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Abstract

A deterministic combination of numerical and physical models for coastal waves is developed. In the combined model, a Boussinesq model
MIKE 21 BW is applied for the numerical wave computations. A piston-type 2D or 3D wavemaker and the associated control system with active
wave absorption provides the interface between the numerical and physical models. The link between numerical and physical models is given by
an ad hoc unified wave generation theory which is devised in the study. This wave generation theory accounts for linear dispersion and shallow
water non-linearity. Local wave phenomena (evanescent modes) near the wavemaker are taken into account. With this approach, the data transfer
between the two models is thus on a deterministic level with detailed wave information transmitted along the wavemaker.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In coastal engineering, numerical models and physical
models are two main approaches to study water wave problems.
Numerical models are often used for large areas, but they are
typically unable to capture highly non-linear physics including
wave breaking. Physical models are suitable for simulating
complex non-linear processes near the shore or near fixed or
floating structures, but they are restricted by the scale and the
size of the facility (Oumeraci, 1999). The limited extent of the
physical model often prohibits that the offshore boundary is
located in sufficiently deep water for the incident waves to be
well described by standard, parameterized wave spectra. As this
is typically the only available incident wave description, the
limited size of the model facility often precludes important local
phenomena like refraction and diffraction. The integrated use of
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the two approaches could offer an attractive alternative to using
either alone. This composite or hybrid modelling has been
discussed by Kamphuis (1995, 1996, 2000), Watts (1999),
Schäffer (1999) and others.

A suitable combination of numerical and physical models
would be a physical model focusing on the complex part of
the problem near the shore or near structures and a numerical
model for the surrounding wave transformation. Typically, the
combination of the two types of models has been to use a
numerical model for the determination of wave conditions at
the boundary of the physical model. In the traditional
approach, the data transfer between the two models is only
made on a stochastic level through bulk parameters such as
significant wave height and peak period (e.g. Kofoed-Hansen
et al., 2000; Gierlevsen et al., 2003). This study aims at a
deterministic combination of a numerical and a physical
model in two horizontal dimensions. The data transfer
between two models will thus include time series of surface
elevation and depth-averaged velocity and their variation
along the wavemaker. No attempt is made to obtain a two-
way coupling, where reflected waves can enter the numerical
model from the physical model.

The theory developed for this purpose is referred to as the
ad hoc unified wave generation theory. Initial efforts in this
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Fig. 1. Horizontal cross-section of 3D wavemaker. Definition sketch.

Fig. 3. Transfer function for evanescent-mode correction.
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direction include Zhang and Schäffer (2004) for wave
flumes, Zhang and Schäffer (2005) for the theoretical aspects
in 3D. Furthermore, Zhang and Schäffer (in press) used the
ad hoc unified wave generation theory with input from
Stream Function wave theory to generate highly nonlinear
regular waves of previously unmatched quality. In turn these
results provided a validation of the ad hoc theory in 2D.

The ad hoc unified 3D wave generation theory combines
3D linear fully dispersive wavemaker theory (Madsen,
1974, see also Dean and Dalrymple, 1984) and the general
wave generation approach for non-linear shallow water
waves. The ad hoc theory accounts for shallow water non-
linearity and compensates for local wave phenomena
(evanescent modes) near the 3D wavemaker. For small
amplitude waves, the fully dispersive linear wavemaker
theory is recovered. For shallow water waves, it is
consistent with non-linear long wave generation. This ap-
proach offers a deterministic link between numerical and
physical models.

In the combined model, various numerical models or wave
theories can be used for the numerical wave computations in the
far field. In this study, a Boussinesq model (MIKE 21 BW,
Madsen and Sørensen, 1992) is chosen. A Piston-type 2D or 3D
wavemaker and the associated control system with active ab-
sorption provides the interface between the numerical and
physical models. The wavemakers are controlled for simulta-
neous wave generation and active absorption by an ActiveWave
Absorption Control System for wave flumes (DHI AWACS) and
wave basins (DHI 3D AWACS).

Two different types of wavemaker control are offered by the
DHI (3D) AWACS for non-linear wave generation. In position
mode, the control signal is time series of wavemaker paddle
Fig. 2. Transfer function for dispersion correction Λ and modified transfer
function Λm versus non-dimensional frequency.
position. This mode is compatible with the general approach to
non-linear wave generation. However active absorption is not
included in position mode. Another method termed dual mode
has been developed recently (Schäffer and Jakobsen, 2003;
Schäffer, 2001). This allows for active absorption in combina-
tion with consistent non-linear wave generation. The active
absorption appears as a linear perturbation on the non-linear
wave generation. The control signals in dual mode are time
series of wavemaker paddle position and the corresponding
surface elevation at the moving paddle. These two control
signals are provided by the ad hoc unified wave generation
theory.

In the following, Section 2 outlines the ad hoc 3D uni-
fied wave generation theory, while Section 3 and Section 4
provide experimental validation in wave flumes and wave
basins, respectively. Section 5 draws up the summary and
conclusions.

2. Ad hoc 3D unified wave generation theory

Time series of surface elevation, depth-averaged horizontal
particle velocity in the x direction at the wave paddle and paddle
position are denoted η(y,t),U(y,t), and X(y,t), respectively, in
Fig. 4. Modified transfer function for evanescent-mode correction.



Fig. 5. Transfer functions Γm and Γ for normally emitted waves (ky=0).
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physical space, while A(ky,ω), B(ky,ω) and Xa(ky,ω) denote the
equivalent complex Fourier amplitudes:

gðy; tÞ ⇔
2D FourierTransform

Aðky;xÞ ð1Þ

Uðy; tÞ ⇔
2D FourierTransform

Bðky;xÞ ð2Þ

X ðy; tÞ ⇔
2D FourierTransform

Xaðky;xÞ ð3Þ

Here, t is time, ω is angular frequency, and ky is wave
number component along the wavemaker. The quantities A and
η carry the following subscripts: ”I” for the target, progressive,
incident waves, “0” for waves measured at the paddle front, and
“I,0” for the expected wave elevation at the front of the moving
paddle. Fig. 1 shows a definition sketch of a segmented 3D
wavemaker.

2.1. Linear wave generation

According to linear fully dispersive 3D wavemaker theory,
the paddle position amplitude relates to the progressive wave
amplitude as

ie0Xa ¼ AI ð4Þ
Fig. 6. Sketch of the combined model, usin
Here, i is the imaginary unit showing a 90° phase shift, and
e0 is the transfer function defined as

e0 ¼ 1
cosa

c0 ð5Þ

Here, α is the wave propagation direction, c0 is known as the
Biesel transfer function, which for a piston-type wavemaker is
given by

c0 ¼ 4sinh2kh
2khþ sinh2kh

ð6Þ

where k is the wave number and h is the water depth. As B
denotes the x-component of the complex amplitude of the
depth-averaged velocity of the progressive wave, we have by
continuity,

B ¼ x
kh

AIcosa ð7Þ

In combination with Eqs. (4) and (5), this yields

ixXa ¼ KB ð8Þ
where

Ku
kh
c0

¼ khð2khþ sinh2khÞ
4sinh2kh

ð9Þ

The transfer function Λ is shown in Fig. 2. It is independent
of the wave direction. Considering the range of applicability of
the chosen numerical model Mike 21 BW ðkhV3;x ffiffiffiffiffiffiffiffi

h=g
p

V
ffiffiffi
3

p Þ,
we may damp the high-frequency response by replacing Λ with
a modified Λm as shown in Fig. 2.

Eq. (8) may be rewritten as two equations

ixX sw
a ðky;xÞ ¼ Bðky;xÞ ðaÞ

Xaðky;xÞ ¼ KmX sw
a ðky;xÞ ðbÞ

ð10Þ

where superscript “sw” indicates the use of shallowwater theory for
obtaining the paddle position from the depth-averaged particle
velocity at the mean paddle position. Eq. (10b) gives a dispersion
correction needed when deviating from the shallow water limit.
g two different mean paddle positions.
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The wave paddle position in the time domain can be expressed
as

AX swðy; tÞ
At

¼ Uðy; tÞ ð11Þ
X ðy; tÞ ¼ F−1fKmðxÞFfX swðtÞgg ð12Þ
where F represents the Fourier transform which is evaluated in
practice via a Fast Fourier Transform.
Fig. 7. The surface elevation measured at 4.0 m and 7.4 m in position mode and du
x0=96 m.
For active absorption in dual mode, the surface elevation at
the moving paddle is furthermore required. Due to the mismatch
between the shape of the wave paddle and the vertical profile of
the horizontal velocity of progressive waves, an evanescent
wave field exists at the paddle front. From linear wavemaker
theory, we obtain

AI ;0 ¼ AI þ CXa ð13Þ
al mode, respectively, compared with the numerical calculation (BW) choosing



Fig. 7 (continued ).
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where the evanescent modes are given in a complex rep-
resentation (Schäffer and Steenberg, 2003):

Cui
Xl
j¼1

ej ð14Þ
Fig. 8. The surface elevation measured at 1.0 m and 4.4 m in dual mode compared w
identical target (BW) to Fig. 7.
The transfer function ej is defined as

ej ¼ kj
kxj

cj ¼ 1
cosaj

cj ð15Þ

Here Yk j ¼ ðkxj; kyÞ is the complex wave number vector,
kjujYk jj denotes the length of the wave number vector, cj is
ith the numerical calculation (BW) choosing x0=99 m. Altogether this gives an



Fig. 9. Profiles of P flux and surface elevation at constant water depth h=0.4 m at t=180 s.
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the transfer function for normally emitted waves (ky=0)
given by

cj ¼ 4sinh2kjh

2kjhþ sinh2kjh
ð16Þ

and

ky ¼ ksina ¼ kjsinaj ð17Þ

cosaj ¼ kxj
kj

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

k2sin2a
k2j

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2sin2a

jkjj2
s

z1 for jz1 ð18Þ

Here kj is purely imaginary and satisfies the linear dispersion
relation generalized to complex wave numbers corresponding to
evanescent modes:
x2 ¼ gkjtanhkjh ð19Þ

Fig. 3 shows the 2D transfer function Γ with respect to non-
dimensional wave number and frequency ðkyh; x

ffiffiffiffiffiffiffiffi
h=g

p Þ. Fig. 3
includes cases of |ky|≤k (serpent wavelength longer than or equal
to length of progressivewave), and also |ky|Nk (serpentwavelength
shorter than progressive wave). The curve on the surface in the
graph shows the critical value |ky|=k. Progressive waves, |ky|≤k
correspond to the lower right side of the critical curve.

The transfer function Γ is modified to Γm by damping at high
frequencies on ky and ω as done for Λ, see Fig. 4. Fig. 5 shows Γ
and Γm for normally emitted waves (ky=0) in a wave flume.

The surface elevation at the moving paddle in physical space
is expressed as

gI ;0ðy; tÞ ¼ gI ðy; tÞ þ F−1
2DfCmðky;xÞF2DfX ðy; tÞgg ð20Þ

where F2D represents the 2D Fourier transform.
Fig. 10. Sketch of the
2.2. Non-linear shallow water wave generation

For non-linear shallow water waves with small dispersion
such as Cnoidal waves, the horizontal particle velocity is almost
uniform over depth. A Cnoidal wavemaker theory for wave
flumes has been developed by Goring (1979). Based on this
theory, the time-domain relation between the depth-averaged
velocity from the numerical model and the paddle position is
then given for 3D wave basins, as

AX swðy; tÞ
At

þ AX swðy; tÞ
Ay

V ðX swðy; tÞ; y; tÞ ¼ UðX swðy; tÞ; y; tÞ
ð21Þ

subjected to relevant initial and boundary conditions. Here V is
the depth-averaged horizontal particle velocity in the y direction.
This captures the non-linearity of the numerical model, but
corresponds to the shallow water limit for the wave generation.

For active absorption with dual control, the associated
surface elevation at the moving paddle is also needed:

gI ;0ðy; tÞ ¼ gðX swðy; tÞ; y; tÞ ð22Þ

2.3. Ad hoc unified 3D wave generation

We now combine the linear fully dispersive wavemaker
theory and the method of non-linear long wave generation for
3D wave basins. We compute the shallow water paddle position
from Eq. (21) taking the (U,V) field from the numerical wave
propagation model, and then compensate for the disregarded
combined model.
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dispersion using Eq. (12). For vanishing dispersion this pro-
cedure reduces to non-linear long wave generation, while fully
dispersive linear wavemaker theory recovers in case of van-
ishing non-linearity.

In order to avoid slow drift of the paddle which is due to tiny
deviation from the exact signals and the numerical integration,
we add a small term proportional to the paddle signal to the
differential equation for the effect of a first order high-pass filter
Fig. 11. The surface elevation measured at 1.0 m and 4.4 m in position mode an
(Humpherys, 1970). Let ωc denote the characteristic angular
frequency of this filter, then the unified wave generation is
altogether governed by

AX swðy; tÞ
At

þ AX swðy; tÞ
Ay

V ðX swðy; tÞ; y; tÞ þ xcX
swðy; tÞ

¼ UðX swðy; tÞ; y; tÞ ð23Þ
d dual mode, respectively, compared with the numerical calculation (BW).



Fig. 11 (continued ).
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followed by the dispersion correction

X ðy; tÞ ¼ F−1fKmðxÞFfX swðtÞgg ð24Þ
For dual control active absorption, the expected surface

elevation at the moving paddle is needed. Without the
evanescent-mode correction, we have

gp
I ;0ðy; tÞ ¼ gðX ðy; tÞ; y; tÞ ð25Þ
where the superscript ‘p’ on the quantity ηI,0

p (y,t) indicates that
only progressive waves are accounted for. Here, on the right-
hand side, η(x,y,t) is the field from the numerical wave propa-
gation model.

With the evanescent-mode correction, the surface elevation
at the moving paddle is

gI ;0ðy; tÞ ¼ gpI ;0ðy; tÞ þ geva0 ðaÞ

geva0 ¼ F−1
2DfCmðky;xÞF2DfX ðy; tÞgg ðbÞ

ð26Þ

where η0
eva is the correction part for the evanescent modes.
Fig. 12. Sketch of the test set-up. Note: the basin coordina
3. Experimental validation in wave flumes

Physical tests are made in a 0.75 m wide, 1.20 m deep, and
23 m long flume. The flume is equipped with a piston-type
wavemaker with an electric drive system including a brushless
AC motor and an integrated linear drive/bearing system at one
end (x=0), and an efficient passive absorber at the other end.
The wavemaker is controlled by DHI AWACS with two control
modes for consistent non-linear wave generation. In all tests the
numerical model is run beyond the wavemaker to provide a
reference for the wave elevation time series measured in the
physical experiment.

3.1. Irregular waves propagating on constant water depth

With the purpose of testing the dispersion correction and the
evanescent-mode correction, we make a test on a rather deep
water case for irregular waves. The simulated wave flume is
160 m long with a constant water depth of h=0.7 m. The
irregular incoming wave conditions are synthesized from a
te here is specially for the facility and physical tests.



Fig. 13. Sketch of plan view and vertical cross-section of the combined model.
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standard JONSWAP frequency spectrum, with a significant
wave height of Hm0=0.05 m, a peak period of Tp=1.2 s, and the
relevant shape parameters, γ=3.3, σa=0.07, σb=0.09. The
spectrum is truncated omitting periods smaller than 0.95 s. This
gives a range of kh between 2.02 and 3.13. The truncated
spectrum is rescaled in the numerical model to retain the
specified Hm0=0.05 m. The time step is taken as dt=0.01 s and
the grid spacing is dx=0.1 m. We set fixed wave gauges at
x=100 m and x=103.4 m where x=0 coincides with the up-
wave boundary of the numerical model. For the data transfer
between the numerical and physical models, we choose to test
two different locations, x0=96 m and x0=99 m, where x0 is the
mean paddle position for the physical flume. See Fig. 6 for the
sketch of the combined model.

The surface elevations measured at 4.0 m (gauge 1) and
7.4 m (gauge 2) from the mean paddle position in the physical
flume in position mode and dual mode, respectively, are com-
pared with the numerical calculations when choosing x0=96 m
in Fig. 7. The measurements match numerical calculations
reasonably well in each mode at each gauge. The correlation
coefficients between measured and numerical surface elevations
are 0.98 at gauge 1 and 0.96 at gauge 2 for the entire 10-min
period of the physical test in position mode. In dual mode, they
are 0.99 at gauge 1 and 0.97 at gauge 2 for the entire 10-min
Fig. 14. Snapshot of numerical surface elevation in the physical model's area at
t=44 s.
period of the physical test. Dual mode reproduces waves in
flume with the same quality as position mode. But the big
advantage of dual mode is simultaneous wave generation and
active absorption, although in the present tests, the active ab-
sorption is not needed.

The comparison of the surface elevations measured at
1.0 m (gauge 1) and 4.4 m (gauge 2) from the mean paddle in
the physical flume in dual mode with the numerical
calculations are shown in Fig. 8 for the case of x0=99 m.
Note that the gauge positions were chosen to leave the
distance to the up-wave boundary of the numerical model
unchanged. Thus the target (BW) in the two first panels of
Fig. 7 is identical with the target of the first panel in Fig. 8.
The same is true for the last two panels of Fig. 7 and the last
panel of Fig. 8. The correlation coefficients between measured
and numerical surface elevation are 0.99 at gauge 1 and 0.98 at
gauge 2 for the 10-min duration of physical test in dual mode as
well as in position mode. All the measurements in the physical
flume match the numerical calculation quite well. The mea-
surement matches the numerical result better when the wave
gauge is closer to the mean paddle position. This is probably
mainly due to the inaccuracies of the numerical model. How-
ever, the combined model is almost independent of the paddle's
mean location. Therefore, the combined model is not very
Fig. 15. Snapshot of wave filed in the physical basin.



180 H. Zhang et al. / Coastal Engineering 54 (2007) 171–186
sensitive to where the physical model takes over from the
numerical model.

3.2. Irregular waves propagating up a slope

Another example considers irregular waves propagating up
a slope from a deep plateau to a shallow plateau. At the end of
the slope the non-linearity is very high. The length of the
simulated wave flume is 160 m. The internal waves in the
numerical model are generated at a water depth of h=2.6 m. The
bed slope is 1:50 up to a water depth of h=0.4 m. The irregular
incident wave conditions were synthesized from a standard
JONSWAP frequency spectrum, with a significant wave height
ofHm0=0.12 m, a peak period of Tp=3 s, and the relevant shape
parameters, γ=3.3, σa=0.07, σb=0.09. The spectrum is
truncated omitting periods smaller than 2.6 s. The time step is
taken as dt=0.01 s and the grid spacing is dx=0.1 m. As an
example Fig. 9 shows profiles of the volume flux defined as
the depth-integrated horizontal velocity (P flux) and surface
elevation at t=180 s, extracted from the numerical output at the
part of the flume with constant water depth of h=0.4 m. After
shoaling, waves turn to irregular non-linear long waves.

The physical model is set at flat water depth of h=0.4 m. We
set two fixed wave gauges at x=128.2 m (gauge 1) and
Fig. 16. The surface elevation measured at gauge 1
x=131.6 m (gauge 2) in the whole simulated flume. Since the
combined model is not very sensitive to the location of mean
paddle position for data transfer from numerical model to
physical model, x0=127.2 m is chosen arbitrarily as the mean
paddle position for physical flume test. See Fig. 10 for the
sketch of the combined model.

The surface elevations measured at 1.0 m and 4.4 m from
the mean paddle in the physical flume in position mode and
dual mode, respectively, are shown in Fig. 11, compared
with the numerical calculations. The correlation coefficients
are 0.92 at both gauge 1 and gauge 2 for the entire 10-min
duration in position mode. They are 0.94 at gauge 1 and 0.95
at gauge 2 for the entire duration in dual mode. Although
deviations occur especially for the higher waves the match is
quite good considering the very high non-linearity of the
waves. The Ursell number is about 71 at the significant wave
height and peak period, and thus about twice that for the
highest waves in the wave train. In fact, some wave breaking
occurred in the physical flume on the down-wave side of the
wave gauges. Wave breaking was not accounted for in the
numerical model. The dominant errors are due to the
limitation of Boussinesq equations rather than the ad hoc
unified wave generation. This conclusion is based on the
ability of the ad hoc unified wave generation theory to
compared with the numerical calculation (BW).
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produce accurate highly nonlinear regular waves in the flume
when substituting the numerical model with Stream Function
wave theory (See Zhang and Schäffer, in press, and the
comments in the introduction). For this non-linear wave case,
dual mode gives better results than position mode. The reason
for this is probably that in dual mode ηI,0 is provided and the
control system thus gets a second chance for making slight
corrections to paddle signal in case the measured surface
elevation does not exactly match the expected one.
Fig. 17. The surface elevations measured at gauge 2–
Altogether, the deterministic combination of numerical and
physical wave flume models using the ad hoc unified wave
generation for passing waves from a numerical model to a
physical wave flume appears to be appropriate.

4. Experimental validation in wave basins

The tests are made in a wave basin with a segmented 3D
wavemaker at DHI. The 36-segment 3D wavemaker is of
4 compared with the numerical calculation (BW).



Fig. 18. Sketch of plan view and vertical cross-section of the combined model.

Fig. 19. Snapshot of numerical surface elevation in the physical model's area at
t=205 s.
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piston-type with vertical hinges between the segments provid-
ing a linear segmentation of the paddle front. The paddle width
is dy=0.5 m with 1.2 m height and the maximum stroke is
0.6 m. Precision control of each actuator is achieved using a
brushless AC servomotor with a ball screw transmission and
Fig. 20. Sketch of the
encoder feedback. The 3D wavemaker is controlled by the DHI
3D AWACS with two control modes, dual mode and position
mode, for non-linear wave generation with and without active
absorption. The section available for the present tests is about
8.5 m long in the x direction, and 19.5 m wide in the y direction.
At the down-wave boundaries of the basin, some passive wave
absorbers are installed. The up-wave boundary along the x
direction is made up by a guide-wall. The experimental set-up is
sketched in Fig. 12, which also shows the location of the wave
gauges for the first set of tests.

4.1. Directional irregular waves propagating on constant
water depth

This example considers a rather deep water case for direc-
tional irregular waves based on the irregular deep water wave
case in the flume. The simulated wave basin is 100 m long
(x direction) and 30 m wide (y direction) with a constant water
depth of h=0.7 m. The irregular incoming wave conditions are
synthesized from a standard JONSWAP frequency spectrum,
basin test set-up.



Fig. 21. Snapshot of wave field in the physical basin.
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with a significant wave height of Hm0=0.05 m, a peak period of
Tp=1.2 s, and the relevant shape parameter, γ=3.3, σa=0.07,
σb=0.09. The spectrum is truncated omitting periods smaller
than 0.95 s. The truncated spectrum is rescaled in the numerical
model to retain the specified Hm0=0.05 m. The mean wave
direction is −30°. The maximum deviation from the mean wave
direction is chosen as 30°. The directional distribution is
expressed as cos4(α+30°). The 18 m-long wavemaker in the
physical wave basin is arbitrarily placed from y=6 m to 24 m at
x0=65.6 m, where x=0 coincides with the up-wave boundary of
Fig. 22. The surface elevation measured at gauge 1
the numerical model. Thus, x0=65.6 m is the mean paddle
position for the data transfer from numerical to physical model,
see Fig. 13 for a sketch of the combined model. The paddle
‘Y36’ near the guide wall in Fig. 12 corresponds to y=24 m, and
‘Y1’ corresponds to y=6 m.

Fig. 14 shows a snapshot of the surface elevation extracted
from the numerical calculation in the physical model's area at
t=44 s. The left boundary coincideswith the physicalwavemaker.

Physical tests are made in dual mode and position mode,
respectively. Time series of surface elevation at four wave
gauges are measured in the wave basin. The locations of wave
gauges have been shown in Fig. 12. A snapshot of the wave field
in the physical basin is shown in Fig. 15, which is comparable to
Fig. 14. The calm area in the upper right of the physical field
does reduce the equivalence with the numerical model. This is
due to the guide wall and the associated lee zone and diffraction.

The time series of surface elevation measured at gauge 1
are compared with the numerical calculations in Fig. 16 using
position mode and dual mode, respectively. The match is quite
good although deviations occur. Position mode gives smaller
waves than dual mode. Using dual mode the measurements
at the other three gauges are compared with numerical cal-
culations in Fig. 17. In dual mode, the correlation coefficients
are 0.89–0.90 at all four gauges for the entire 10-min
compared with the numerical calculation (BW).
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period of the physical test. In position mode, the coefficients
are 0.90–0.91.

4.2. Irregular waves behind a breakwater after propagating up
a slope

To test directional non-linear shallow water waves, the last
example considers irregular waves propagating up a slope from a
Fig. 23. The surface elevation measured at gauge 2–6
deep plateau to a shallow plateau with a breakwater, based on the
flume case in Section 3.2. See the sketch of the combined model
in Fig. 18. The simulated numerical wave basin is 175 m long
(in x direction), 50 m wide (in y direction). The internal waves in
the numerical model are generated at a water depth of 2.6 m. The
bed slope is 1:50 up to a water depth of 0.4 m. The breakwater is
set on the shallow plateau, from x=128.25 m to x=128.75 m,
y=0 to y=25 m. The irregular incoming wave conditions are
compared with the numerical calculation (BW).



Fig. 23 (continued ).
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synthesized from a standard JONSWAP frequency spectrum,
with a significant wave height of Hm0=0.09 m, a peak period of
Tp=3 s, and the relevant sharp parameter, γ=3.3, σa=0.07,
σb=0.09. The incoming waves propagate along the x direction.
The spectrum is truncated omitting periods smaller than 2.6 s.
The truncated spectrum is rescaled in the numerical model to
retain the specified significant wave height. Based on the non-
linear irregular case in the flume, we know that at the end of the
slope waves are irregular non-linear long waves. Then waves
turn to irregular non-linear long waves with slight directional
spreading behind the breakwater due to slightly different
diffraction of each spectral component. Fig. 19 shows a snapshot
of the numerical calculation in the physical model's area at
t=205 s. The shape of non-linear long wave is shown clearly on
the upper side. On the lower side, the surface is almost still due to
the breakwater.

The 18 m-long wavemaker in the physical wave basin is set
from y=15 m to 33 m and x=139.5 m in the whole unified
model. Thus x0=139.5 m is the location of the mean paddle
position for the data transfer from the numerical to the physical
model. In the physical model, the set-up of tests are identical to
the one used before except for the location of wave gauges, see
Fig. 20. The paddle ‘Y36’ corresponds to y=33 m in the
combined model, and ‘Y21’ corresponds to y=25 m which is
parallel to the end of the breakwater. Fig. 21 shows a snapshot of
the wave field in the physical basin which resembles the nu-
merical snapshot in Fig. 19.

The time series of surface elevation measured at gauge 1 in
position mode and dual mode are compared with the numerical
calculation in Fig. 22. The measurements match the numerical
calculation well in both modes but with slightly lower peaks in
the physical model. Dual mode gives a little better results. The
measurements at other gauges in dual mode are compared with
numerical calculations in Fig. 23. As expected, the wave am-
plitudes decrease gradually from gauge 1 to 3 and from gauge 4
to 6 as y decreases. This is due to the wave diffraction, which
also introduces small phase changes among the signals at
gauges 4–6 and 1–3, respectively.

In dual mode, the correlation coefficients are 0.98, 0.96,
0.94, 0.98, 0.97, and 0.91 for gauges 1–6, respectively, in the
whole 4-min period of the physical test. In position mode, the
respective coefficients are 0.97, 0.94, 0.92, 0.97, 0.96 and 0.86.
All the measurements in the physical basin match the numerical
calculation quite well.Dual mode gives a little larger correlation
coefficients at each gauge than position mode for this case. The
measurements are closer to the numerical results when the wave
gauges are closer to the guide wall where the wave amplitudes
are relatively high in the wave field.
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5. Summary and conclusions

In this paper, a deterministic combination of numerical and
physical coastal wave models has been presented. A Boussinesq
model MIKE 21 BW was chosen for numerical calculations.
Piston-type 2D/3D wavemakers and the associated active
absorption control system provide the interface between the
numerical and physical models. An ad hoc unified 3D wave
generation theory has been devised for providing the link be-
tween the numerical and physical models. This wave generation
theory accounts for shallow water non-linearity and compen-
sates for local wave phenomena (evanescent modes) near the
wavemaker. The data transfer between the two models is on a
deterministic level with detailed wave information transmitted
along the wavemaker.

The practical examples indicate that the ad hoc unified wave
generation theory is adequate for successfully passing 2D and
3D coastal waves from a numerical model to a physical model.
The combined model is not very sensitive to where the physical
model takes over from the numerical model.

In conclusion, the deterministic combination of numerical
and physical coastal wave models is feasible either with or
without active absorption. This method is particularly suitable
for non-linear directional long waves. This conclusion was
supported by the experimental results.
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