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Three-dimensional effects in shear waves
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[1] Most studies on shear waves to date have assumed the flow is depth uniform (two
dimensional). In the present study, we utilize the quasi-three-dimensional (quasi-3D)
nearshore circulation model SHORECIRC to study shear waves. Our results show that
shear wave flow is more organized in the quasi-3D simulation than in the 2D simulation.
In the 2D simulation, the vortices are moving farther offshore of the bar, while in the
quasi-3D simulation, they are more confined to the shoreward side of the bar. Moreover,
the shear waves in the quasi-3D simulation are much less energetic than in the 2D
simulation, though the total momentum mixing for the two cases is not significantly
different. To understand which mechanisms cause the differences in the 2D and the quasi-
3D simulation, the momentum, kinetic energy, and enstrophy equations for the mean flow
and the shear waves are derived. The momentum, energy, and enstrophy balances are
discussed using the numerical results from the idealized SUPERDUCK topography and
the wave conditions on October 16, 1986. The effects of the quasi-3D dispersion due to the
depth varying currents on shear waves are illustrated. Analysis of the mean momentum
balance shows that both the shear waves and the quasi-3D current pattern contribute to the
momentum transfer, and the momentum transfer provided by the shear waves is
sometimes larger than that by the quasi-3D dispersive terms. The kinetic energy balance of
the shear waves shows that the quasi-3D dispersive terms will extract kinetic energy from the

depth-averaged shear waves. Furthermore, the enstrophy equation demonstrates that
the quasi-3D dispersion terms provide vortex tilting, which allows three-dimensional

vortex interactions.
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1. Introduction

[2] Shear waves were first identified by Oltman-Shay et
al. [1989]. Since then, they have been studied intensively. A
state-of-art review is presented by Dodd et al. [2000]. Most
of these studies are either based on linear stability analysis
[Bowen and Holman, 1989; Dodd et al., 1992; Putrevu and
Svendsen, 1992; Falqués and Iranzo, 1994, etc.] or based
on direct simulation of finite amplitude shear waves by
using the nonlinear shallow water equations [Deigaard et
al., 1994; Allen et al., 1996; Slinn et al., 1998; Ozkan-
Haller and Kirby, 1999 (hereinafter referred to as OK99)].
This essentially means the flow is considered depth uniform
(2D).

[3] Lateral mixing is incorporated in some of these
models in a classic way by using an eddy viscosity. It is
found that, in general, including the ‘“lateral mixing,”
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whether a constant eddy viscosity coefficient [Deigaard et
al., 1994] or a cross-shore varying eddy viscosity (OK99),
causes a damping of the shear waves.

[4] The “lateral mixing” used in these models is always
specified a priori as an empirical coefficient. However,
Svendsen and Putrevu [1994] discovered that a major part
of the lateral mixing in longshore currents is caused by the
depth variation of the currents. This so-called dispersive
mixing is deterministic and is caused by the three-dimen-
sional current pattern. Therefore the classic approach to
mimic mixing is only an empirical remedy. It has also
been found that shear waves themselves provide extensive
lateral mixing, which has the effect of modifying the
original cross-shore distribution of the mean longshore
current (OK99).

[5] The initiation of shear waves studied analytically by
small-amplitude instability theory describes the shear
waves as essentially sinusoidal modulations on the initially
uniform longshore current that grow exponentially with
time [Bowen and Holman, 1989; Dodd and Thornton,
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1990; Dodd et al., 1992; Dodd, 1994, etc.]. However,
numerical simulations such as the works quoted above
show that as the modulations grow they change character
and eventually split up while shedding vortices with
vertical vorticity. Under some conditions, free vortices
are even found to propagate away from the shear zone
where they are generated. Thus, when fully developed as
in the numerical simulations, shear waves are strong
vortical motions. However, three-dimensional vortex inter-
action is missing in the two-dimensional depth averaged
models. In these models the vortices are depth-uniform
circulation patterns. Hence several physical mechanisms
are left out in a two-dimensional simulation.

[6] The purpose of this work is to investigate the role of
the three-dimensional depth variation of the currents which
is representable for the dispersive mixing on the shear wave
development. It is worthwhile to emphasize that the currents
vary not just in magnitude over the depth but also, more
importantly, in directions. To achieve this, 2D and quasi-3D
numerical experiments are carried out simultaneously, and
with similar representations in the 2D and the quasi-3D
simulations for mechanisms such as the wave driver, bottom
friction, turbulence modeling, etc.

[7] The paper is arranged as follows. Section 2 gives a
brief introduction of the quasi-3D nearshore circulation
model SHORECIRC (hereinafter referred to as SC)[Van
Dongeren and Svendsen, 2000; Svendsen et al., 2002] used
in the computations. In section 3 we first show that using
the stripped-down 2D version of the model similar to the
model used by OK99, we obtain time series at a fixed point
for the surface elevation ( and the cross-shore and long-
shore velocities V,, V,, respectively, that are remarkably
similar to the time series published by OK99 for the same
situation. A similar discussion was given by Sancho and
Svendsen [1998] and serves to verify the compatibilities of
the two models in spite of their radically different numerical
solution techniques. Then, in section 4, two-dimensional and
three-dimensional numerical experiments of shear waves are
carried out simultaneously. To facilitate comparisons with
earlier work, we use the same idealized SUPERDUCK
topography used by OK99. The momentum balance, energy
and enstrophy budget for the shear waves are discussed in
sections 5, 6, and 7 and applied to characterize the features of
the three-dimensional shear wave system. The discussions
and summary are presented in section 8. The derivation of the
kinetic energy and enstrophy equations noted in separations
for the mean flow and the shear waves are presented in
Appendices A and B, respectively.

2. Description of the Model

[8] Following Putrevu and Svendsen [1999] (hereinafter
referred to as PS99), we split the instantaneous horizontal
velocity u.(x, y, z, f) into three components

u&(x7y727 t) = u:}(x7y727 t) + uwa(x,y,z, t) + VOt(th?Z? t)' (1)

The x and y denote the cross-shore and longshore
coordinates, and «(3) = 1, 2 represent these horizontal
coordinates, while z is the vertical coordinate. In the above,
o, Uye, Vo are the turbulent component, the wave
component, and the current component, respectively. We
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Figure 1. Sketch showing definition of current velocities,
where the total current velocity is defined as V(x, y, z, 1),
the depth-uniform part of the current velocity is defined
as Vu(x, », 1), and the depth-varying current velocity is
Viax, ¥, z, ©).

then further split the current velocity into the depth-uniform
part and the depth-varying part,

Vu(x7y727 t) = f/&(xvyv t) + Vl&(x7y7z7 t)' (2)
where the tilde denotes the depth-uniform part and is
defined as

Vo (x,0,1) = ! /C uo (x,y,z,t)dz = Gulr2,) , (3)
h) h
in which the overbar denotes averaging over the short-wave
period, Ay and ( represent the still water depth and the
instantaneous water surface elevation, respectively. Here
h = hy + ( is the total water depth, and O, is the total
volume flux.

[9] The second component of the short-wave-averaged
velocity Vi.(x, y, z, f) accounts for the vertical variation of
the current and satisfies

S S
/ Viedz = 7/ Uyadz = —Qya, (4)
—ho (.t

where Q,,, is the short-wave-induced volume flux, and (, is
the surface elevation of the wave trough level. A sketch of
this split of current velocity is shown in Figure 1.

[10] Then the depth-integrated, short-wave-averaged
governing equations read (PS99)

a o -
EJF@—)H(VM) =0 (5)
d - Q5 - 10830 10T, 10Lg,
= (Vah) +=— (VoVah) 4+ -2 - - 2% 4 —
Ot( )+ c?xﬁ( )+ pOxg pOxzg p Oxg
o 8
h—4-2=0 6
tehpe T, =0 (6)

where S, is the short-wave-induced radiation stress.
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[11] Hence solution of equations (5) and (6) will provide
information over the horizontal domain of the variation of
the mean water surface and the depth-averaged current V.
In the simulations discussed in the following we use REF/
DIF1 [Kirby and Dalrymple, 1994] as the wave driver to
determine radiation stress and short-wave-induced volume
flux Q.. These quantities are computed using the linear
theory outside the surf zone and augmented by the roller
model of Svendsen [1984] inside the surf zone [Svendsen et
al., 2002].

[12] Solution of equations (5) and (6) requires, however,
that we determine Lg,, which is the contribution from the
depth-varying currents, the quasi-3D dispersive term.

¢ ¢
LS(x =p |: / Vl(y Vllidz + / (uwu Vlﬁ + Ung Vl(y)dZ . (7)
—ho G

[13] To obtain the vertical profile of depth-varying cur-
rent, starting from local (non-depth-integrated) horizontal
momentum equation, we assume the short-wave-averaged
pressure is hydrostatic. This is common in all circulation
models and is justified by the fact that the vertical current
velocities are found to be small. (This does not mean the
vertical velocities 7 are neglected. As shown by PS99, W is
included in all continuity-related considerations (see also
equation (10).) The governing equation for the depth-
varying current V. can be written as (PS99)

8V1 [ 0 ( 8VI ¢
Vi

0z 0z

_ — O L () L ) 8
o (n o) =P FED, )

where

1 08; 7B
FO — ) Ba SN

- OV, v, Mg an 1 9L
F(]):* v a 1% Q 1% 3 w a) Ba
o {( B 8)(’3 + 18 + Ve 8)63 + 0z ph Oxﬁ ’

8)6[5
(10)
0 OV OV, 0 ow 1 0T3.
@ _ Y YV B v o YL
F Oxg {Vt(a)q * 8xu>} * Oz (V[ Oxu> + ph Ox3 ' (1
and PS99 showed that
FO > F) > F@), (12)

In the above, £, is the vertically local contribution to the
radiation stress,

6uwoa Uyg aww Uy
f& B ((9)6(3 Oz ' (13)

[14] In SC, the top and bottom boundary layers are not
numerically resolved, their effects are represented by sur-
face and bottom shear stresses, respectively. In the cases
simulated here, we have assumed the wind-induced shear
stress is zero. The roller effect due to breaking waves,
however, is included in the radiation stress and the short-
wave-induced volume flux.
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[15] Then, at the bottom, the boundary condition for the
depth-varying current requires to match the bottom shear
stress and satisfy equation (4),

MV ia 8 ¢
Uta_Zl|Z=7h0 = ?Q /h Vludz = _Qwou (14)
—ho

[16] Equation (8) along with the boundary conditions
(equation (14)) are solved using the perturbation method.
Assuming that the currents vary slowly in time and that the
eddy viscosity depth is uniform, the depth-varying currents
can be integrated analytically. The detailed derivation is
presented by PS99. After some algebra, the leading order
solution which is in quadratic form, for example, can be
written as

V|(2) - dl(xgz + e]ui + (fl(\ +f2rx)a (15)

where ¢ is the vertical coordinate measured from the sea
bottom to the mean water level,

E=z+hy;  —ho<z<0, (16)

and the coefficients d, €14, fias 2o are calculated from

F)
W= 17
o =5, (17)

B

.
ela = 2, 18
! pv: (18)

dlm 2 h Qw@

o a=——0n o= . 19
fia + 1o <3 tenst, (19)

F\® and f, are defined in equations (9) and (13),
respectively. The vertical profiles in SC are the approxima-
tions solved to the second order to the governing equations.

[17] Tt is noticed that assuming that the eddy viscosity is
depth uniform enabled an analytical solution for the depth-
varying current part. This seems to be crude. However, we
have carried out a numerical solution of the depth-varying
current based on Chebyshev polynomials. The preliminary
results of currents on a longshore uniform beach show that
the current profiles are not sensitive to the eddy viscosity
variation over depth for the tested cases. More detailed tests
regarding this issue are underway and will be presented
separately.

[18] It is also worthwhile to emphasize that J, is the
solution to the basic equation, thus satisfying both the
governing equations (momentum and continuity equation
at all levels) and the boundary conditions. The errors in the
vertical profiles are purely due to the approximation of the
solution.

[19] The depth-integrated turbulent shear stresses 7}, are
expressed by an eddy viscosity model,

Vo OV,
0 +@). (20)

TH& = Pth (aXB ax(x
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The eddy viscosity formulation accounts for both wave-
breaking and bottom-generated turbulence. The combined
contributions to the eddy viscosity from these sources are
calculated as

[

5 (21)

D 1/3
Vy = CIH |u0|h + Mh (5) +V0-

Here the first term represents the effect in the current above
the bottom boundary layer. It is based on the works of
Svendsen and Putrevu [1994] and Coffey and Nielsen
[1984]. Here k is the von Karman constant (k ~ 0.4), f,, is
the wave-related bottom friction coefficient, and |uo| is the
short-wave particle velocity amplitude evaluated at the
bottom. The second term accounts for the effect of wave
breaking. It is a modified Battjes [1975] model. D is the
short-wave energy dissipation per unit area given by the
formulation used in the REF/DIF1. The small constant v,
is an empirical measure of the background eddy viscosity
found far offshore, given as 1/10 of the bottom friction
outside the surf zone. The bottom-induced turbulence is
always present, but the second term is only present inside
the surf zone. By comparing the eddy viscosity estimates
from thisequation with the experimental results of Nadaoka
and Kondoh [1982] and the values suggested by Svendsen
et al. [1987], C; ~ 0.2 and M =~ 0.1 are being taken.

[20] In the simulations we will discuss in this paper, the
general bottom friction in SC is simplified to the linear
approximation for the bottom friction used by OK99, which
is given by

o
E RN

(22)

Here the parameter c, is chosen to be 0.0035 as used by
OK99 for the simulation of SUPERDUCK topography on
October 16, 1986. It is noticed that the bottom friction used
here is rather simple. However, our study showed that
though different formulation of the bottom friction will
affect the development of shear waves, the quasi-3D effects
on the shear waves due to the vertical variation of the
currents remain the same. As in all earlier studies, we also
disregard the wave-current interaction due to the shear wave
velocities.

[21] The system of the governing equations is solved in
its conservation form using an explicit Predictor-Corrector
scheme which is third order in time and fourth order in
space [Svendsen et al., 2002].

[22] At the offshore boundary, a no-flux boundary con-
dition is applied. To simplify the computation, at the
shoreline a wall is placed at a water depth of a few
centimeters. The free slip boundary condition is applied
on the wall. At the lateral boundaries, a periodic boundary
condition is applied.

3. Definition of Shear Wave Quantities

[23] Before we go into the discussions of the quasi-3D
effect in shear waves, we have checked the numerical model
performances versus previous models, such as that of
OK99. It is found that when the SC model is reduced to
the form of the equations used by OK99, and upon using the
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t(hrs)

Figure 2. Comparison of 2D models with two different
numerical schemes. (a) The 2D version of SHORECIRC.
(b) Ozkan-Haller and Kirby [1999] without the ‘lateral
mixing”.

same forcing conditions, shear wave development on a 1/20
longshore uniform plane beach shows remarkably similar
behaviors. In the SC simulation, the grid size dx = 5 m,
dy = 5 m in the cross-shore and longshore directions,
respectively, are used. The time step, df = 0.2 s, is calculated
to satisfy the CFL condition, with the Courant number set to
0.3 in this case. The time series for the first 12 hours of the
surface elevation, the cross-shore and longshore velocity
components ¥, and V,, are presented in Figure 2 for both
the reduced SC model (2D version of SC) and OK99 results
(without the “lateral mixing”).

[24] When comparing the two simulations, we see that
they show similar features even in many of the smaller
details. This essentially is a check of the numerical accuracy
of the two models which, while solving the same equations,
are based on radically different numerical solution schemes.
Similar results were found by Sancho and Svendsen [1998].

[25] In the following, we will use the full SC equations to
simulate and analyze shear waves on a longshore uniform
barred beach. While OK99 analyzed the effects of bottom
friction and “‘lateral mixing” on shear waves, we will add
the three-dimensionality and analyze its effect on the shear
wave development. However, to be able to compare with
the OK99 results, we will continue to use the same
topography as that used by OK99, which is from the
October 16 SUPERDUCK experiment. Following OK99,
we form a longshore uniform topography by using mea-
sured SUPERDUCK topography from one transect, and
assume that this cross-shore profile extends uniformly in the
entire longshore region. A three-dimensional sketch of the
situation is shown in Figure 3.

[26] In order to further link our computations to the
measured results from that of experiment, we also assume
that the wave conditions used are similar to the waves
measured at the SUPERDUCK experiment, in which the
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Figure 3. A sketch of idealized topography used in the
simulation, and definitions of the coordinates. The cross-
shore and longshore domain length are denoted by L, and
L,, respectively. Here w. is the vertical vorticity, and w, and
w, are the two horizontal vorticity components.

root-mean square wave height H,,,, at 8 m water depth is
0.93 m, with peak frequency f, = 0.16 HZ and mean
incidence angle 6 = 21°. The top panel of Figure 4 shows
the measured (circle) and simulated (line) wave heights
from REF/DIF1. The agreement is satisfactory. The bottom
panel in Figure 4 shows the idealized SUPERDUCK
topography used in the simulations.

[27] In order to investigate how the quasi-3D dispersive
mixing affects the shear waves and how the quasi-3D
dispersive mixing and the lateral mixing provided by the
shear waves affects each other, 2D and quasi-3D numerical
experiments are carried out simultaneously by switching on/
off the quasi-3D dispersive terms. All the numerical simu-
lations are performed from a cold start, and in the following,
we consider the fully developed motions. They are quasi-
steady in the sense that after sufficiently long computation
time the average values have become steady.

[28] In order to analyze the numerical simulations of the
shear waves, we need to define the shear wave quantities
we want to analyze. The definition of the shear wave
quantities is not unique; it depends on how we define the
“mean” flow quantities. Because the time mean of the
motions taken over the timescale of the shear fluctuations
continues to evolve slowly even after many hours, the
“mean” of a quantity G is defined as the instantaneous
average over the longshore length L, of the computational
domain. This is meaningful because we use a periodic
condition at the cross-shore boundaries, which means we
are considering flows that are, in average, longshore uni-
form. Thus we are able to split the instantaneous quantity G

26 -5

. =L .
into a “mean” flow quantity G and a fluctuation part G';
that is, we write

G=G"+G (23)

'Ly
e (24)
Ly 0
where the longshore averaging is denoted by . We have
the following relations:

! / " G —0
1 =0,
L}y 0

Notice that the longshore averages for the nonlinear terms are
not equal to zero; that is, they do not follow equation (25).

[20] Using the longshore-averaged current as the mean
current allows us to investigate the time evolution of shear
waves and their effect on the mean current profile over the
cross-shore distance. However, because the fully developed
shear fluctuations are more random than periodic and L, is
limited, the longshore averaged quantities will still show a
weak temporal variation, even at a stage where the overall
flow is essentially steady. An example is shown in Figures 5
and 6. For certain results, this variation is eliminated by
averaging over a time longer than the shear wave timescale,
and this is marked by ().

(25)

4. Three-Dimensional Features of Shear Waves

[30] We first look at the instantaneous distribution of flow
characteristics in the numerical simulation for the same flow
conditions using 2D and quasi-3D versions of the SC model
system. Figure 7 shows instantaneous distributions (“‘snap
shots™) of the vorticity contours and the kinetic energy
contours at two time intervals; in particular, we consider the
depth-averaged vertical vorticity @, and the kinetic energy
k" of the shear waves, respectively, which are defined as

v o
~ y X 26
Wz ox dy (26)
~ f//z 4 f//z
K== (27)

[31] The top panels are the depth-averaged (marked by
tilde) shear wave vertical vorticity contours &, while the
bottom panels are the depth-averaged shear wave kinetic
energy contours k’. The four left-hand panels are results
from the quasi-3D simulation, and the results from the 2D
simulation are presented at the right.

Aho (m)
,",,
\
i

“ 400 500 600 700 800
X (m)

Figure 4. (top) Cross-shore distribution of wave height:
circles, data; line, result from REF/DIF 1. (bottom)
Idealized SUPERDUCK topography.
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Figure 5. Time series of instantaneous current velocities at cross-shore location x = 749 m. (a) Depth-
averaged cross-shore velocities. (b) Depth-averaged long-shore velocities. From top to bottom: current
velocities at longshore location y = %L},,%L}:,%Ly,%Ly,%Ly,%Ly,%Ly.

[32] Though there are clearly similarities between the 2D
and the quasi-3D simulations, the vertical vorticity fields in
Figure 7 show that the shear wave flow is more organized in
the quasi-3D simulation than in the 2D simulation. In the
2D simulation, the vortices are moving farther offshore of the

(a

bar, while in the quasi-3D simulation they are confined closer
to the bar where they were originally generated. Furthermore,
the strength of the vorticity in the quasi-3D simulation is
weaker than that in the 2D simulation. This is measured by

W, W,

integrating the enstrophy, half'square of the vorticity ==, over

)
o ! ; !

0t
=

>
N ; ; ;

Figure 6.

Instantaneous longshore-averaged current at cross-shore location x = 749 m. (a) Depth-

averaged cross-shore velocities. (b) Depth-averaged long-shore velocities.
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Figure 7. (top) Instantaneous distribution of depthz-qyeraged (marked by tilde) shear wave vertical
vorticity & = 2> - ‘fo and (bottom) kinetic energy ¥ =~ of (left-hand panels of each part) the quasi-3D
simulation and (right-hand panels of each part) the 2D simulation. The beach is to the right and the flow

is moving upward.




26 -8

a at t=0.827 (hrs)
y=1600m

at x=588m

y=1500m

y=1400m

0 0.03

y=1300m

0 0.03

y=1200m

0 0.03

y=1100m
0 0.03

0 0.03

-0.03 0 0.03

u‘l" (m/s)

0 0.03

ZHAO ET AL.: 3D EFFECTS IN SHEAR WAVES

at x=588m

b at t=2.86 (hrs)
y=1600m g -
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Figure 8. Instantaneous contours of the depth-varying cross-shore shear wave velocity V. along
cross-shore section with different longshore positions from the quasi-3D simulation. The times are the

same as in Figure 7.

the whole computational domain. The results for the two
times of the snapshots are 0.9559 (1/5%) and 1.0262 (1/s%) for
the quasi-3D simulation, and 1.6249 (1/s%) and 1.6083 (1/s%),
respectively, for the 2D simulation. Similarly, kinetic
energies integrated over the whole domain at the times
of the snapshots, are 652.8 (m*/s%) and 561.6 (m%/s?),
respectively, for the quasi-3D simulation, and 1478.4 (m*/s?)
and 2197.7 (m*/s?), respectively, for the 2D simulation. Thus
the shear waves in the quasi-3D simulation are also less
energetic than in the 2D simulation.

[33] Figures 8 and 9 show instantaneous contours of
the depth-varying cross-shore and longshore shear wave
velocities between y = 1000 m and y = 1600 m at the same
times ¢ = 0.827 hours and ¢ = 2.86 hours as in Figure 7. In
these figures, the contour plots represent the cross-shore
section of shear wave velocities at different longshore
positions. The details of the depth variation of the current
at a specific cross-shore or longshore location are shown to
the right of each panel.

[34] Figures 8 and 9 show that at any instant both the
cross-shore and the longshore velocities of shear waves
exhibit clear depth and longshore dependency. A particularly
strong depth variation of the current is observed far offshore
of the bar at around x = 600 m. Besides, as the color codes
indicate, the longshore currents are found at some times to
change their signs in the cross-shore direction.

[35] The three-dimensionality of the vorticity is also
evident from Figures 10 and 11, which show the snapshots
of horizontal shear wave vorticity w'y and W', respectively.
The two horizontal vorticity components are defined as

,_ow oy , oVl oW
ST e YT o

(28)

In the above, W’ is the vertical velocity of the shear waves
fluctuations. The directions of 'y and W', are defined in
Figure 3. The vertical velocities of the currents are not
provided directly by the present model which focus on the
horizontal motion, but they can be obtained by the
integration of the continuity equation. For the shear wave
velocity W’ this gives

W’:_/C
—ho

The W’ values are found to be very small and their
contribution to equation (28) is negligible.

[36] Figure 10 presents the horizontal vorticity ', along
longshore sections at different cross-shore positions, while
Figure 11 pictures the horizontal vorticity ', along cross-
shore sections at different alongshore positions. Figures 10
and 11 demonstrate that both W', and ', are depth varying
with a linear distribution with zero at the mean water level.
This is because only the leading order of the depth-varying
current V{?, which is of quadratic form as indicated by
equation (15), is utilized to analyze the result though the
vertical profiles of the current were solved to the second
order to the governing equations.

[37] The longshore dependency of ', in Figure 10 is very
clear. The ', in Figure 11 also varies in the longshore
direction and the locations with stronger vorticity shift in
the cross-shore direction with time.

[38] In summary, Figure 7 shows that the difference
between the vertical vorticity and the depth-averaged
kinetic energy of the shear waves in the 2D and quasi-
3D simulation is significant. This is likely due to the three-
dimensionality in the quasi-3D simulation as shown in

LoV
(8VX + —y) dz.

Ox Oy (29)
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Figure 9. Instantaneous contours of the depth-varying longshore shear wave velocity Vy(lo)’ along cross-shore
section with different longshore positions from the quasi-3D simulation. The times are the same as in Figure 7.

Figures 8—11. In the following, we will further analyze the
mechanisms behind this.

5. Lateral Mixing and Momentum Balance

[39] One reason that shear waves have attracted so much
attention is that they are believed to be a plausible mech-

at t=0.827 (hrs) at y=1200m b at t=2.86 (hrs) at y=1200m

anism that could contribute to the horizontal momentum
transfer in the nearshore circulation modeling. As men-
tioned, Svendsen and Putrevu [1994] found that the quasi-
3D structure of currents will also introduce momentum
transfer by a mechanism which is similar to the dispersion
effect discovered by Taylor [1954], and which can be one
order larger than the momentum transfer provided by the

J

0 0.02
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x=716m) 0 00 i 0 0.02
x=700(m) 0Of 0.02 =7
™ 0f 0 o2 TT00m 0 0 002
= 0f 0.02 =
x=684(m) ‘ 0 0.02 x=684(m) 0
£ E
= =
2 - - 0.02 I i1} .
0 500 1000 1500 2000 002 0 002 0 500 1000 1500 2000 002 0 002
y (m) o (1) y (m) o (1)

. . .. ’ ov!
Figure 10. Instantaneous snapshots of shear wave horizontal vorticity w/, = %V — 5 along longshore
sections with different cross-shore positions. The times are the same as in Figure 7.
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Figure 11. Instantaneous snapshots of shear wave horizontal vorticity w =5t = along cross-shore

sections with different longshore positions. The times are the same as in Flgure 7

turbulence. In this section, we will investigate the magni-
tude of the momentum transfer provided by the depth-
varying current through the quasi-3D dispersive terms and
the shear waves, and how these mechanisms interact with
each other. To define the problem, we need to derive the
mean and the shear wave momentum equations.

[40] Using equation (23) to split the velocities into the
longshore-averaged and the fluctuating parts in the conti-
nuity and momentum equations (5) and (6), and performing
longshore averaging (<) using equation (24) gives the
depth-integrated continuity and momentum equations for
the longshore-averaged flow,

d=L, 0 —L,
3¢ +06<Vﬁh'>=o (30)
0 (=L 0 ~_Ly~_Ly—L).
(0 ) (0
10 —L,
7687( S +Txa _Lxu )
N =L,
T 0D (G,
- P gh Ox ax(VO(Vx h ) (31)

where (3 is a dummy index and the subscript , denotes the
component in the cross-shore (x) direction. Here we have
neglected the surface elevation for the shear waves, i.e., /' =0,
to simplify the derivation. Also, since we have turned off the
wave-current interaction due to shear wave velocities, the
terms related to the per‘[urbation of radiation stress is zero.

[41] The term —2Z(7.7/'A") in the mean momentum
equation (31) provides momentum transfer from the shear
waves to the mean flow. It is similar to the role of Reynolds
stresses in the Reynolds-averaged equations. The term

STAG . o
—l% represents quasi-3D current-current contribution

to 'the momentum transfer due to the depth-varying current
(“dispersive mixing”).

[42] In the following, we will investigate how the quasi-
3D dispersive term and the shear waves affect one another.
To achieve this, we will first average equation (31) over
timescales sufficiently longer than the shear wave timescale

(marked by (-)),
0 (= L=t \\ /10— 10—,
(7)) = Gam )+ o)
"
i)
pOx P

=L,
—L, ag ’ g = ~,Ly—Ly
_<gh axa>—<ax(axh)>.

(32)

[43] We then analyze how the momentum is transferred by
the qua51 3LD dlsperswe term ((— ‘)Lm }), and the shear waves
(=277 7"™))), by comparing the magmtude of these two
terms Flgure 12 shows the cross-shore distribution of long-
shore and time-averaged horizontal momentum transfer by
the quasi-3D dlspers1vLe term (-1 (’L“ " ) (solid lines)) and the
shear waves ((— 2 V.77 (dashed llnes)) in the cross-shore
(top panel) and longshore (bottom panel) momentum equa-
tions from the quasi-3D simulation. For the case studied
here, it shows that in the longshore momentum balance, the
momentum transfer provided by the shear waves dominates
over the momentum transfer by the quasi-3D dispersive
terms. This momentum transfer contributes to the cross-
shore variation of the mean longshore current. The quasi-3D
dispersive terms, however, provide slightly larger momen-
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Figure 12. Cross-shore distribution of time and longshore-averaged horizontal momentum transfer by
the quasi-3D dispersive term ((— %"LL,—X)) (solid lines)) and by shear waves ((—Z V. V! "") (dashed lines))

in the (topg

units of m?/s%. The shoreline is at x = 788 m.

tum transfer than that by the shear waves in the cross-shore
momentum equation.

[44] We then compare the leszel of the momentum transfer
due to shear waves ((— 2 (7.7 7)) in the 2D and the quasi-
3D simulation. The results are shown in Figure 13, where the
dashed lines represent the results from the 2D simulation,
and the solid lines are the results from the quasi-3D simu-
lation. It shows that the momentum transfer provided by the
shear waves in the 2D simulation is larger, and has wider
cross-shore extension than that in the quasi-3D simulation.
This is consistent with the observation in Figure 7 in that in
the 2D case the shear wave energy is spread farther seaward.
It is also seen that the difference in the level of momentum
transfer between the 2D and quasi-3D simulation is more
evident in the cross-shore momentum equation than that in
the longshore momentum equation. The computations indi-
cate that this difference is due to the pLhase shift between V',
and V', in the mi?(ing term (— 2 (V. V! "7")) in the longshore
momentum equation.

cross-shore and (bottom) longshore momentum equations from the quasi-3D simulation, in

[45] The total amount of the momentum transfer in the 2D
and quasi-3D simulation are compared in Figure 14. In the
2D case (dashed lines), the total momentum transfer is
mainly provided by the shear waves (—Z (V.V} "A)), as
the turbulence mixing is generally small compared to the
shear wave mixing. In the quasi-3D flow situation (solid
lines), the momentum transfer is provided by a combination
of the shear waves and the quasi-3D dispersion due to the
depth varying current. Therefore the total momentum trans-
fer in the quasi-3D simulation is (-2 (7,77 5")) + <—|l,"’3; >
The figures show large differences in the level of the
total cross-shore momentum transfer, in particular, off-
shore of the bar where the mixing in the quasi-3D case is
almost negligible. In the longshore momentum equation,
however, only small differences occur. As a consequence,
the mean longshore current profiles (Figure 15) for the
2D and quasi-3D simulations also exhibit very small
differences. Thus in popular terms one can say it seems
that in the case of a 2D simulation the shear wave

x-momentum eq.
\

y-mom(‘,ntum eq.

Figure 13.

(top) Time averaged cross-shore and (bottom) longshore momentum transfer by the shear

waves ((— % V! V;L"’hL”>) from the 2D (dashed lines) and the quasi-3D (solid lines) simulation, in units

of m?/s%. The shoreline is at x = 788 m.
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intensity increases to compensate for the lack of 3D
mixing.

6. Kinetic Energy Budget

[46] The bottom panels of Figure 7 clearly demonstrated
that there is a big difference in the kinetic shear wave
energy in the 2D and quasi-3D simulation. This leads us to
analyze how the shear wave energy is generated in the flow.

[47] The equation for shear wave kinetic energy reads
(equation (A9); for derivation, see Appendix A)

/Lxg Ve
o Ot 2

A
dx =— / A Ry
0

= L,

"L, oy

+/ | V&aTBQ dx
o p Oxp

= L, —L,

L / ’ L. /B

« ! OL! -

f/ Lo~ fo dxff 71l g,
o P Ox 0 P

(33)

Here the term on the LHS of equation (33) represents the
change of shear wave kinetic energy. On the RHS, the first
term represents the production of shear wave kinetic energy
by the mean flow (PROD in equation (33)); the next three
terms on the RHS represent the work done by turbulent
shear stress (TURB), by the quasi-3D dispersive mixing

6(;0
X (m)

(top) Total momentum transfer in the cross-shore and (bottom) longshore direction from the

ox " alx

") 4 <— %"@L> (solid lines)) and the 2D ((— 277" %) (dashed lines)) simulations, in

terms (DISP), and by the bottom friction(FRICT), respec-
tively, all due to shear wave velocities. In the case of a 2D
simulation, the third term at the RHS would obviously
missing.

[48] Equation (33) is the instant kinetic energy equation
for the shear waves, and it governs how the shear waves
grow with time. In order to investigate how the shear wave
energy develops and to illustrate the contribution of each
mechanism, particularly the quasi-3D dispersive mixing
terms to the shear waves, we computed each term in
equation (33) from the numerical simulation.

[49] Figure 16 shows, from top to bottom, the temporal
evolution of the shear wave kinetic energy within the
computational domain, the shear wave kinetic energy
production by the mean flow, and work done by the
turbulence, by the quasi-3D dispersion terms and by the
bottom friction terms due to shear wave velocities, respec-
tively, corresponding to the four terms on the RHS of
equation (33).

[s0] The temporal evolution of the shear wave energy
shows that there is a surge in the production term at the
initial stage in the shear wave development process. After
that, the shear wave kinetic energy fluctuates about the
mean with a net increase that approaches zero as a steady
state develops. The contribution of the production term is
always positive, as would be expected. Similarly, the work
done by the turbulence and the bottom friction terms are
always negative, indicating that they remove energy from
the shear waves. Of particular interest, however, is that the

Figure 15. Time-averaged mean longshore
simulation.

600
x(m)

current in the 2D (dashed line) and quasi-3D (solid line)
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Figure 16. Time evolution of shear wave energy. PROD, production of shear wave kinetic energy
by the mean flow; TURB’, work done by the turbulence on shear waves; DISP’, work done by the
quasi-3D dispersive terms on shear waves; FRICT’, work done by the bottom friction on shear

waves. Units are m?/s>.

work done by the quasi-3D dispersive mixing terms asso-
ciated with the shear waves (the third term in the RHS of
equation (33)) is also negative at all times. This indicates
that the quasi-3D dispersive mixing terms extract kinetic
energy from the depth-averaged shear waves. And as the
form of the term implies that this part of the energy is not
dissipated to heat but is transferred to the depth-varying
current. Furthermore, it is seen that the contribution of the
quasi-3D dispersive terms is at least one order larger than

the work done by the turbulent shear stress on shear waves
but of the same order of magnitude as the contribution from
the bottom friction.

[5s1] An alternative way to illustrate the role of the quasi-
3D dispersive mixing terms on the shear waves is to look
at the cross-shore distribution of the work, done by the
quasi-3D dispersive mixing terms, <—VT% ), on shear
waves as shown in the top panel of Figure 17. The (-)
above indicates long-term averaging over the period after
the initial surge. Again, it is seen that the global contri-
bution of the work done by the quasi-3D dispersive terms
is negative.

[52] The next question we would ask is does the quasi-3D
dispersive mixing terms extract energy from the depth
uniform current at every location? To answer this question,
we will look at the work done against the longshore-

—I, R
averaged current 7, by the longshore-averaged quasi-3D

dispersive mixing terms, <—49§'). The bottom panel of
Figure 17 shows the time-averaged cross-shore distribution
of the work done by the quasi-3D dispersive terms on the
longshore-averaged currents <J’|—‘)LL,;L>, which means
it represents the exchange of energy between the depth-
uniform and the depth-varying part of the longshore-
averaged flow. Since Figure 17 shows that this term is
overwhelmingly negative over the cross-shore transect,
it appears that the <—’T%) term actually transfers kinetic

energy from the depth-uniform current to the depth-varying
current component.

7. Three-Dimensional Effect in Vertical Vorticity

[53] The top panels in Figure 7 demonstrate differences
in the strength of shear wave vertical vorticity in the 2D and
the quasi-3D calculations. This is not a surprise, as the
vortex dynamics in the 2D and the quasi-3D flow situations
is fundamentally different. Vortex tilting, which is a three-
dimensional phenomenon, is absent in a 2D simulation. In
order to analyze the three-dimensional vorticity balance, the
vorticity transport equation needs to be derived. The
interactions between the longshore-averaged and the fluc-
tuating vortices, however, can be discussed only in terms of
enstrophy, which is defined as the half square of the
vorticity, 5.
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[s4] The momentum equation (6) is written in the form

Wy - OV, a1 9 1 5
o T Vﬁc’)_xﬁ__ Oxe  phixs (Spo — Tm+Lm)—p—hTm
(34)
where
d - - - Ve -~ OC
8_)% Vm V’ih - VBh 8x;3 Vu 6t’ (35)
in which
oh o

and the continuity equation (5) is used.
[s5] Taking the curl of equation (34), we get the depth-
averaged vertical vorticity transport equation,

0%, - 00 . IV 21 0
Ve = A~ uz___Su_Tq Lu
ot t7 Oxg T Oxg e Oxg ph 8xy( Y vo Ly )
o 8
(\z_&7 37
= s ph (37)

where @, is the depth-averaged vertical vorticity, €. is
called the alternating tensor or the permutation symbol.
[s6] Equation (34) solves the depth-integrated current
velocity V,, the effect of depth varying current Vi, is
hidden in the quasi-3D dispersive terms, Lg,. As a conse-
quence, equation (37) is different from the vorticity trans-
port equation derived from the shallow water equation in
that the three-dimensional vortex stretching and tilting is
enabled through the quasi-3D dispersive terms. This can be
seen clearly when we write equation (37) in the potential
vorticity form by using the continuity equation (5).

D (&, 1 01 0 a8

~\ 7 ) = 7| Bz a7 &_T& L o) I(\‘z_J .

Dt(h) h{ = Oxg ph Ox (Sy vot Lya) =3 Oxg ph
(38)

[57] Equation (38) demonstrates that the radiation stress
term is the source term and the turbulence shear stress and the
bottom friction term are the sink terms in the potential vorticity
equation. The role of the quasi-3D dispersive term is to
provide vortex tilting, which will be shown later this section.

[s8] Similar to the shear wave kinetic energy, the depth-
integrated enstrophy equation for the shear waves is (equa-
tion (B10) in Appendix B),

L, TVL).fL‘ Lo —L,

0 gw;wzz h dr — 7/0 QLI?‘{L\ZLJ &;; dx
+/0 m‘ Z@xs )h (?xy d

b 0 1 0L .
— /0 EBaz Uaza—xﬁh— 8)67
—L.

L. A /B
* —,., 0 T
- / S @ o o dx
0 8 ph

L _ v, _, oVl ov.
L | -, 9V  =1,0Vs OV

h \ / k 5 !
/0 s ( “ Oxg = GX@ i Ox

!
~ b
) dx,

(39)

where & is the depth-averaged vertical vorticity for the
shear waves.

[59] In equation (39), the left-hand side represents the
change of shear wave vorticity, the first term on the right-
hand side is the vorticity production term due to the gradient
of the mean vorticity. This term is like the turbulence
production term in the energy equation; we call it the
gradient production of shear wave vorticity by the mean
flow. The next three terms on the right-hand side of the
equation are the contribution to the shear wave vorticity due
to the turbulent shear stress, the quasi-3D dispersive terms
and the bottom friction, respectively. The last line in
equation (39) counts for the effect due to the changes of
water depth, the two-dimensional vortex stretching/squeez-
ing term, when the continuity equations are used.

[60] The individual terms in equation (39) are shown in
Figure 18. The shear wave vorticity is fed by the anean shear
through the vorticity production term — f;* &V 7 8” " dx.

z" x
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Figure 18. Time evolution of shear wave enstrophy. PROD, production of the shear wave enstrophy by
the mean flow; TURB?’, dissipation of the enstrophy due to the turbulent shear stress. DISP’, contribution
to the enstrophy due to the 3D dispersive terms; FRICT’, dissipation of the enstrophy due to the bottom
friction; STRETCHING, contribution to the enstrophy due to the change of water depth. Units are m?/s’.

The turbulence and the bottom friction due to the shear
waves will dissipate part of the enstrophy. The contribution
of the quasi-3D dispersive terms to the shear wave ens-
trophy equation is always negative. Because the quasi-3D
dispersive term is nondissipative as the form implies, this
term actually provide vortex tilting. The total vortex stretch-
ing/squeezing due to the change of water depth is negative
in this case.

8. Summary and Discussions

[61] In this paper, the quasi-3D numerical model
SHORECIRC has been utilized to study shear waves.

Two-dimensional and quasi-3D numerical experiments are
carried out using the idealized SUPERDUCK topography
also used by OK99. The depth-averaged shear wave quan-
tities in the 2D and quasi-3D simulation showed significant
differences when the same conditions are used. In general,
the shear waves in the quasi-3D simulation are less ener-
getic than that in the 2D simulation. Moreover, the shear
wave vortices are more confined to the nearshore compared
to that in the 2D situation. In the quasi-3D simulation the
shear wave velocities and the vorticity show clearly three-
dimensional characteristics, and three-dimensional vortex
tilting is also found in the quasi-3D simulation. These
elements are missing in a 2D simulation.
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[62] The momentum equations, energy equations, and the
enstrophy equations for both the longshore-averaged flow
and for the shear wave part are derived to study the different
mechanisms in the 2D and quasi-3D simulation, in particular,
the effect of the quasi-3D dispersive terms in the shear waves.

[63] The momentum balance shows that both the shear
waves and the depth-varying currents provide horizontal
momentum transfer to the system. The momentum transfer
provided by the shear waves is sometimes stronger than that
by the quasi-3D dispersive terms, but generally of the same
order of magnitude for the longshore balance in the quasi-3D
flow situation. In the cross-shore momentum balance,
however, the quasi-3D dispersive terms dominate. In the
2D situation, the momentum transfer provided by the shear
waves is much stronger than in the quasi-3D simulation, a
finding which is in accordance with the result that the shear
wave energy is also much larger in the 2D simulations.
However, the total momentum transfer (“lateral mixing”) is
approximately the same in the 2D and the quasi-3D simu-
lations in the longshore momentum equation, because in the
quasi-3D case the smaller momentum transfer due to smaller
shear wave velocity is compensated by the 3D dispersive
mixing due to the vertical variation of the currents.

[64] While the shear waves and the quasi-3D dispersion
act in parallel in the momentum balance, their functions in
the energy balance are quite different. As expected, the
analysis of the energy balance for the shear waves shows
that the shear wave kinetic energy is first of all extracted
from the mean flow through the shear of the longshore
current. However, the work done by the quasi-3D dispersive
mixing terms on the shear waves extracts kinetic energy
from the depth averaged shear waves and transfers it into
the depth-varying part of the currents.

[65] The enstrophy balance of the vertical vorticity com-
ponent of the shear waves shows that the shear wave
vorticity is mainly fed by the gradient of the mean vorticity.
The contribution of the quasi-3D dispersive terms to the
depth-averaged vertical vorticity component is negative.
This indicates that the quasi-3D dispersive terms in the
vorticity transport equation derived from SC actually pro-
vide the three-dimensional vortex tilting.

[66] It is worthwhile to mention that though the present
paper presents shear waves in a particular situation using
certain bathymetry and frictional coefficient, the results and
the conclusions are not limited to this case. To verify this
point, we have run shear waves on a longshore uniform
plane beach and used different bottom friction coefficients.
We found that the conclusions we obtained in this paper
generally hold for all tested conditions.

Appendix A: Derivation of the Shear Wave
Kinetic Energy Equation

[67] The depth- integrated kinetic energy equation for the
longshore-averaged flow is obtamed by taking the dot
product of equation (31) and 7. In the process, we notice
that

L

=L\ 0 (l=L="L, =—L—=1L,\ Oh"
—t(VQ h >f@(§VQ Vo h )+(2Vu Vo ) T

(A1)
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[68] Using the continuity equation (30) for the longshore-
averaged flow, we then get the local kinetic energy equation
for the longshore-averaged flow as

0 (l=Ly=Lp, 0 (1=L=L="L
E(EVN Vm h )+$<5Vm Vu Vr h )

~_Ly —], ~_Ly —L, ~_LJ= — —L,
+ V(x 8qu ’ - V(\ 6Tm ! + Vm 8Lx¢y +7L i
p  Ox p Ox p  Ox C o
— 0 ——
+gh T, aQ L7 el 7R <o (A3)

[60] When this equation is averaged in the longshore
direction, we are left with several convective terms. How-
ever, these terms only move energy from one point to
another. Therefore, in order to eliminate those terms, we
integrate over L, (the computation length in the cross-shore
direction) as well, so that we get the energy equation for the
entire computational domain.

[70] In the derivation, we also notice that

=1,

=Ly —p=Ly=L, 1 =12

T G = L (T ) gl )
X

Oxq ot 2

in which the continuity equation for the longshore-averaged
flow motion equation (30) has been used.

[71] When integrating equation (A3) over L,, the cross-
shore extension of the computational domain, we find that
all the divergence type terms go to zero when applying the
boundary conditions.

[72] Furthermore, we write

v ) ——L O »LaV(\
(9_ Vh ~ ox X

(A3)

;l

We then get the kinematic energy equation for the
longshore-averaged flow,

~—L‘.

L 0 Vu (x 7Lv
L al * +/

Li et 9V, V " 98
:/'%whﬁ—fmf/ LN
0 Ox Jo P 8x

gQ dx

(A6)

where the wave-current interaction has been turned off.



ZHAO ET AL.: 3D EFFECTS IN SHEAR WAVES

[73] The local continuity and momentum equation,
respectively, for the shear waves are obtained by subtracting
equation (30) from equation (5), and equation (31) from
equation (6),

0 (=L,

0—%@@ ) —0 (A7)
d (=71, d [+, =1\ 108, 10Ty, ~10L;, 1B
. V/h v _ V/V/ht Q - pa 1 o
6t<" >+6x<" p >+p6x p Oxg p(?xﬁer

=Ly =Ly . g L
+ 2 ( Vs hL"’) 2 (Va VéhL") 95t~
Ox ’
(AS)

[74] In the derivation above, we have assumed 4’ = 0 to
simplify the derivation.

[75] Taking the dot product of the shear wave momentum
equation (A8) and V., we obtain the local kinetic energy
equation for the shear waves. Performing longshore
averaging and then integrating it over L,, we get the

kinetic energy equation for the shear waves equivalent to
(A6).

L, = )
/ g a o p v
0 Ot 2

L,

L Ly 171 /
4 o 4 oL o
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o p Oxs o p Oxs
Lo _ /BL"
- / V(; & dx (A9)
0 p

[76] In the above, we have used the continuity equations
(30) and (A7), and identified

Ly ~7Ly
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[77] The divergence theorem and the boundary conditions
have been used to eliminate the convective terms.

Appendix B: Derivation of the Shear Wave
Enstrophy Equation

[78] According to equation (24),

B0y, 0) = 30,0+ (3,0,0), (B1)
L . ..
and ©(x,y,1) " is the longshore-averaged vorticity.
. T B
U)(xvy? t) =7 w(xayv t)dy (Bz)
Ly 0

[79] Substituting equations (B1)and (B2)into equation (37)
and performing longshore averaging, we then obtained the
longshore-averaged vorticity transport equation,

—L, =L, =L,
0w, n =1L, 0%, n LI)_L’” Vs
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P
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—c gi — ! 0w Y % (B3)
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[so] The vorticity transport equation for the shear waves
is obtained by subtracting equation (B4) from equation (37),
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[81] Similar to the shear wave kinetic energy equation,
the depth-integrated enstrophy equation for the shear waves
is obtained by taking a dot product of equation (B4) and
Lk ", then performing the longshore averaging. The conti-
nuity equations for the longshore-averaged flow and the
shear waves, and

_
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are used in the derivation. Integrating the enstrophy
equation in the cross-shore direction, and using the
boundary condition, we get the enstrophy equation for the
shear waves in the entire domain.
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