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A deterministic combination of a numerical and a physical model for wave flumes is
presented. In the combined model, a Boussinesq model (MIKE 21 BW) is chosen for the
numerical calculation. A wave fluroe with a piston type wavemaker and the Active Wave
Absorption Control System (DHI AWACS) is utilized for the physical model. The link
between the numerical and physical models is made by an ad hoc unified wave
generation theory, which is devised in the paper. This theory accounts for shallow water
nonlinearity and compensates for local wave phenomena (evanescent modes) near the
wavemaker.

1. Introduction

In coastal engineering, water wave problems are frequently studied by either
numerical models or physical models. Both approaches have their strengths and
weaknesses. Numerical models are often used for large areas, but they are
typically unable to accurately capture highly non-linear physics including wave
breaking. Physical models are suitable to simulate complex non-linear processes
near the shore or near fixed or floating structures, but they are restricted by the
scale and the size of the facility. The limited extent of the physical model often
prohibits that the offshore boundary is located in sufficiently deep water for the
incident waves to be well described by standard, parameterized wave spectra. As
this is typically the only available incident wave description, the limited size of
the model facility often precludes important local phenomena like refraction and
diffraction. The integrated use of the two approaches could offer an attractive
alternative to using either alone. A suitable combination would be a physical
model focusing on the complex part of the problem near the shore or near
structures and a numerical model for the surrounding wave transformation.
Typically, the combination of numerical and physical models has been to
use a numerical model for the determination of the wave conditions at the
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boundary of the physical model. In the traditional combined modelling
approach, the data transfer between the numerical and the physical model is only
on a stochastic level through bulk parameters, such as the significant wave
height and spectral peak frequency.

This study aims at a deterministic combination of a numerical model and a
physical model for waves in two horizontal dimensions. The present paper only
considers the wave flume case. We choose a Boussinesq model (MIKE 21 BW,
Madsen and Serensen, 1992) for the numerical wave computations in the far
field. This model has a reasonable balance between accuracy and computational
expense. A wavemaker and the associated control system with active absorption
provide the interface between the numerical and physical models. The piston-
type wavemaker is controlled for simultaneous wave generation and active
absorption by the Active Wave Absorption Control System (DHI AWACS). A
new heuristic unified wave generation method is devised that accounts for
shallow water nonlinearity and compensates for local wave phenomena
(evanescent modes) near the wavemaker. This ad hoc unified wave generation
provides the link between numerical and physical models for the deterministic
combination.

Three different types of wavemaker control are offered by the DHI
AWACS. In position mode, the control signal is time series of wavemaker
paddle position. This mode is compatible with the general approach to nonlinear
wave generation. However, active absorption is not included in position mode.
Single mode is a traditional approach for active absorption, in which the control
signal is the incident progressive wave elevation. The weakness of single mode
is inconsistent nonlinear wave generation. A third method termed dual mode has
been developed recently (Schiffer and Jakobsen, 2003). This allows for
consistent nonlinear wave generation in combination with active absorption. The
active absorption appears as a linear perturbation on the nonlinear wave
generation. The control signals in dual mode are time series of wavemaker
paddle position and the corresponding surface elevation at the moving paddle.
These two control signals are provided by the ad hoc unified wave generation.

2. Ad Hoc Unified Wavemaker Theory for Wave Flumes

This chapter writes up linear wavemaker theory in a suitable form, reviews the
equation for nonlinear shallow water wave generation, and shows how the two
can be combined in an ad hoc manner.

Time series of surface elevation, depth-averaged horizontal particle velocity
at the wave paddle, and paddle position are denoted n(f), U(f), and X(?),
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respectively, in the time domain, while 4(w), B(w) and X, (w) denote the
equivalent complex Fourier amplitudes in frequency domain:

FourierTransform

/10 = . (7)) I (1

U(t) Founerggnsform B(a)) , (2)
FourierTransform

X e X(o). 3

Here ¢ is time and w is angular frequency. The quantities 4 and 7 carry the
following subscripts: “I” for the target, progressive, incident waves, “0” for
waves measured right at the paddle front, and “,0” for the expected wave
elevation at the paddle front.

2.1. Linear Wave Generation

According to linear fully dispersive wavemaker theory, the paddle position
amplitude relates to the progressive wave amplitude as
icoX (@) = A (@) . “4)
Here, { is the imaginary unit showing a 90 degree phase shift, and ¢, is known as
the Biesel transfer function. For a piston-type wavemaker, we have
4sinh” kh

=, (5)
2kh +sinh 2kh

Co

where k& is the wave number and 4 is the water depth. With B denoting the
complex amplitude of the depth-averaged velocity, mass conservation yields,

w
B(w)y=—4;(w) . 6
(@) 0 1 (@) ©
Eliminating 4, (w) from ¢q.(4) and (6) , we get

inX, (w)=AB(w), N
where

_ kh _ kh(2kh-+sinh 2kh)

A —
Co 4sinh” kh

®

Figure 1 shows A versus non-dimensional angular frequency a)\ﬁzl_g .
Since the Boussinesq model providing the incident waves is only accurate up to
kh=3 (a)\/m = Jg ), we may damp the high-frequency response by replacing
A with a modified A, as shown in Figure 1a. Both A and A, tend to unity when
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the frequency tends to 0. Thus the dispersion correction vanishes in the long-
wave limit.
Eq. (7) may be rewritten as two equations

iOXS (@) = B(®) (@)

‘ ®
X (@)= A, X" (@) (b).

where superscript “sw” indicates the use of shallow water theory for obtaining
the paddle position from the depth-averaged particle velocity at the mean paddle
position. Eq. (9b) gives a dispersion correction by which the shallow water
result is turned into a result valid for all relevant water depth.

By the Inverse Fourier Transform and the convolution theorem, the wave
paddle position in the time domain can be expressed as

d)(SW(t) _
E=v0, (10)
b

X(t) = jX“'W(t—t')/lm(t’)dt’. (11)

—t

where A(f) is the impulse response function corresponding to A (w) for the
dispersion correction, see Figure 1b. Here f, is in principle infinite, but in
practice it may be chosen to reflect the effective width of the impulse response
function.
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Figure 1. (a) The transfer function for the dispersion correction A and the modified transfer function
An versus non-dimensional frequency. (b) Impulse response function for the modified dispersion
correction.

For active absorption with dual mode, the surface elevation at the moving
paddle is furthermore required. Due to the mismatch between the shape of the
wave paddle and the vertical profile of the horizontal velocity of progressive
waves, an evanescent wave field exists at the paddle front. From linear
wavemaker theory, we obtain,
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App(@) =4, (@)+TX (@). (12)
where
Faiicj, (13)

Jj=

—

and
4sinh’ k;h

= 14
1= 2k e+ sinh 2 1

Here, k; is purely imaginary corresponding to evanescent modes, and satisfies
the linear dispersion relation generalized to complex wave numbers,

o’ =gk, tanhk;h . (15)

The transfer function I' is modified to ', by damping at high frequencies as
done for A, see Figure 2a. Both T and I, tend to 0 when the frequency tends
to 0. Thus the evanescent-mode correction vanishes in the long-wave limit.
The surface elevation at the moving paddle in the time domain is expressed

as

)

Mo@ =1 O+ [X(E=O)pn@)dr (16)

o
Here y,(?) is the impulse response function corresponding to I',(w), see Figure
2b.
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Figure 2. (a) The transfer function for evanescent-mode correction I' and the modified transfer
function I, versus non-dimensional frequency. (b) Impulse response function for evanescent-mode

correction.

2.2. Nonlinear Shallow Water Wave Generation

For nonlinear shallow water waves with small dispersion such as Cnoidal waves,
the horizontal particle velocity is almost uniform over depth. The time-domain
relation between the depth-averaged velocity and the paddle position is given
directly as
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dx™ ()
dt

with the initial condition X™(0)=0. This approach was used successfully by
Goring et al. (1978) for Cnoidal waves. This step captures the nonlinearity of the
numerical model, but corresponds to the shallow water limit for the wave
generation.

For active absorption in dual mode, the associated surface elevation at the
moving paddle is also needed,

Mo =n(X"(),1) . (18)

=UX™@®.0 , an

2.3. Ad Hoc Unified Wave Generation

Based on the linear fully dispersive wavemaker theory and the method of
nonlinear long-wave generation, we make an ad hoc combination. In order to
avoid slow drift of the paddle, a small term proportional to the paddle signal is
added to the differential equation. This has the effect of a first order high-pass
filter. Let «), denote the characteristic angular frequency of this filter, then the
unified wave generation is altogether governed by

SwW
PO gy =vx 0,0, )
followed by the dispersion correction

t
X(@) = j Xt —1)A, (t)dt . (20)
o
For dual mode active absorption, the expected surface elevation at the moving
paddle 7;,4(z) with evanescent-mode modification is also needed. We have
%
M@ =nXO.0+ | X@=0p, 1) @
For long waves (where the evanescent modes disappear), this method is
consistent with nonlinear long-wave generation. For small amplitude waves, the
fully dispersive wavemaker theory is recovered.

3. Tests of the Combined Model with Deterministic Combination

In the combined model, the MIKE 21 BW 2D module is chosen for the
numerical model. As an extension of the numerical flume, physical tests are



COASTAL ENGINEERING 2004 49

made in a 0.75m wide, 1.20m deep and 23m long flume. The ad hoc unified
wave generation is applied as the link between the numerical and the physical
model. The flume is equipped with a piston-type wavemaker with an electric
drive system including a brushless AC motor and an integrated linear drive/
bearing system. The wavemaker is controlled by the DHI AWACS with three
different control modes. Several tests of the combined model are presented
below. In all tests, the numerical model is run beyond the wavemaker to provide
a reference for the wave eclevations time series measured in the physical
experiment.

3.1. Nonlinear Shallow Water Wave Cases

The combined model is run with Cnoidal wave input to the numerical model.
The wave period is 7=2.3s, and the wave height is A=0.12m. Throughout the
numerical and physical wave flumes, the water depth is constant, #=0.4m. This
gives kh=0.56 and an Ursell number, Ur=37.6. For the numerical simulation, the
grid spacing is taken as dx=0.1m and the time step is d¢=0.01s. The control
signals required for the physical test are calculated by the unified wave
generation method. For each numerical model execution, three different physical
model tests were made each with a different control mode for the wave
generation/active absorption system. These three modes (single mode, dual
mode and position mode) were described in the introduction. Two wave gauges
are set at 1.0m and 4.4m from the mean paddle in the physical flume. The wave
surface elevation measured at these gauges are compared with the numerical
calculation, see Figure 3.

The measurements in dual mode and position mode match the numerical
results reasonably well. The result for single mode is less good, which is
expected due to the inconsistent nonlinear wave generation. Single mode will not
be discussed in the following.

We now test the combined model for Cnoidal waves with higher non-
linearity by increasing wave height to A=0.20m with the same period T=2.3s
and depth h=0.4s. For this case, we have k#=0.53 and Ur=70.8. The wave
surface elevation measured at the two gauges is compared with the numerical
calculation in Figure 4. We notice that at the gauge 4.4m both dual mode and
position mode give higher elevation peaks than expected by the numerical result.
To investigate the reason for this mismatch, we first eliminate the numerical
model by testing waves with the same conditions (7=2.3s, #=0.4m, H=0.20m)
but generated by Cnoidal wavemaker theory in the physical flume. The
measurements of surface elevation are compared with the theoretical Cnoidal
waves in Figure 5. The same phenomenon happens as before, the peaks of the
surface elevation measured in dual mode and position mode are still much
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higher than the theoretical elevation at the gauge 4.4m from the mean paddle.
This shows that Cnoidal (wavemaker) theory is inadequate for highly nonlinear
waves. Also Figures 4 and 5 are quite similar indicating that possible errors in
the numerical wave flume (the Boussinesq model) have little effect in this case.
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Figure 3. Wave surface elevation measured at two gauges for H=0.12m compared with the numerical
calculation (BW). Results are shown for three different control modes.
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Figure 4. As Figure 3, but for H=0.20m.

To further investigate the reason for the difficulty in obtaining these quite
nonlinear waves of constant form in the physical wave flume, we turn to Stream
function theory (Dean, 1965). Thus waves are generated according to Section
2.2, but using Stream Function wave theory to represent the depth-averaged
velocity. For 7=23s, h=0.4m, and H=0.20m the measurements of surface
elevation are compared with the solution of the Stream function theory wave in
Figure 6.
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Figure 5. The measurements of waves generated by Cnoidal wavemaker theory for #=0.20m

compared with the theoretical solution (CN).
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Figure 6. The measurements of waves generated by the *“Stream Function wavemaker theory”” for
H=0.20m compared with the theoretical solution (SF).

The measurements of surface elevation in dual mode and position mode
now match the theoretical solution very well at each gauge. Especially, at the
gauge at 4.4m, the results are improved a lot comparing with the results by
Cnoidal wavemaker theory. Thus for this shallow case, the surface elevation of
highly nonlinear waves is reproduced very well by the “Stream Function
wavemaker theory”. In conclusion, the problem of the combined numerical and
physical model (see Figure 3) lies in the limited accuracy of the numerical
model and its up-wave boundary conditions, and not in the -procedure for
obtaining the wavemaker control signals or in the physical model.

3.2. Irregular Waves Propagating on Constant Water Depth

With the purpose of testing the dispersion correction and the evanescent-mode
correction, we now turn to a rather deepwater case for irregular waves.

As dual mode is the only control mode that can handle nonlinear wave
generation and active absorption simultaneously, only results for this method
will be shown in the remaining part of the paper.
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The simulated wave flume is 160m long with a constant water depth of
h=0.7m. The irregular incoming wave conditions are synthesized from a
standard JONSWAP frequency spectrum, with a significant wave height of
H,~0.05m, a peak period of T,=1.2s, and the relevant shape parameters, y=3.3,
a,=0.07, oy= 0.09. The spectrum is truncated omitting periods smaller than
0.95s. This gives a range of k% between 2.02 and 3.13. The truncated spectrum is
re-scaled in the numerical model to retain the specified H,,y—=0.05m. The time
step is taken as d=0.01s and the grid spacing is dx=0.1m. We set fixed wave
gauges at x=100m and x=103.4m, where x=0 coincides with the up-wave
boundary of the numerical model. For the data transfer between the numerical
and physical models, we choose to test two different locations, x~96m and
x7~99m. Thus x, is the mean paddle position for the physical flume.

The surface elevations measured at 4.0m and 7.4m from the mean paddle
position in the physical flume are compared with the numerical calculations
when choosing x,=96m in Figure 7. The correlation coefficients are 0.987 at
gauge 1 and 0.968 at gauge 2 in the whole 10-min period of the physical tests.
The comparison of the surface elevations measured at 1.0m and 4.4m from the
mean paddle in the physical flume with the numerical calculations is shown in
Figure 8 for the case of x;~99m. Note that the gauge positions were chosen to
leave the distance to the up-wave boundary of the numerical model unchanged.
Thus, the target (BW) in Figures 7 and 8 are identical. The correlation
coefficients between measured and numerical surface elevation are 0.994 at
gauge 1 and 0.985 at gauge 2 for the 10-min duration of physical test. All the
measurements in physical flume match the numerical calculation well. The
measurement is closer to the numerical result when the wave gauge is closer to
the mean paddie position. This is due to the limited accuracy of the numerical
model. However, the combined model is almost independent of the mean
paddle’s location. Therefore, the combined model is not sensitive to where the
physical model takes over from the numerical model.
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Figure 7. The surface elevation measured at 4.0m and 7.4m (using dua/ mode countrol) compared
with the numerical calculation (BW) choosing x0=96m.
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Figure 8. The surface elevation measured at 1.0m and 4.4m (using dual mode control) compared
with the numerical calculation (BW) choosing x0=99m. Altogether, this gives a target (BW) which is

identical to that of Figure 7.

3.3. Irregular Waves Propagating up a Slope

The last example considers irregular waves propagating up a slope from a deep
plateau to a shallow plateau. At the end of the slope, the nonlinearity is very
high. The length of the simulated wave flume is 160m. The internal wave
generation of the numerical model is set at x=10.2m with the deepwater depth of
2.6m. The slope is 1/50 and the shallow water depth is 0.4m. The irregular
incident wave conditions were synthesized from a standard JONSWAP
frequency spectrum, with a significant wave height of Hy=0.12m, a peak period
of T,=3s, and the relevant shape parameters, v=3.3, 0,=0.07, o= 0.09. The
spectrum is truncated omitting periods smaller than 2.6s. The time step is taken
as dr=0.01s and the grid spacing is dx=0.1m. As an example, Figure 9 shows
profiles of depth-integrated velocity (P flux) and surface elevation at t=180s
extracted from the numerical output at the part of the flume with constant
shallow water depth. After shoaling, the waves have turned into irregular
nonlinear long waves. The physical model is set at the flat shallow water depth,
h=0.4m. We set two fixed wave gauges at x=128.2m and x=131.6m in the entire
simulated flume. For the data transfer between numerical and physical models,
we choose two locations x=1252m and x~127.2m as the mean paddle
positions for the physical flume tests.

The surface elevations measured at 3.0m and 6.4m from the mean paddle in
the physical flume are compared with the numerical calculations in Figure 10
choosing x,~125.2m. The correlation coefficients are 0.947 at gauge 1 and 0.941
at gauge 2 for the entire 10-min duration. Although deviations occur especially
for the higher waves, the match is quite good considering the very high non-
linearity of the waves. The Ursell number is about 71 at significant wave height
and peak period, and thus about twice that of the highest waves in the wave
train. In fact, some wave breaking occurred in the physical flume on the down-
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wave side of the wave gauges. Wave breaking was not accounted for in the
numerical model.
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Figure 9. Profiles of depth-integrated velocity (P flux) and surface elevation at constant water depth
F#=0.4m at =180s.
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Figure 10. The surface elevation measured at 3.0m and 6.4m (using dual mode control) compared
with the numerical calculation (BW) choosing x,=125.2m.

We now repeat the test but with the mean paddle position shifted 2m to
x~=127.2m. The two wave gauges are moved accordingly in order to measure
elevation time series at the same distance from the up-wave boundary of the
numerical flume as before. The comparison of the surface elevations measured
at 1.0m and 4.4m from the mean paddle in the physical flume with the numerical
calculations is shown in Figure 11 for the case of x;~127.2m. The correlation
coefficients are 0.942 at gauge 1 and 0.948 at gauge 2 for the entire duration.

7 at 1.00m  at 4.40m

02— 02

0.15}

0.1

0.05]

-0.05¢

w0 a0 320 30 340 “350 300 310 320 ) 340 350

tis] t[s]
Figure 11. The surface elevation measured at 1.0m and 4.4m (using dual mode control) compared
with the numerical calculation (BW) choosing x¢=127.2m. Altogether, this gives a target (BW)
which is identical to that of Figure 10.
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4. Summary and Conclusions

In this paper, an ad hoc unified wave generation theory for wave flumes has
been devised that accounts for shallow water nonlinearity and local wave
phenomena (evanescent modes) near the wavemaker. This theory is shown to be
suitable for a deterministic combination of numerical and physical wave flumes.

In general, the combined numerical/physical wave flume tests show that the
unified wave generation method is adequate for successfully passing waves from
a numerical model to a physical wave flume. Limited accuracy for highly non-
linear waves appears to be due to the numerical model rather than to the unified
wave generation theory.

This conclusion was supported by the observation that while Cnoidal
wavemaker theory was inadequate for highly nonlinear waves, the same wave
generation procedures, but using Stream Function theory, significantly improved
the results.
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