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a b s t r a c t

Modeling ice covers as viscoelastic continua, Zhao and Shen, (2013) applied a two-mode approximate method

to determine the transmission and reflection between two different ice covers. This approximate solution

considered only two modes of the dispersion relation. In addition, the horizontal boundary conditions were

simplified by matching mean values over the interfaces. In this study, we employ a variational method (Fox

and Squire, (1990)) to calculate the wave transmission and reflection from two connecting viscoelastic ice

covers of different properties. The variational approach minimizes the overall error function at the interface

of two ice covers, hence is more rigorous than the previous approximate method that minimized the differ-

ence between mean values at the interface. The effect of additional travelling and evanescent modes are also

investigated. We compare results from different matching methods, as well as the effects of including addi-

tional modes. From this study, we find that additional modes do not always improve the results for our model.

For all cases tested, two modes appear to be sufficient. These two modes represent the open-water-like and

the elastic-pressure wave-like behavior. The two-mode approximate method and the variational method have

similar results except at very short wave periods.

© 2015 Elsevier Ltd. All rights reserved.
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. Introduction

Due to the rapid decrease of ice cover, wave conditions in the Arc-

ic have intensified (Thomson and Rogers, 2014). In response to in-

reased human activities, especially in the partially ice-covered re-

ion, wave models have begun including ice effects. For instance,

AVEWATCH III which used to treat ice covers as islands (Tolman,

003) now includes three more options. In its latest release (Tolman

t al., 2014, pp. 53–62), different physical processes are considered in

hese options: a constant attenuation rate, an eddy viscosity (Liu and

ollo-Christensen, 1988), and viscoelasticity (Wang and Shen, 2010),

ll rely on parameterization that awaits further theoretical and obser-

ational development. In this study we focus on further developing

he viscoelastic theory which envisions an ice cover as a continuum

ith some elastic property that changes wave speed without damp-

ng its energy and viscous property that mainly consumes energy but

ay also contribute to wave speed change for high frequency com-

onents.

Real ice covers are inhomogeneous. Waves propagating between

ce covers of different properties will transmit part of their en-

rgy and reflect the rest. Based on a thin-plate approach, this phe-

omenon has been studied extensively between open water and

lastic plate and between different elastic plates (Squire, 2007, a
∗ Corresponding author. Tel.: +1 315 268 7985.

E-mail address: hhshen@clarkson.edu (H.H. Shen).
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463-5003/© 2015 Elsevier Ltd. All rights reserved.
eview). Assuming that ice covers may be represented as a Voigt lin-

ar viscoelastic material, Wang and Shen (2011) studied this trans-

ission/reflection problem between open water and an ice cover us-

ng a two-mode approximate method. This method was extended to

ransmission/reflection between two different ice covered regions in

hao and Shen (2013). The two-mode approximate method included

nly two propagating modes closest to the open water waves and ig-

ored all other propagating modes and all evanescent modes permit-

ed by the dispersion relation. Furthermore, matching boundary con-

itions at the interface of two different regions were only carried out

n an average sense.

The two-mode approximate method has the obvious advantage

f being simpler and computationally faster than other methods

hat may include more modes and adopt a more rigorous matching

ethod at the interface. However, its effect on the predicted trans-

ission/reflection is uncertain until we compare the results with a

etter mathematical procedure that includes more admissible modes

nd treats the boundary conditions more rigorously. In this study, we

xamine the effect of including more modes that exist in the disper-

ion relation, including both propagating and evanescent modes. We

lso improve the matching criterion by using a variational method

s in Fox and Squire (1990). We compare these new results with the

wo-mode approximate method, and previous studies that assumed

ce covers as pure elastic materials.

The organization of this paper is as follows. Section 2 briefly

utlines the theoretical formulation of the viscoelastic model. In

ection 3, the variational method is presented. Section 4 gives the

http://dx.doi.org/10.1016/j.ocemod.2015.05.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ocemod
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ocemod.2015.05.003&domain=pdf
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https://www.researchgate.net/publication/261804409_Swell_and_sea_in_the_emerging_Arctic_Ocean?el=1_x_8&enrichId=rgreq-4a126d25-e8d8-431d-aee9-18942d5c45a0&enrichSource=Y292ZXJQYWdlOzI3Nzk4MTg0ODtBUzoyMzk3OTEyNzQ5ODM0MjVAMTQzNDE4MjEwMzk2NQ==
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Fig. 1. Schematic of the coordinate frame of the problem.
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result of special cases to compare with previous studies for pure elas-

tic ice covers and the analysis on additional modes. Section 5 studies

the energy partitions among three main propagating waves in elas-

tic ice and viscous ice. The nature of these modes is also discussed.

Section 6 provides details of the error analysis for the current method.

The summary and conclusion are given in Sections 7 and 8 respec-

tively. A linear wave regime is assumed in this study.

2. The theoretical formulation

2.1. Definition of the domain

The present study analyzes the same two-dimensional problem

as in Zhao and Shen (2013). The sketch for the problem is shown in

Fig. 1. The two ice covers are assumed to be fully submerged.

2.2. Governing equations, boundary conditions on horizontal surfaces,

and the dispersion relation

In the present study, many more modes from the dispersion re-

lation as derived in Wang and Shen (2010) will be included, hence

for clarity, the derivation leading to the dispersion relation is briefly

repeated here.

As previously done, for the ice cover we use a Voigt viscoelastic

continuum model shown below

τmn = −pδmn + 2GSmn + 2ρiceνṠmn, (1)

where ρice is the density of the ice layer; τmn, Smn and Ṡmn represent

the stress tensor, the strain tensor and the strain rate tensor, respec-

tively; m and n represent x or z; G and ν are the effective shear modu-

lus and the effective kinematic viscosity of the ice layer, respectively;

p is the pressure and δmn the Kronecker delta. For the regions occu-

pied by an ice cover, either 1 or 3, the equation of motion is

∂Ui

∂t
= − 1

ρice

∇pi + νei∇2Ui + g, i = 1, 3, (2)

where Ui = uiêx + wiêz is the velocity vector, g the gravitational ac-

celeration,

νei = νi + iGi/ρiceω, i = 1, 3, (3)

is the viscoelastic parameter, and ω is the angular frequency of the in-

cident wave. Using the decomposition with potential function φ and

stream function ψ for the velocity (Lamb, 1932),

Ui = −∇φi + ∇ × (0, ψi, 0), i = 1, 3, (4)

we obtain

∇2φi = 0, (5)

∂ψi − νei∇2ψi = 0, (6)

∂t
∂φi

∂t
− pi

ρice

− 
 = 0, i = 1, 3, (7)

ere, 
 = gz is the gravitational potential.

For the associated water region below the ice covers 1 and 3, i.e.

egions 2 or 4, we assume an inviscid fluid. The governing equations

re

∂Ui+1

∂t
= − 1

ρwater
∇pi+1 + g, (8)

2φi+1 = 0, (9)

∂φi+1

∂t
− pi+1

ρwater
− 
 = 0, i = 1, 3. (10)

The water velocity is related to the velocity potential only

i+1 = −∇φi+1, i = 1, 3. (11)

Next we introduce the boundary conditions at the horizontal in-

erfaces between air–ice, air–water, and water-sea floor. These con-

itions between regions 1 and 2 are identical to those between 3

nd 4.

No stress at the air–ice interface

xz,i = ρiceνei

(
∂ui

∂z
+ ∂wi

∂x

)
= 0, τzz,i

= −pi + 2ρiceνei

∂wi

∂z
= 0, z = 0, i = 1, 3. (12)

Stress continuity at the ice–water interface

zz,i = −pi + 2ρiνei

∂wi

∂z
= τzz,i+1 = −pi+1, τxz,i

= ρiceνei

(
∂ui

∂z
+ ∂wi

∂x

)
= 0, z = −hi, i = 1, 3. (13)

Kinematic condition at the air–ice interface

i = ∂ηi

∂t
, z = 0, i = 1, 3. (14)

Continuity of velocity at the ice–water interface

i = wi+1 = ∂ηi+1

∂t
, z = −hi, i = 1, 3. (15)

No penetration condition at the sea floor

i+1 = 0, z = −H, i = 1, 3. (16)

In terms of the Fourier modes, the solutions are

i(x, z, t) = (Ai(n) cosh ki(n)z + Bi(n) sinh ki(n)z)eiki(n)xe−iωt ,

(17)

i(x, z, t) = (Ci(n) cosh αi(n)z + Di(n) sinh αi(n)z)eiki(n)xe−iωt ,

(18)

or the ice region i = 1, 3, and

i+1(x, z, t) = Ei(n) cosh ki(n)(z + H)eiki(n)xe−iωt , (19)

or the water region i + 1 = 2, 4. In the above, α2
i
(n) = k2

i
(n) − iω/νei,

= 1, 3 and n indicates the n-th mode, as the dispersion relation to be

hown has solutions, each one is an admissible mode. The no pene-

ration condition at the sea floor is automatically satisfied by the cosh

erm in the potential and stream functions.

As shown in Appendix B in Zhao and Shen (2013), these boundary

onditions together yield a set of homogeneous equations for Ai(n),

(n), C (n), and D (n) as shown below,

https://www.researchgate.net/publication/251428233_Gravity_waves_propagating_into_an_ice-covered_ocean_A_viscoelastic_model?el=1_x_8&enrichId=rgreq-4a126d25-e8d8-431d-aee9-18942d5c45a0&enrichSource=Y292ZXJQYWdlOzI3Nzk4MTg0ODtBUzoyMzk3OTEyNzQ5ODM0MjVAMTQzNDE4MjEwMzk2NQ==
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⎡
⎢⎢⎣

0 2ik2
i
(n) α2

i
(n) + k2

i
(n)

−2ik2
i
(n)Skn

i
2ik2

i
(n)Ckn

i
(α2

i
(n) + k2

i
(n))Cαn

i

Nn
i
ω −ki(n)g iki(n)g

−Mn
i
Skn

i
+ Nn

i
ωCkn

i
Mn

i
Ckn

i
− Nn

i
ωSkn

i
−iMn

i
Cαn

i
− Ln

i
Sαn

i

hich then solves for

i(n) = −Ai(n)Skn
i

+ Bi(n)Ckn
i

− iCi(n)Cαn
i

+ iDi(n)Sαn
i

sinh ki(H − hi)
. (21)

In the above, Skn
i

= sinh ki(n)hi, Ckn
i

= cosh ki(n)hi, Sαn
i

=
inh αi(n)hi, Cαn

i
= cosh αi(n)hi, Nn

i
= ω + 2iνeik

2
i
(n), and

n
i

= ( ρwater
ρice

− 1)ki(n)g − ρwater
ρice

ω
tanh(H−hi)

, and Ln
i

= 2νeiωki(n)αi(n).

The coefficients Ai(n), Bi(n), Ci(n), Di(n), and Ei(n) are all complex

umbers. The dispersion relation comes from setting the determinant

f Eq. (20) to zero, which yields

et = (ω2 − Qcgk tanh kH)
ω2

ν2
e

ρwater

ρice

× 4k3αν2
e SkCα + N2SαCk − gkSkSα

tanh kH
= 0, (22)

here

Qc = 1 + ρice

ρwater

× g2k2SkSα − (N4 + 16k6α2ν4
e )SkSα − 8k3αν2

e N2(CαCk − 1)

gk(4k3αν2
e SkCα + N2SαCk − gkSkSα)

.

(23)

Eq. (22) was simplified in Wang and Shen (2010) as

2 = Qcgk tanh kH, (24)

n order to most directly compare with open water, thin elastic plate,

ass-loading, and two-layer viscous theories. The roots of the disper-

ion relation were, however, still calculated directly from the com-

lete form of the determinant shown in Eq. (22). There are two more

ropagating roots and infinite symmetrical complex roots of this dis-

ersion relation than those from the previously studied theories. As

hown in Wang and Shen (2010), under proper limiting conditions,

he dispersion relation converges to those from each of the previous

heories.

.3. Boundary conditions connecting different ice covered regions

We now proceed to determine the boundary conditions between

wo different viscoelastic regions representing ice covers of different

roperties. These are vertical interfaces between the two ice regions

nd the two water regions as shown in Fig. 1, we need to match the

isplacements, velocities, and stresses.

Water–Water interface: The boundary condition between water re-

ions 2 and 4 includes continuity of the potential and the horizontal

elocity

2(0, z) = φ4(0, z), −H < z < −h3; (25)

∂φ2(0, z)

∂x
= ∂φ4(0, z)

∂x
, −H < z < −h3. (26)

Water–Ice interface: For the time being we assume h1 < h3, the

ame analysis may be applied to other cases. Between water region

and ice region 3, the kinematic condition is

2(0, z) = u3(0, z), −h3 < z < −h1. (27)

Likewise, the dynamical boundary condition is

xx2(0, z) = τxx3(0, z), −h3 < z < −h1. (28)
0

α2
i
(n) + k2

i
(n))Sαn

i

Ln
i

iMn
i
Sαn

i
+ Ln

i
Cαn

i

⎤
⎥⎥⎦

⎡
⎢⎣

Ai(n)
Bi(n)
Ci(n)
Di(n)

⎤
⎥⎦ =

⎡
⎢⎣

0
0
0
0

⎤
⎥⎦ (20)

These two conditions are the same as in Wang and Shen (2011)

or wave propagating from open water to an ice covered region. In

ddition, we also include the continuity condition of shear stress at

his interface

xz3(0, z) = 0, −h3 < z < −h1. (29)

Ice–Ice interface: Between ice region 1 and ice region 3, we use the

ontinuity conditions of horizontal and vertical velocities, and nor-

al and shear stresses

1(0, z) = u3(0, z), −h1 < z < 0, (30)

1(0, z) = w3(0, z), −h1 < z < 0; (31)

xx1(0, z) = τxx3(0, z), −h1 < z < 0; (32)

xz1(0, z) = τxz3(0, z), −h1 < z < 0. (33)

In summary, the above nine equations, Eqs. (25–33), will be used

o determine the transmission and reflection coefficients for a given

ave. If freeboard is modeled instead of the current full submergence

ssumption, we will also need to include the stress free conditions

ver the exposed air-ice interface at x = 0.

xx(0, z) = τxz(0, z) = 0, 0 < z < hfreeboard. (34)

These conditions are ignored at present.

. Solutions

The variational method is developed to solve transmission and re-

ection coefficients from open water to a thin elastic plate (Fox and

quire, 1990). Using this method, Fox and Squire were able to exam-

ne the importance of matching boundary condition through the wa-

er depth instead of just at the free surface, as well as the inclusion of

he two damped traveling modes and evanescent modes. Here, we ex-

end the method to the viscoelastic model. This method is more rigor-

us than the two-mode approximate method used in Wang and Shen

2011). In the two-mode approximate method, we approximate all

oundary conditions along the vertical interfaces by forcing the aver-

ge values across the interface to be equal. In the variational method

e minimize the differences across the entire interface. As in Fox and

quire (1990), we define the error function based on these boundary

onditions as follows:

ε = λ1

∫ −h3

−H

(φ2(0, z) − φ4(0, z))
2
dz

+λ2

∫ −h3

−H

(u2(0, z) − u4(0, z))
2
dz

+λ3

∫ 0

−h1

(u1(0, z) − u3(0, z))
2
dz

+λ4

∫ 0

−h1

(w1(0, z) − w3(0, z))
2
dz

+λ5

∫ 0

−h1

(τxx1(0, z) − τxx3(0, z))
2
dz

+λ6

∫ 0

−h1

(τxz1(0, z) − τxz3(0, z))
2
dz

+λ7

∫ −h1

−h

(u2(0, z) − u3(0, z))
2
dz
3

https://www.researchgate.net/publication/251428233_Gravity_waves_propagating_into_an_ice-covered_ocean_A_viscoelastic_model?el=1_x_8&enrichId=rgreq-4a126d25-e8d8-431d-aee9-18942d5c45a0&enrichSource=Y292ZXJQYWdlOzI3Nzk4MTg0ODtBUzoyMzk3OTEyNzQ5ODM0MjVAMTQzNDE4MjEwMzk2NQ==
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+λ8

∫ −h1

−h3

(τxx2(0, z) − τxx3(0, z))
2
dz

+λ9

∫ −h1

−h3

τ 2
xz3(0, z)dz, (35)

where {λn}9
n=1

are the weighting factors which are chosen to im-

prove the convergence. The key difference of the two-mode approx-

imate method and the variational method is this error function.

Let FiL, FiR be any property Fi at the left and right side of an in-

terface, respectively. In the two-mode approximate method the er-

ror is defined as
∑

i

∫
(FiL − FiR)dz and in the variational method as∑

i λi

∫
(FiL − FiR)2

dz where the integral is taken over the relevant in-

terface along z. The error requirement is defined in Eq. (35). In addi-

tion, we will include more propagating modes than the two closest to

the open water case as well as N evanescent modes to form the gen-

eral solution. Other than evanescent modes, we will consider M prop-

agating and complex modes. In the two-mode approximate method

(Wang and Shen, 2011; Zhao and Shen, 2013), we included only two

propagating modes and none of the evanescent modes. Thus, for the

present study, the total potential function and the stream function

may be written in terms of these M + N modes as follows, where the

individual modes are denoted by n = 1, 2, . . . , M + N.

φ1(x, z, t) = I(1)(A1(1) cosh k1(1)z

+ B1(1) sinh k1(1)z)eik1(1)xe−iωt

+
M+N∑
n=1

R(n)(A1(n) cosh k1(n)z

+ B1(n) sinh k1(n)z)e−ik1(n)xe−iωt ; (36)

ψ1(x, z, t) = I(1)(C1(1) cosh α1(1)z

+ D1(1) sinh α1(1)z)eik1(1)xe−iωt

+
M+N∑
n=1

R(n)(C1(n) cosh α1(n)z

+ D1(n) sinh α1(n)z)e−ik1(n)xe−iωt ; (37)

φ2(x, z, t) = I(1)E1(1) cosh k1(1)(z + H)eik1(1)xe−iωt

+
M+N∑
n=1

R(n)E1(n) cosh k1(n)(z + H)e−ik1(n)xe−iωt ; (38)

φ3(x, z, t) =
M+N∑
n=1

T(n)(A3(n) cosh k3(n)z

+ B3(n) sinh k3(n)z)eik3(n)xe−iωt ; (39)

ψ3(x, z, t) =
M+N∑
n=1

T(n)(C3(n) cosh α3(n)z

+ D3(n) sinh α3(n)z)eik3(n)xe−iωt ; (40)

φ4(x, z, t) =
M+N∑
n=1

T(n)E3(n) cosh k3(n)(z + H)eik3(n)xe−iωt ; (41)

Here I(1) is the amplitude of incident wave. The coefficients Ai(n),

Bi(n), Ci(n), Di(n), Ei(n) are solved with the singular value decompo-

sition method. We then substitute them into the horizontal boundary

conditions to form error function in terms of I(1), R(n), and T(n). The

error function contains 2(M + N) + 1 unknowns I(1), {R(n)}M+N
n=1

, and

{T(n)}M+N
n=1

. In vector form these unknowns are

u = (I(1), R(1), R(2), . . . R(M + N), T(1), T(2), . . . ,T(M + N))T .

(4
The error function can be rewritten as follows:

ε = uT (λ1Q1 + λ2Q2 + λ3Q3 + λ4Q4 + λ5Q5 + λ6Q6

+λ7Q7 + λ8Q8 + λ9Q9)u. (43)

The matrix Qn is calculated analytically. To set the constraint of

(1) = 1, we introduce a square matrix K,

u = v. (44)

The elements of matrix K are all zero except K1,1 = 1. The vector

contains coefficients corresponding to I(1) = 1 and all others being

ero. In all, these constraints can be written as follows:

TKu − 2vTu + vT v = 0. (45)

Minimizing ε subject to the constraints (45) is performed by min-

mizing

uT (λ1Q1 + λ2Q2 + λ3Q3 + λ4Q4 + λ5Q5 + λ6Q6

+λ7Q7 + λ8Q8 + λ9Q9 + ηK)u − 2ηvT u. (46)

Here η is the weighting factor corresponding to the I(1) = 1 con-

traint. Minimizing Eq. (46) is equivalent to solving the following:

u = ηv, (47)

here

Q = λ1Q1 + λ2Q2 + λ3Q3 + λ4Q4 + λ5Q5 + λ6Q6

+λ7Q7 + λ8Q8 + λ9Q9 + ηK. (48)

By solving the inverse matrix of Q, the coefficient vector u is ob-

ained. With the continuity condition of the vertical displacement at

he interface, we can derive the transmission and reflection coeffi-

ients for the surface profile.

(n) = |R(n)||k1(n)B1(n) + ik1(n)C1(n)|
|I(1)||k1(1)B1(1) − ik1(1)C1(1)| ; (49)

(n) = |T(n)||k3(n)B3(n) − ik3(n)C3(n)|
|I(1)||k1(1)B1(1) − ik1(1)C1(1)| ; (50)

here n = 1, 2, ..M.

. Results of wave transmission and reflection - pure elastic case

In this section we use the above solution procedure to study

he behavior of wave propagation involving pure elastic ice cov-

rs. The results are compared with existing theories. For all cases

hown, ρice = 917 kg/m3, ρwater = 1000 kg/m3, H = 100 m. Based on

he estimation of the magnitude for each error term, we choose the

eighting factors as λ1 = 0.01, λ2 = λ3 = λ4 = λ7 = 1, λ5 = λ6 =
8 = λ9 = 1/G2

3
, and η = 1000.

.1. Between open water and elastic ice

We first consider the case of wave propagation from open water

o an elastic ice cover. At this point we let M = 2 and N = 0, i.e. in-

lude only two propagating modes closest to the open water case as

n Zhao and Shen (2013). The only change is that we adopt the new er-

or function shown in Eq. (35). We thus focus on the effect of the more

igorous boundary matching criterion. Fig. 2 shows the reflected and

ransmitted coefficients defined in Eqs. (49, 50) with respect to the

ave period for ν1,3 = 0 m2/s, G1 = 0 Pa, G3 = 1 GPa, h1 = 0 m, and

3 = 0.5 m. The results compare the two-mode approximate method,

he variational method, and a different model based on the thin elas-

ic plate theory where the matched eigenfunction expansion method

as used (Kohout et al., 2007). In their study 20 eigenmodes were

ncluded. However, due to the thin elastic plate assumption, they re-

uced the shear and bending boundary conditions at the interface to

point. Treatment of such boundary condition is closer to matching

he mean values at the interface as done in Wang and Shen (2011).
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Fig. 2. Comparison between previous and the present studies of the reflection and

transmission coefficients from open water to an elastic cover with respect to wave pe-

riod. Here ν = 0 m2/s for both regions, G3 = 1 GPa, and (a) h3 = 0.5 m; (b) h3 = 0.1 m.

In this and the rest of the figures, ρice = 917 kg/m3, ρwater = 1000 kg/m3. (The dark and

grey dash-dot lines coincide.).
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Fig. 3. Contour lines of the residual function abs(Det). Here ν = 0 m2/s, G = 1 GPa,

and h = 0.5 m. (a) Wide-angle view where evanescent modes, two damped traveling

modes, and the dominant mode on the real axis is seen near kr = 0.1 m−1; (b) Close-up

view where the two modes on the real axis are seen.
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onsequently Wang and Shen agreed better with Kohout et al. than

he current results. Comparing Fig. 2a and b, all three cases converge

o each other when h3 reduces.

We next examine what happens if we include more modes. First

e locate these modes in the complex k-space. Fig. 3 shows the map

f contours of the residual function abs(Det) defined by the full dis-

ersion relation Eq. (22). The parameters used in Fig. 3 are the same

s in Fig. 2. The “islands” of these contours are either poles or zeros

f abs(Det). The zeros are admissible roots of the dispersion relation.

nlike the thin elastic plate theory where only one real root exists,

here are three roots on the real axis. These three roots approach the

ingle one shown in the thin elastic plate theory if either the elastic-

ty increases or the ice thickness decreases. In the approximate solu-

ion we included only two of these modes. We now expand this to

nclude five modes: three on the real axis and one pair of symmetric

amped travelling waves, Fig. 3a and b. We also examine the effect

f evanescent modes, i.e. roots near the imaginary axis. We include

, 10, and 100 of these modes. Fig. 4 shows the result of these dif-

erent solutions. Fig. 4a compares results including two modes on the

eal axis, adding two damped travelling modes, then adding one more

eal root. It is seen that the effect of additional modes on the reflec-
ion and transmission coefficients is small for the present model. In

act, including additional complex and the 3rd modes seems to in-

roduce fluctuations in the solution. From Fox and Squire (1990), the

vanescent modes are required to obtain high accuracy solutions for

hin elastic plate models. Fig. 4b shows the results of including only

wo real roots and different numbers of evanescent modes. The fluc-

uations of the solutions disappear. For the present model, two modes

eem sufficient for the calculation of transmission and reflection co-

fficients. In the following discussions we keep only two modes and

ocus on comparing the approximate and variational methods. De-

ailed error analysis for the case shown in Fig. 4 is given in Section 6

hen we return to this issue again.

.2. Between arbitrary elastic ice covers

We now consider two linear elastic ice covers with different prop-

rties. This case has been studied by Barrett and Squire (1996) us-

ng the thin elastic plate theory and the variational method. First we
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Fig. 4. Effect of including additional modes on transmission/reflection from open wa-

ter to an elastic sheet with the same parameters as in Fig. 2. (a) 2 modes: include

2 propagating modes; 4 modes: add 2 symmetrical damped propagating modes; 5

modes: add 1 additional propagating mode. (b) 12 modes: add 10 evanescent modes

to the 2 modes case. 102 modes: add 100 evanescent modes to the 2 modes case. Fox

and Squire’s results used 100 evanescent modes.

Fig. 5. Reflection and transmission coefficients with respect to wave period between

two elastic ice regions with ν = 0 m2/s in both regions. (a) G1 = 2 GPa, G3 = 5 GPa, and

h1 = h3 = 1 m; (b) G1 = G3 = 5 GPa, h1 = 1 m, h3 = 2 m. (In both cases, R(2) and T (2)

are zero for both two-mode approximate method and variational method.).

5

a

(

p

p

l

I

a

c

d

n

t

l

present the case where the shear modulus differs between the two

ice regions, all other parameters are identical. The results are shown

in Fig. 5a. Next we examine the case when the ice thickness is differ-

ent between the two regions, the rest of the parameters are identical.

The results are shown in Fig. 5b. In each case, the reflection and trans-

mission coefficients are qualitatively the same as in Barrett and Squire

(1996) if their smoothly joined plate boundary conditions are used.

The quantitative difference is substantial at short wave periods but

diminishes at long periods. The difference is particularly noticeable

for the reflection coefficient. This difference is caused by the contin-

uum considerations used in the ice regions instead of the thin elastic

plate assumption in Barrett and Squire (1996). Using the variational

method to more strictly match the boundary condition does not con-

sistently bring the two models closer to each other.
. Energy partitions among modes in elastic ice and viscous ice

We now consider the energy partitions among three main modes

nd the “mode-switching” phenomenon as shown in Wang and Shen

2010, 2011) and Zhao and Shen (2013). Consider the case of wave

ropagating from open water to a pure elastic or pure viscous ice

late. In Fig. 6 we present the open water to pure elastic ice case by

etting h1 = 0 m, h3 = 0.5 m, ν3 = 0 m2/s, G3 = 102 − 109 Pa, T = 6 s.

n this case the dispersion relation, Eq. (22), has three real roots. These

re the main modes of the propagating waves. At low G one mode

ontains the majority of the transmitted energy. At high G the other

oes. The third mode which is included in the variational method but

ot the two-mode approximate method has negligible energy. Be-

ween the variational and two-mode approximate methods there is

ittle difference of the resulting energy partition between the other
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Fig. 6. Reflection and transmission coefficients with respect to shear modulus be-

tween open water and elastic ice with h3 = 0.5 m, ν3 = 0 m2/s, and T = 6 s.

Fig. 7. Reflection and transmission coefficients with respect to viscosity between open

water and viscous ice with h3 = 0.5 m, G3 = 0 Pa, and T = 6 s.
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Fig. 8. Wave number of pure elastic ice with ν3 = 0m2/s, T = 6 s and h3 = 0.5 m, H =
100 m.
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wo modes. The two dominant modes switch their energy partitions

n the range from 104 Pa to105 Pa. Although the 3rd mode does con-

ain some energy, it does not change the partition between the other

wo modes appreciably. In Fig. 7 we present the open water to pure

iscous ice case by letting h1 = 0 m, h3 = 0.5 m, ν3 = 0 − 50 m2/s,

3 = 0 Pa, T = 6 s. Because of the similarity, we present only those

esults from the variational method. Unlike the pure elastic ice case,

ncreasing viscosity does not create a mode switch in energy parti-

ions. With the increasing of viscosity, the reflected wave slightly in-

reases its energy, while the transmitted waves decrease their ener-

ies. The mode closest to the open water solution always dominates

he transmitted energy, and the second mode also has certain amount

f energy. The third mode is negligible.

To further understand these modes, we examine them as a func-

ion of the shear modulus G. As an example, we solve the full dis-

ersion relation defined in Eq. (22) for the case T = 6 s, ν = 0 m2/s

nd obtain the three real roots in the contour map for each G. In

ig. 8 the behavior of the three modes are shown. Let them be ordered

uch that kr1 ≤ kr2 ≤ kr3. As G increases from 0, in the beginning the

rst transmitted mode appears to follow that of the open water so-

ution. The second mode has much greater wave number to begin
ith, but approaches that of the open water as G increases. At around

= 3 × 104 Pa for this case, both modes are close to each other. Fur-

her increasing G makes the first mode turn downward sharply to fol-

ow the trend of the second mode while the second mode turns to ap-

roach the open water case. Eventually as G becomes very large the

econd mode begins to drop and coincide with the thin elastic plate

heory. All this time, the third mode constantly decreases. The third

ode in this log–log plot is a straight line. Using these data we solve

or its equation in the form of kr = aGb. It is found that kr = ω
√

ρice/G

hich is the elastic shear wave solution. The tangent to the asymp-

otes of the first and second mode is also well fitted by a straight line.

ts best fit kr = aGb yields kr = 16.2/
√

G ≈ ω
√

ρice/3G. Since we as-

umed that the ice cover is incompressible, its Poisson’s ratio is 0.5

nd the Young’s modulus is 3G, indicating that the nature of this

ranch of mode 1 or mode 2 is the elastic pressure wave. The above

esults are from a pure elastic case. This conclusion should hold for

iscoelastic cases at least when the viscosity is not too large.

. Error analysis

To see the contribution of error from each term shown in Eq. (35)

e calculate

i = λi

∫ zu

zl

( fle f t (0, z) − fright (0, z))
2
dz (51)

here i = 1 to 9 and fle f t , fright are the corresponding function of the

eft and right side of the interface in the i-th term. The integration

imits are zl , zuassociated with each of the interfaces. λi is the i-th

eighting factor defined in Section 4. We give the result of this anal-

sis for the case shown in Fig. 4(b) only. Similar analysis was also done

or the case shown in Fig. 5 with the same trend but much reduced

rrors. In this case, we have open water meeting an ice sheet, hence

nly five of the nine boundary conditions are needed. Fig. 9 shows

he error terms defined in Eq. (51) for i = 1, 2, 7, 8, 9 for a range of

ave period T = 1 − 30 s. Except for terms 1 and 2 and at low period

= 2 s, all other error terms are below 0.1% of incident wave ampli-

ude with a general decreasing trend for longer periods. Fig. 10 exam-

nes the effect of including more modes in the solution for the worst

ase T = 2 s, and compares that with T = 5 s, and 12 s. It is seen that

ll terms except 1 and 2 are at a negligible level. The most significant

rror is from the first term. For this term with two modes, the error
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Fig. 9. Errors with different numbers of evanescent modes.
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Fig. 10. Errors with respect to number of modes.
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s slightly above 0.2%. By including 30 modes, the error drops to 0.1%.

ll errors are normalized by the incident wave amplitude.

. Summary

We discuss the main findings of the present study which is based

n assuming that ice covers are a viscoelastic continuum.

.1. Comparison between different methods

Without changing the qualitative behavior, different methods do

hange the quantitative transmission/reflection between ice covers.

his difference increases with the ice thickness (Fig. 2) due to the

atching conditions at the interface: one uses the mean and the

ther minimizes the square differences. Between the thin elastic plate

nd the current solutions the differences come from a combination of

oundary condition matching and the assumption of the constitutive

ehavior of the ice cover. This difference is less when the two-mode
pproximate method is used, because the boundary matching meth-

ds are close to each other.

.2. Effect of damped travelling and evanescent modes

The viscoelastic dispersion relation has infinite damped travel-

ing and evanescent modes. Upon examining the effect of including

wo damped travelling and different numbers of evanescent modes

n the transmission/reflection coefficients, we find that the effect

f these additional modes is small (Fig. 4). In fact, including two

amped travelling modes and 3rd propagating mode for viscoelas-

ic model introduces oscillations as shown in Fig. 4a. This situation is

ifferent from what was found from the thin elastic plate theory, in

hich Fox and Squire (1990) included two damped travelling modes

ithout getting any numerical oscillations. From the error analysis of

ection 6, if we require error <0.1%, we need to include 20–30 evanes-

ent modes. This is consistent with Fox and Squire (1990). In Fox

nd Squire (1990), the free-end boundary conditions at the ice edge

re matched at a point, while in the present study the matching
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boundary conditions on velocity and stresses are matched over the

entire interface. While this may have caused the differences between

thin elastic plate theory and the viscoelastic continuum model, more

extensive study is required to truly understand the differences be-

tween these two models.

7.3. Energy partitions in three modes

As discussed in Wang and Shen (2010) and Zhao and Shen (2013)

and Fig. 6 of the present study, there is a mode switching phe-

nomenon associated with increasing G. That is, at low Gone of the

three modes for the dispersion relation dominates, as G increases the

other mode becomes dominant. This switching occurs when the third

mode approaches the other two. In close examination of the nature

of these three modes as shown in Fig. 3, the two dominant modes are

from the simplified dispersion relation Eq. (24) and the third is from

the remaining terms of Eq. (22). Figs. 6 and 7 show the partition of

energy among these three roots. The third root contains little energy

and thus can be dropped from further analysis.

7.4. A remark on the difference between pure viscous and pure

elastic ice

An interesting and unexpected result is shown in Fig. 7. Even for

viscous ice with small viscosity the reflection can be significant. For

elastic ice, the rigidity has to be relatively high to have the same ef-

fect. Hence when we model wave propagation from open water to an

ice zone, we need to carefully consider the reflection from viscous ice

like grease or brash ice at the edge.

8. Conclusions

In conclusion, for practical applications of the present viscoelas-

tic model, one can ignore the evanescent modes to save considerable

computational time. Of the many other propagating modes, the two

from the simplified dispersion relation are sufficient for representing

the wave transmission/reflection. Between the two-mode approxi-

mate method and the variational method, there is no difference in

the computational cost, hence the variational method is preferred to

more accurately match the boundary conditions. We emphasize that

further study of the dominant modes in the viscoelastic dispersion

is needed. So far, we have found that for pure elastic plates the two

modes from the simplified dispersion relation always switch their

dominance as G increases. For pure viscous covers this mode switch-

ing depends on the water depth. In case of a full viscoelastic material,

whether there is mode switching between these two modes depends

on the viscosity, the elasticity, and the water depth.

Results of this study are based on the assumption that the ice

cover behaves as a Voigt viscoelastic material. In such material the
nternal stress is the linear sum of the elastic component and the

iscous component. There are other viscoelastic constitutive laws

hat can be adopted. The mathematical complexity increases with

ore complicated viscoelastic models. Future studies will be moti-

ated when physical evidence shows a more complicated model is

eeded. The present study assumes that the ice cover is semi-infinite.

n many field cases, bands of ice covers are present. Waves propagat-

ng through these finite spans of ice cover will experience transmis-

ion and reflection from both the leading and the trailing edges, with

ultiple reflection/transmission between them. For pure elastic cov-

rs, Meylan and Squire (1994) applied a thin-plate theory to solve

he finite plate case and showed very interesting resonant behavior

f the reflection and transmission coefficients. For viscoelastic mate-

ials, this more complicated boundary value problem awaits further

tudy.
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