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An approximate solution for wave transmission and reflection between open water and a viscoelastic ice
cover was developed earlier, in which both the water and the ice cover were treated as a continuum, each
governed by its own equation of motion. The interface conditions included matching velocity and stresses
between the two continua. The analysis provided a first step towards modeling the wave-in-ice climate
on a geophysical scale, where properties of the ice cover change with time and location. In this study, we
derive the wave transmission and reflection from one viscoelastic material to another. Only two modes of
the dispersion relation are considered and the horizontal boundary conditions are approximated by
matching the mean values. The reflection and transmission coefficients are first determined for simplified
cases to compare with earlier theories. All results show reasonable agreement when the same physical
parameters are used. Behaviors of the transmission and reflection coefficients are then obtained for a
range of viscoelastic covers. A mode switching phenomenon with increasing ice shear modulus is found.
This phenomenon was pointed out in the study of wave propagation from open water to a viscoelastic
cover. For two connecting viscoelastic covers, such mode switching is found to terminate with increasing
viscosity. Together with an earlier investigation of wave dispersion in a viscoelastic ice cover, the present
study provides a way to implement theoretical results in a numerical model for wave propagation
through a heterogeneous ice cover. In discretizing a continuously changing ice cover over the geophysical
scale, on top of the energy advection, energy transmission between computational cells due to the het-
erogeneity can be estimated using the present method, while the attenuation and wave speed within
each cell are from the previously obtained dispersion relation. In addition, on floe scales, this study pro-
vides a way to determine wave scattering from an ice floe imbedded in grease or brash ice.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

As part of the climate change scenario, global wind and wave
heights have increased in the past two decades (Young et al.,
2011). In particular, wave conditions in the Arctic have intensified
as the ice cover shrinks (Francis et al., 2011). The pressure for better
wave models in the Arctic increases as the economic and environ-
mental interests in this region rise. At present, existing operational
wave models can only treat ice covers crudely. For example, in
WAVEWATCH III, an ice cover is considered as a stepwise filter in
such a way that the fraction of wave energy flux at any location var-
ies linearly between 0 and 1, with two threshold values controlling
this stepwise linear variation, both are related to the local ice
concentration (Tolman, 2003). The group velocity is assumed
unaltered from the open water condition. This model was
established at a time when the only available ice parameter was
the ice concentration and the wave conditions in the Arctic were
not of great concern. In reality, waves can penetrate into ice-cov-
ered seas over a very long distance. Along its passage, wave energy
is dissipated by the ice field. The attenuation rate depends on the
wave period, ice concentration, thickness and floe size distribution
(Wadhams et al., 1988; Squire et al., 1995; Squire, 2007). In turn,
waves may break the ice floes and further complicate their interac-
tive nature (Dumont et al., 2011). In addition, wind-wave genera-
tion may be modified greatly in the presence of a partial ice cover
(Masson and Leblond, 1989; Perrie and Hu, 1996). Integrating ice
effects into wave models will advance wave predictions in ice-cov-
ered seas. With better remote sensing capabilities, information on
ice conditions will improve. Wave models that can utilize this
improvement need to be developed.

In an earlier study, Wang and Shen (2010, 2011) proposed a
linear viscoelastic model to represent a general ice cover. This
continuum-based approach allowed the water and the overlying
ice cover to each deform internally according to its own material
properties. The requirement of matching interfacial conditions
determine both the dispersion relation of the wave that travels into
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the ice cover (Wang and Shen, 2010) and the reflection and
transmission of wave energy from open water into an ice cover
(Wang and Shen, 2011). The dispersion relation was shown to con-
verge to three types of existing models under respective limiting
conditions: the mass loading (Peters, 1950; Weitz and Keller,
1950), thin elastic plate (Wadhams, 1973a), and pure viscous layer
(Keller, 1998). For general viscoelastic ice layer of finite thickness,
many coexisting modes for the transmitted wave were possible.
The series of coexisting modes were truncated to include the first
two closest to the open water mode to determine the reflection
and transmission properties from open water to an ice cover
(Wang and Shen, 2011). It was found that each of these two modes
became dominant in an ice covers with either low or high shear
modulus, respectively. For intermediate shear modulus, both
modes could play a role. The results of this approximate solution
were shown to be close to the exact solutions available at the thin
elastic plate limit for high shear modulus cases.

In the present study, we extend the previous work to investi-
gate wave propagation from one viscoelastic cover into another.
The motivation for this study is evident: to mathematically model
the wave propagation over a large expanse with varying physical
conditions, a numerical method is required. All numerical methods
Fig. 1. Schematic of a discretized field of wave propagation into a continuous
heterogeneous ice cover.

Fig. 2. (Left) A photo of a broken up ice cover interspersed in open water. The narrow ra
(Right) A photo of ice floes interspersed with pancake ice. (Credit: Don Perovich).
discretize the computational domain into finite size ‘‘cells’’. Within
each cell, average properties of variables are considered. A contin-
uously varying ice cover is thus discretized into cells of constant
thickness and material properties within each cell and abrupt
changes between cells. Wave damping mechanisms contribute to
the sink term within each cell. At the boundary between neighbor-
ing cells wave flux contributes to the energy transport. Both damp-
ing and flux terms are required for any numerical wave models.
Transmission and reflection at cell boundaries are in fact part of
the cumulative results of this process that take place at the floe
scale, where all discontinuities contribute to this process. The
types of floe scale discontinuities and their scattering properties
are shown in Bennetts and Squire (2012). Part of the cumulative re-
sults is accounted for in the wave attenuation due to the average
properties of the ice within the cell. The part due to the gradient
of the ice properties within the cell is accounted for at the cell
boundary. These two processes are shown schematically in Fig. 1,
where the sink term has been studied as part of the dispersion rela-
tion in Wang and Shen (2010). The flux term is the focus of the
present study.

Incidentally, the same analysis provided herein may also help to
expand floe scale investigations. Wave scattering theory developed
by Wadhams (1973a,b) and later extensively studied by Squire and
colleagues (Squire, 2007; Bennetts and Squire, 2009, 2012; Ben-
netts et al., 2010) considered ice floes dispersed in open water.
The present work may expand these theories to situations of ice
floes imbedded in a grease or brash ice field. These two different
types of ice covers are shown in Fig. 2.

To determine the flux between two adjacent ice covers with dif-
ferent viscoelastic properties, in this study we will use the same
approximate approach as given in Wang and Shen (2011). We will
consider two leading modes only to determine the partition of en-
ergy of each mode for a linear monochromatic gravity wave. Our
treatment of the horizontal boundary conditions will also follow
the same approximation method. The organization of this paper
is as follows. Section 2 briefly outlines the theoretical formulation
of the viscoelastic model. In Section 3, the approximation method
is presented. Section 4 gives the result of special cases to compare
with previous studies for pure elastic ice covers. Section 5 dis-
cusses the characteristics of the reflection and transmission for a
range of viscoelastic parameters. The summary and conclusions
are given in Sections 6 and 7 respectively. A linear wave regime
is assumed in this study.
nge of size distribution suggests a wave induced breakage. (Credit: Vernon Squire).
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2. The theoretical formulation

2.1. Definition of the domain

The problem to be analyzed is two dimensional. The two ice
covers are assumed to be fully submerged. This assumption is
based on the results from Williams and Porter (2009), where it is
shown that the draft of a floating ice cover affects the wave trans-
mission and reflection. The small amount of ice cover exposed in
air is ignored in this study. The coordinate system used in this
study is shown in Fig. 3. The x direction is aligned with the incom-
ing wave direction, and the z direction is opposite to gravity. The
origin is set at the top of the ice cover right between the two ice
regions. As shown in Fig. 3, there are four regions: ice regions 1
and 3; water regions 2 and 4. A monochromatic wave propagates
from left to right. The ice thickness for regions 1 and 3 are h1

and h3, respectively. The total depth of the domain is H.

2.2. Governing equation

For the ice cover, we use a Voigt viscoelastic continuum model
shown below (Wang and Shen, 2011):

smn ¼ �pdmn þ 2GSmn þ 2qicem _Smn; ð1Þ

where qice is the density of the ice layer; smn, Smn and _Smn represent
the stress tensor, the strain tensor and the strain rate tensor, respec-
tively; m and n represent x or z; G and m are the effective shear mod-
ulus and the effective kinematic viscosity of the ice layer,
respectively; p is the pressure and dmn the Kronecker delta. The
equation of motion is

@Ui

@t
¼ � 1

qice
rpi þ meir2Ui þ g i ¼ 1;3; ð2Þ

where Ui is the velocity vector, g the gravitational acceleration, and
mei the viscoelastic parameter:

mei ¼ mi þ iGi=qicex i ¼ 1;3: ð3Þ
Fig. 3. Schematic of the coordin
In which, mi and Gi are the effective parameters in each respective
region i, and x is the angular frequency of the incoming wave.
Using the decomposition with potential function ui and stream
function wi for the velocity (Lamb, 1932),

Ui ¼ �rui þr� ð0;wi;0Þ i ¼ 1;3; ð4Þ

we obtain

r2ui ¼ 0; ð5Þ

@wi

@t
� meir2wi ¼ 0; ð6Þ

@ui

@t
� pi

qice
�U ¼ 0 i ¼ 1;3: ð7Þ

Here, U = gz is the gravitational potential.
For water regions 2 and 4, we assume an inviscid fluid. The gov-

erning equations are

@Ui

@t
¼ � 1

qwater
rpi þ g; ð8Þ

r2ui ¼ 0; ð9Þ

@ui

@t
� pi

qwater
�U ¼ 0 i ¼ 2;4: ð10Þ

The water velocity is related to the velocity potential only:

Ui ¼ �rui i ¼ 2;4: ð11Þ

In terms of the Fourier modes, the solution for a sinusoidal wave
with two modes can be written as (Wang and Shen, 2011)

uiðx; z; tÞ ¼
X2

n¼1

ðAiðnÞcoshkiðnÞzþ BiðnÞsinhkiðnÞzÞeikiðnÞxe�ixt; ð12Þ

wiðx; z; tÞ ¼
X2

n¼1

ðCiðnÞcoshaiðnÞzþ DiðnÞsinhaiðnÞzÞeikiðnÞxe�ixt ð13Þ
ate frame of the problem.
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for the ice region i = 1, 3 and �hi 6 z 6 0, and

uiðx; z; tÞ ¼
X2

n¼1

EiðnÞcoshkiðnÞðzþ HÞeikiðnÞxe�ixt ð14Þ

for the water region i = 2, 4 and �H 6 z 6 �hi. The coefficients Ai(n),
Bi(n), Ci(n), Di(n), and Ei(n) are complex constants. As shown in
Appendix B the solution of these constants can be obtained by using
the vertical boundary conditions described in Section 2.3. In the
above, a2

i ðnÞ ¼ k2
i ðnÞ � ix=mei for i = 1, 3 and n = 1, 2 from Eq. (6).

Here ki(n) is the wave number for each ice-covered region.

2.3. Boundary conditions in the vertical direction

In the vertical direction, there are three boundaries. From top to
bottom: the first boundary is between the air and the ice cover, the
second is between the ice cover and the water underneath, and the
third is between the water and the sea floor. Stress-free conditions
apply between the air and the ice cover,

sxziðx;0Þ ¼ 0; szziðx;0Þ ¼ 0; i ¼ 1;3: ð15Þ

The stresses and vertical velocities between the ice and the
water must be equal,

sxz1ðx;�h1Þ ¼ sxz3ðx;�h3Þ ¼ 0; ð16Þ

szz1ðx;�h1Þ ¼ szz2ðx;�h1Þ; szz3ðx;�h3Þ ¼ szz4ðx;�h3Þ; ð17Þ

w1ðx;�h1Þ ¼ w2ðx;�h1Þ; w3ðx;�h3Þ ¼ w4ðx;�h3Þ: ð18Þ

The third boundary condition requires zero vertical velocity at
the sea floor, which is guaranteed by Eq. (14). Both the left and
right side of the domain are governed by the same set of governing
equations and boundary conditions in the vertical direction. The
dispersion relation for either side of the ice-covered region has
been obtained in Wang and Shen (2010) as shown below.

x2¼ 1þ qice

qwater

g2k2SkSa�ðN4þ16k6a2m4
e ÞSkSa�8k3am2

e N2ðCaCk�1Þ
gkð4k3am2

e SkCaþN2SaCk�gkSkSaÞ

 !
gktanhkH;

ð19Þ

where Sk = sinh kh, Sa = sinh ah, Ck = cosh kh, Ck = cosh kh,
N = x + 2ik2me. The viscoelastic model gives a general dispersion
relation that has been shown to reduce to previously established
three models under limiting conditions: the mass loading, the thin
elastic plate, and the viscous layer model. The real part of k = j + iq
denotes the wavelength under the ice cover and the imaginary part
denotes the attenuation. The dispersion relation was shown to have
infinite solutions. The two closest to the open water solution were
chosen to create an approximate solution for the wave propagation
between open water and a general viscoelastic ice cover (Wang and
Shen 2011).

2.4. Boundary conditions in the horizontal direction

We now proceed to determine the horizontal boundary condi-
tions between two different viscoelastic regions. In the horizontal
direction between the two ice regions and the two water regions,
we need to match the displacements, velocities, and stresses.

2.4.1. Water–water interface
The boundary condition between water regions 2 and 4

includes continuity of the potential and the horizontal velocity

u2ð0; zÞ ¼ u4ð0; zÞ; �H < z < �h3; ð20Þ

@u2ð0; zÞ
@x

¼ @u4ð0; zÞ
@x

; �H < z < �h3: ð21Þ
2.4.2. Water–ice interface
For the time being we assume h1 < h3, the same analysis may be

applied to other cases. Between water region 2 and ice region 3, the
kinematic condition is

u2ð0; zÞ ¼ u3ð0; zÞ; �h3 < z < �h1: ð22Þ

Likewise, the dynamical boundary condition is

sxx2ð0; zÞ ¼ sxx3ð0; zÞ; �h3 < z < �h1: ð23Þ

These two conditions are the same as in Wang and Shen (2011)
for wave propagating from open water to an ice covered region.
Additionally, we also include the continuity condition of shear
stress at the interface:

sxz3ð0; zÞ ¼ 0; �h3 < z < �h1: ð24Þ
2.4.3. Ice–ice interface
Between ice region 1 and ice region 3, we use the continuity

conditions of horizontal and vertical velocities, and normal and
shear stresses:

u1ð0; zÞ ¼ u3ð0; zÞ; �h1 < z < 0; ð25Þ

w1ð0; zÞ ¼ w3ð0; zÞ; �h1 < z < 0; ð26Þ

sxx1ð0; zÞ ¼ sxx3ð0; zÞ; �h1 < z < 0; ð27Þ

sxz1ð0; zÞ ¼ sxz3ð0; zÞ; �h1 < z < 0: ð28Þ
2.4.4. Summary of boundary conditions
The above nine equations, Eqs. (20)–(28), will be used to deter-

mine the transmission and reflection coefficients for a given wave.
If freeboard is modeled instead of the current full submergence
assumption, we will also need to include the stress free conditions
over the exposed air–ice interface at x = 0.

sxxð0; zÞ ¼ sxzð0; zÞ ¼ 0; 0 < z < hfreeboard ð29Þ

These conditions are ignored at present.
In a previous study of wave propagation from one ice cover to

another, Barrett and Squire (1996) represented both ice covers as
thin elastic plates each with its own properties. Their boundary
conditions between the two ice covers are the continuity of the
vertical displacement, slope, bending moment and shear force.
The integral of normal stress distribution is the bending moment
and the integral of shear stress distribution is the shear force,
hence the boundary conditions used in Barrett and Squire (1996)
for a thin plate correspond one to one with our continuum bound-
ary conditions.

Eqs. (20)–(28) represent nine sets of infinite equations which
cannot be solved exactly. Instead, a least-square method based
on the variational method is commonly used to minimize the error
function (see Fox and Squire, 1990, 1994):

e ¼
X9

n¼1

kn

Z un

ln

jFn
b � Fn

a j
2dz; ð30Þ

where kn are the Lagrange multipliers, ln and un are the bounds of
the domain where the matching conditions are applied, Fn

a , Fn
b are

the corresponding functions that must be matched at two sides, a
and b, of each boundary. However, in this study we use a simpler
but less accurate approach. We adopt the same approximation as
in Wang and Shen (2011), in keeping with the fact that we only in-
clude two of the multiple modes in the dispersion relation Eq. (19).
The boundary conditions are approximated by setting the integrals
of the required conditions to zero. In this way, we do not minimize
the error but require the mean values of both sides of the respective
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functions be the same. By comparing with the limiting case of pure
elastic ice covers, we will get a sense of how well this approxima-
tion works.

To summarize, the following equations are the approximated
nine horizontal boundary conditions in terms of the potential
and stream functions. The derivation of the normal and shear stres-
ses in terms of the potential and stream functions is given in
Appendix A.Z �h3

�H
u2ð0; zÞdz ¼

Z �h3

�H
u4ð0; zÞdz; ð31Þ

Z �h3

�H

@u2ð0; zÞ
@x

dz ¼
Z �h3

�H

@u4ð0; zÞ
@x

dz; ð32Þ

Z 0

�h1

�@u1ð0;zÞ
@x

�@w1ð0;zÞ
@z

� �
dz¼

Z 0

�h1

�@u3ð0;zÞ
@x

�@w3ð0;zÞ
@z

� �
dz;

ð33Þ

Z 0

�h1

� @u1ð0; zÞ
@z

þ @w1ð0; zÞ
@x

� �
dz

¼
Z 0

�h1

� @u3ð0; zÞ
@z

þ @w3ð0; zÞ
@x

� �
dz; ð34Þ

Z 0

�h1

ixqiceu1ð0; zÞ þ 2qiceme1 �
@2u1ð0; zÞ

@x2 � @
2w1ð0; zÞ
@x@z

 !" #
dz

¼
Z 0

�h1

ixqiceu3ð0; zÞ þ 2qiceme3 �
@2u3ð0; zÞ

@x2 � @
2w3ð0; zÞ
@x@z

 !" #
dz;

ð35Þ

Z �h1

�h3

� @u1ð0; zÞ
@x

� �
dz ¼

Z �h1

�h3

� @u3ð0; zÞ
@x

� @w3ð0; zÞ
@z

� �
dz; ð36Þ

Z �h1

�h3

ixqwateru2ð0; zÞdz

¼
Z �h1

�h3

ixqiceu3ð0;zÞ þ 2qiceme3 �
@2u3ð0;zÞ

@x2 � @
2w3ð0; zÞ
@x@z

 !" #
dz;

ð37Þ

Z �h1

�h3

qiceme3 �2
@2u3ð0; zÞ
@x@z

� @
2w3ð0; zÞ
@z2 þ @

2w3ð0; zÞ
@x2

 !
dz ¼ 0; ð38Þ

Z 0

�h1

qiceme1 �2
@2u1ð0; zÞ
@x@z

� @
2w1ð0; zÞ
@z2 þ @

2w1ð0; zÞ
@x2

 !
dz

¼
Z 0

�h1

qiceme3 �2
@2u3ð0; zÞ
@x@z

� @
2w3ð0; zÞ
@z2 þ @

2w3ð0; zÞ
@x2

 !
dz: ð39Þ
3. Solutions

In general, the full solution of the wave propagation through a
viscoelastic cover consists of an infinite series of modes, each with
a different wave number, all of them roots of the dispersion rela-
tion shown in Eq. (19). Truncation of this infinite series provides
approximate solutions. Following Wang and Shen (2011), from
solutions of Eq. (19) the two wave numbers closest to the open
water case are chosen to form the approximate solution. Each of
these two modes on the left side of the domain shown in Fig. 3
is represented by an incoming magnitude I. When entering the
right side with a different viscoelastic property, the wave reflects
in part represented by R, and transmits the rest represented by T.
Thus the total potential function and the stream function may be
written in terms of these two modes as follows, where the individ-
ual modes denoted by n = 1, 2 are given in Eqs. (12)–(14).

u1ðx;z;tÞ¼
X2

n¼1

IðnÞðA1ðnÞcoshk1ðnÞzþB1ðnÞsinhk1ðnÞzÞeik1ðnÞxe�ixt

þ
X2

n¼1

RðnÞðA1ðnÞcoshk1ðnÞzþB1ðnÞsinhk1ðnÞzÞe�ik1ðnÞxe�ixt;

ð40Þ

w1ðx;z;tÞ¼
X2

n¼1

IðnÞðC1ðnÞcosha1ðnÞzþD1ðnÞsinha1ðnÞzÞeik1ðnÞxe�ixt

þ
X2

n¼1

RðnÞðC1ðnÞcosha1ðnÞzþD1ðnÞsinha1ðnÞzÞe�ik1ðnÞxe�ixt;

ð41Þ

u2ðx; z; tÞ ¼
X2

n¼1

IðnÞE1ðnÞcoshk1ðnÞðzþ HÞeik1ðnÞxe�ixt

þ
X2

n¼1

RðnÞE1ðnÞcoshk1ðnÞðzþ HÞe�ik1ðnÞxe�ixt; ð42Þ

u3ðx; z; tÞ ¼
X2

n¼1

TðnÞðA3ðnÞcoshk3ðnÞz

þ B3ðnÞsinhk3ðnÞzÞeik3ðnÞxe�ixt; ð43Þ

w3ðx; z; tÞ ¼
X2

n¼1

TðnÞðC3ðnÞcosha3ðnÞz

þ D3ðnÞsinha3ðnÞzÞeik3ðnÞxe�ixt; ð44Þ

u4ðx; z; tÞ ¼
X2

n¼1

TðnÞE3ðnÞcoshk3ðnÞðzþ HÞeik3ðnÞxe�ixt : ð45Þ

In the above,

a2
i ðnÞ ¼ k2

i ðnÞ � ix=mei; i ¼ 1;3 and n ¼ 1;2: ð46Þ

The solution matrix for Ai(n), Bi(n), Ci(n), Di(n) and the equation
for solving Ei(n) can be found in Appendix B. After which we can
substitute the solutions of Ai(n), Bi(n), Ci(n), Di(n), Ei(n) into the
horizontal boundary conditions to form nine linear equations for
I(1), R(1), R(2), T(1), and T(2). Since a linear wave regime is
assumed, we may focus on the incoming wave one mode at a time.
The procedure for solving I(2) is identical. Following the above
steps, substituting Eqs. (40)–(45) into Eqs. (31)–(39) gives an
under-determined system of nine equations involving only five
unknowns I(1), R(1), R(2), T(1), and T(2). We solve this using
singular value decomposition method based on the least-square
error method to find the pseudo-inverse.

With the continuity condition of the vertical displacement at
the interface, we can derive the transmission and reflection
coefficients for the surface profile.

Rð1Þ ¼ jRð1Þjjk1ð1ÞB1ð1Þ þ ik1ð1ÞC1ð1Þj
jIð1Þjjk1ð1ÞB1ð1Þ � ik1ð1ÞC1ð1Þj

; ð47Þ

Rð2Þ ¼ jRð2Þjjk1ð2ÞB1ð2Þ þ ik1ð2ÞC1ð2Þj
jIð1Þjjk1ð1ÞB1ð1Þ � ik1ð1ÞC1ð1Þj

; ð48Þ

Tð1Þ ¼ jTð1Þjjk3ð1ÞB3ð1Þ � ik3ð1ÞC3ð1Þj
jIð1Þjjk1ð1ÞB1ð1Þ � ik1ð1ÞC1ð1Þj

; ð49Þ



Fig. 5. Transmission coefficient with respect to wave period between a thin elastic
cover and finite thickness elastic cover. Here m = 0 m2/s for both regions, G1 -
= G3 = 5 GPa, h3 = 0.5 m. (The dash-dot line coincides with the circles.)
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Tð2Þ ¼ jTð2Þjjk3ð2ÞB3ð2Þ � ik3ð2ÞC3ð2Þj
jIð1Þjjk1ð1ÞB1ð1Þ � ik1ð1ÞC1ð1Þj

: ð50Þ

In the next section we will investigate several special cases for
which previous results may be used for comparison.

4. Wave transmission and reflection – pure elastic covers

In this section we study the behavior of wave propagation
involving pure elastic ice covers. The results are compared with
existing theories. For all cases shown in this study, qice = 917 kg/
m3, qwater = 1000 kg/m3, H = 100 m. Because R(2) is very small for
large shear modulus, it is dropped from the discussion in this sec-
tion. R(1) is denoted as R in the results shown below.

4.1. Between open water and elastic ice

We first consider the case of wave propagation from open water
to an elastic ice cover. We use the formulation described in Section
2, where no limitations of the ice thickness is imposed. The trans-
mission and reflection coefficients are defined in Eqs. (47)–(50).
Fig. 4 shows the reflected and transmitted coefficients with respect
to the wave period for m = 0 m2/s, G1 = 0.001 Pa, G3 = 5 GPa,
h1 = 0.001 m, and h3 = 0.5 m. Because of the extremely small values
of G1 and h1, our solution should converge to that of the open water
connecting to an elastic cover given in Wang and Shen (2011), as
indeed shown in Fig. 4. In this figure, the more accurate solutions
using the Eigenfunction Expansion Matching Method by Kohout
et al. (2007) are also shown for comparison.

4.2. Between thin and thick elastic ice

Next we consider a case with a vanishing h1 and a finite h3 but
keeping the same shear modulus in both ice regions. This case rep-
resents the wave propagation from an elastic membrane into an ice
cover. The resulting reflection and transmission coefficients are
plotted in Figs. 5 and 6. From Fig. 5, it is clear that when h1 de-
creases wave transmission converges to that of the case from open
water to an ice cover. However, the reflection coefficient is differ-
Fig. 4. Comparison between previous and the present studies of the reflection and
transmission coefficients from open water to an elastic cover with respect to wave
period. Here m = 0m2/s for both regions, G1 = 0.001 Pa, G3 = 1 GPa, h1 = 0.001 m, and
h3 = 0.5 m. In this and the rest of the figures, qice = 917 kg/m3, qwater = 1000 kg/m3,
H = 100 m. (The dark solid line coincides with the circles. The dark dash line
coincides with the triangles. The dark dash-dot line coincides with the diamonds.)
ent. Convergence is still observed when h1 decreases, but the re-
sults differ from the open water case except for long waves. The
constitutive behavior of the membrane affects the reflection even
though its thickness is negligible. This effect diminishes when
the shear modulus of the membrane approaches zero, as observed
earlier in Fig. 4.

4.3. Between arbitrary elastic ice covers

We now consider two linear elastic ice covers with different
properties. This case has been studied by Barrett and Squire
(1996) using the thin elastic plate theory. First we present the case
where the shear modulus differs between the two ice regions, all
other parameters are identical. The results are shown in Fig. 7.
We have also tested the case where two ice regions are identical.
The results show T = 1 and R = 0 for all wave periods, as expected.
Fig. 6. Reflection coefficient with respect to wave period between a thin elastic
cover and finite thickness elastic cover. Here m = 0 m2/s for both regions, G1 -
= G3 = 5 GPa, h3 = 0.5 m. (The dash-dot line coincides with the circles.)



Fig. 7. Reflection and transmission coefficients with respect to wave period
between two elastic ice regions with m = 0 m2/s in both regions, G1 = 2.5 GPa,
G3 = 5 GPa, and h1 = h3 = 1 m.
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Next we examine the case when the ice thickness is different be-
tween the two regions, the rest of the parameters are identical.
The results are shown in Fig. 8.

The above reflection and transmission coefficients are qualita-
tively the same as in Barrett and Squire (1996) if their smoothly
joined sheet boundary conditions are used. The quantitative differ-
ence is substantial at low wave periods but diminishes at high peri-
ods. The difference is particularly noticeable for the reflection
coefficient. For example, for a 1 s wave, the reflection coefficient
for the case shown in Fig. 7 is about 0.05 from Barrett and Squire
(1996) but from the present calculation it is about 0.25. The differ-
ence in transmission is less. For a 1 s wave, it is about 0.9 from Bar-
rett and Squire (1996) and 0.7 from the present calculation. The
differences in both reflection and transmission become negligible
for long wave periods. This difference may be a combination of
Fig. 8. Reflection and transmission coefficients with respect to wave period
between two elastic ice regions with m = 0 m2/s in both regions, G1 = G3 = 5 GPa,
and h1 = 1 m, h3 = 2 m.
our approximation in treating the boundary conditions, in ignoring
the evanescent modes, as well as the continuum considerations
used in the ice regions (instead of the thin elastic plate assump-
tion). Further investigation to identify the source of these differ-
ences awaits a more complete mathematical study currently
underway.
5. Viscoelastic cases

We next study the full viscoelastic case. Each ice region is now
considered as a viscoelastic material with different properties. In
this section, both R(1) and R(2) are included.

5.1. Between viscoelastic ice

First we examine regions of two different thicknesses. This case
corresponds to an ice cover of the same physical composition but
varying thickness. In each case, we let h1 = 1 m, h3 = 2 m. Properties
in these two regions are otherwise identical. We study the influ-
ence of viscosity for three different shear moduli: low, intermedi-
ate, and high. These results are shown in Figs. 9–11, respectively.
As shown in Fig. 9, for low shear modulus, over a very large range,
viscosity has strong effect on the transmission and reflection coef-
ficients. Such dependence on viscosity appears to vanish as shear
modulus increases for all three cases. However, looking close at
the smaller range of viscosity, as shown in the insets of each figure,
a different picture is found. The viscosity effect for 0 < m < 1 m2/s is
most pronounced for the case with highest shear modulus. In fact,
upon close examination, viscosity does change the behavior of the
transmission and reflection, but its influence is pushed down to-
wards lower values of viscosity as the shear modulus grows.

5.2. Effect of shear modulus

In studying wave propagation from open water to a viscoelastic
cover, a mode switching phenomenon was observed between the
two modes included in the approximate solution (Wang and Shen
2011). One of the two modes having most of the transmitted en-
ergy was called the dominant mode. It was found that between
open water and an elastic cover, as the shear modulus increased,
the dominant mode changed from one to the other. In this section,
Fig. 9. Reflection and transmission coefficients with respect to viscosity between
two thin elastic ice covers with T = 6 s, G = 104 Pa, and h1 = 1 m, h3 = 2 m.



Fig. 10. The same as in Fig. 9, except that G = 105 Pa. (R(2) and T(2) are both very
close to zero.)

Fig. 11. The same as in Fig. 9, except that G = 1 GPa. (R(2) and T(2) are both very
close to zero.)

Fig. 12. Reflection and transmission coefficients between two viscoelastic ice
covers with m = 0 m2/s or 5 m2/s, T = 6 s, and h1 = 0.1 m, h3 = 0.5 m. (Two R(2) are
both very close to zero.)

Fig. 13. The same as in Fig. 12 except that m = 0 m2/s or 50 m2/s. (Two R(2) are both
very close to zero.)
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we investigate the energy partition between these two modes be-
tween viscoelastic covers. The transmission and reflection coeffi-
cients are shown in Figs. 12 and 13 for the two modes over a
range of the shear modulus. Just like in the previous case between
open water and an elastic cover, the mode with a greater transmis-
sion switched from one to the other in the range of G = 104–105 Pa.
The viscosity can influence the presence of mode switching. Be-
tween m = 0 and 5 m2/s, there is little difference as shown in
Fig. 12. Increasing the viscosity to 50 m2/s, the mode switching
stops as shown in Fig. 13. Having such a large viscosity is unlikely
for the ice cover. However, when considering the ice cover together
with the boundary layer underneath, the full dissipation mecha-
nism of this upper layer in the wave field may result in a large
effective viscosity. Whether what found in the current model is
physically observable remains to be seen.

We also tested the case when water depth is 1000 m. There is
no discernible difference from the H = 100 m case. The insensitivity
to water depth may be an artifact of the approximation, since we
keep only two modes in the solution.
5.3. Grease ice and elastic ice

As mentioned in the introduction, although this study is in-
tended for a geophysical scale model, the same analysis is also
applicable to floe scale process. We thus study a relevant case here.
Figs. 14 and 15 show results of a wave propagating from a pure vis-
cous layer to a pure elastic cover. This situation corresponds to an
ice floe surrounded by grease ice. We test a pure viscous case
m1 = 0.01 m2/s in region 1 and let regions 3 be pure elastic. This vis-
cosity is chosen based on the experimental study of grease ice cov-
ers (Newyear and Martin, 1999). The results are compared to the
wave propagation from open water (with m = 0 m2/s and
G1 = 0 Pa) to the same elastic cover in region 3. We choose two
cases for the elastic region: an intermediate shear modulus
(G3 = 0.05 GPa) and a high shear modulus (G3 = 5 GPa). As shown
in Figs. 14 and 15, R(2) is non-zero for small period, but the trans-



Fig. 14. Reflection and transmission coefficients with respect to wave period from
open water or a pure viscous ice to a pure elastic ice with G1 = 0 Pa, m1 = 0 m2/s or
0.01 m2/s, G3 = 0.05 GPa, m3 = 0 m2/s, and h1 = 1 m, h3 = 1 m.

Fig. 15. The same as in Fig. 14, except that G3 = 5 GPa.
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mission and reflection coefficients for the dominant mode are
unaffected whether it is from open water or from a grease ice layer.
Fig. 16. Error terms from different boundary conditions: G1 = G3 = 5 GPa,
m1 = m3 = 0 m2/s, h1 = 1 m, h3 = 2 m and H = 100 m.
6. Summary

In the present study, the approximate mode decomposition
method for solving ocean wave propagating from open water to
an ice-covered region is extended to two connected ice-covered re-
gions. In each region the ice cover is modeled as a viscoelastic
continuum.

6.1. Boundary conditions

The boundary conditions in the vertical direction are the same
as in Wang and Shen (2010). These conditions have been used to
obtain the dispersion relation. In which, the attenuation coefficient
and the wavelength have been obtained. The boundary conditions
in the horizontal direction included more constraints from the pre-
vious study of Wang and Shen (2011). In addition to requiring the
continuity conditions of horizontal velocity and normal stress, we
also consider the continuity conditions of shear stress and vertical
velocity. Equivalent conditions were included by Barrett and
Squire (1996) for thin elastic plate models. For ice-ice interface,
we also include the vertical velocity continuity condition to
achieve the non-slip boundary condition. In Wang and Shen
(2011), continuity of shear stress was first included in the solution
procedure. The solutions showed no influence of including this
condition in the case of open water connecting to a viscoelastic
cover. Hence this condition was dropped later in that study. For
the present case we have kept this condition. However, because
the magnitude of shear stress is proportional to the shear modulus,
with its large value this constraint makes the convergence to the
solution extremely difficult. To avoid the divergence of the results
when solving for the reflection and transmission coefficients, we
use a weighting factor of 0.1/G for the shear stress boundary con-
dition when applying the singular value decomposition procedure.
With this weighting factor, the solutions converge easily.

Instead of requiring a minimum overall error throughout the
boundaries as in Fox and Squire (1990, 1994), we only require
the mean values on both sides of the interface be the same. This
approximation as adopted in Wang and Shen (2011) makes the
solution procedure much simpler. Because of the approximation,
results for shorter waves presented here are less accurate.

To investigate the amount of error introduce by this approxima-
tion, Fig. 16 shows the contribution of error from each of the
boundary conditions in Eqs. (20)–(28). For the selected example,
the parameters are G1 = G3 = 5 GPa, m1 = m3 = 0 m2/s, h1 = 1 m,
h3 = 2 m and H = 100 m. In this figure, we plot the integrals in Eq.
(30) one term at a time. The behaviors of the errors can be sepa-
rated into four distinct groups. The first group is the errors from
Eqs. (20) and (21) for water-water interface. This group shows a
fast decay with increasing period, hence they are the main error
sources for low period waves. The second group is Eqs. (22), (25),
and (26). These equations represent the velocity boundary condi-
tions. This group is flat with a small magnitude, hence does not
contribute significantly to error. The third group contains the nor-
mal stress terms, Eqs. (23) and (27), and the shear stress term, Eq.
(28). Similar to the second group, the third group is also flat with
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very small magnitude. The fourth group is from the shear stress
boundary condition, Eq. (24). This error increases with increasing
period, thus becomes the main error source for large periods. Of
the nine boundary conditions, Eq. (24) is the most challenging. It
represents the matching of shear stress between the vertical inter-
face of water and ice. Referring to Fig. 3, this interface is below
water. On the left side the shear stress must be uniformly zero
due to the inviscid water. Thus the shear stress must also vanish
on the ice side where it meets water. However, above the water–
ice interface, still at x = 0, is the ice-ice interface where the shear
stress is not zero. The normal stress at the same interface does
not suffer this jump condition, because the continuity of normal
stress between regions 1 and 2 and regions 1 and 3 helps to
smoothly connect the normal stress between regions 2 and 3. Nev-
ertheless, the increase of error from Eq. (24) with wave period is
mild. Its magnitude is small even for long period waves thus
should not influence the solution significantly as is evident from
Fig. 4. Several other parameter ranges have been studied. The char-
acteristics of the error terms remain the same as shown in this
example.

Improvement of the solution using the variational method to
solve the boundary conditions together with including more
modes from the dispersion relation is underway and will be pre-
sented in the future. The errors discussed above are expected to re-
duce with the improved solution procedure. Partial submergence is
also desired in order to more closely describe floating ice covers.
6.2. Wave transmission and reflection between two elastic covers

To compare with previously established wave transmission and
reflection, we investigate the case between two elastic covers and
compare the present results with the thin elastic plate model. The
cases for changes on ice thickness and shear modulus between the
two ice-covered regions are studied as shown in Figs. 7 and 8. We
find that present results are qualitatively the same as in Barrett
and Squire (1996) under their smoothly joined sheet boundary
conditions. The quantitative difference may come from our ignor-
ing the evanescent modes, keeping only two modes, and possibly
our inclusion of the constitutive relation and the resulting bound-
ary conditions between the ice regions. When we set the thickness
and shear modulus of the upstream side of the ice region to zero,
the results converge to open water connecting to an elastic cover
as shown in Figs. 4–6.
6.3. Effect of viscosity

After validating the current formulation and solution procedure
by comparing the results with previously published work, we cal-
culate the viscoelastic case. Several interesting phenomena are
found. First, the mode switching that occurs as shear modulus in-
creases stops at very high viscosity (see Fig. 13). Interest in such
phenomena is at present only academic, because no evidence of
such high effective viscosity is physically possible. Second, the
transmission from a pure viscous cover to an elastic cover is the
same as that from open water to an elastic cover, Figs. 14 and
15. The reflection of the dominant mode is also unaffected whether
it is from open water or from a viscous layer. The non-zero R(2) is
more pronounced for shorter waves. Solutions of the transmission
and reflection are influenced by evanescent modes more for short-
er waves. Hence the magnitude of R(2) may change when these
modes are included. When the propagation direction is reversed,
i.e. from the elastic cover to open water or a viscous cover, we need
to determine if the same insensitivity to open water or grease ice
still holds. If so, then results from wave scattering in a dispersed
floe field should apply to cases of floes dispersed in a slurry.
Although not intended in this study, this result is relevant for floe
scale models.

Finally, viscosity does have an effect on wave transmission and
reflection when the ice cover is not pure viscous. As shown in Figs.
9–11, the influence of viscosity in a viscoelastic cover is evident.

6.4. Application of viscoelastic model in the numerical wave model

In general, wave models are based on the evolution equation of
the wave spectra (Tolman, 2003)

DFðf ; h;~x; tÞ
Dt

¼ Sðf ; h;~x; tÞ; ð51Þ

where F is the wave energy density and S is the source-sink term. At
present, the effect of ice is considered via an artificial blocking of
energy flux between computational cells. Specifically, the advection
of energy~cgF between computational cells is modified by a ‘‘trans-
parency’’ coefficient which depends on the ice concentration. In the
above,~cg is the group velocity. A process-based wave-ice interaction
model will improve the parameterization of the existing wave mod-
els. The viscoelastic model presented here has the ability to include
the elastic characteristics of a solid ice cover and the viscous char-
acteristics of a fragmented ice field. It also has the ability to include
other damping mechanisms such as the scattering, floe-floe interac-
tions and flexing hysteresis. The dispersion relation given in Wang
and Shen (2010) provides a way to calculate~cg and S. The transmis-
sion and reflection developed in the present study provides a way to
calculate the ‘‘transparency’’ coefficient. Instead of using ice con-
centration as the single parameter, the wave model will use the
shear modulus and viscosity as new parameters. The advantage is
that frequency-dependent damping and transmission of energy
may be more realistically modeled. The challenge will be to deter-
mine the effective shear modulus and viscosity for a given ice field
subject to a given wave frequency.
7. Conclusions

Motivated by providing a simple model for all types of ice cover
under all wave frequencies, the present study develops the solu-
tion procedure for the transmission and reflection between two
dissimilar ice covers. The ice covers are conceptually represented
by two parameters: shear modulus and viscosity. For extreme
cases such as grease ice, the shear modulus vanishes and the ice
cover behaves as a viscous material; for a consolidated ice cover
the shear modulus approaches that of the solid ice and the cover
behaves as an elastic material. The infinite series of all admissible
modes of the dispersion relation is truncated to two closest to the
open water mode. For very large or small shear modulus, only one
of these modes is significant. The other has extremely low wave
number associated with near zero transmission. But for intermedi-
ate shear modulus, there is a transition phenomenon between the
two modes. These phenomena have been discovered in the earlier
work for wave propagation from open water into a viscoelastic ice
region (Wang and Shen, 2011). In the present study, it is found that
at large viscosity the mode switching phenomenon disappears. It
also disappears for long period waves. The work presented here
is a natural extension to the previous study of Wang and Shen
(2011). The method shown may be used to prepare a numerical
scheme for wave modeling under a heterogeneous ice cover. The
results shown also provides evidence that at floe scale, wave scat-
tering from elastic ice floes dispersed in a grease/brash ice field is
nearly the same as those dispersed in open water. Due to the nat-
ure of the approximation, for short period waves the solutions are
less accurate. Improvements will require implementing more
modes and better treating the boundary conditions.
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Appendix A. Derivations of normal stresses and shear stresses
in terms of the potential and stream functions

Substitute the velocity potential and stream functions into the
expressions for stresses, we get

sxzi ¼ szxi ¼ qicemei
@ui

@z
þ @wi

@x

� �

¼ qicemei �2
@2uiðx; zÞ
@x@z

� @
2wiðx; zÞ
@z2 þ @

2wiðx; zÞ
@x2

 !
; ð52Þ

sxxi ¼ �pi þ 2qicemei
@ui

@x

¼ ixqiceuiðx; zÞ þ 2qicemei �
@2uiðx; zÞ

@x2 � @
2wiðx; zÞ
@x@z

 !
; ð53Þ

szzi ¼ �pi þ 2qicemei
@wi

@z

¼ ixqiceuiðx; zÞ þ 2qicemei �
@2uiðx; zÞ

@z2 þ @
2wiðx; zÞ
@x@z

 !
; ð54Þ

i ¼ 1;3;

sxzi ¼ szxi ¼ 0; ð55Þ

sxxi ¼ �pi ¼ ixqiceuiðx; zÞ; ð56Þ

sxxi ¼ �pi ¼ ixqiceuiðx; zÞ; ð57Þ

i ¼ 2;4:
Appendix B. Matrix for solving Ai(n), Bi(n), Ci(n), Di(n) and Ei(n)

Substituting Eqs. (12) and (13) into vertical boundary condi-
tions, Eqs. (15)–(17), we obtain the matrix for solving the coeffi-
cients Ai(n), Bi(n), Ci(n), Di(n) as follows.

0 2ik2
i ðnÞ a2

i ðnÞþk2
i ðnÞ 0

�2ik2
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i 2ik2
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i

Nn
i x �kiðnÞg ikiðnÞg Ln
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CiðnÞ

DiðnÞ

2
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3
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0

0

0

0

2
666664

3
777775 ð58Þ

Here,

Skn
i ¼ sinhkiðnÞhi; ð59Þ

Ckn
i ¼ coshkiðnÞhi ð60Þ

and

San
i ¼ sinhaiðnÞhi; ð61Þ

Can
i ¼ coshaiðnÞhi; ð62Þ
Nn
i ¼ xþ 2imeik

2
i ðnÞ; ð63Þ

Mn
i ¼

qwater

qice
� 1

� �
kiðnÞg �

qwater

qice

x
tanhðH � hiÞ

; ð64Þ

Ln
i ¼ 2meixkiðnÞaiðnÞ: ð65Þ

In the above, i = 1, 3 and n = 1, 2. By setting the determinant of the
matrix in Eq. (58) to zero, the dispersion relation shown in Eq. (19)
is obtained.

Since the ice cover is considered as a continuum, the vertical
velocity at the interface between two adjacent regions must be
continuous. Therefore,

� @u2

@z
¼ � @u1

@z
þ @w1

@x
at z ¼ �h1; ð66Þ

� @u4

@z
¼ � @u3

@z
þ @w3

@x
at z ¼ �h3: ð67Þ

With these relations we can obtain Ei(n):

EiðnÞ ¼
�AiðnÞSkn

i þ BiðnÞCkn
i � iCiðnÞCan

i þ iDiðnÞSan
i

sinhkiðH � hiÞ
i ¼ 1;3 and n ¼ 1;2: ð68Þ
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