Chapter 1: GFD models: reminder/derivations

V. Zeitlin

Cours GFD M2 OACOS

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

- Reminder : dynamics and thermodynamics of the perfect fluid Dissipative
- pnenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

- Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Verticallly integrated models
- Properties of the models : waves and vortices
- RSW model Primitive equations (PE) What we lose by supposing hydrostatics Preliminary conclusions.

Plan

Introduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative phenomena

Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations

Ocean

Atmosphere "Pseudo-height" coordinate Isentropic/isopycnal coordonates

Vertically integrated models

Properties of the models : waves and vortices RSW model Primitive equations (PE) What we lose by supposing hydrostatics Preliminary conclusions.

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

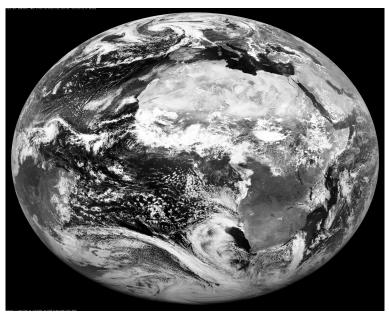
Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Vertically integrated models

Properties of the models : waves and vortices

GFD : space view



Geophysical Fluid Dynamics 1

V Zeitlin - GFD

Introduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn coordonates Verticallly integrated models

Properties of the models : waves and vortices

Hydrodynamics in all its complexity plus :

Rotating frame

- Thermal/stratification effects
- Spherical geometry (large- and meso-scales)
- Fluid in the complex domains (coasts, topography/bathymetry)
- Multi-phase fluid (water vapor, ice)

But !

These additional effects often allow to <mark>simplify</mark> the analysis

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

Introduction

Basic notions

- Reminder : dynamics and thermodynamics of the perfect fluid
- Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Vertically integrated models

Properties of the models : waves and vortices

Hydrodynamics in all its complexity plus :

- Rotating frame
- Thermal/stratification effects
- Spherical geometry (large- and meso-scales)
- Fluid in the complex domains (coasts, topography/bathymetry)
- Multi-phase fluid (water vapor, ice)

But !

These additional effects often allow to <mark>simplify</mark> the analysis

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

Introduction

Basic notions

- Reminder : dynamics and thermodynamics of the perfect fluid
- Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Vertically integrated models

Properties of the models : waves and vortices

Hydrodynamics in all its complexity plus :

- Rotating frame
- Thermal/stratification effects
- Spherical geometry (large- and meso-scales)
- Fluid in the complex domains (coasts, topography/bathymetry)

Multi-phase fluid (water vapor, ice)

But !

These additional effects often allow to <mark>simplify</mark> the analysis

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

Introduction

Basic notions

- Reminder : dynamics and thermodynamics of the perfect fluid
- Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Vertically integrated models

Properties of the models : waves and vortices

Hydrodynamics in all its complexity plus :

- Rotating frame
- Thermal/stratification effects
- Spherical geometry (large- and meso-scales)
- Fluid in the complex domains (coasts, topography/bathymetry)

Multi-phase fluid (water vapor, ice)

But !

These additional effects often allow to <mark>simplify</mark> the analysis

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

Introduction

Basic notions

- Reminder : dynamics and thermodynamics of the perfect fluid
- Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Vertically integrated models

Properties of the models : waves and vortices

Hydrodynamics in all its complexity plus :

- Rotating frame
- Thermal/stratification effects
- Spherical geometry (large- and meso-scales)
- Fluid in the complex domains (coasts, topography/bathymetry)
- Multi-phase fluid (water vapor, ice)

But !

These additional effects often allow to simplify the analysis

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

Introduction

Basic notions

- Reminder : dynamics and thermodynamics of the perfect fluid
- Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Verticallly integrated models

Properties of the models : waves and vortices

Scales :

- Large : planetary 10⁴ km
- Medium : atmosphere synoptic, 10³ km; ocean meso-scale 10 - 10² km
- Small : atmosphere meso-scale 1 10 km; ocean sub-meso scale 1 km
- Very small : meters

Our prime interest : large and medium scales.

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

Introduction

Basic notions

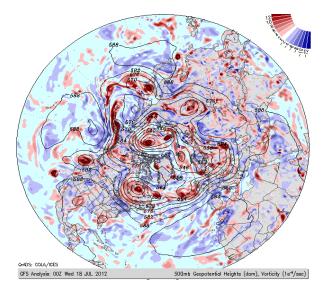
- Reminder : dynamics and thermodynamics of the perfect fluid
- Dissipative phenomena
- Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Vertically integrated models

Properties of the models : waves and vortices

Dynamical actors : vortices, atmosphere



Geophysical Fluid Dynamics 1

V Zeitlin - GFD

Introduction

Basic notions

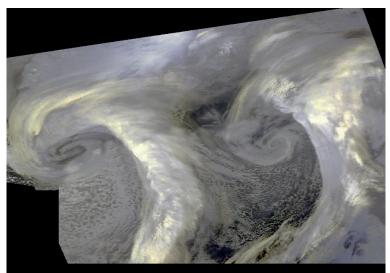
- Reminder : dynamics and thermodynamics of the perfect fluid
- Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn coordonates Verticallly integrated models

Properties of the models : waves and vortices

Atmospheric vortices for real



Geophysical Fluid Dynamics 1

V Zeitlin - GFD

Introduction

Basic notions

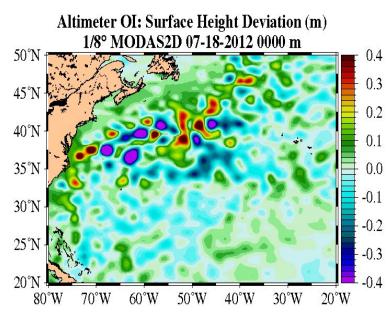
Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Verticallly integrated models

Properties of the models : waves and vortices

Dynamical actors : vortices, ocean



Geophysical Fluid Dynamics 1

V Zeitlin - GFD

Introduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn coordonates Verticallly integrated models

Properties of the models : waves and vortices

Dynamical actors : waves, atmosphere

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

Introduction

Basic notions

- Reminder : dynamics and thermodynamics of the perfect fluid
- Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Verticallly integrated models

Properties of the models : waves and vortices

Dynamical actors : waves, ocean

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

Introduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Verticallly integrated models

Properties of the models : waves and vortices

Where the governing equations come from :

- ► Mechanical system ⇒ Newton's 2nd law ↔ momentum conservation.
- ► Continuous medium ⇒ local mass conservation
- ► Thermodynamical system ⇒ 1st and 2nd laws of thermodynamics, equation of state

Principal difficulty - nonlinearity

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

Introduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Verticallly integrated models

Properties of the models : waves and vortices

Where the governing equations come from :

- ► Mechanical system ⇒ Newton's 2nd law ↔ momentum conservation.
- ► Continuous medium ⇒ local mass conservation
- ► Thermodynamical system ⇒ 1st and 2nd laws of thermodynamics, equation of state

Principal difficulty - nonlinearity

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

Introduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn coordonates Verticallly integrated models

Properties of the models : waves and vortices

Where the governing equations come from :

- ► Mechanical system ⇒ Newton's 2nd law ↔ momentum conservation.
- ► Continuous medium ⇒ local mass conservation
- ► Thermodynamical system ⇒ 1st and 2nd laws of thermodynamics, equation of state

Principal difficulty - nonlinearity

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

Introduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Vertically integrated models

Properties of the models : waves and vortices

Example of essentially nonlinear process : wave breaking

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

Introduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn coordonates Verticallly integrated models

Properties of the models : waves and vortices

Mathematical methods and tools

Related mathematical fields

- Linear algebra
- Partial differential equations
- Vector and tensor analyses
- Fourier analysis

Toolbox

- Method of small perturbations. Linearisation. Eigenproblems.
- Method of (time- and space-) averaging
- Asymptotic expansions, multi-scale analysis

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Verticallly integrated models

Properties of the models : waves and vortices

Fluid dynamics according to Lagrange :

Description in terms of instantaneous positions of fluid parcels $\vec{X}(\vec{x}, t)$, along their trajectories, where \vec{x} are initial positions (Lagrangian labels). Newton's 2nd law :

$$ho(ec{X},t)rac{d^2ec{X}}{dt^2}=-ec{
abla}P(ec{X},t).$$

Continuity equation :

$$\rho_i(x)d^3\vec{x} = \rho(\vec{X},t)d^3\vec{X}, \leftrightarrow \rho_i(x) = \rho(\vec{X},t)\mathcal{J} \qquad (2$$

where ρ_i is initial distribution of density of the fluide, $\mathcal{J} = \frac{\partial(X,Y,Z)}{\partial(x,y,z)}$ is the Jacobi determinant d(Jacobian). Fluid velocity : $\vec{v}(\vec{X},t) = \frac{d\vec{X}}{dt} \equiv \dot{\vec{X}}$. Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

(1)

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycna coordonates Verticallly integrated models

Properties of the models : waves and vortices

Fluid dynamics according to Euler :

Description in terms of instantaneous values of the velosity, density and pressure fields at the fixed point of space : $\vec{v}(\vec{x},t), \ \rho(\vec{x},t), \ P(\vec{x},t)$. Duality : $\vec{X} \leftrightarrow \vec{x}$ Newton's 2nd law :

$$\rho\left(\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{v}\right) = -\vec{\nabla} P.$$

Continuity equation :

$$rac{\partial
ho}{\partial t} + ec
abla \cdot (
ho ec v) = 0$$

Lagrangian derivative :

$$\frac{d}{dt} = \frac{\partial}{\partial t} + \vec{v} \cdot \vec{\nabla}.$$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Rotating. frame Spherical coordinates.

(3)

(4)

(5)

Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Verticallly integrated models

Properties of the models : waves and vortices

Proposition

Lagrangian and Eulerian continuity equations are equivalent

Démonstration.

$$\frac{d}{dt}(\rho\mathcal{J}) = \frac{d\rho}{dt}\mathcal{J} + \rho\frac{d\mathcal{J}}{dt} = \frac{d\rho_i}{dt} = 0, \qquad ($$

$$\frac{d\mathcal{J}}{dt} = \frac{\partial(\dot{X}, Y, Z)}{\partial(x, y, z)} + \frac{\partial(X, \dot{Y}, Z)}{\partial(x, y, z)} + \frac{\partial(X, Y, \dot{Z})}{\partial(x, y, z)}$$

$$= \left(\frac{\partial(\dot{X}, Y, Z)}{\partial(X, Y, Z)} + ...\right)\mathcal{J} = \left(\left(\frac{\partial\dot{X}}{\partial X} + \frac{\partial\dot{Y}}{\partial Y} + \frac{\partial\dot{Z}}{\partial Z}\right)\right)$$

$$\frac{d\rho}{\partial t} + \rho\vec{\nabla} \cdot \vec{y} = 0 \Leftrightarrow \frac{\partial\rho}{\partial t} + \vec{\nabla} \cdot (\rho\vec{y}) = 0 \qquad ($$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Verticallly integrated models

Properties of the models : waves and vortices

Proposition

Lagrangian and Eulerian continuity equations are equivalent

Démonstration.

$$\frac{d}{dt}(\rho\mathcal{J}) = \frac{d\rho}{dt}\mathcal{J} + \rho\frac{d\mathcal{J}}{dt} = \frac{d\rho_i}{dt} = 0,$$
(6)

$$\begin{aligned} \frac{d\mathcal{J}}{dt} &= \frac{\partial(\dot{X}, Y, Z)}{\partial(x, y, z)} + \frac{\partial(X, \dot{Y}, Z)}{\partial(x, y, z)} + \frac{\partial(X, Y, \dot{Z})}{\partial(x, y, z)} \\ &= \left(\frac{\partial(\dot{X}, Y, Z)}{\partial(X, Y, Z)} + \ldots\right) \mathcal{J} = \left(\left(\frac{\partial\dot{X}}{\partial X} + \frac{\partial\dot{Y}}{\partial Y} + \frac{\partial\dot{Z}}{\partial Z}\right) \mathcal{J} \Rightarrow \end{aligned}$$

$$\frac{d\rho}{dt} + \rho \vec{\nabla} \cdot \vec{v} = 0 \leftrightarrow \frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{v}) = 0.$$
 (7)

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Vertically integrated models

Properties of the models : waves and vortices

Closure of the system : equation of state General equation of state

$$P = P(\rho, s),$$

wher s - entropy per unit mass;

Barotropic fluid :

$$P = P(\rho) \leftrightarrow s = \text{const},$$

Baroclinic fluid :

$${\sf P}={\sf P}(
ho,s),\Rightarrow$$

Equation for s neccessary. Perfect fluid :

$$\frac{ds}{dt} = \frac{\partial s}{\partial t} + \vec{v} \cdot \vec{\nabla} s = 0.$$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

(8)

(9)

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycna coordonates Verticallly integrated models

Properties of the models : waves and vortices

Closure of the system : equation of state General equation of state

$$P = P(\rho, s),$$

wher s - entropy per unit mass;

Barotropic fluid :

$$P = P(\rho) \leftrightarrow s = \text{const},$$

Baroclinic fluid :

$${\sf P}={\sf P}(
ho,{m s}),\Rightarrow$$

Equation for s neccessary. Perfect fluid :

$$\frac{ds}{dt} = \frac{\partial s}{\partial t} + \vec{v} \cdot \vec{\nabla} s = 0.$$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

(8)

(9)

(10)

(11)

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycna coordonates Verticallly integrated models

Properties of the models : waves and vortices

Particular case of the barotropic fluid - incompressible fluid :

Volume conservation :

$$\mathcal{J} = \mathbf{1} \leftrightarrow \vec{\nabla} \cdot \vec{\mathbf{v}} = \mathbf{0} \Rightarrow .$$

pressure is not independente variable.

1. If in addition, $\rho = const$:

$$ec{
abla}\cdot\left(ec{
abla}\cdotec{
abla}
ight)=-rac{1}{
ho}ec{
abla}^2 P.$$

2. Otherwise

$$\frac{d\rho}{dt} = \frac{\partial\rho}{\partial t} + \vec{v} \cdot \vec{\nabla}\rho = 0.$$

$$\vec{\nabla} \cdot \left(\vec{v} \cdot \vec{\nabla} \vec{v} \right) = -\vec{\nabla} \cdot \left(\frac{\vec{\nabla} P}{\rho} \right).$$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

Introduction

Basic notions

(12)

(13)

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Vertically integrated models

Properties of the models : waves and vortices

Particular case of the barotropic fluid - incompressible fluid :

Volume conservation :

$$\mathcal{J} = \mathbf{1} \leftrightarrow \vec{\nabla} \cdot \vec{\mathbf{v}} = \mathbf{0} \Rightarrow .$$

pressure is not independente variable.

1. If in addition, $\rho = const$:

$$ec{
abla}\cdot\left(ec{
abla}\cdotec{
abla}
ight)=-rac{1}{
ho}ec{
abla}^2 P.$$

2. Otherwise

$$\frac{d\rho}{dt} = \frac{\partial\rho}{\partial t} + \vec{v} \cdot \vec{\nabla}\rho = 0.$$

et

$$\vec{\nabla} \cdot \left(\vec{v} \cdot \vec{\nabla} \vec{v} \right) = -\vec{\nabla} \cdot \left(\frac{\vec{\nabla} P}{\rho} \right).$$
(15)

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

Introduction

Basic notions

(12)

(13)

(14)

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycna coordonates Verticallly integrated models

Properties of the models : waves and vortices

Thermodynamics : reminder 1st principle, "dry" thermodynamics

$$\delta \epsilon = T \delta s - P \delta v, \tag{16}$$

where ϵ - internal energy per unit mass, $\mathbf{v}=\frac{1}{\rho}$ - volume per unit mass.

Enthalpy per unit mass : $h = \epsilon + Pv$:

$$\delta h = T \delta s + v \delta P. \tag{17}$$

Energy density of the fluid :

$$e = \frac{\rho \vec{v}^2}{2} + \rho \epsilon.$$

Local conservation of energy :

$$\frac{\partial e}{\partial t} + \vec{\nabla} \cdot \left[\rho \vec{v} \left(\frac{\vec{v}^2}{2} + h \right) \right] = 0.$$
 (19)

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

Introduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycna coordonates Verticallly integrated models

Properties of the models : waves and vortices

(18)

Kelvin theorem

Circulation :

$$\gamma = \int_{\Gamma} \vec{v} \cdot d\vec{l} = \int_{S_{\Gamma}} \left(\vec{\nabla} \wedge \vec{v} \right) \cdot d\vec{l}, \qquad (21)$$

where Γ - arbitrary contour, ${\it S}_{\Gamma}$ - surface with the boundary $\Gamma.$

.

Kelvin theorem

Barotropic fluid

$$\frac{d\gamma}{dt} = 0,$$

Baroclinic fluid

$$\frac{d\gamma}{dt} = -\int_{\Gamma} \frac{\vec{\nabla}P}{\rho} \cdot d\vec{l},$$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

Introduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

(22)

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Vertically integrated models

Properties of the models : waves and vortices

Kelvin theorem

Circulation :

$$\gamma = \int_{\Gamma} \vec{v} \cdot d\vec{l} = \int_{S_{\Gamma}} \left(\vec{\nabla} \wedge \vec{v} \right) \cdot d\vec{l}, \qquad (21)$$

where Γ - arbitrary contour, ${\it S}_{\Gamma}$ - surface with the boundary $\Gamma.$

.

Kelvin theorem

Barotropic fluid

$$\frac{d\gamma}{dt} = 0,$$

Baroclinic fluid

$$\frac{d\gamma}{dt} = -\int_{\Gamma} \frac{\vec{\nabla}P}{\rho} \cdot d\vec{l},$$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

Introduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

(22)

(23)

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Vertically integrated models

Properties of the models : waves and vortices

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

Introduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycna coordonates Verticallly integrated models

Properties of the models : waves and vortices

RSW model Primitive equations (PE) What we lose by supposing hydrostatics Preliminary conclusions.

Exercise

- Prove energy conservation and Kelvin theorem for the barotropic fluid
- Same for the baroclinic fluid
- Write down, with demonstration, the Euler equations for the incompressible fluid in cylindrical coordinates

Dissipative phenomena : molecular fluxes

Effects of dissipation : correction of the macroscopic fluxes of :

- momentum
- mass
- internal energy (heat)

by the corresponding molecular fluxes, calculated from the flux - gradient relations :

$$\vec{f}_A = -k_A \vec{\nabla} A, \tag{24}$$

A - a thermodynamical variable, \vec{f}_A - corresponding molecular flux.

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative phenomena

Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn coordonates Vertically integrated models

Properties of the models : waves and vortices

Viscosity

Tensor notation

$$ec{x}
ightarrow x_i, \quad ec{v}
ightarrow v_i, \quad ec{
abla}
ightarrow \partial_i, \ i=1,2,3.$$
 (25)

Einstein's convention : repeting indices - summation from 1 to 3.

Conservation of the momentum :

$$\partial_t(\rho v_i) + \partial_k \pi_{ik} = 0, \quad \pi_{ik} = \rho v_i v_k + P \delta_{ik}, \quad \delta_{ik} = \text{diag}(1, 1, 1).$$
(26)

Viscous tensions - (density of) the molecular flux of the momentum :

$$\sigma_{ik} = \nu(\partial_i \mathbf{v}_k + \partial_k \mathbf{v}_i) \Rightarrow \partial_t(\rho \mathbf{v}_i) + \partial_k(\pi_{ik} - \sigma_{ik}) = \mathbf{0}, \quad (27)$$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative phenomena

Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Verticallly integrated models

Properties of the models : waves and vortices

Incompressible case : Navier -Stokes (NS) equation

$$\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{v} = -\frac{\vec{\nabla} P}{\rho} + \nu \vec{\nabla}^2 \vec{v}, \ \vec{\nabla} \cdot \vec{v} = 0.$$
(28)

Reynolds' number

Dimensionless form of the NS equation :

$$\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{v} = -\frac{\vec{\nabla} P}{\rho} + \frac{1}{Re} \vec{\nabla}^2 \vec{v}, \qquad (29)$$

 $Re = UL/\nu$, U, L -typical velocity- and length-scales. Remarque : typical Re for synoptic motions $\rightarrow \infty$ Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative phenomena

Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycna coordonates Verticallly integrated models

Properties of the models : waves and vortices

Diffusivity, thermal conductivity

Molecular fluxes of mass and heat :

$$-D\vec{\nabla}
ho, \quad -\kappa\vec{\nabla}T$$

Corrected continuity equation :

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{v}) = D \vec{\nabla}^2 \rho.$$

Equation of heat/temperature

$$\frac{\partial T}{\partial t} + \vec{v} \cdot \vec{\nabla} T = \chi \vec{\nabla}^2 T.$$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative phenomena

(30)

(31)

(32)

Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Vertically integrated models

Properties of the models : waves and vortices

Motion in the rotating frame

Material point in the rotating frame :

$$m\frac{d\vec{v}}{dt} + 2m\vec{\Omega}\wedge\vec{v} + m\vec{\Omega}\wedge\left(\vec{\Omega}\wedge\vec{r}\right) = 0, \quad \vec{v} = \frac{d\vec{r}}{dt} \quad (33)$$

Euler equations in the rotating frame in the presence of gravity :

$$\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{v} + 2\vec{\Omega} \wedge \vec{v} - \vec{g}^* = -\frac{\vec{\nabla} P}{\rho}$$
(34)

Effective gravity :

$$ec{g}^* = ec{g} + mec{\Omega} \wedge \left(ec{\Omega} \wedge ec{r}
ight)$$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative

Rotating. frame Spherical coordinates. Approximation of the tangent plane

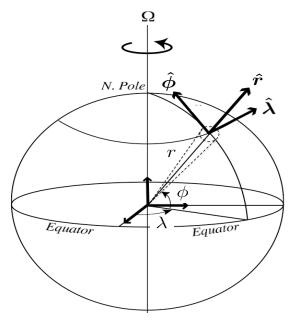
GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycna coordonates Verticallly integrated models

Properties of the models : waves and vortices

(35)

Spherical coordinates



Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative

Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn coordonates Verticallly integrated models

Properties of the models : waves and vortices

Euler and continuity equations

$$\begin{aligned} \frac{dv_r}{dt} &- \frac{v_\lambda^2 + v_\phi^2}{r} - 2\Omega \cos \phi v_\lambda + g^* &= -\frac{1}{\rho} \partial_r P, \\ \frac{dv_\lambda}{dt} &+ \frac{v_r v_\lambda - v_\phi v_\lambda \tan \phi}{r} + 2\Omega \left(-\sin \phi v_\phi + \cos \phi v_r \right) \\ &= -\frac{1}{\rho r \cos \phi} \partial_\lambda P, \\ \frac{dv_\phi}{dt} &+ \frac{v_r v_\phi + v_\lambda^2 \tan \phi}{r} + 2\Omega \sin \phi v_\lambda &= -\frac{1}{\rho r} \partial_\phi P, \\ \frac{d\rho}{dt} &+ \rho \left[\frac{1}{r^2} \frac{\partial (r^2 v_r)}{\partial r} + \frac{1}{r \cos \phi} \left(\frac{\partial (\cos \phi v_\phi)}{\partial \phi} + \frac{\partial v_\lambda}{\partial \lambda} \right) \right], \\ &= \frac{d}{dt} = \frac{\partial}{\partial t} + v_r \partial_r + \frac{v_\phi}{r} \partial_\phi + \frac{v_\lambda}{r \cos \phi} \partial_\phi \end{aligned}$$

Traditional approx. : green + red \rightarrow out, $r \rightarrow R = \text{const}$ Non-traditional approx : green \rightarrow out.

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

phenomena

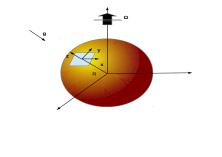
Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Verticallly integrated models

Properties of the models : waves and vortices

Tangent plane approximation



$$rac{\partial ec{v}}{\partial t} + ec{v} \cdot ec{
abla} ec{v} + f \hat{z} \wedge ec{v} + ec{g} = -rac{ec{
abla} P}{
ho}$$

f - plane : f = const; β - plane : $f = f + \beta y$; f - Coriolis parameter : $f = 2\Omega \sin \phi$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative

Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Verticallly integrated models

Properties of the models : waves and vortices

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative

Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn coordonates Verticallly integrated models

Properties of the models : waves and vortices

RSW model Primitive equations (PE) What we lose by supposing hydrostatics Preliminary conclusions.

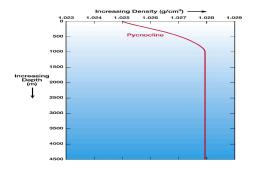
Exercise

Deduce Euler and continuity equations in spherical coordinates.

Determine conditions of validity of the tangent plane approximation.

Ocean : observations and approximations

Typical density profile :



$$\rho(\vec{x},t) = \rho_0 + \rho_s(z) + \sigma(x,y,z;t), \quad \rho_0 \gg \rho_s \gg \sigma.$$
 (36)

Hydrostatics

$$g\rho + \partial_z P = 0, \Rightarrow P = P_0 + P_s(z) + \pi(x, y, z; t),$$
 (37)

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

- Reminder : dynamics and thermodynamics of the perfect fluid
- phenomena Rotating, frame
- Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations

Ocean

Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Verticallly integrated models

Properties of the models : waves and vortices

Equations of motion

$$\vec{\nabla} \cdot \vec{v} = 0, \quad \vec{v} = \vec{v}_h + \hat{z}w. \tag{38}$$

Euler equations :

$$\frac{\partial \vec{v}_h}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{v}_h + f \hat{z} \wedge \vec{v}_h = -\frac{\vec{\nabla}_h \pi}{\rho} \approx -\vec{\nabla}_h \phi.$$
(39)

 $\phi = \frac{\pi}{\rho_0}$ - geopotential. Continuity equation :

$$\partial_t \rho + \vec{\mathbf{v}} \cdot \vec{\nabla} \rho = 0.$$
 (40)

Boundary conditions : Rigid lid and flat bottom :

$$w|_{z=0} = w|_{z=H} = 0$$

Non-trivial bathymetry : $w|_{z=b} = \frac{db}{dt}$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations

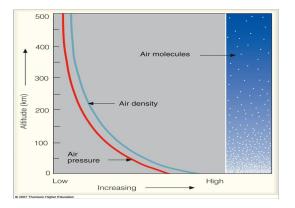
Ocean

(41)

Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Verticallly integrated models

Properties of the models : waves and vortices

Atmosphere : pressure coordinatees



$\mathsf{Altitude} \leftrightarrow \mathsf{Pressure} \Rightarrow \mathsf{vertical} \ \mathsf{coordinate}.$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

- Reminder : dynamics and thermodynamics of the perfect fluid
- Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean

Atmosphere

"Pseudo-height" coordinate Isentropic/isopycna coordonates Verticallly integrated models

Properties of the models : waves and vortices

Thermodynamics of the dry atmosphere Equation of state - ideal gaz :

$$P = \rho RT, \quad c_{P,V} = T \left(\frac{\partial s}{\partial T}\right)_{P,V} = const, \quad c_p - c_v = R.$$
(42)

Entropy :

$$s = c_p \ln T - R \ln P + const.$$

Adiabatic process :

$$s = \text{const} \Rightarrow c_p \frac{dT}{T} - R \frac{dP}{P} = 0, \Rightarrow T = T_s \left(\frac{P}{P_s}\right)^{\frac{R}{c_p}}.$$
 (44)

Potential temperature :

$$\theta = T\left(\frac{P_s}{P}\right)^{\frac{R}{c_p}}, \ s = c_p \ln \theta + \text{const.}$$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

(43)

(45)

Primitive quations Ocean

Atmosphere

"Pseudo-height" coordinate Isentropic/isopycna coordonates Verticallly integrated models

Properties of the models : waves and vortices

Geopotential

 $\delta \phi = g \delta z$, où z = z(p) via hydrostatics, z - thermodynamical variable.

Hydrostatics

$$\delta\phi = -\frac{RT}{P}\delta P \Rightarrow$$
$$\frac{\partial\phi}{\partial p} = -\frac{RT}{P} = -\frac{1}{\rho}.$$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

(46)

(47)

Primitive quations Ocean

Atmosphere

"Pseudo-height" coordinate Isentropic/isopycna coordonates Verticallly integrated models

Properties of the models : waves and vortices

Elimination of ρ

"Triangular" relation :

$$\left(\frac{\partial P}{\partial x}\right)_{z} \left(\frac{\partial x}{\partial z}\right)_{P} \left(\frac{\partial z}{\partial P}\right)_{x} = -1 \Rightarrow \qquad (48)$$
$$\left(\frac{\partial P}{\partial x}\right)_{z} = -\left(\frac{\partial P}{\partial z}\right)_{x} \left(\frac{\partial z}{\partial x}\right)_{P} = \rho \left(\frac{\partial \phi}{\partial x}\right)_{P}. \qquad (49)$$

Incompressibility in pressure coordinates Lagrangian volume element in pressure coordinates :

$$ho dxdydz = -rac{1}{g}dxdydP$$

Mass conservation \Rightarrow Volume conservation in *P*.

(50)

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean

Atmosphere

"Pseudo-height" coordinate Isentropic/isopycna coordonates Verticallly integrated models

Properties of the models : waves and vortices

Adiabatic equations of motion

$div(ec{v}) = ec{ abla}_h \cdot ec{v}_h + \partial_p \omega = 0, \ \ \omega = rac{dP}{dt}.$

$$\frac{\partial \vec{v}_h}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{v}_h + f \hat{z} \wedge \vec{v}_h = -\vec{\nabla}_h \phi.$$
 (52)

$$\partial_t \theta + \vec{\mathbf{v}} \cdot \vec{\nabla} \theta = \mathbf{0}. \tag{53}$$

$$\frac{\partial \phi}{\partial p} = -\frac{RT}{P} = -\frac{R}{P} \left(\frac{P}{P_s}\right)^{\frac{R}{c_p}} \theta.$$

(51)

(54)

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean

Atmosphere

"Pseudo-height" coordinate Isentropic/isopycna coordonates Verticallly integrated models

Properties of the models : waves and vortices

"Pseudo-height" coordinate

New vertical coordinate :

$$\bar{z} = z_0 \left(1 - \left(\frac{P}{P_s}\right)^{\frac{R}{c_p}} \right) \equiv z_0 \left(1 - \left(\frac{P}{P_s}\right)^{\frac{\gamma-1}{\gamma}} \right), \quad (55)$$

$$z_0 = rac{\gamma}{\gamma-1} rac{P_s}{g
ho_s} pprox 28 {
m km}.$$

Pseudo- density :

$$r: rd\bar{z} =
ho dz = -\frac{1}{g}dP.$$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

(56)

(57)

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate

coordonates Vertically integrated models

Properties of the models : waves and vortices

Mass conservation :

$$dxdydP = -gr(\bar{z})dxdyd\bar{z} \Rightarrow$$
(58)
$$\left(\vec{\nabla}_{h} \cdot \vec{v}_{h} + \frac{\partial \bar{w}}{\partial \bar{z}}\right) + \bar{w}\frac{\partial r}{\partial \bar{z}} = 0, \quad \vec{v} = (\vec{v}_{h}, \bar{w} = \dot{\bar{z}}).$$
(59)

Approximation
$$ar{z} \ll z_0$$
 :

$$\vec{\nabla}_{h} \cdot \vec{v}_{h} + \frac{\partial \bar{w}}{\partial \bar{z}} = -\frac{\bar{w}}{r} \frac{\partial r}{\partial \bar{z}} = \frac{\bar{w}}{(\gamma - 1)z_{0} \left(1 - \frac{\bar{z}}{z_{0}}\right)} \approx 0.$$
(60)

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycna

coordonates Vertically integrated models

Properties of the models : waves and vortices

Equations of motion

$$\frac{\partial \vec{v}_h}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{v}_h + f\hat{z} \wedge \vec{v}_h = -\vec{\nabla}_h \phi,$$

$$-g \frac{\theta}{\theta_0} + \frac{\partial \phi}{\partial \bar{z}} = 0,$$

$$\frac{\partial \theta}{\partial t} + \vec{v} \cdot \vec{\nabla} \theta = 0; \quad \vec{\nabla} \cdot \vec{v} = 0.$$
(61)
(62)
(63)

Identical to oceanic equations with $\sigma \rightarrow -\theta$.

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

- Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame
- Spherical coordinates. Approximation of the tangent plane

GFD models

- Primitive quations Ocean Atmosphere "Pseudo-height" coordinate
- Isentropic/isopycna coordonates Verticallly integrated models

Properties of the models : waves and vortices

Isentropic coordinates

Montgomery potential

$$\psi = \phi - \frac{\theta}{\theta_0} g \bar{z}, \Rightarrow$$

$$\begin{aligned}
\psi &= d\phi - g \frac{\theta}{\theta_0} d\bar{z} - g d \frac{\theta}{\theta_0} \bar{z} \\
&= \bar{\nabla}_h \phi \cdot d\vec{x}_h + \partial_{\bar{z}} \phi d\bar{z} - \frac{\theta}{\theta_0} g d\bar{z} - g \bar{z} d \frac{\theta}{\theta_0} \\
&= \bar{\nabla}_h \phi \cdot d\vec{x}_h - g \bar{z} d \frac{\theta}{\theta_0}
\end{aligned}$$
(65)

Therefore :

d

$$\left(\vec{\nabla}_{h}\psi\right)_{\theta} = \left(\vec{\nabla}_{h}\phi\right)_{\bar{z}}; \ \partial_{\theta}\psi = -g\bar{z}/\theta_{0} \tag{66}$$

and \overline{z} is a new dependent variable.

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

Introduction

Basic notions

(64)

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycna

coordonates Verticallly integrated models

Properties of the models : waves and vortices

Velocity and continuity equation in isentropic coordinates

Velocity

$$ec{v}
ightarrow\left(ec{v}_h, \, \widetilde{w}=rac{d heta}{dt}
ight)
ightarrow$$

 $\tilde{w} \equiv 0$ for adiabatic processes

Mass conservation

$$dxdyd\bar{z} = \frac{\partial \bar{z}}{\partial \theta} dxdyd\theta = const \rightarrow$$
$$\partial_t \left(\frac{\partial \bar{z}}{\partial \theta}\right) + \vec{\nabla}_h \cdot \left(\frac{\partial \bar{z}}{\partial \theta} \vec{v}_h\right) = 0.$$

(67)

(69)

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative henomena

Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate

coordonates Vertically integrated models

Properties of the models : waves and vortices

Complete equations, adiabatic motions

$$\frac{\partial \vec{v}_{h}}{\partial t} + \vec{v}_{h} \cdot \vec{\nabla}_{h} \vec{v}_{h} + f\hat{z} \wedge \vec{v}_{h} = -\vec{\nabla}_{h} \psi,$$

$$+ \frac{g\bar{z}}{\theta_{0}} + \frac{\partial \psi}{\partial \theta} = 0,$$

$$\frac{\partial t}{\partial t} \left(\frac{\partial \bar{z}}{\partial \theta} \right) + \vec{\nabla}_{h} \cdot \left(\frac{\partial \bar{z}}{\partial \theta} \vec{v}_{h} \right) = 0.$$
(70)
(71)
(72)

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

- Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycna
- coordonates Vertically
- integrated models
- Properties of the models : waves and vortices
- RSW model Primitive equations (PE) What we lose by supposing hydrostatics Preliminary conclusions.

Rewriting Euler equations in rotating frame in form of conservation laws and verical integration

Equations of horizontal motion

$$\partial_{t}(\rho u) + \partial_{x}(\rho u^{2}) + \partial_{y}(\rho v u) + \partial_{z}(\rho w u) - f\rho v = -\partial_{x}p,$$
(73)
$$\partial_{t}(\rho v) + \partial_{x}(\rho u v) + \partial_{y}(\rho v^{2}) + \partial_{z}(\rho w v) + f\rho u = -\partial_{y}p,$$
(74)

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of

the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn: coordonates Vertically integrated models

Properties of the

and vortices

Vertical integration

Integration between two material surfaces $z_{1,2}$. By definition :

$$w|_{z_i} = \frac{dz_i}{dt} = \partial_t z_i + u \partial_x z_i + v \partial_y z_i, \quad i = 1, 2.$$
 (75)

Leibnitz formula :

$$\int_{z_1}^{z_2} dz \partial_x F = \partial_x \int_{z_1}^{z_2} dz F - \partial_x z_2 F|_{z_2} + \partial_x z_1 F|_{z_1}$$
(76)

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

- Reminder : dynamics and thermodynamics of the perfect fluid
- Dissipative phenomena
- Rotating. frame Spherical coordinates. Approximation of the tangent plane

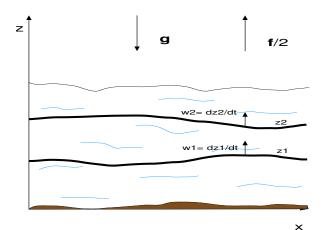
GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates

Verticallly integrated models

Properties of the models : waves and vortices

Geophysical Fluid Dynamics 1



V Zeitlin - GFD

ntroduction

Basic notions

- Reminder : dynamics and thermodynamics of the perfect fluid
- phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycna coordonates

Vertically integrated models

Properties of the models : waves and vortices

Integrated equations

Using (75) and (76) we obtain :

$$\partial_t \int_{z_1}^{z_2} dz \rho u + \partial_x \int_{z_1}^{z_2} dz \rho u^2 + \partial_y \int_{z_1}^{z_2} dz \rho u v$$

- $f \int_{z_1}^{z_2} dz \rho v = -\partial_x \int_{z_1}^{z_2} dz \rho - \partial_x z_1 \rho|_{z_1} + \partial_x z_2 \rho|_{z_2}.$

$$\partial_t \int_{z_1}^{z_2} dz \rho v + \partial_x \int_{z_1}^{z_2} dz \rho u v + \partial_y \int_{z_1}^{z_2} dz \rho v^2$$
$$+ f \int_{z_1}^{z_2} dz \rho u = -\partial_y \int_{z_1}^{z_2} dz \rho - \partial_y z_1 p|_{z_1} + \partial_y z_2 p|_{z_2}$$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

Introduction

Basic notions

- Reminder : dynamics and thermodynamics of the perfect fluid
- Phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn: coordonates Vertically

Vertically integrated models

Properties of the models : waves and vortices

.

Continuity equation :

$$\partial_t \int_{z_1}^{z_2} dz \rho + \partial_x \int_{z_1}^{z_2} dz \rho u + \partial_y \int_{z_1}^{z_2} dz \rho v = 0.$$
 (77)

Integrated density :

$$\mu = \int_{z_1}^{z_2} dz \rho = -\frac{1}{g} \left(\left. p \right|_{z_2} - \left. p \right|_{z_1} \right),$$

Density-weighted vertical average :

$$\langle F \rangle = \frac{1}{\mu} \int_{z_1}^{z_2} dz \rho F.$$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

(78)

(79)

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn: coordonates Vertically integrated models

Properties of the

models : waves and vortices

Equations for the averages :

$$\partial_{t} (\mu \langle u \rangle) + \partial_{x} (\mu \langle u^{2} \rangle) + \partial_{y} (\mu \langle uv \rangle) - f \mu \langle v \rangle = - \partial_{x} \int_{z_{1}}^{z_{2}} dz p - \partial_{x} z_{1} p|_{z_{1}} + \partial_{x} z_{2} p|_{z_{2}}, (80)$$

$$\partial_{t} (\mu \langle v \rangle) + \partial_{x} (\mu \langle uv \rangle) + \partial_{y} (\mu \langle v^{2} \rangle) + f \mu \langle u \rangle = - \partial_{y} \int_{z_{1}}^{z_{2}} dz p - \partial_{y} z_{1} p|_{z_{1}} + \partial_{y} z_{2} p|_{z_{2}}, (81)$$

$$\partial_t \mu + \partial_x \left(\mu \langle u \rangle \right) + \partial_y \left(\mu \langle v \rangle \right) = 0.$$
(82)

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Vertically

integrated models

models : waves and vortices

Mean-field approximation :

Expression for the pressure

Pressure inside the layer (z_1, z_2) in terms of pressure at the lower surface and vertical position :

$$p(x, y, z, t) = -g \int_{z_1}^{z} dz' \rho(x, y, z', t) + p|_{z_1}.$$
 (83)

Closure hypothesis :

Weak variations in the vertical, correlations decoupled :

$$\langle uv \rangle \approx \langle u \rangle \langle v \rangle, \ \langle u^2 \rangle \approx \langle u \rangle \langle u \rangle, \ \langle v^2 \rangle \approx \langle v \rangle \langle v \rangle.$$
 (84)

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn: coordonates Vertically

Vertically integrated models

Properties of the models : waves and vortices RSW model

Approximate equations

Mean density :

Mean density $\bar{\rho}$:

$$\bar{\rho} = \frac{1}{(z_2 - z_1)} \int_{z_1}^{z_2} dz \rho, \quad \mu = \bar{\rho}(z_2 - z_1).$$
 (85)

Pressure in terms of $\bar{\rho}$:

$$p(x, y, z, t) pprox -g ar{
ho}(z-z_1) + \left. p \right|_{z_1}.$$

Hypothesis : $\bar{\rho} = \text{const}$ in what follows.

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn: coordonates Vertically

Vertically integrated models

(86)

Properties of the models : waves and vortices RSW model Primitive equations (PE) What we lose by supposing hydrostatics Preliminary

conclusions.

Omitting the brackets we obtain for the averages from (80), (81), (84), (86), with the help of (82), (85) :

$$\bar{\rho}(z_2 - z_1)(\partial_t \mathbf{v}_h + \mathbf{v}_h \cdot \nabla_h \mathbf{v}_h + f \hat{\mathbf{z}} \wedge \mathbf{v}_h) = -\nabla_h \left(-g \bar{\rho} \frac{(z_2 - z_1)^2}{2} + (z_2 - z_1) \left. \rho \right|_{z_1} \right) \\ -\nabla_h z_1 \left. \rho \right|_{z_1} + \nabla_h z_2 \left. \rho \right|_{z_2}.$$
(87)

Any variable in this equation is a fonction only of horizontal coordinates and time. Alternative \mathbf{v} : $\vec{v}_h \equiv \mathbf{v}_h$.

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn: coordonates Vertically

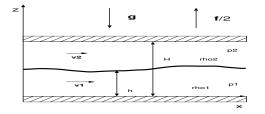
integrated models

Properties of the models : waves and vortices RSW model

Rotating shallow water (RSW), 2 layers

2- layer configuration, rigid lid

Application of general equations (87) to the fluid between the bottom $z_1 = 0$ and the top $z_3 = H$ planes. Choose a material surface $z = z_2(x, y, t) \equiv h(x, y, t)$ in the fluid interior, $\vec{\nabla}_h \rightarrow \vec{\nabla}, \ \vec{v}_h \rightarrow \mathbf{v}$. Vertical boundaries - material surfaces. Generalisation to non-trivial topography : $z_1 = b(x, y)$.



Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn: coordonates Vertically

Vertically integrated models

Properties of the models : waves and vortices

Equations of motion

 $\mathbf{v}_{1(2)},\bar{\rho}_{1(2)}$ - velocity and density in the inferior (superior) layer.

$$\partial_t \mathbf{v}_2 + \mathbf{v}_2 \cdot \nabla \mathbf{v}_2 + f \hat{\mathbf{z}} \wedge \mathbf{v}_2 = -\frac{1}{\bar{\rho}_2} \nabla |_H$$
 (88)

$$\partial_t \mathbf{v}_1 + \mathbf{v}_1 \cdot \nabla \mathbf{v}_1 + f \hat{\mathbf{z}} \wedge \mathbf{v}_1 = -\frac{1}{\bar{\rho}_1} \nabla \left. \boldsymbol{p} \right|_H - g \frac{\bar{\rho}_1 - \bar{\rho}_2}{\bar{\rho}_1} \nabla h,$$
(89)

$$\partial_t h + \nabla \cdot (\mathbf{v}_1 h) = 0,$$
 (90)

$$\partial_t (H-h) + \nabla \cdot (\mathbf{v}_2 (H-h)) = 0, \qquad (91)$$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn: coordonates Vertically integrated models

Properties of the models : waves and vortices

Re-interpretation of the equations

Deduce the equations (88) - (91).

2-dimensional Euler equations in each layer with dynamical boundary condition at the interface :

$$p_1 = (\bar{\rho}_1 - \bar{\rho}_2)gh + p_2,$$
 (92)

Reduced gravity

Exercise

Remark : g enter equations uniquely in combination $g \frac{\bar{\rho}_1 - \bar{\rho}_2}{\bar{\rho}_1}$ - reduced gravity

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn: coordonates Vertically integrated models

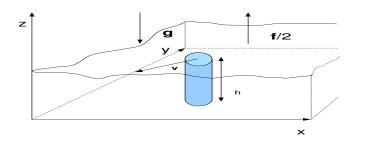
Properties of the models : waves and vortices

1-layer rotating shallow water model (Saint-Venant)

In the limit $\bar{\rho}_2
ightarrow 0$:

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + f \hat{\mathbf{z}} \wedge \mathbf{v} + g \nabla h = 0, \qquad (93)$$
$$\partial_t h + \nabla \cdot (\mathbf{v}h) = 0, \qquad (94)$$

In the presence of non-trivial topography $h \rightarrow h - b(x, y)$ in the second equation.



Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn: coordonates Vertically

Vertically integrated models

Properties of the models : waves and vortices

Conservation laws, RSW model

Energy

By construction, equations (93), (94) express the local conservation of the horizontal momentum and mass. Energy density :

$$e=h\frac{\mathbf{v}^2}{2}+g\frac{h^2}{2}$$

obeys the conservation equation :

$$\partial_t e + \nabla \cdot \left(\mathbf{v} h \left(\frac{\mathbf{v}^2}{2} + g h \right) \right) = 0,$$
 (96)

and total energy, $E = \int dx dy e$, is constant for an isolated system.

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

- Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of
- the tangent plane

GFD models

(95)

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycna coordonates Verticallly integrated models

Properties of the models : waves and vortices

RSW model

Potential vorticity, RSW model

Specific Lagrangian conservation law : potential vorticity q (PV), constructed from the relative vorticity (vertical component) $\zeta = v_x - u_y$, Coriolis le parametre f, and fluid depth h.

$$q = \frac{\zeta + f}{h}.$$
 (97)

here $\zeta + f$ -absolute vorticity , f - planetary vorticity.

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena

Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycna coordonates Verticallly integrated models

Properties of the models : waves and vortices

RSW model

Lagrangian conservation :

$$rac{dq}{dt} \equiv \left(\partial_t + \mathbf{v} \cdot
abla
ight) q = 0,$$

is obtained by combining equations of vorticity :

.

$$\frac{d(\zeta+f)}{dt}+(\zeta+f)\nabla\cdot\mathbf{v}=0,$$

and continuity

$$\frac{dh}{dt} + h\nabla \cdot \mathbf{v} = 0 : \qquad (100)$$
$$\frac{d}{dt}\frac{\zeta + f}{h} = \frac{1}{h}\frac{d}{dt}(\zeta + f) - \frac{\zeta + f}{h^2}\frac{d}{dt}h = 0, \qquad (101)$$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

(98)

(99)

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Vertically integrated models

Properties of the models : waves and vortices

RSW model

Eulerian expression :

Conservation of PV leads to independence of time of any integral :

$$\int dxdy \ h\mathcal{F}(q), \tag{102}$$

over the whole flow, with $\mathcal F$ - arbitrary function.

Qualitative image of the RSW dynamics :

Two-dimensional motion of the fluid columns of variable depth, each preserving its potential vorticity.

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Verticallly integrated models

Properties of the models : waves and vortices

RSW model

Spectrum of the small perturbations - RSW model

Linearised equations :

Perturbations about state of rest : $\mathbf{v} = 0$, $h = H_0 = const$. Linéarised equations in the approximation $f = f_0 = const$:

$$u_{t} - fv + g\eta_{x} = 0,$$

$$v_{t} + fu + g\eta_{y} = 0,$$

$$\eta_{t} + H_{0}(u_{x} + v_{y}) = 0,$$

(103)

where u, v - 2 components of the velocity perturbation, η - perturbation of the interface.

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative phenomena Rotating. frame

Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycna coordonates Verticallly integrated models

Properties of the models : waves and vortices

RSW model

Method of Fourier Solutions - harmonic waves :

$$(u, v, \eta) = (u_0, v_0, \eta_0) e^{i(\omega t - \mathbf{k} \cdot \mathbf{x})}, \qquad (104)$$

where ω and **k** are frequency and wavenumber, respectively. Algebraic system for (u_0, v_0, η_0) :

$$\begin{pmatrix} i\omega & -f & -igk_{x} \\ f & i\omega & -igk_{y} \\ -iH_{0}k_{x} & -iH_{0}k_{y} & i\omega \end{pmatrix} \begin{pmatrix} u_{0} \\ v_{0} \\ \eta_{0} \end{pmatrix} = 0, \quad (105)$$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

Introduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn coordonates Verticallly integrated models

Properties of the models : waves and vortices

RSW model

Dispersion equation

Condition of solvability :

$$\det \begin{pmatrix} i\omega & -f & -igk_{x} \\ f & i\omega & -igk_{y} \\ -iH_{0}k_{x} & -iH_{0}k_{y} & i\omega \end{pmatrix} = 0, \quad (106)$$

which gives :

$$\omega \left(\omega^2 - gH_0\mathbf{k}^2 - f^2\right) = 0. \tag{107}$$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

- Reminder : dynamics and thermodynamics of the perfect fluid
- phenomena Rotating. frame Spherical coordinates. Approximation of
- Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn coordonates Verticallly integrated models

Properties of the models : waves and vortices

RSW model

Primitive equations (PE) What we lose by supposing hydrostatics Preliminary conclusions.

Physical meaning of solutions

3 roots of the equation correspond to

- Stationary solutions $\omega = 0$
- Propagative waves with the dispersion relation :

$$\omega^2 - gH_0\mathbf{k}^2 - f^2 = 0$$

inertia-gravity waves.

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

- Reminder : dynamics and thermodynamics of the perfect fluid
- Dissipative phenomena Rotating, frame Spherical coordinates
- Approximation of the tangent plane

GFD models

(108)

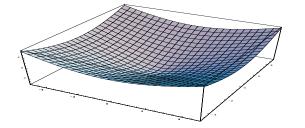
Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn coordonates Verticallly integrated models

Properties of the models : waves and vortices

RSW model

Primitive equations (PE) What we lose by supposing hydrostatics Preliminary conclusions.

Dispersion relation



Dispersion relation for inertia-gravity waves. $c = \sqrt{gH_0} = 1$, f = 1, the part with $\omega < 0$ is not presented.

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

- Reminder : dynamics and thermodynamics of the perfect fluid
- Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Verticallly integrated models

Properties of the models : waves and vortices

RSW model

Primitive equations (PE) What we lose by supposing hydrostatics Preliminary conclusions.

Exercise

- 1. Demonstrate (99),
- 2. Obtain the polarisation relations, i.e. the relations between u_0, v_0, η_0 for inertia gravity waves,
- 3. Calculate phase and group velocity of inertia gravity waves,
- 4. Demonstrate that inertia-gravity waves bear no PV anomaly (PV anomaly : $q f/H_0$),
- 5. Determine the spectrum of small perturbations in the 2-layer RSW model,
- 6. Demonstrate that PV of each layer in multi-layer RSW is

$$q_i = rac{\zeta_i + f}{h_i}, \ i = 1, 2, rac{d_i q_i}{dt} = 0.$$
 (109)

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

- Reminder : dynamics and thermodynamics of the perfect fluid
- Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn coordonates Verticallly integrated models

Properties of the models : waves and vortices

RSW model Primitive equations (PE) What we lose by

supposing hydrostatics Preliminary conclusions.

Primitive equations, ocean

$\frac{\partial \vec{v}_h}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{v}_h + f\hat{z} \wedge \vec{v}_h = -\frac{\vec{\nabla}_h \pi}{\rho} \equiv -\vec{\nabla}_h \phi, \qquad (110)$

$$\partial_t \sigma + \vec{v} \cdot \vec{\nabla} \sigma + w \rho'_s(z) = 0.$$
 (111)

$$g \frac{\sigma}{\rho_0} = -\partial_z \phi, \quad \vec{\nabla}_h \cdot \vec{v}_h + \partial_z w = 0,$$
 (112)

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

- Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena
- Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycna coordonates Verticallly integrated models

Properties of the models : waves and vortices

RSW model

Primitive equations (PE)

Conservation of potential vorticity - PE model

Absolute vorticity - PE model

$$\vec{\zeta}_a = \vec{\zeta} + \hat{z}f, \quad \vec{\nabla} \cdot \vec{\zeta}_a = 0,$$
 (113)

with relative vorticity :

$$\vec{\zeta} = -\partial_z v \hat{\mathbf{x}} + \partial_z u \hat{\mathbf{y}} + (\partial_x v - \partial_y u) \hat{\mathbf{z}}$$
(114)

Application of $\vec{\nabla} \wedge$ to PE + "hydrodynamic identity" :

$$\vec{v} \cdot \vec{\nabla} \vec{v} = \frac{1}{2} \vec{\nabla} \vec{v}^2 - \vec{v} \wedge (\vec{\nabla} \wedge \vec{v})$$
(115)

 \rightarrow equation for ζ_a :

$$rac{dec{\zeta}_{\mathsf{a}}}{dt} = ec{\zeta}_{\mathsf{a}} \cdot ec{
abla} ec{v} + rac{g}{
ho_0} \hat{\mathbf{z}} \wedge ec{
abla} \sigma.$$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycna coordonates Verticallly integrated models

Properties of the models : waves and vortices

RSW model

(116)

Primitive equations (PE)

Conservation of potential vorticity

$$\frac{dq}{dt} = 0, \quad q = \vec{\zeta}_a \cdot \vec{\nabla}\rho, \quad \rho = \rho_0 + \rho_s(z) + \sigma. \tag{117}$$

Démonstration.

д

,

$$\begin{aligned} f_{t}\left(\vec{\zeta}_{a}\cdot\vec{\nabla}\rho\right) &= \left(\partial_{t}\vec{\zeta}_{a}\right)\cdot\vec{\nabla}\rho + \vec{\zeta}_{a}\cdot\vec{\nabla}(\partial_{t}\rho) \\ &= \vec{\nabla}\rho\cdot\left(\vec{\nabla}\wedge\left(\vec{v}\wedge\vec{\zeta}_{a}\right)\right) - \vec{\zeta}_{a}\cdot\vec{\nabla}\left(\vec{v}\cdot\vec{\nabla}\rho\right) \\ &= -\vec{\nabla}\cdot\left(\vec{\nabla}\rho\wedge\left(\vec{v}\wedge\vec{\zeta}_{a}\right)\right) - \vec{\zeta}_{a}\cdot\vec{\nabla}\left(\vec{v}\cdot\nabla\rho\right) \\ &= -\vec{\nabla}\cdot\left(\vec{v}\left(\vec{\zeta}_{a}\cdot\vec{\nabla}\rho\right)\right) + \vec{\nabla}\cdot\left(\vec{\zeta}_{a}\left(\vec{v}\cdot\vec{\nabla}\rho\right)\right) \\ &- \vec{\zeta}_{a}\cdot\vec{\nabla}\left(\vec{v}\cdot\nabla\rho\right) = -\vec{v}\cdot\vec{\nabla}\left(\vec{\zeta}_{a}\cdot\vec{\nabla}\rho\right). (118) \end{aligned}$$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

- Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena
- Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Verticallly integrated models

Properties of the models : waves and vortices

RSW model Primitive equations (PE)

Identities used :

$$ec
abla A \cdot \left(ec
abla \wedge ec B
ight) = -ec
abla \cdot \left(ec
abla A \wedge ec B
ight),
onumber \ ec A \wedge ec B
ight),
onumber \ ec A \wedge ec C
ight) = ec B \left(ec A \cdot ec C
ight) - ec C \left(ec A \cdot ec B
ight),
onumber \ ec A \cdot ec B
ight),$$

.

$$ec{
abla}\cdotec{
abla}=ec{
abla}\cdotec{
abla}_{a}=0$$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

Introduction

Basic notions

(119)

(120)

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates, Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn coordonates Verticallly integrated models

Properties of the models : waves and vortices

RSW model

Primitive equations (PE)

Spectrum of small perturbations - PE model

Linearised equations :

Perturbations about the state of rest : $\vec{v} = 0$ with constant stratification on the *f*- plane. Linearised equations :

$$u_{t} - fv + \phi_{x} = 0,$$

$$v_{t} + fu + \phi_{y} = 0,$$
 (121)

$$\phi_{z} + \frac{g}{\rho_{0}}\sigma = 0, \quad \sigma_{t} + w\rho'_{s} = 0,$$

$$u_{x} + v_{y} + w_{z} = 0,$$
 (122)

where u, vw - three components of velocity perturbation, ϕ - geopotential perturbation, σ - perturbation of the profile of background density ρ_s , with $\rho'_s = const$.

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycna coordonates Verticallly integrated models

Properties of the models : waves and vortices

RSW model

equations (PE)

Elimination of σ and w :

Elimination of σ :

$$\phi_{zt} + wN^2 = 0,$$

where $N^2 = -\frac{g\rho'_s}{\rho_0}$ - Brunt - Väisälä frequency
Elimination of w :

$$u_t - fv + \phi_x = 0,$$

$$v_t + fu + \phi_y = 0,$$

$$u_x + v_y - N^{-2}\phi_{zzt} = 0,$$

- .2

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

(123)

(124)

(125)

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn coordonates Verticallly integrated models

Properties of the models : waves and vortices

RSW model Primitive

equations (PE) What we lose by supposing hydrostatics Preliminary conclusions.

Method of Fourier Solutions - harmonic waves :

$$(u, v, \phi) = (u_0, v_0, \phi_0) e^{i(\omega t - \mathbf{k} \cdot \mathbf{x})}, \qquad (126)$$

where ω et $\mathbf{k} = (k_x, k_y, k_z)$ are frequency and wevenumber, respectively.

Algebraic system for (u_0, v_0, ϕ_0) :

$$\begin{pmatrix} i\omega & -f & -ik_{x} \\ f & i\omega & -ik_{y} \\ -ik_{x} & -ik_{y} & i\frac{\omega}{N^{2}}k_{z}^{2} \end{pmatrix} \begin{pmatrix} u_{0} \\ v_{0} \\ \eta_{0} \end{pmatrix} = 0, \quad (127)$$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn coordonates Verticallly integrated models

Properties of the models : waves and vortices

RSW model

Primitive equations (PE)

Dispersion equation

Condition of solvability :

$$\det \begin{pmatrix} i\omega & -f & -ik_x \\ f & i\omega & -ik_y \\ -ik_x & -ik_y & i\frac{\omega}{N^2}k_z^2 \end{pmatrix} = 0, \quad (128)$$

which gives :

$$\omega\left(\omega^2 - \left(N^2 \frac{k_x^2 + k_y^2}{k_z^2} + f^2\right)\right) = 0.$$
 (129)

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

- Reminder : dynamics and thermodynamics of the perfect fluid
- Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn coordonates Verticallly integrated models

Properties of the models : waves and vortices

RSW model

Primitive equations (PE)

Physical meaning of solutions

Three roots of this equation correspond to

- Stationary solutions $\omega = 0$
- Propagative waves with dispersion relation :

$$\omega^2 = N^2 \frac{k_x^2 + k_y^2}{k_z^2} + f^2 \tag{130}$$

Internal inertia-gravity waves : IGW. Remark : at each fixed k_z - dispersion relation of RSW with $c \rightarrow \frac{N}{|k_z|}$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative phenomena Rotating, frame Spherical coordinates,

Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycna coordonates Verticallly integrated models

Properties of the models : waves and vortices

RSW model

Primitive equations (PE)

Exercise

- 1. Demonstrate (116)
- 2. Demonstrate that PV in the PE in isopycnal coordinates :

$$q = \frac{\partial_x v - \partial_y u + f}{\partial_\theta z}$$
(131)

is conserved : $\frac{dq}{dt} = 0$.

3. Demonstrate the Eulerian conservation of energy in the PE, with energy density defined as :

$$e = \rho_0 \frac{u^2 + v^2}{2} + \rho gz,$$
 (132)

where $\rho = \rho_s + \sigma$, z - (Lagrangian) position of the elementary volume of fluid.

4. Establish polarisation relations and calculate phase and groupe velocities of the IGW.

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycna coordonates Verticallly integrated models

Properties of the models : waves and vortices

RSW model

Primitive equations (PE)

Euler equations for an incompressible fluid in the rotating frame without hydrostatic hypothesis :

$$\partial_t \vec{v} + \vec{v} \cdot \vec{\nabla} \vec{v} + f \hat{z} \wedge \vec{v} = -\frac{1}{\rho_0} \vec{\nabla} P \quad \vec{\nabla} \cdot \vec{v} = 0.$$
(133)

Linearisation ($\rho_0 = 1$) :

$$u_{t} - fv + P_{x} = 0$$

$$v_{t} + fu + P_{y} = 0$$

$$w_{t} + P_{z} = 0, \quad u_{x} + v_{y} + w_{z} = 0$$
(134)

Solution : inertial (gyroscopiques) waves with dispersion relation :

$$\omega^2 = f^2 \frac{k_z^2}{k_x^2 + k_y^2 + k_z^2}$$
(135)

 \rightarrow sub-inertial.

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn coordonates Verticallly integrated models

Properties of the models : waves and vortices

RSW model Primitive equations (PE) What we lose by supposing hydrostatics Preliminary

conclusions.

Full non-hydrostatic equations

$$g\frac{\rho}{\rho_0} = -\phi_z \to \frac{dw}{dt} + g\frac{\rho}{\rho_0} = -\phi_z.$$
(136)

Elimination of b and w :

$$b = -\phi_z - w_t, \quad -(\partial_{tt} + N^2) (u_x + v_y) + \phi_{zzt} = 0 \Rightarrow (137)$$

$$u_t - fv = -\phi_x, \quad (138)$$

$$v_t + fu = -\phi_y, \quad (139)$$

$$\partial_{tt} + N^2 (u_x + v_y) - \phi_{zzt} = 0, \quad (140)$$

Dispersion relation :

$$\omega \left[\omega^2 - \left(N^2 \frac{k^2 + l^2}{k^2 + l^2 + m^2} + f^2 \frac{m^2}{k^2 + l^2 + m^2} \right) \right] = 0$$
(141)

Typically in the atmosphere and ocean

$$N^2 > f^2 \Rightarrow f^2 \le \omega^2 \le N^2 \tag{142}$$

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates. Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycna coordonates Verticallly integrated models

Properties of the models : waves and vortices

RSW model Primitive equations (PE) What we lose by supposing hydrostatics

Preliminary conclusions.

Two dynamical entities : waves and vortices

- Vortices : slow motions related to Lagrangian conservation of PV; zero frequency in linear approximation.
- Waves : fast motions
- Frequencies of wave and vortices are separated by a spectral gap in hydrostatic approximation.

Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid

Dissipative phenomena Rotating. frame Spherical coordinates. Approximation of the tangent plane

GFD models

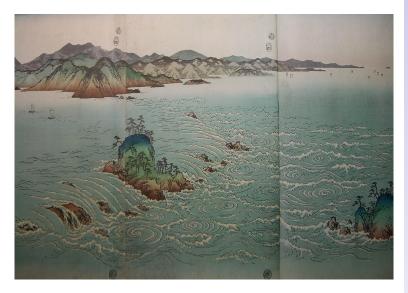
Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycni coordonates Verticallly integrated models

Properties of the models : waves and vortices

RSW model Primitive equations (PE) What we lose by supposing hydrostatics

Preliminary conclusions.

GFD : vortices, waves, and topography



Geophysical Fluid Dynamics 1

V Zeitlin - GFD

ntroduction

Basic notions

Reminder : dynamics and thermodynamics of the perfect fluid Dissipative phenomena Rotating, frame Spherical coordinates, Approximation of the tangent plane

GFD models

Primitive quations Ocean Atmosphere "Pseudo-height" coordinate Isentropic/isopycn coordonates Verticallly integrated models

Properties of the models : waves and vortices

RSW model Primitive equations (PE) What we lose by supposing hydrostatics

Preliminary conclusions.