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a b s t r a c t 

This study presents a continuum approach using a diffusion approximation method to solve the scattering 

of ocean waves by randomly distributed ice floes. In order to model both strong and weak scattering, 

the proposed method decomposes the wave action density function into two parts: the transmitted part 

and the scattered part. For a given wave direction, the transmitted part of the wave action density is 

defined as the part of wave action density in the same direction before the scattering; and the scattered 

part is a first order Fourier series approximation for the directional spreading caused by scattering. An 

additional approximation is also adopted for simplification, in which the net directional redistribution 

of wave action by a single scatterer is assumed to be the reflected wave action of a normally incident 

wave into a semi-infinite ice cover. Other required input includes the mean shear modulus, diameter 

and thickness of ice floes, and the ice concentration. The directional spreading of wave energy from the 

diffusion approximation is found to be in reasonable agreement with the previous solution using the 

Boltzmann equation. The diffusion model provides an alternative method to implement wave scattering 

into an operational wave model. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Propagation of ocean waves into an ice cover is one of many

ave phenomena in nature. It shares the same basic conceptual

odel as in acoustic, elastic, and electromagnetic wave propaga-

ion in complex media. The study of ocean waves in ice covered

ondition has a long history (e.g. Greenhill, 1886 ). Contemporary

tudies of this topic have been accelerating due to the rapid de-

line of ice in the Arctic ( Comiso et al., 2008 ) and intensified wave

ctivities ( Thomson and Rogers, 2014 ). These conditions combined

ith increased shipping and environmental concerns call for better

odels of ocean waves in various ice covers. 

As a material, ice covers are extremely inhomogeneous. Their

hysical properties change dynamically in response to both ther-

al and mechanical forcing. When ocean waves enter an ice cover,

wo things may happen: its speed may change and its energy may

e reduced/redirected. Two fundamental processes affect the en-

rgy: the intrinsic and the scattering attenuation. The first results

n net energy loss due to various dissipative processes, many of

hich have been considered in different models. The second is a

eduction of energy in the original wave direction through scat-
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ering. The total energy is not affected but only redistributed into

ther directions. The present study addresses the scattering part of

ave propagation. 

Scattering is the directional redistribution from the original

ave direction ( Ishimaru, 1978 ). Studies at the scatterer scale are

he foundation for the macro-scale models, which determine the

nergy propagation through a large collection of scatterers over a

ong distance. For instance, Ryzhik et al. (1996) gave the formula-

ion of a general transport equation for wave propagation in ran-

om media including both the intrinsic and scattering attenuation.

hese attenuations from a single scatterer determine the coeffi-

ients used in the transport equation. Examples were provided in

coustic, electromagnetic, and elastic waves. Numerous references

an be found in each of these fields as listed in their study. 

For ocean waves under ice covers, the scattering process has

lso been developed from the scatterer scale to the macro-scale.

t the scatterer scale, detailed study was conducted for 2-D wave

ransmission and reflection between open water and ice covers,

etween ice covers of different properties, where the ice cover

as assumed semi-infinite or finite in extent, and for 3-D cases

here the ice was circular or arbitrary in shape (reviewed in

quire, 2011 ). These studies provided the reflection from a sin-

le ice boundary in the 2-D case (e.g. Fox and Squire, 1990 ), and

he scattering distribution from a single ice floe in the 3-D case

http://dx.doi.org/10.1016/j.ocemod.2016.09.014
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(e.g. Meylan and Squire, 1996 ). Utilizing these results, wave prop-

agation through an array of ice floes in 2-D and 3-D cases, with

uniform or non-uniform floe sizes and various ice properties have

been studied ( Doble and Bidlot, 2013; Dumont et al, 2011; Mas-

son and LeBlond, 1989; Meylan and Masson, 2006; Meylan et al.,

1997; Montiel et al., 2016; Perrie and Hu, 1996, 1997; Peter et al.,

2004; Williams et al., 2013a, 2013b ). The goal of these studies is to

incorporate the scattering process in an operational ocean model. 

There are two approaches used in solving the wave scattering

through a large array of ice floes. One assumes the independence

of phase interactions, so that the wave fields generated may be su-

perimposed (e.g. Masson and Leblond, 1989; Meylan et al., 1997 ).

The other solves the multiple-floe domain as a coupled hydroelas-

tic problem with each floe-water interface as part of the complex

boundary ( Bennetts and Squire, 2009; Montiel et al., 2016 ). In the

present study, we propose a different approach from these two.

The proposed method is based on a modified diffusion approxi-

mation used in other wave propagation fields. This method is not

as accurate as the two approaches mentioned above, but it pro-

vides an alternative method which may be easier to incorporate in

operational ocean models that need to treat a large variety of ice

covers. 

2. The theoretical formulation 

In this section, we derive the governing equations for wave

scatterings with a diffusion approximation. The advantage of such

approximation is to avoid calculating the complex integral ker-

nel in the integral-differential equation of the wave action den-

sity function. The diffusion approximation is commonly used in

the radiative transfer problem in a random medium ( Ryzhik

et al., 1996 ). However, the existing diffusion approximations used

in various fields with random scatterers all assume strong scatter-

ing, such that the distance over which a single direction wave ray

becomes isotropic is short compared with other length scales in a

field of scatterers. This assumption allows previous diffusion mod-

els to focus on the isotropic part of the wave action density func-

tion. 

For gravity waves propagating in a field of discrete ice floes,

such assumption does not apply well to long waves. We thus

propose here a different approach. The general philosophy of

this approach is to start with a two-term decomposition for the

wave action density function: the transmitted part and the scat-

tered part. The transmitted part attenuates its energy through

scatterings. The scattered part gains the energy from the trans-

mitted part and gradually becomes more isotropic. We apply

the diffusion approximation for the scattered part to obtain

three differential equations. Details of the derivation are given

below. 

The wave action balance equation of ocean waves is 

∂ 

∂t 
N( x , t, k ) + ∇ · [ c g N(x , t, k ) ] = 

S(x , t, k ) 

ω 

. (1)

Here, N = E / ω is the wave action density function ( Andrews and

Mcintyre, 1978 ), in which E is the wave energy density per unit

area of angular frequency ω, k is the wave number vector, x is

the spatial coordinate, t is time, c g is the group velocity vector,

and S is the total source/sink term. In addition to scattering, the

source/sink may include processes such as wind generation, wave

breaking, and nonlinear transfer between different frequencies. In

the presence of an ice cover, these source/sink terms are not well

established. If we ignore all other processes and focus on the scat-

tering process alone, then along each wave component k the above
quation becomes the following Boltzmann equation ( Meylan et al.,

997 ). 

∂ 

∂t 
N(x , t, k, θ ) + c g θ · ∇N(x , t, k, θ ) 

= −c g αs (x , t, k, θ ) N(x , t, k, θ ) 

+ c g 

∫ 2 π

0 

S k (x , t, k, θ, θ ′ ) N (x , t, k, θ ′ ) dθ ′ . (2)

ere, αs is the scattering attenuation coefficient, θ indicates the

irection of wave number vector k , k = | k |, and S k is the kernel

unction of wave energy redistribution. The scattering kernel S k 
epresents wave energy in the θ ’ direction that is redirected into

he θ direction ( Meylan et al., 1997 ). There has been a consider-

ble amount of study based on thin-elastic-plate theory to derive

 k (e.g. Meylan and Squire, 1996; Meylan et al., 1997 ; and Bennetts

nd Williams, 2010 ), which we referred to as the “scatterer scale”

tudies. The energy conservation condition leads to 

s (x , t, k, θ ) = 

∫ 2 π

0 

S k (x , t, k, θ ′ , θ ) dθ ′ . (3)

Thus, the redistribution of energy is exactly the loss of energy

n the given wave direction. 

We now propose a decomposition of N, which is more effective

n following both weak and strong scattering processes. The wave

ction density function N defined in Eq. (1) is linearly decomposed

nto two parts, 

(x , t, k, θ ) = A (x , t, k, θ ) + B (x , t, k, θ ) . (4)

We define A ( x , t , k , θ ) as the transmitted part in the direction

f N ( x , t , k , θ ), and B ( x , t , k , θ ) is the scattered part. In this de-

omposition, the amount of the “incident” wave N that remains in

he same direction after scattering is isolated from the rest of scat-

ering energy. In this way, we can better treat weakly scattering

aves before they become completely isotropic. Furthermore, the

volution of waves from open water, a no scattering region, into

n ice field, a scattering region, may also be followed more closely

ear the boundary between the two regions. Masson and LeBlond

1989) applied a similar decomposition. The governing equations

or these two parts are as the following, 

∂ 

∂t 
A (x , t, k, θ ) + c g θ ·∇A (x , t, k, θ ) = −c g αs (x , t, k, θ ) A (x , t, k, θ ) ,

(5)

∂ 

∂t 
B (x , t, k, θ ) + c g θ · ∇B (x , t, k, θ ) = −c g αs (x , t, k, θ ) B (x , t, k, θ )

+ c g 

∫ 2 π

0 

S k (x , t, k, θ, θ ′ ) B (x , t, k, θ ′ ) dθ ′ 

+ c g 

∫ 2 π

0 

S k (x , t, k, θ, θ ′ ) A (x , t, k, θ ′ ) dθ ′ . (6)

Eq. (5) says energy transmitted in the “incident” wave direc-

ion is reduced exactly by the amount of loss from the scattering

rocess. Eq. (6) says the scattered energy is increased by contri-

utions of the total redistribution from the scattered part and the

incident” part. The governing equation for A is straightforward. To

implify the integral-differential equation for B , we adopt a diffu-

ion approximation. 

To use the diffusion approximation, we decompose B into a di-

ectional averaged part and a fluctuating part as the following, 

 (x , t, k, θ ) = B̄ (x , t, k ) + B 

′ (x , t, k, θ ) + · · · , (7)

here 

¯
 (x , t, k ) = 

1 

2 π

∫ 2 π

B (x , t, k, θ ) dθ. (8)
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Similar to what has been done in previous diffusion approxima-

ions, we use a first order approximation for Eq. (7) by including

he first two terms in the Fourier series expansion of B with re-

pect to θ : 

 (x , t, k, θ ) = B 0 (x , t, k ) + B 1 (x , t, k ) · θ + · · · . (9)

In the above, 

 0 (x , t, k ) = B̄ (x , t, k ) , (10)

 1 (x , t, k ) · θ = B 1 x (x , t, k ) cos θ + B 1 y (x , t, k ) sin θ = B 

′ (x , t, k, θ ) ,

(11) 

 1 x (x , t, k ) = 

1 

π

∫ 2 π

0 

B (x , t, k, θ ) cos θdθ, (12)

 1 y (x , t, k ) = 

1 

π

∫ 2 π

0 

B (x , t, k, θ ) sin θdθ. (13)

We now make two assumptions: 1) a local equilibrium condi-

ion for B ’, i.e. ∂ B ’/ ∂ t ≈ 0; and 2) αs is independent of θ . The first

ondition means 

∂ B 1 x 

∂t 
= 

1 

π

∫ 2 π

0 

∂B (x , t, k, θ ) 

∂t 
cos θdθ ≈ 0 , (14) 

∂ B 1 y 

∂t 
= 

1 

π

∫ 2 π

0 

∂B (x , t, k, θ ) 

∂t 
sin θdθ ≈ 0 . (15) 

This condition is satisfied when 

∂B ′ 
∂t 

� c g αs B 
′ , or c g αs �t � 1.

he scattering attenuation αs ≈ e / l , where l is the distance be-

ween centers of neighboring ice floes and e is the percent of en-

rgy scattered at each floe. The size of the computational grid is

x ≈ c g , max �t from Courant–Friedrichs–Lewy stability condition.

sing the deep water condition to estimate, we have c g =g /2 ω
nd c g , max =g /2 ω min . The wavelength is λ=2 πg / ω 

2 and λmax =
 πg/ω 

2 
min 

. Therefore, c g αs �t ≈ e ω 
ω min 

λ
l 

�x 
λmax 

. For cells much greater

han the wavelength, c g αs �t � 1is satisfied. An isotropic αs im-

lies 

s (x , t, k, θ ) = αs (x , t, k ) = 

∫ 2 π

0 

S k (x , t, k, θ ′ , θ ) dθ ′ , (16)

ence 

 k (x , t, k, θ ′ , θ ) = S k (x , t, k, θ ′ ) . (17)

We multiply both sides of Eq. (6) by cos θ then integrate over

 π . The left hand side is approximately zero from assumption 1.

he right hand side becomes, after applying assumption 2, π ∂ ̄B 
∂x 

+
αs B 1 x . We thus obtain 

αs B 1 x = 

∂ ̄B 

∂x 
. (18) 

Similarly, we repeat the above by multiplying Eq. (6) with sin θ
o get 

αs B 1 y = 

∂ ̄B 

∂y 
. (19) 

Substituting Eqs. (18) and ( 19 ) into Eq. (11) , we have 

 

′ (x , t, k, θ ) = − 1 

αs 
θ · ∇ ̄B (x , t, k ) . (20)
To obtain the governing equation of B̄ (x , t, k ) , we take the di-

ectional average of Eq. (6) , which yields 

∂ 

∂t 
B̄ (x , t, k ) + c g 

1 

2 π

∫ 2 π

0 

θ · ∇B (x , t, k, θ ) dθ

= −c g 
1 

2 π

∫ 2 π

0 

αs (x , t, k, θ ) B (x , t, k, θ ) dθ

+ c g 
1 

2 π

∫ 2 π

0 

∫ 2 π

0 

S k (x , t, k, θ, θ ′ ) dθB (x , t, k, θ ′ ) dθ ′ 

+ c g 
1 

2 π

∫ 2 π

0 

∫ 2 π

0 

S k (x , t, k, θ, θ ′ ) dθA (x , t, k, θ ′ ) dθ ′ . (21) 

Using the energy conservation condition Eq. (3) , we obtain 

∂ 

∂t 
B̄ (x , t, k ) + c g 

1 

2 π

∫ 2 π

0 

θ · ∇B (x , t, k, θ ) dθ

= − c g 
1 

2 π

∫ 2 π

0 

αs (x , t, k, θ ) B (x , t, k, θ ) dθ

+ c g 
1 

2 π

∫ 2 π

0 

αs (x , t, k, θ ′ ) B (x , t, k, θ ′ ) dθ ′ 

+ c g 
1 

2 π

∫ 2 π

0 

αs (x , t, k, θ ′ ) A (x , t, k, θ ′ ) dθ ′ . (22) 

Eliminating the first and second terms on the right hand side

f the above equation, we get 

∂ 

∂t 
B̄ (x , t, k ) + c g 

1 

2 π

∫ 2 π

0 

θ · ∇B (x , t, k, θ ) dθ

= c g 
1 

2 π

∫ 2 π

0 

αs (x , t, k, θ ′ ) A (x , t, k, θ ′ ) dθ ′ . (23) 

For the second term of the left hand side in the above equation,

e substitute Eqs. (7) and ( 20 ) into it to get 

1 

2 π

∫ 2 π

0 

θ · ∇B (x , t, k, θ ) dθ = 

1 

2 π

(∫ 2 π

0 

cos θdθ
∂ 

∂x 
B̄ (x , t, k ) 

+ 

∫ 2 π

0 

sin θdθ
∂ 

∂y 
B̄ (x , t, k ) 

)
− 1 

2 π

∫ 2 π

0 

θ · ∇ 

1 

αs 
θ · ∇ ̄B (x , t, k ) dθ

(24)

The two terms in the parentheses equal to zero. Hence, 

1 

2 π

∫ 2 π

0 

θ · ∇B (x , t, k, θ ) dθ = − 1 

2 π

∫ 2 π

0 

θ · ∇ 

1 

αs 
θ · ∇ ̄B (x , t, k ) dθ.

(25) 

After some algebra, we obtain 

1 

2 π

∫ 2 π

0 

θ · ∇ 

1 

αs 
θ · ∇ ̄B (x , t, k ) dθ = ∇ · D (x , t, k ) · ∇ ̄B (x , t, k ) . 

(26) 

Since we assumed that αs is isotropic, 

 (x , t, k ) = 

c g 

2 αs (x , t, k ) 
I . (27)

ere, I is the unit tensor. Substituting the above into Eq. (23) , we

et 

∂ 

∂t 
B̄ (x , t, k ) = ∇ · D (x , t, k ) · ∇ ̄B (x , t, k ) 

+ c g αs (x , t, k ) 
1 

2 π

∫ 2 π

0 

A (x , t, k, θ ′ ) dθ ′ . (28) 

In summary, we obtain the governing equations for the energy

ction density function as the following, 

(x , t, k, θ ) = A (x , t, k, θ ) + B̄ (x , t, k ) + B 

′ (x , t, k, θ ) , (29)
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Fig. 1. Schematic of the case. 
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∂ 

∂t 
A (x , t, k, θ ) + c g θ · ∇A (x , t, k, θ ) = −c g αs (x , t, k ) A (x , t, k, θ ) , 

(30)

∂ 

∂t 
B̄ (x , t, k ) = ∇ · D (x , t, k ) · ∇ ̄B (x , t, k ) 

+ c g αs (x , t, k ) 
1 

2 π

∫ 2 π

0 

A (x , t, k, θ ′ ) dθ ′ , (31)

B 

′ (x , t, k, θ ) = − 1 

αs 
θ · ∇ ̄B (x , t, k ) . (32)

Although Eq. (31) has an integral-differential form, because A

is already solved in Eq. (30), Eq. (31) is again a simple diffusion

equation. 

3. The scattering attenuation 

Before we apply this diffusion model, we need to evaluate the

scattering attenuation coefficient αs given in Eq. (3) , which re-

quires the solution of a 3-D problem such as in Meylan and Squire

(1996) for a circular floe, or in Bennetts and Williams (2010) for

an arbitrary shape floe. Here we propose a simpler method, hence

an approximation, based on a 2-D wave-ice interaction theory

( Wadhams, 1986 ). We begin by considering the discrete version for

the evolution equation of the wave action density function. 

A (x , t + �t, k, θ ) − A (x , t, k, θ ) 

= −c g θ · ∇A (x , t, k, θ )�t − rA (x , t, k, θ ) . (33)

Here, r is the energy loss coefficient from the incident wave. In a

two dimensional model, scattered waves can only go to the direc-

tion opposite to the incident wave. In this case r = R 2 , R is the wave

reflection coefficient by a single ice edge of a prescribed thickness.

This equation assumes that in �t there is only one wave reflection

event. Allowing for multiple reflections between floes, the total en-

ergy loss �A in �t is ( Wadhams, 1986 ) 

�A (x , t, k, θ ) = −
M ∑ 

i =1 

r (1 − r) 
i −1 

A (x , t, k, θ ) 

= −
(
1 − (1 − r) 

M 

)
A (x , t, k, θ ) . (34)

Here, M ( �t ) = INT ( �t / σ ), the closest integer ≤ �t / σ , σ = l / c g is the

characteristic time for one wave reflection event, l = D / c is the dis-

tance between the centers of two ice floes. Here, D is the width of
ce floes, and c is the ice concentration. Eq. (33) thus becomes 

 (x , t + �t, k, θ ) − A (x , t, k, θ ) 

= −c g θ · ∇A (x , t, k, θ )�t − ( 1 − ( 1 − r) 
c g �t /l 

) A (x , t, k, θ ) . 

(35)

Dividing the above equation by �t , 

A (x , t + �t, k, θ ) − A (x , t, k, θ ) 

�t 

= −c g θ · ∇A (x , t, k, θ ) − ( 1 − ( 1 − r) 
c g �t /l 

) 

�t 
A (x , t, k, θ ) . (36)

Let �t → 0, 

∂A (x , t, k, θ ) 

∂t 
= −c g θ · ∇A (x , t, k, θ ) + 

c g 

l 
ln (1 − r) A (x , t, k, θ ) . 

(37)

From the above, we have the temporal decay coefficient 

′ 
s = − c g 

l 
ln (1 − r) . (38)

The spatial scattering coefficient is thus 

s = −1 

l 
ln (1 − r) . (39)

This result is the same as in Wadhams (1986) and Bennetts and

quire (2012) . With αs determined, Eqs. (30 - 32) form a closed sys-

em. 

To obtain r we follow the method developed in Zhao and Shen

2015) . In which the reflection coefficient is solved assuming a

ave propagating from open water into a semi-infinite elastic

heet of finite thickness. The velocities and stresses at the vertical

nterface between the open water and the ice cover, and between

ater bodies on the open water side and the ice covered side are

atched using the variational method. The solution is obtained by

ncluding 20 evanescent modes in addition to the two propagating

odes. 

. Validation of the diffusion solution 

To validate the simplified scattering model based on the pro-

osed diffusion approach, we consider a case as described in

eylan et al. (1997) where no wave damping except scattering

s considered. A monochromatic wave enters an ice floe field as

hown in Fig. 1 . The ice concentration is 0.5, the ice thickness is

 m, the Young’s modulus is 6 GPa, Poisson ratio is 0.3 and the di-

meter of the circular ice floes is 50 m. The wave period is 10 s.
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Fig. 2. Comparison on the directional distribution of the wave action density function between diffusion approximation method and the method from Meylan et al. 

(1997) (with correction given in Meylan, 20 0 0 ) for the case in Fig. 1 at (a) x = 10 km; (b) x = 50 km. 
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he incident wave from the left has a narrow directional distribu-

ion described by cos 20 θ for −π /2 ≤ θ < π /2. We reproduce the

esult of Meylan et al. (1997) from solving Eq. (2) to compare with

hose from the diffusion approximation described above. 

The results for the diffusion approximation are simulated using

qs. (30 –32 ). The left boundary condition for A is the fixed bound-

ry condition, 

 (x = 0 , t, k, θ ) = cos 20 θ, for − π/ 2 ≤ θ < π/ 2 . (40)

This boundary condition says that the incident wave at the ice

dge is constant in time. The right boundary condition for A is the

ree boundary condition. 

 (x = L, t, k, θ ) = A (x = L − �x, t, k, θ ) . (41)

This boundary condition says that there is no energy reflected

t the right, hence it simulates a semi-infinite ice cover. Here, L is

he length of the computational domain, and �x is the grid spac-

ng. The right boundary condition for scattered waves B̄ is also the

ree boundary condition. 

¯
 (x = L, t, k ) = B̄ (x = L − �x, t, k ) . (42)

To derive the boundary condition at the ice edge ( x = 0) for
¯
 , we use a method commonly adopted in optics ( Wang and

u, 2007 ). We extrapolate B̄ (x, t, k ) to a new location propor-

ional to the characteristic diffusion length 1/ αs and set B̄ (x =
1 / (C αs ) , t, k ) = 0 . Here, C is a nondimensional parameter. Using

aylor expansion to first order, we obtain the boundary condition

s the following, 

¯
 (x = −1 / (C αs ) , t, k ) = B̄ (x = 0 , t, k ) − 1 

C αs 

∂ ̄B (x = 0 , t, k ) 

∂x 
= 0 , 

(43) 

r 

 αs ̄B (x = 0 , t, k ) = 

∂ ̄B (x = 0 , t, k ) 

∂x 
. (44)

Wang and Wu (2007) showed that C = 1 for the refractive index

atched case. 

In the case study, the computational domain is 100 km long.

ime step �t = 10 s , �x = 1 km in this case study. In Meylan et al.

1997) , they solved the steady state solution for Eq. (2) . For com-

arison, we integrate Eqs. (30 )–( 32 ) for 10 hours. At which time, in

he computational domain the relative change of the solutions ev-

rywhere is less than 10 −3 . Fig. 2 (a) shows the comparison of the
irectional spectrum of the wave action density function for waves

ropagating into the ice field at 10 km. Fig. 2 (b) is for 50 km. We

ee that the diffusion approximation method obtains similar pat-

erns compared with the results from Meylan et al. (1997) (with

 correction as mentioned in Meylan (20 0 0) ). In Fig. 3 , we show

he contributions of each term to the whole wave action density

unction in the diffusion approximation method. It is seen that the

ransmitted part A decreases along the propagation direction, while

he scattered part B̄ gains energy from A . The distribution of B ’ is

nisotropic, as a result of the anisotropic spatial gradient of B̄ . In

ig. 4 , the 8 s case is added as an additional check. We can find

hat the directional spectrum becomes isotropic at 10 km. The re-

ults from the diffusion approximation agree with the results from

he full Boltzmann equation method. 

. Discussions and conclusions 

In the above, a diffusion approximation method is proposed

o simulate wave scattering due to randomly distributed ice floes.

his method requires only the mean values of the ice cover: aver-

ge ice thickness, concentration, mechanical properties and diam-

ter of ice floes. This diffusion approximation method decomposes

he wave action density function into the transmitted part and the

cattered part. The scattered part is approximated by a first order

ourier series. Two assumptions are made to close the system of

quations. They are 1) the local equilibrium condition for B ’, i.e.

 g αs �t �1; and 2) αs is isotropic. 

The results from the diffusion approximation are shown to

gree reasonably well with those from the Boltzmann equation un-

er the same wave and ice conditions for a 10 s wave. As an addi-

ional check, an 8 s wave is also tested under the same ice condi-

ion. The results are shown in Fig. 4 . Again the Boltzmann equation

olution and the diffusion approximation are close to each other.

oth show stronger energy redistribution than the 10 s wave. 

When applying the diffusion approximation, the scattering co-

fficient αs is a critical parameter to get accurate solutions. In

ection 3 , we provided an approximate method for this coefficient

sing a 2-D method. For the 2-D case, the resulting αs is shown

n Eq. (39) . The 3-D solution of Eq. (3) needs the kernel function

 k whose derivation can be found in Meylan et al. (1997) . Here we

est the validity of this approximation by examining a case of scat-

ering from an ice floe of diameter 50 m, thickness 1 m, Young’s

odulus 6 GPa, Poisson ration 0.3, and wave period 10 s. We re-

roduce the results given in Meylan et al. (1997) . We then calculate
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Fig. 3. A , B̄ , and B ’ from diffusion approximation method for the case in Fig. 1 at (a) x = 10 km; (b) x = 50 km. 

Fig. 4. The same as Fig. 2 except T = 8 s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Comparison on scattering attenuation between the 3-D kernel method and 

2-D method. Ice thickness is 1 m, ice concentration is 0.5, Young’s modulus is 6 GPa, 

Poisson’s ratio 0.3, ice floe width in 2-D and ice floe diameter in 3-D are 50 m. For 

the 2-D method, the water depth of 100 m and 10 0 0 m are both tested with nearly 

identical results. 
the 2-D results using Eq. (39) . As shown in Fig. 5 , the scattering co-

efficients obtained by these two methods are in reasonable agree-

ment except at low periods, where the 2-D scattering attenuation

is significantly lower than the 3-D counterpart. The 2-D solution

appears to be non-monotonic with respect to wave period. The dip

surrounding the period of 14 s is most likely a numerical artifact. A

fifth degree polynomial fit for the 2-D results show good approx-

imation of the 3-D results. The behaviors of the attenuations in

Fig. 5 are different from the results in Perrie and Hu (1996) , which

include wind generation, wave breaking, nonlinear wave-wave in-

teractions, and the motions of the ice floes, in addition to scat-

tering. By including these additional effects, the wave attenuation

displayed a roll-over phenomenon observed in the field ( Wadhams

et al., 1988 ). 

To implement the diffusion approximation proposed in this

study into an operational wave model, we envision the following.

Suppose that the wave spectrum at some instant over the whole

region of concern is known. We now need to update the next time

step wave spectrum over the whole region. At each computation

grid, we need to first determine the modified spectrum due to the

other processes except the scattering, using Eq. (2) with the right

hand side including all other source and sink terms due to floe in-

teraction among themselves and floe-water interactions, nonlinear

wave-wave interactions between different frequencies, wind input,

and wave breaking dissipation. The time step for the processes ex-
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luding scattering is called the “outer time step”. The result would

e the wave action N ( x , t , k ) without the scattering effect. We then

etermine how the scattering process would redistribute this N ( x ,

 , k ) in each computational grid during the outer time step. To do

o, an iterative method is performed using Eqs. (30 )–( 32 ). Initially,

e set A = N , and B̄ = B ′ = 0 . Integrating Eqs. (30 )–( 32 ) for several

ub time steps we get updated A , B̄ , and B ’. The updated spectrum

s obtained by summing up the three terms N = A + B̄ + B ′ to ob-

ain the new N for the next iteration. The accuracy of the diffusion

olution depends on the diffusion time step, which is a numerical

ssue that will require careful study on its own. 

In conclusion, this study provides an alternative method to

odel the wave scattering process in ice covered ocean. Details of

he scattering distribution are simplified into an isotropic scatter-

ng attenuation coefficient. The scattering process is simplified into

 diffusion process by assuming local equilibrium of the scattered

uantity. Through separating the wave field into the transmitted

art and the scattered part, this model can follow the weakly scat-

er waves, which was not possible in existing diffusion models for

ave scattering processes. 

The proposed diffusion model at present is still crude. There are

everal needed studies to improve the proposed model: 

1. A better estimate of the diffusion attenuation coefficient. 

2. A thorough numerical study of the accuracy of the diffusion ap-

proximation. 

3. Comparisons on the efficiencies of the diffusion model and the

Boltzmann equation approach in operational wave models. 

And finally, extending the current model for anisotropic diffu-

ion would also expand the utility of the model to different ice

over conditions. 
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