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An unstructured-grid procedure for SWAN is presented. It is a vertex-based, fully implicit, finite difference
method which can accommodate unstructured meshes with a high variability in geographic resolution
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local mesh refinements in areas of interest. A number of applications are shown to verify the correctness and
numerical accuracy of the unstructured version of SWAN.
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1. Introduction

For many years, numerical modelling of wind waves has been
successfully addressed by means of third-generation spectral wave
models that calculate spectra of random short-crested, wind-gener-
ated waves and swell in both offshore and coastal regions. The
kinematic behaviour of the waves is described with the linear theory
for surface gravity waves whereas the wave dynamics are associated
with the processes of generation, dissipation and nonlinear wave-
wave interactions (Holthuijsen, 2007). Examples of well-established
third-generation spectral wave models are WAM (WAMDI Group,
1988), WAVEWATCH I1I (Tolman, 1991) and SWAN (Booij et al., 1999).

While spectral wave models mainly focus on large-scale wind-wave
and wave-wave interactions, wave features on small scale associated
with irregular bathymetry, e.g. surf breaking, triad and wave-current
interactions, are critical to understanding wave dynamics and assessing
impacts of engineering activities. This is especially important in coastal
areas. Therefore, there is a strong need for accurate spectral wave
simulations allowing to better understand and analyse the interactions
between wind, waves and currents in e.g., estuaries, fjords, tidal inlets,
lakes, marshes and channels. In particular, a highly-resolved model is
desired for modelling such a system.

Since, the characteristic spatial scales of the wind waves propa-
gating from deep to shallow waters are very diverse, a flexible grid
would be required to increase effectively the resolution near shore
without incurring overhead associated with grid adaptation at some
distance offshore. Traditionally, this can be achieved by employing a
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nesting technique, where finer grids are nested within coarser grids.
Although, this practise is very common for spectral models, it does not
always result in optimality for a number of reasons. First, an inter-
polation procedure must be applied from coarse to fine grids.
Although, interpolation is not conceptually difficult, it is a disadvan-
tage because it is costly to perform. Second, nested meshes introduce
additional boundaries where problems often occur due to mismatches
in numerics and/or physics. Different accuracy properties or abruptly
local changes in physics can make it difficult to apply the solution
from one grid model as a boundary condition in another grid. Finally,
in one-way nesting, there is no feedback between the fine and coarse
grids, while in two-way nesting, the solution is fully coupled at the
coarse-fine interface requiring an iterative run process.

This coarse-fine grid nesting approach is an example of a classic
trade-off that is experienced in coastal environmental problems.
Better physics require better resolution, but that resolution can be
costly. Hence, one must choose a level of resolution that captures the
important physics without sacrificing computational efficiency.

The use of unstructured grids offers a good alternative to nested
models not only because of the ease of local grid refinement, either
fixed or adaptive, but also the high flexibility to generate grids along
coastline and around islands. Unstructured meshes with variable
resolution provide the capability to simultaneously capture scales
ranging many orders of magnitude, e.g. from hundreds of kilometers
to tens of meters. The variable mesh is especially useful in coastal
regions where the water depth varies greatly, thus giving the highest
resolution where it is most needed. Moreover, this can be automated
to a large extent. For instance, there exist techniques for triangulation
of arbitrary geometries (see e.g. Shewchuk, 1996; Bilgili and Smith,
2003). An unstructured mesh also allows for a very large domain with
locally refined grid. As the response in deep water is generally less
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involved than in the surf zone, large domains with open boundaries in
the deep ocean greatly simplify the task of boundary condition
specification. Although, the CPU cost per grid point is often relative
higher than in cases with structured grids, this effect is probably more
than offset by the reduction in the number of grid points.

The realization that much greater meshing flexibility is desirable
for extending the range of validation of spectral wave models
provided one strong stimulus for pursuing the work reported here.
However, in the past decade, unstructured mesh spectral wave
models have been developed and applied in a number of studies. The
semi-Lagrangian model TOMAWAC (Benoit et al., 1996) is probably
the first spectral model that employs triangular elements. The
advection of wave action in the geographical space is approximated
by means of wave ray tracking. The performance of this model has
been assessed to examine the capability of representing wave-current
interactions on the current eddies. Serensen et al. (2004) developed
the model MIKE21 SW using a cell-centered finite volume method
based on unstructured grids. This model utilizes a first order upwind
scheme for the approximation of the convective flux in geographical
space. This model was verified by comparison with observations for
two storm events in the North Sea and in a bay of the German Baltic
Sea. Another spectral wave model applied to unstructured meshes,
called WWWM, is presented in which two strategies have been
implemented. Hsu et al. (2005) introduced a Taylor-Galerkin finite
element algorithm and later on, Roland et al. (2006) and Zanke et al.
(2006) adopted a fluctuation splitting scheme. The model of Hsu et al.
(2005) was validated under monsoon and typhoon conditions near
Taiwan. In Ferrarin et al. (2008), satisfactory results of the model
coupling between a circulation model and the WWM model applied to
the Lagoon of Venice have been presented. Recently, Qi et al. (2009)
implemented an unstructured mesh spectral wave model within a
finite volume framework, called FVCOM-SWAVE. They applied second
order upwind schemes in geographical space. This model was then
validated on some benchmark test problems and an application near
the Gulf of Maine.

This paper presents a new variant of the unstructured-grid
procedure for the spectral wind-wave model SWAN. This variant
employs the unstructured-mesh analog to the four-direction Gauss-
Seidel iteration technique from the structured version of SWAN,
requiring few adaptations in the computational kernel. It should be
mentioned that this unstructured-grid algorithm is not based on a
finite volume or finite element approach. With the route taken here,
this model retains the physics and numerics and the code structure of
the structured-grid SWAN model, but is able to run on unstructured
meshes. Two idealized cases and one realistic case have been
conducted for the verification of this unstructured version of SWAN.

2. Model description
The spectral wind-wave model SWAN computes the evolution of

wave action density N using the action balance equation (Booij et al.,
1999):
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The terms on the left-hand side represent, respectively, the change
of wave action in time, the propagation of wave action in geographical
x’-space (with Tz the wave group velocity vector and U the ambient
current), depth- and current-induced refraction (with propagation
velocity ¢y in directional space 0) and the shifting of the radian
frequency o due to variations in mean current and depth (with the

propagation velocity c,). The right-hand side represents processes
that generate, dissipate or redistribute wave energy. In deep water,
three source terms are employed. These are the transfer of energy from
the wind to the waves, Si,, the dissipation of wave energy due to
whitecapping, Sy, and the nonlinear transfer of wave energy due to
quadruplet (four-wave) interaction, Syy4. In shallow water, dissipation
due to bottom friction, Spe, depth-induced breaking, Sy, and non-
linear triad (three-wave) interaction, Sy3, are additionally accounted
for. Extensive details on the formulations of these processes can be
found in e.g., Ris (1997), Booij et al. (1999) and Holthuijsen (2007).

For the problem to be well-posed, boundary conditions should be
provided. The incoming wave components at the seaward boundaries
are specified by a two-dimensional spectrum. The closed boundaries,
e.g. a coastline and lateral boundaries, are fully absorbing for wave
energy fully dissipated and leaving the geographical domain,
respectively. The lower and upper boundaries in frequency space
are indicated by O, and Onay, respectively. These boundaries are
fully absorbing, although a 0~ * diagnostic tail is added above the
high-frequency cut-off, which is used to compute nonlinear wave-
wave interactions and for computing integral wave parameters. Since
the directional space is a closed circular domain, no boundary condi-
tions are needed.

3. Numerical method

It is not the role of this paper to describe the numerical framework
of the SWAN model in detail, as it has been extensively discussed in
Booij et al. (1999) and Zijlema and Van der Westhuysen (2005). Only
those issues dealing with unstructured meshes are presented here.
We stressed that these issues will readily be operated with the physics
of SWAN.

3.1. Discretization in geographic space

For the sake of clarity of the algorithm description below, we put
all the terms but the time derivative and propagation term in the
geographical space of Eq. (1) in one term F(X, o, 0):

N oo
o T VN =F 3)

with =705 + U'the geographic velocity vector.

For the time being, we restrict ourselves to triangular meshes.
However, other type of meshes can be employed as well, e.g. hybrid
grids (consisting of both triangles and quadrilaterals). We consider a
triangulation of a geographical domain in which Eq. (3) is solved; see
Fig. 1. Every vertex and all the triangles around this vertex are taken
into account. Observe that the number of cells around a vertex can be
different for all vertices. A vertex-based scheme is used in which the
wave action N is stored at the vertices and Eq. (3) is solved in each
vertex. We note that the values at boundary vertices are fixed during
the computation.

For the time integration, we adopt the first order implicit Euler
scheme, as follows

n n—1
NN _A’\t’ + Ve [CeN'| = F" (4)
where At is the time step and n is the time step counter. The main
property of this approximation is that it does not suffer from the
stability restriction imposed by the CFL condition inherent in the
explicit methods. The unconditional stability of this scheme makes
SWAN suitable for use in shallow water, as an operationally
acceptable, i.e. relative large, time step can still be chosen. This does
not imply that this time step can be chosen arbitrarily. Yet, the time
step is limited by the desired temporal accuracy or by a typical time
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L.,

Fig. 1. An example of triangulation.

scale of the phenomena to be simulated. This procedure, however,
involves the solution of a large system of equations. A point-to-point
multi-directional Gauss-Seidel iteration technique is employed for
updating all grid vertices (Zijlema and Van der Westhuysen, 2005). A
key feature of this technique is that it is only locally implicit and so, it
takes advantage of the newly acquired vertex values during an
iteration. In other words, it circumvents the need to build or store
large matrices.

We consider the update of a vertex as labeled 1 in Fig. 2. This
involves looping over each cell of this vertex. Considering a triangle
A123 where the faces towards vertex 1 are given by

?{1) =X-%, ?()2) = 7;_7§ (5)

with X = (x;, y;) the position vector of vertex i in a Cartesian coor-
dinate system. The action densities at vertices 1, 2 and 3 are denoted
by Ny, N, and N3, respectively. The propagation term of Eq. (3) may be
approximated as follows
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O = not updated
@ =to be updated
® = updated

Fig. 2. Update of the wave action at vertex 1 in a triangle A123 and the shaded
directional sector in spectral space for which the waves are propagated.

where c, and c, are the x- and y-components of the wave propagation
vector T, respectively, and
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For the derivation of Eq. (6), see Appendix A. This space
discretization is first order accurate and conserves action. Given the
action densities N5 and N3 at vertices 2 and 3 of triangle A123, the
wave action in vertex 1 is readily determined according to
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The upwind difference scheme (6) has two main advantages. First,
it forces the propagation of wave action to follow the characteristics.
Second, it is monotone (i.e. guaranteeing N>0 everywhere; see
Section 3.2) and compact (i.e. operating on one triangle only). A
disadvantage of this scheme is that it is numerically diffusive, which
naturally degrades the accuracy of the model. This numerical diffusion
is caused by gradients of wave action across geographic space, e.g. due
to refraction by bathymetry or currents. It must be stressed that in the
source/sink terms of the action balance equation there is only
coupling between the wave components in each grid point separately,
not over the grid points. As a consequence, these terms will not tend
to enhance numerical diffusion.

The author's main interest is in simulating wind-generated waves
and combined swell-sea cases in coastal ocean waters using triangular
meshes, and it is particularly with the view to such computations that
a simple and compact, but first order, scheme was implemented in the
unstructured version of SWAN. Implementation of a higher order
upwind scheme, such as SORDUP (Rogers et al., 2002), in the
unstructured version of SWAN would have been possible, in principle.
This route has not been chosen here, however, for two reasons. First,
in view of the complexity of the present numerical strategy and
geometry, it is highly desirable to have a robust implementation,
while avoiding the algorithmic complexity and computational
overhead. Second, a substantial body of experience gathered over
the past 10years on the performance of both lower and higher
upwind schemes in SWAN suggests that in many circumstances, the
discretization of the propagation terms in geographical space is not a
crucial issue. Many nearshore simulations have shown the solution for
action density to be on the whole rather insensitive to the accuracy
with which geographic propagation terms are approximated. This
reflects the tendency for the level of wave action to be dictated by
source terms, while the local changes of the energy field across

Fig. 3. Ordering of vertices along spherical wave fronts indicated by different color
points. The black point in left-bottom corner is chosen as reference point. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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geographical space is relatively weak. This is consonant with the
established view that a certain amount of numerical diffusion can be
safely tolerated in the numerical scheme for geographic propagation,
as its impact on wave parameters is negligible (Rogers et al., 2002;
WISE Group, 2007). This would appear to suggest, however, that the
use of higher order upwind schemes serves no useful purpose. This is
probably not so since there might be some cases that are prone to
diffusion, where the benefit of such schemes is obvious. One can think
of a case of swell propagation over very long distances. While low-
diffusive, higher order schemes did permit long-distance swell cases
to be validated, the reduced diffusion was found to pose a serious
difficulty as the well-known garden sprinkler effect becomes more
visible, see e.g. WISE Group (2007).

3.2. Discretization in spectral space
The spectral space is divided into elementary bins with a constant

directional resolution A6 and a constant relative frequency resolution
Aojo (resulting in a logarithmic frequency distribution). This spectral

grid resolution is the same in all vertices. The reader is referred to
Zijlema and Van der Westhuysen (2005) for further details.

The wave directions between faces €;, and €[, enclose all wave
energy propagation in between the corresponding directions 6, and
0, as indicated as a shaded sector in Fig. 2. This sector is the domain of
dependence of Eq. (8) in vertex 1. Since, the wave characteristics lie
within this directional sector, this ensures that the CFL number used
will properly capture the propagation of wave action towards vertex
1. So, propagation is not subjected to a CFL stability criterion. Also, the
coefficients of N3 and N3 in Eq. (8) remain non-negative implying
monotonicity.

Next, the term F' in Eq. (8) is discretized implicitly in the sector
considered. Since, the approximation in the spectral space and the
linearization of the source terms are well explained in Zijlema and
Van der Westhuysen (2005), we shall not pursue them any further.
Eq. (8) constitutes a coupled set of linear, algebraic equations for all
spectral bins within the sector considered at vertex 1. Note that the
storage requirement of this linear system is low, as only, at most, five
matrix coefficients in the whole spectral grid for each geographical
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Fig. 4. Current-induced shoaling and refraction for monochromatic, long-crested waves. First panel: unstructured grid with green line as output transect. Second panel: significant
wave height along output transect. Third and fourth panel: mean wave direction along output transect. Case (a) an opposing current, case (b) a following current, case (c) a slanting
current with incident direction 6;=30° and case (d) a slanting current with incident direction ;= —30°.
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grid point have to be stored. The solution is found by means of a direct
or an iterative solver (Zijlema and Van der Westhuysen, 2005).

The update of vertex 1 is completed when all surrounding cells
have been treated. This allows waves to propagate from all directions.
Due to refraction and nonlinear interactions, wave energy shifts in the
spectral space from one directional sector to another. This is taken into
account properly by repeating the whole procedure with converging
results.

3.3. The sweeping algorithm

The solution of each vertex must be updated geographically before
proceeding to the next one. For example, referring to Fig. 2, the value
in vertex 1 is determined by its two upwave vertices 2 and 3 only if
they are already updated. For regular grids, the four-sweep scheme
based on a four-direction Gauss-Seidel relaxation is employed as
outlined in Zijlema and Van der Westhuysen (2005). The grid points
are ordered in a natural manner, e.g. left to right and bottom to top
during the first sweep, right to left and bottom to top during the
second sweep, and so on. Hence, the updated values will be used
immediately for updating the next unknown. However, in an
unstructured mesh there are no distinct directions. Thus the vertices
are ordered by their numbering which for an unstructured grid are
quite random. As a consequence, the latest obtained solution will not
be necessarily used for updating surrounding vertices.

An ordering is proposed such that the solution of each vertex will
tend to ensure that updated values from the surrounding vertices are
used as soon as they are available. We introduce a reference point on
the boundary where the incoming wave energy is imposed and order
all the vertices according to their distances to the reference point in
ascending order. The updates along this ordering of vertices can be
interpreted as propagation of spherical wave fronts with a center on
the upwave boundary through the domain as illustrated in Fig. 3. It is

expected that this specific ordering should result in a faster con-
vergence than a random ordering of vertices.

An algorithm is employed that consists of simply proceeding
through a list of vertices that remain to be updated. This list is sorted
according to the ascending distances of vertices to the chosen ref-
erence point. For a given vertex to be updated using Eq. (8), we first
check if its upwave neighbours have already been updated. If this is
the case, this vertex is updated and tagged in the list. Otherwise, the
considered vertex is placed untagged and the process continues with
the next vertex in the list of non-updated vertices. These updates are
swept in two cycles. The first cycle involves a forward sweep from the
first vertex in the list to the last. The second cycle moves backward
from the last to the first. As such, all directions of characteristics can be
covered effectively. An iteration is completed when all vertices are
updated in both geographic and spectral spaces so that wave energy
from all directions has been propagated through geographical space.
This numerical process is iterated until an a priori convergence
condition is satisfied. In the present study, the so-called curvature-
based stopping criteria proposed by Zijlema and Van der Westhuysen
(2005) will be applied.

4. Verification

For the verification of the performance of the unstructured version
of SWAN, a suite of test cases, the so-called ONR Test Bed (Ris et al.,
2002), has been conducted. Two academic test cases have been
selected in the present paper for the discussion on the verification,
where the performance of the geographic propagation scheme
applied on unstructured meshes is demonstrated. A third realistic
wind-sea case is considered to demonstrate the ability of the model to
simulate wind waves entering a complicated bathymetry. These cases
are, however, stationary ones as the travel time of the waves through
the considered model areas is small compared to the time scale of
atmospheric and hydrodynamic conditions.
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Fig. 5. Depth-induced shoaling and refraction on a plane beach. Top panel: unstructured grid with green line as output transect. Middle panel: significant wave height along output
transect. Bottom panel: mean wave direction along output transect. Case with incident direction 6; = 0° (black lines, black triangles) and case with incident direction §;=30° (red
lines, red triangles). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Bathymetry of the Haringvliet estuary during field campaign of 1982, including the locations of the observation stations 1 to 8 (stars). Depth contours in meters below the

Dutch datum NAP (after Ris, 1997).

It ought to be pointed out that the main intention of the present
study is to verify unstructured-mesh SWAN in terms of both
correctness of coding and numerical accuracy. Therefore, physical
issues are not addressed in detail. The predictive performance of
SWAN for the cases considered herein, in particular the Haringvliet
estuary case (Section 4.3), and generally for other well-documented
field cases is examined in other studies, e.g. Ris (1997) and Booij et al.
(1999).

4.1. Current-induced shoaling and refraction

We investigate the performance of unstructured-grid SWAN in the
presence of an ambient current in deep water. We consider four cases:
(a) wave travelling in an opposing current, (b) wave travelling in a
following current, (c) wave travelling across a slanting current at an
angle of 30° and (d) wave travelling across a slanting current at an
angle of —30°. For all four cases, the current velocity increases
linearly from O to 2 m/s in the down-wave direction. The travel
distance of the waves is 4 km. The incident wave is specified by a
significant wave height of 1 m and a peak period of 10 s. This wave is
monochromatic (modelled with a Gaussian-shaped frequency spec-
trum with 0,= 0.01 Hz) and long-crested (modelled with a cos>%°(6)
directional distribution).

A rectangle domain is considered with a length of 16 km and a
width of 4 km. Computations have been performed on an unstruc-

tured mesh with an average size of 400 m. The frequency resolution is
equal to Ao=0.040 between 0.05 Hz and 0.25 Hz. The directional
resolution is 2° for cases (a) and (b) and 1° for cases (c¢) and (d). The
source terms are not activated. This permits a direct comparison with
an analytical solution of the linear wave theory for the total energy
(see e.g. Ris, 1997). Comparison is made for significant wave height
and mean wave direction. The results are shown in Fig. 4. Clearly, the
calculated wave parameters match very well with the analytical
solutions, indicating that the geographic propagation scheme, i.e.
Eq. (6), is implemented correctly. There is some evidence that the
sensitivity of predicted wave parameters to the order of this scheme is
negligible in this case, as the employed unstructured mesh is quite
coarse and the geographic spatial gradient of wave action is marginal.

4.2. Depth-induced shoaling and refraction

The verification of depth-induced shoaling and refraction on a plane
beach is discussed. We consider monochromatic, long-crested waves
approaching an infinitely long plane beach with slope 1:200. The
maximum water depth is 20 m. When these waves approach the plane
slope from another direction, depth-induced refraction occurs. All
source terms are set equal to zero so that shoaling dominates. We
consider a test with normal incidence waves (shoaling only) and a test
with wave direction turning over 30° (shoaling and refraction). In all the
computations, the incident significant wave height and the wave peak
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period is 1 mand 10 s, respectively. The mesh employed has a maximum
size of about 800 m and a minimum size of about 20 m near the
shoreline. The directional resolution is 0.5° and the frequency resolution
is Ao=0.040 between 0.05 Hz and 0.25 Hz. The results are shown in
Fig. 5 with an excellent agreement with the linear theory.

4.3. The Haringvliet estuary

The Haringvliet is a branch of the Rhine estuary in the south-west
of the Netherlands. A well-documented field campaign in this area
was carried out in 1982 (Andorka Gal, 1995). The bathymetry of the
area and the locations of the eight observation stations are shown in
Fig. 6. The shallow bay that penetrates into the shoreline is partly
protected from the North Sea by a shoal called the “Hinderplaat”.
Wave energy dissipates near this shoal. Far behind the shoal, waves
are regenerated by the local wind. This case is one of the many field
cases of the ONR Testbed (Ris et al., 2002).

The grid for the Haringvliet estuary is generated using the mesh
generation package BatTri (Bilgili and Smith, 2003). First, a relatively
coarse mesh is created as depicted in Fig. 7. The bathymetry is
interpolated onto the grid. The next step is to refine the mesh. In this
example, the h-refinement is applied that relates the maximum
triangle area to water depth. The final mesh for the present study of

Haringvliet estuary is shown in Fig. 8. This mesh has 4641 vertices and
8866 triangles. Clearly, the size of the triangles is proportional to the
depth. The minimum size of the cells is roughly 25 m and is to be
found in the Hinderplaat. We compare the model outcomes obtained
with this unstructured mesh to that of the simulation using a
structured grid. This grid is rectangular and contains 98 x 88 cells
with Ax=150 m and Ay =250 m (Ris, 1997). The number of active
grid points appears to be 5165. Although, this regular grid has
approximately the same number of points compared to the
unstructured one, it is much coarser in the more shallow parts of
the considered area.

A case is selected here of a local storm in the North Sea on
October 14, 1982 at 23:00h local time, which generated waves from
north-western direction. The wind speed and the direction were
fairly constant, and locally it was 14 m/s from 300° (measured
clockwise from the north). There were almost no currents and the
water level was 1.7 m above the Dutch datum NAP. The wave energy
measured at the offshore station 1 (Fig. 6) was applied as boundary
condition at the offshore boundary running along the west side of
the model domain. The frequencies ranged from 0.05 to 1.0 Hz and
are discretized into 32 bins on a logarithmic scale (Ao/o~0.1),
whereas 36 wave directions are distributed over the full rose at 10°
intervals.

#nodes= 614 #elements= 109
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Fig. 7. The initial mesh for Haringvliet estuary, created by BatTri based upon bathymetry (as shown, in meters) and user-supplied parameters.


https://domicile.ifremer.fr/Publications/internal_reports/NML-03-15/,DanaInfo=www-nml.dartmouth.edu+

274 M. Zijlema / Coastal Engineering 57 (2010) 267-277
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Fig. 8. The final mesh for Haringvliet estuary, as produced by BatTri, refined from the initial mesh based upon h-refinement. Depth in meters.

The simulations were conducted using the default source term
settings for deep and shallow water (Boojj et al., 1999). Details on the
numerics with respect to spectral space can be found in Ris (1997). Here,
the regular grid calculation was carried out using the first order upwind
scheme in geographic space (BSBT) for consistent comparison.

Considering the intercomparison between grid approaches,
the computed frequency spectra at eight locations obtained with
unstructured grid are very close to the spectra of the regular one, as can
be seen from Fig. 9. Figs. 10, 11 and 12 provide a comparison of plots of
significant wave height H,,0, mean period Tp0; and directional
spreading 0, respectively, arising from the calculations of unstructured
and structured meshes.! These figures show good agreement between
the computed wave parameters obtained with the employed grids,
with relative differences in Hy,, Tino1 and oy being less than 7%, 8% and
10%, respectively. These observed differences are principally rooted in
the employed grid resolutions. Finally, the comparison reveals no
apparent problems associated with the employed unstructured-grid
model.

! For the definitions of the mentioned wave parameters, see Holthuijsen (2007).

5. Conclusion

An unstructured-grid algorithm for SWAN has been presented in
detail and verified. The algorithm builds on an existing numerical
strategy for regular grids by devising an iterative, point-to-point
multi-directional Gauss-Seidel based sweeping technique adapted to
unstructured meshes. A distinguished key element of the method is an
ordering of the vertices according to the way the spherical wave fronts
propagate so that advantage is taken of the propagation character of
the problem. The examples shown demonstrate the advantage of an
unstructured mesh approach and illustrate a key advantage of the
sweeping algorithm presented here. Also, the computed results
presented in this paper have verified the numerical accuracy and
robust nature of the unstructured version of SWAN.

This version stands out in its ability to simulate wave fields over
shelf seas, in coastal areas and shallow lakes in an efficient and stable
manner, while sufficiently flexible to permit desired local mesh
refinements in such areas. Current work focuses on the validation of
the unstructured version of SWAN, tightly coupled to a circulation
model ADCIRC, for hurricanes in the Gulf of Mexico, southern
Louisiana and Mississippi, including Katrina and and Rita of 2005
(Dietrich et al., 2009).
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Fig. 9. Computed frequency spectra at eight locations in Haringvliet estuary.
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Appendix A. Derivation of Eq. (6)

In this appendix we shall derive Eq. (6). To this end, we employ F(]) — 6_7 ?(»2) = X (A1)
some vector calculus. We consider a triangular cell as depicted in 0% an

"
»
l‘{l
4

Fig. 10. Significant wave height H,, in meters computed using unstructured grid (left panel) and regular grid (right panel) for the Haringvliet estuary case.

0
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1 1

Fig. 11. Mean period T;;,01 in seconds computed using unstructured grid (left panel) and regular grid (right panel) for the Haringvliet estuary case.

10 10

Fig. 12. Directional spreading oy in degrees computed using unstructured grid (left panel) and regular grid (right panel) for the Haringvliet estuary case.

are normal to the coordinate surface of constant § and 1), respectively
(see Fig. 13). Moreover, they are reciprocal to the base vectors, i.e.

Ty eV =0, ap=1{1,2}, (A3)

where &5 is the Kronecker delta (which is unity if =3, and zero
otherwise). Using Cramer's rule, one can find

>0 _ 172 1I\T »@ _ 1/ 2 1NT 2 1 2 1
e = 5(e<2>7_e<2>> €= 5(‘%7%) D= repeq —eneq:
y (A4)
Now we want to approximate the propagation term of Eq. (3).
- First, we expand this term:
Fig. 13. A triangular cell with geometrical quantities used for discretization in V—w[?—» N] — aCxN + aCyN ) (A5)
geographical space. Definitions of these quantities are provided in the text. X X 0x ay
Using the chain rule, we obtain
The vectors
oc,N 2) 0c,N 1y dc,N 5 0c,N
Vo . @N = eI | @ 0N OGN 06N, e
eV = grade, ©® = gradn (A.2) volGN =6 ¢ te an te ¢, te on (A6)
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Next, we approximate the derivatives in Eq. (A.6). The simplest one is
a one-sided first order difference scheme, as follows

chNzcxNh—cxN\z aCXNzCXN|]—CXN|3 A7)
0g A7 On An ‘
Z?cyNzcyN\l—cyM2 acyNzcyN|1—cyN|3
0g Ag 7 On An o

Here, we choose the mapping ® (%) such that A§=An=1. The
derivation is completed by substituting Eq. (A.7) in Eq. (A.6):

1 1 1 02 1 12
Vy-[?%MzcxN‘zeg 4 CXN‘36<1 )4 cyN‘zeé) + cyN|3e<2 ), (A.8)

Note that the components of the vectors ! and 2@ in Eq. (A.8) are
given by Eq. (A.4), while the base vectors are calculated according to

?()1) =X-%, ?()2) =X—%. (A9)
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