0.1 and with under-relaxation (a=0.05)
and the action limiter at c=0.5. This correspondence

would indicate that also here the action limiter has

minimal influence on the simulation results. When

comparing the two sets of simulation results to the

observations, it is seen that total energy levels

compare very well, but that there is a consistent

underprediction of peak period. The latter is a well-

known shortcoming of SWAN, which is still actively

being researched (Ris et al., 1999; Rogers et al.,

2003).
6.2. Termination of a simulation

In Section 6.1 it was shown that in simulations of

the Lake George field case the default action limiter

and frequency-dependent under-relaxation conver-

gence-enhancing methods yielded very similar results.

By making use of under-relaxation in this way, it has

been established that the default action limiter has

little influence on model outcome. In these simula-

tions, however, the focus was on the final, converged

solution, and 500 iterations were allowed to achieve

this. The question that remains is whether, in practical
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applications in which a stopping criterion and

significantly fewer iterations are used, such well-

converged results are obtained.

This section compares the current default stopping

criteria of SWAN with the newly proposed criteria in

Section 5. The simulation of the Lake George case

df41lak02T was repeated using the same settings as

before, but this time using only the default action

limiter (a=0.0, c=0.1). Using this model set-up, a first

set of simulations was conducted with the default

stopping criteria (14) and (15). A second set of

simulations was conducted with the newly proposed

curvature-based criteria (14) and (22), using eH
r=0.02,

eH
a=0.02 m and eC=0.0001. In a wide range of field

cases of the ONR Test Bed, these tolerance values
appears to ensure good accuracy, with the criterion

(22) being dominant.

Fig. 9 presents the iteration behaviour of the Lake

George simulation with the default action limiter

(a=0.0, c=0.1) at Station 8, the furthest observation

point downwind. Superimposed on Fig. 9 are the

termination points determined by the default stopping

criteria (14) and (15) and the proposed criteria (14)

and (22). The default stopping criteria, currently used

in SWAN, prematurely terminates the simulation at

iteration No. 6, resulting in about 10% underpredic-

tion of the converged value of Hm0. In contrast to this,

the curvature-based criteria terminate the simulation at

iteration No. 30, at which point the solution of Hm0

has converged. Fig. 10 shows the normalized curva-



0 10 20 30 40 50
0.35

0.4

0.45

Iteration

H
m

0 
(m

)

de
fa

ul
t c

rit
er

ia

cu
rv

at
ur

e 
cr

ite
ria

Fig. 9. Lake George field experiment of near-idealized, depth-limited wave growth (Station 8). Iteration behaviour of SWAN with a=0.0 and

c=0.1 with positions of run termination using default stopping criteria (14) and (15) with eH
r=eT

r=0.02, eH
a=0.02 m and eT

a=0.2 s (6 iterations) and

criteria (14) and (22) with eH
r=0.02, eH

a=0.02 m and eC=0.0001 (30 iterations).

M. Zijlema, A.J. van der Westhuysen / Coastal Engineering 52 (2005) 237–256 253
ture measure (22) calculated at Station 8 as a function

of iteration level, as well as the limiting normalized

curvature value, eC=0.0001. It can be seen that the

curvature measure consistently reduces throughout the

iteration process. After the 24th iteration the curvature

measure remains below the given eC, meeting the

convergence test at this location; at iteration No. 30

this was the case at 98% of all wet grid points, which

terminated the iteration process.

Figs. 11 and 12 present the resulting spectra and

integral parameters at the eight observation points.

These figures confirm the improvement achieved by

using the proposed stopping criteria (14) and (22).
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with given maximum allowable curvature eC.
The results achieved with these criteria are similar to

those obtained in the fully converged results of

Section 6.1.
7. Discussion and conclusions

In this study, two numerical aspects of the sta-

tionary third-generation wind wave model SWAN

have been considered, namely convergence-enhancing

measures and stopping criteria. Their application has

been shown for idealized and nearly idealized fetch-

and depth-limited wave growth situations, in which
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Maximum curvature 

ation

ve growth (Station 8). Curvature measure (22) vs. iteration number,



0

0.02

0.04

0.06

0.08

0.1
E

(f
) 

(m
2 /

H
z)

0

0.02

0.04

0.06

0.08

0.1

E
(f

) 
(m

2 /
H

z)

0

0.02

0.04

0.06

0.08

0.1

E
(f

) 
(m

2 /
H

z)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

f (Hz)

E
(f

) 
(m

2 /
H

z)
Station 1

Station 3

Station 5

Station 7

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

f (Hz)

0

0.02

0.04

0.06

0.08

0.1

0

0.02

0.04

0.06

0.08

0.1

0

0.02

0.04

0.06

0.08

0.1

Station 8

Station 6

Station 4

Station 2

Fig. 11. Lake George field experiment of near-idealized, depth-limited wave growth. 1D spectra obtained with a=0.0, c=0.1 and default
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a=0.2 s (6 iterations, triangles), with a=0.0, c=0.1 and criteria (14) and (22)

with eH
r=0.02, eH

a=0.02 m and eC=0.0001 (30 iterations, plusses) and observations of Young and Verhagen (1996) (thick line).
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the source terms of wind input, whitecapping and

nonlinear four-wave interaction are dominant.

This study has shown that a stable solution is

possible without use of the action limiter, using the

frequency-dependent under-relaxation technique. It

was shown that this method achieves smoother

iteration behaviour than the action limiter, although

it is more computationally expensive. Because of

this increased computational cost, the method of

frequency-dependent under-relaxation is probably

not well suited to practical application (e.g.,

forecasting). On the other hand, it can be consid-
ered as an important numerical aid for scientific

applications.

Since frequency-dependent under-relaxation impo-

ses no external limitation on wave growth, it can be

considered a true numerical solution to the formula-

tions of physics in SWAN. This has been confirmed

by the fact that the results of this method are in

excellent agreement with those of nonstationary

calculations using a very small time step (Dt=1 s)

and no limiter. As such, it is a significant discovery

that the results produced by the action limiter differ

very little from those of frequency-dependent under-
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relaxation, for a wide range of stationary cases

(including others not presented here). This would

suggest that the limiter may not have a significant

impact on stationary model solutions.

The finding that, when properly converged, the

results of frequency-dependent under-relaxation sim-

ulations do not differ noticeably from the results of

action limiter simulations implies that, at present,

there is little gain in applying under-relaxation to

practical applications. However, it was shown that

current SWAN simulations tend to be prematurely

terminated by the default stopping criteria, so that the

true converged solution is not reached. This has called

for the development of the newly proposed stricter
stopping criterion based on the curvature of the series

of successive iterates of the significant wave height. It

has been shown that this termination criterion is

significantly better at locating the point of conver-

gence than the current default criteria.

This study has provided improved understanding

of the impact of the numerics in SWAN on its

performance. This makes it possible to make a clearer

distinction between inaccuracies due to numerics and

those due to approximations in the formulations of

physical processes. An example of this is the

remaining underprediction of peak wave period in

the model results of Lake George (Figs. 7 and 8). With

the improved understanding of numerical influence,
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these discrepancies can, with greater certainty, be

ascribed to shortcomings in the formulations of model

physics.
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