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Decorrelation in Interferometric Radar Echoes 
Howard A. Zebker, Senior Member, IEEE, and John Villasenor, Member, IEEE 

Abstract-A radar interferometric technique for topographic 
mapping of surfaces promises a high resolution, globally con- 
sistent approach to generation of digital elevation models. One 
implementation approach, that of utilizing a single synthetic 
aperture radar ( S A R )  system in a nearly repeating orbit, is 
attractive not only for cost and complexity reasons but also in 
that it permits inference of changes in the surface over the orbit 
repeat cycle from the correlation properties of the radar echoes. 
Here we characterize the various sources contributing to the echo 
correlation statistics, and isolate the term which most closely 
describes surficial change. We then examine the application of this 
approach to topographic mapping of vegetated surfaces which 
may be expected to possess varying backscatter over time. We find 
that there is decorrelation increasing with time but that digital 
terrain model generation remains feasible. We present such a map 
of a forested area in Oregon which also includes some nearly 
unvegetated lava flows, and find that temporal decorrelation 
contributions to the height errors may be limited to 1.5 and 2.6 m 
for the forested and lava areas, respectively, if suitable attention 
is given to experiment design. Such a technique could provide a 
global digital terrain map. 

I. INTRODUCTION 
NTERFEROMETRIC radar has been been proposed and I successfully demonstrated as a topographic mapping tech- 

nique by Graham [l], Zebker and Goldstein [2], and Gabriel 
and Goldstein [3]. A radar interferometer is formed by relating 
the signals from two spatially separated antennas; the separa- 
tion of the two antennas is called the baseline. The spatial 
extent of the baseline is one of the major performance drivers 
in an interferometric radar system- if the baseline is too short 
the sensitivity to signal phase differences will be undetectable, 
while if the baseline is too long additional noise due to spatial 
decorrelation corrupts the signal. The theory of spatial baseline 
noise has previously been described by Li and Goldstein [4], 
and by Rodriguez and Martin [SI, and Li and Goldstein have 
also shown some experimentally measured determinations of 
the spatial decorrelation noise level. In this paper we will 
review that work, develop Fourier transform relations between 
radar impulse response and the baseline and rotation-induced 
decorrelation functions, and utilize the results in separating 
the effects of temporally and spatially induced decorrelation. 
We then will produce a topographic map of a heavily forested 
area in Oregon, and assess its accuracy considering both spatial 
and temporal decorrelation. Finally, we will speculate on the 
utility of the correlation measurement itself as a remote sensing 
observable. 
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Two distinct implementation approaches have been dis- 
cussed for topographic radar interferometers; they differ in 
how the interferometric baseline is formed. In the first case the 
baseline is formed by two physical antennas which illuminate 
a given area on the ground simultaneously- this is the 
usual approach for aircraft implementations where the physical 
mounting structures may be spaced fur sufficient baseline. 
This is the approach used by Zebker and Goldstein [2] for 
the NASA CV-990 radar, and it is also currently used in the 
TOPSAR topographic mapping radar mounted on the NASA 
DC-8 aircraft [6]. This implementation has been suggested for 
spaceborne use by Rodriguez and Martin [5] and informally by 
others. In this case either the wavelength is chosen to be quite 
short (< 1 cm), or for longer wavelengths tethered satellites 
are required to generate a baseline of adequate length [7].  

The second type of implementation, which we analyze here, 
is to utilize a single satellite antenna in a nearly-exact repeating 
orbit, forming the interferometer baseline by relating radar 
signals on repeat passes over the same site. Even though the 
antennas do not illuminate the same area at the same time, 
if the ground is completely undisturbed between viewings the 
signals will be highly correlated and a spatial baseline may 
be synthesized. Topographic maps using this technique have 
been demonstrated by Goldstein et al. [8], Gabriel et al. [9], 
and Gabriel and Goldstein [3]. 

The amount of decorrelation observed in these repeat-pass 
interferometers is important for two reasons. First, the amount 
of surface change over time describes processes occurring on 
time scales of the orbit repeat time and size scales on the 
order of a radar wavelength. Measurement of interferometer 
correlation thus provides a means to sense remotely a wide 
variety of surficial processes such as vegetation growth, glacier 
motion, permafrost freezing and thawing, and soil moisture 
induced effects. 

The second area of interest in understanding temporal 
decorrelation is that it constitutes an important error source in 
the operation of a repeat pass geometry topographic mapping 
radar. The orbit selection will be driven by a combination of 
tolerable error levels, the attainable baseline, and the expected 
decorrelation with time of signals from the regions of interest 
to be mapped. Since this implementation approach may be 
employed using existing and planned general purpose radar 
satellites such as SEASAT, ERS-1, and RADARSAT, it is 
attractive in achieving the widest possible utilization of those 
systems. 

We note here that there exists a class of radar interfer- 
ometers specifically designed for measurement of radar echo 
phase differences on repeat images separated in time by less 
than a second, that is many times shorter than the temporal 
baselines we consider below. These are the "along-track" 
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or “front-back” interferometers implemented on aircraft for 
the measurement of ocean surface motion such as currents 
or swell wave spectra (see Goldstein and Zebker [lo] or 
Goldstein et al. [ll] for a description of such instruments 
and their application). Since the geophysical phenomena for 
decorrelation of ocean surfaces are quite different than those 
for land processes, we defer a description of these to a later 
work, and will not consider them further. 

11. BACKGROUND 
Coherent radar echoes, that is, those with measurable phase 

and amplitude, will be correlated with each other if each 
represents nearly the same interaction with a scatterer or set 
of scatterers. For imaging radars, another way of stating this 
is that the observed “speckle” patterns are similar. Speckle, 
according to a widely used model originally developed for 
laser scattering, may be modeled by postulating that at least 
several scattering centers are present in each resolution cell of 
the radar image; the total scattered field is then the coherent 
sum of the individual fields from each scattering center. If 
the scatterers are randomly positioned within the cell, and 
the cell is assumed to have dimension many wavelengths in 
size, the phase of each will be random and the sum will be 
well characterized by a zero mean, complex Gaussian random 
number with variance proportional to the average radar cross 
section of the surface. 

Even though the radar signal in this case possesses Gaussian 
statistics, if we duplicate the radar imaging experiment at a 
later time but do not alter the position or cross section of the 
subresolution scatterers, the received signal will be identical 
to the original signal. In this sense, the signal is a spatially 
random process, but slowly varying with time, and repeated 
echoes will be highly correlated because variation is slow 
compared with the repeat observation frequency. 

This does not imply that all observations of the same 
resolution cell will be correlated, however, as altering the 
observation geometry leads to decorrelation as the apparent 
relative positions of the scatterers change. Thus additional 
constraints on the repeat incidence and aspect angles are 
required for observation of echo correlation, but careful data 
acquisition and processing can minimize these effects. We will 
quantify the decorrelation due to each of these effects below. 

In this paper we are concerned with the measurement 
of radar echo correlation and its interpretation in terms of 
the above effects. In particular, we would like to separate 
decorrelation due to actual changes of the target from that 
dependent on sensor geometry. In this manner we may infer 
geophysical properties of the surface without being confused 
by instrumental effects. In addition, understanding the sensor 
effects permits a more effective and useful system design and 
performance analysis, resulting in a controlled and quantified 
error budget. 

For the purposes of this paper we will refer to the sensor 
geometry effects as spatial in nature and those due to target 
change as temporal effects, as the dominant source of decorre- 
lation for a well-designed system observing a truly stationary 
target is spatial baseline noise caused by viewing the surface 

with two antennas at slightly different aspect angles. This is 
the effect which has been described by Li and Goldstein [4] 
and by Rodriguez and Martin [5]. The change in the target 
surface with time, the temporal effect, then causes additional 
decorrelation which is related only to properties of the surface. 

111. THEORY 
We consider here the three sources of decorrelation intro- 

duced above: spatial baseline decorrelation, decorrelation due 
to rotation of the target between observations, and decorrela- 
tion from surface motion of the individual scattering centers 
within each resolution element. Two derivations of base- 
line decorrelation have been presented previously by Li and 
Goldstein [4] and by Rodriguez and Martin [5]; here for 
clarity we rederive the main results in a slightly different 
form and in addition obtain a Fourier transform relation 
between the correlation function and the system impulse 
response. We will verify the results by observation in the next 
section, and present data indicating the dependence of phase 
error on system parameters. For rotation, we find a similar 
transform relation and also present a numerical calculation 
of the decorrelation as a function of angle. We then verify 
that it is not important for the data analysis described in the 
next section. Finally, for the temporal decorrelation we plot 
decorrelation as a function of the degree of motion of the 
individual scatterers. In each case, we show the dependence 
of the correlation function on parameters of either the sensor 
or the target, as appropriate. 

A. Overview 
Consider two radar signals s1 and s2 acquired by two 

antennas observing the same target at the same time, but with 
different receivers. If we model the signals as consisting of a 
correlated part c common to the signal at both antennas and 
also of thermal noise parts n1 and n2, such as 

s1 = c + n1 

s2 = c + n2 

then we may evaluate the correlation Pthermal between them 
as a function of noise in the usual manner: 

(1) 

where (.) denotes ensemble averaging. Since the noise and 
signal are uncorrelated, we obtain 

(3) lCl2 

lCl2 + ln12 
Pthermal = 

Noting that the thermal signal-to-noise ratio (SNR) is /$, (3) 
may be equivalently written 

1 
1 + SNR-1 Pthermal = (4) 

Next, we generalize (1) by including a term representing 
that portion of the signal which is uncorrelated between 
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antennas due to, say, spatial baseline decorrelation- a result 
of nonidentical viewing directions (see below). Then 

SI = c + di + 721 

s2 = c + d2 + n2 (5 )  

where c is the correlated part of the return, d, is the uncorre- 
lated part exclusive of thermal noise, and n, again represents 
thermal noise. We now can calculate the correlation pspatza l  
in the infinite SNR case: 

(6) 
lC l2  

lc12 + Idl2 
Pspatzal = 

and also the correlation if thermal noise is included (these 
follow from simple application of ( 2 )  and (5) above): 

(7) 
Id2 

lcI2 + ldI2 + 1nI2 Pspatzal+thermal = 

Since the signal itself consists of both the correlated and 
decorrelated components, the SNR is w, thus (7) may 
be written 

l C l 2  . Id2 + ldI2 
lcI2 + ldI2 lcI2 + ldI2 + lnI2 

)cI2 + ldI2 1 + SNR-1  

Pspataal+thermal = 

- - lCl2  . 1 (8) 

- - Pspataal . Pthermal 

A similar argument leads to a further, and final, generalization 
for a pair of signals consisting of a correlated part, a decor- 
related part due to spatial decorrelation, and a decorrelated 
part due to temporal phenomena, yielding the following for 
the total observed correlation: 

Ptotal = Ptemporal ’ Pspatzal ’ Pthermal (9) 

We note that this derivation incorporates an assumption that 
the thermal noise powers at each antenna are equal, and that it 
is a trivial extension of the above to account for the situation 
for differing noise levels. 

In summary, if any three of the quantities in (9) are known, 
the fourth may be determined. For data analyzed in this paper, 
we know quite well our imaging geometry and signal to noise 
ratio and can measure the total correlation pto ta l ,  therefore, the 
temporal component, which contains the information about the 
target, may be inferred. In the rest of this section we will 
present theoretical bases useful in determining the various 
correlation parameters. 

B. Spatial Baseline Decorrelation 

In order to determine the spatial decorrelation pspat ia l ,  we 
need to calculate, from knowledge of our imaging geometry, 
what fraction of the received radar echo should be correlated 
between antennas. In this case, we know the interferometer 
baseline and need to determine the correlation as a function 
of that baseline. 

We first derive a Fourier transform relation between the 
radar impulse response and the baseline decorrelation function 

A2 

A1 

Center of Resolution Element 

Fig. 1.  Interferometer imaging geometry. Radar antennas A1 and A2 both 
illuminate the same patch of ground centered at y = 0. Incidence angles 6’1 
and 6’2 result in phase offsets for all points P displaced by distance y of 
y sin 6’1 and y sin 6’2,  respectively. Difference of these phases is measured 
interferometer phase. 

as a function of the difference in viewing angles of the 
two interferometer antennas. Consider a radar interferometer 
operating with geometry as shown in Fig. 1 where two 
antennas A1 and A2 illuminate a patch on the surface at 
incidence angles 81 and 02, respectively. The along-track 
(azimuth) distance is 2 and the across-track (ground range) 
distance is y; the distance from the sensor itself to the center 
of a resolution element is T .  Then the signal SI, measured in 
the final processed image at position (zo.y0), from a radar 
antenna A1 may be represented as 

S I =  J’J ’ i (2 - 2 0 ,  y - Yo) exp{-j-(r + y sin 01)) 
47T 
x 

’ W ( 2 ,  y)dzdy + 711 (10) 

where f ( z ,  y)  represents the complex backscatter at each point 
on the surface, is the radar wavelength, W(z,y) is the 
system impulse response, and nl is the noise associated with 
the receiver. Similarly, the signal from antenna A2 is 

’ W ( 2 ,  y)dzdy + n2 (11) 

The cross-correlation of the two signals, from which we 
determine the interferometer phase, is thus 

S l 4  = SJ’ J’ J’ f(. - 20,  Y - YO)f*(2’ - 2 0 ,  Y’ - Yo) 

47T 
x exp{-j-g(sin& - sin&)}W(z,  y)W*(d, y’)dzdydz’dy’ 

(12) 

If the interferometer is arranged such that the range T is 
unequal at the two antennas only the mean phase of the 
correlation changes, but not the correlation magnitude. 

Now, if the surface is taken to consist of uniformly dis- 
tributed and uncorrelated scattering centers, then 
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where u0 is the average radar cross section, (12) reduces to 

6 8 } ( W ( ~ , y ) 1 ~ d z d y  

(14) 
where 8 is the average look angle and SB = 81 - 82.  The 
exponential term, since it is linear in y, can be interpreted 
as a Fourier kernel and thus we have a transform relation 
between the correlation function and the radar system impulse 
response; the correlation function is simply the transform of 
the intensity impulse response. 

For the typical radar model where the impulse response is 
approximately 

W(2.  y) = sinc(z/R,)sinc(y/R,) (15) 

where R, and R, are the azimuth and range resolutions, and 
the sinc function is taken as %, evaluation of (14) followed 
by normalization leads to the spatial baseline decorrelation 
function 

(16) 
2cosH ISOlR, 

x Pspa t ta l  = 1 - 

The correlation function, which from (14) is simply the Fourier 
transform of the impulse response intensity, falls off linearly as 
SO, the difference in look angle for the two antennas, increases. 
Equivalently, this effect can be described in terms of the 
antenna baseline separation B in meters (assumed to be in 
the horizontal direction only) by 

The minimum value of B for which for which pspatial  

equals zero is the critical baseline B,, and occurs when the 
change in look angle between the two passes is sufficient 
to cause backscatter from each pixel to become completely 
uncorrelated. Specifically, 

AT 

2R, cos2 t3 
B, = 

In practice, the impulse response may also be modified by the 
nonideal characteristics of various elements in the radar itself 
as well as by windowing used during the processing, altering 
the baseline decorrelation function given in (17). 

C. Decorrelation Due to Rotation 

Another geometrical sensor effect that leads to decorrelation 
is rotation of the target with respect to the radar look direction. 
In other words, we cannot illuminate the same patch of surface 
from two different aspect angles and expect the signals to be 
fully correlated. To understand this source of decorrelation 
noise, consider a resolution element as shown in Fig. 2. Each 
scattering center at polar location ( b , 4 )  rotates to position 
(6, + + d4). Transformation to rectangular coordinates r = 
S C O S ~ .  y = Ss in4  permits us to express the change in 
position on the surface as a change in range; if the distance to 
a point before rotation is T + S sin H sin 41, the distance after 
a small rotation d4 = 41 - 4 2  is T + bsinHsin42. As the 
patch is rotated slightly, the range to and hence phase of each 

___) 

Radar 
look 
direction 

n 6y = p sin$ 
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Fig. 2. Rotation of a resolution element by angle 0 moves scattering 
centers from initial positions x to new positions 0. Across-track component 
of displacement then yields slightly different phase shift for each scattering 
center, resulting in signal decorrelation. 

scattering center changes slightly, and their coherent sum will 
vary. 

We consider again two radar signals s1 and 5-2, representing 
the echo from a resolution element before and after rotation, 
respectively. By analogy with (12) above the cross-correlation 
of the two signals may be expressed as 

s1s; = .I’ 1 J’ .I’ f (2  - 2 0 .  y - yo)f*(z’ - 20, Y’ - Y O )  

47r . 
x exp{ - j - 6  sin t3(sin 41 - sin &)}W(z ,  y) 

W * ( d ,  y’)dxdydx’dy’ (19) 

and we obtain 

d $ } l ~ ( x , y ) ] ~ d z d y  

(20) 
This second Fourier transform relation leads to the following 
expression for the rotation-induced decorrelation for % 
azimuth impulse response: 

We have verified this result numerically by first determining a 
set of scattering centers randomly located within a resolution 
cell, and then altering the position of each according to a 
rotation of the entire cell. This process is repeated many times 
(1000) to obtain the ensemble average, which we present 
in Fig. 3. The relevant parameters here correspond to data 
acquired by the SEASAT satellite operating at L-band (A = 24 
cm, for a system description see observation section below), 
and also for a C-band (A =5.66 cm) system in a similar 
orbit. Thus the C-band results will be approximately correct 
in assessing the performance of the ERS-1 radar satellite in 
interferometric applications. 

The simulation results indicate that the signal decorrelates 
with angle, and nearly completely after rotation of about 2.8” 
at L-band and after about 0.7” at C-band, in agreement with 
(21). The functional dependence of the correlation depicted 
in Fig. 3 is not quite linear as we used a truncated impulse 
response for computational reasons, thus the transform of the 
azimuth response is not a triangle function. We have, however, 
preserved an “equivalent-width’’ response so that the critical 
rotation angle remains about the same. 
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Rotation, degrees 

Fig. 3. Simulation results indicating dependence of correlation on rotation 
of resolution elements. Assumed L-band system parameters are those for 
SEASAT, while C-band parameters are similar but for wavelength of ERS-1 
radar. Complete decorrelation results after a rotation of 2.8' at L-band, 0 . 7 O  
at C-band. 

In fact, the SEASAT data we analyze in this paper were 
acquired with orbits that are parallel within 0.02' and thus the 
decorrelation we observe from this effect is minimal. 

D. Temporal Decorrelation 

The final decorrelation source of interest here is the temporal 
effect, which follows from physical changes in the surface 
over the time period between observations. For the SEASAT 
case, the orbit repeat time was 3 days, so that temporal 
baselines of 3 days, 6 days, 9 days, and so forth are available. 
Since calculation of this effect depends on detailed changes 
of a given surface type, we present here only a sample 
calculation assuming Gaussian-statistic motion as a guide and 
leave predictive application-specific theories for later work. 
In the observation section of the paper which follows we 
will experimentally characterize temporal decorrelation from 
unvegetated, lightly vegetated, and heavily forested surfaces. 

Once again, we begin with the expression for the correlation 
between two signals s1 and s2 (see (22) below) where we 
have generalized the backscatter function f ( z ,  y, z )  to account 
for three-dimensional variability (volume scatter, important 
for vegetation models), and included terms related to change 
horizontal position by and change in height Sz of a scatterer in 
the exponential kernel. If we assume that changes in position 
of a scatterer are unrelated to the initial position, and are 
characterized by independent probability distributions p ,  (Sy ) 
and p ,  ( S z ) ,  (22) reduces to (23) below.If the probability 
distributions are Gaussian, then after normalization the integral 

yields 

1 47r 
2 x  ptemporal = exp{ --( -)'(ai sin2 6' + U: cos2 6')) (24) 

For the SEASAT geometry where the nominal incidence angle 
is 23', the contribution from displacements in z is greater than 
that for displacements in y as indicated by the geometrical 
factors in (24). In other words, we expect greater sensitivity 
to vertical changes than to horizontal changes for incidence 
angles less than 45', and thus surfaces with significant volume 
scattering, such as forests, should decorrelate most rapidly with 
time. 

We again verify this result by simulation, where we restrict 
motion to the surface plane (Sy only) for simplicity. For 
our sample calculation we alter the location of the scattering 
centers within a volume in a random direction by adding to 
each location a complex Gaussian distance of specified rms 
motion, thus the direction of each motion is uniformly random 
in angle. In Fig. 4 we plot temporal decorrelation at two 
wavelengths as a function of rms motion and also indicate the 
analytical result, where the wavelengths used are 0.24 m (L- 
band) and 0.0566 m (C-band). The remaining radar parameters 
are typical for SEASAT. We note that in this case 10 cm of 
rms motion is needed for complete decorrelation at L-band 
while only 2-3 cm rms motion decorrelates C-band signals. 

We have here considered only random motions, that is, each 
scattering center moves independently of all others. If in fact 
the scatterers move together in one preferred direction, then 
instead of decorrelation a systematic phase shift would occur. 
This idea has been proposed and applied to measurement small 
surface changes ( see, for example, [9]). 

E. Implications for Topographic Mapping 

Our final theoretical result is to assess the effect of decor- 
relation on the accuracy of inferred topographic maps. The 
major implication of decorrelation in an interferometer is that 
it adds noise to the radar echoes, increasing the standard 
deviation of inferred phase estimates and hence the derived 
height values. This topic has been previously addressed by 
Zebker and Goldstein [2], Li and Goldstein [4], and Rodriguez 
and Martin [SI, although they did not consider the additional 
noise due to temporal decorrelation. Using the approximate 
formula given by Rodriguez and Martin [5, eq. 311, we can 
relate the phase standard deviations to height errors as follows: 

47r 
x exp{-j-(Sysin 6' + Szcos6'))W(z,  y)W*(z', y')dzdydzdz'dy'dz' (22) 
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RMS motion, m 

Fig. 4. Simulation results indicating dependence of correlation on random 
motion of scattering centers within resolution elements (points), with theoret- 
ical predictions (solid lines). As in previous figure, assumed L-band system 
parameters are those for SEASAT, while C-band parameters are those for 
wavelength of ERS-1 radar. Complete decorrelation results after rms motion 
of 10 cm at L-band, 2-3 cm at C-band. 

loo, 1 

TABLE I 
SEASAT ORBIT PARAMETERS 

Orbit Number Date Long. Asc. Node Inclination 

108.0202 1226 Sept. 20 255.9989 
1269 Sept. 23 255.9930 108.0076 
1312 Sept. 26 255.9885 108.0176 
1355 Sept. 29 255.9863 108.0294 
1398 Oct. 2 255.9868 108.0196 
1441 Oct. 5 255.9896 108.0071 
1484 Oct. 8 255.9950 108.0166 

01 " " " " " 
0.0 0.2 0.4 0.6 0.8 1.0 

Correlation, p 

Fig. 5.  Sensitivity of phase standard deviation to correlation and number of 
looks in processor. Increasing number of looks is an effective means to reduce 
statistical variation, especially for the first eight looks or SO. 

where p is range, B is the look angle, B is the interferometer 
baseline, A is the radar wavelength, and o h  and 04 are the 
standard deviations of height and phase, respectively. 

We have calculated, and present in Fig. 5, the expected 
phase standard deviations as a function of the interferometric 
radar system parameters of correlation and number of looks, 
where by number of looks we refer to the number of resolution 
elements averaged spatially in the complex interferogram to 
reduce statistical variations. For example, if the correlation 
ptotal is 0.8 and we average four resolution elements in the 
interferogram, the resulting phases are determined with an 
uncertainty of 21'. Equation (25) may then be used to infer the 
resulting height precision, which would be 5 m for SEASAT 
operating with a baseline of 500 m. Note that "taking looks" 
is a particularly effective means to reduce errors when the 
number of looks is less than eight or so; therefore, systems 
should be designed with this in mind. 

F. Observations 

In this section, we present observations of decorrelation 
using SEASAT data, and derive a topographic map of a 
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Fig. 6. Relative offsets of SEASAT orbits. Interferometer baseline for any 
pair of orbits may be found by difference of offsets for that pair. These values 
approximately correct for western US. 

region in Oregon containing both lightly vegetated and heavily 
forested areas. First, we will describe the relevant parameters 
of the radar system and satellite orbit geometry. Next, we show 
measured spatial baseline decorrelation from data acquired 
over Death Valley, and temporal decorrelation from that site 
and several areas in the Oregon image. Finally, we derive the 
topographic map and estimate its accuracy over the several 
surface types included in the image. 

1) SEASAT Parameters: The data shown here were ac- 
quired by the SEASAT synthetic aperture radar satellite over a 
period from September 20-October 8, 1978. The correspond- 
ing orbit numbers range from 1226 to 1484. The SEASAT orbit 
altitude of 800 km provided for a nearly exact repeat track 
every 43 orbits (3 days). Orbital data are given in Table I. 

A plot of approximate orbit offsets in meters over the west- 
ern U.S. is shown in Fig. 6, where the independent variable is 
orbit number and the dependent variable is the relative offset 
of each orbit to orbit 1355 (chosen arbitrarily). Thus to.find the 
interferometer baseline for any given pair of orbits, the relative 
locations from Fig. 6 must be differenced. The orbit position 
varies approximately quadratically with time. This should be 
kept in mind during the analyses presented below, when we 
are isolating observed temporal effects from spatial effects- 
the available time and space baselines are uncorrelated with 
each other. 

The SEASAT radar consisted of a nominal 1-kW transmitter, 
operating at 1275 MHz and transmitting 33 ps pulses at a rate 
of 1647 pulses per second. The transmit waveform was range 
coded by a linear FM signal for 19-MHz bandwidth. Data 
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were transmitted to Earth using an analog downlink, and offset 
video signals were digitized on the ground to 5-bit accuracy 
at a sample rate of about 45.5 MHz. These samples were then 
processed on a general purpose computer using a conventional 
range/Doppler algorithm. Complex, single look high resolution 
pixels were generated, with a typical scene size of 1024 pixels 
in range by 4096 pixels in azimuth and corresponding to 
approximately 16 km by 16 km on the ground. As stated above, 
the nominal radar incidence angle was 23". 

2) Baseline Decorrelation: The arid, unvegetated floor of 
Death Valley in California serves as an ideal target for mea- 
surements of baseline decorrelation. The relatively strong 
backscatter from rough portions of the valley floor results in a 
high SNR and therefore minimizes the effect of the pthrrmal 

term in (9). More importantly, changes in the surface on a time 
scale of days or weeks are negligible, minimizing ptemporal  
as a possible source of decorrelation. As a result, the observed 
correlation ptotal is in effect a direct measure of pspat lal  and 
should fall off nearly linearly as the baseline B is increased. 
Interferograms obtained using small baselines are relatively 
free from degradations caused by baseline decorrelation, but 
are characterized by broad fringes and reduced accuracy in the 
resulting height maps. The lengths of the 21 baselines which 
can be synthesized using the seven SEASAT orbits given in 
Table I range from approximately 50 to 1100 m. 

We estimated the critical baseline for our SEASAT data at 
about 4500 m by first estimating the system impulse response 
and then computing its Fourier transform as indicated above. 
Since our scenes of Death Valley, CA and Bend, OR did 
not contain any known point reflectors, we used the impulse 
response determined by the JPL SEASAT project which was 
documented in a JPL internal report [12]. They found that data 
from a calibration site at Goldstone Dry Lake in California 
were well modeled by an unweighted sin(.c)/z function with 
intensity half-power width of 25 m. The transform of this 
response, as discussed above, is a linearly decreasing function 
which equals zero for a baseline of approximately 4500 m. 

In order to compare observed baseline decorrelation with 
this theoretical estimate, we first formed six interferograms 
using images of Cottonball Basin in Death Valley acquired dur- 
ing orbits 1226, 1355,1441, and 1484. For each pair of images 
we used a statistical correlation technique to estimate the rela- 
tive offset and then resampled the data to coregister the images. 
Next, we selected regions of Cottonball Basin characterized by 
flat or smoothly sloping topography and therefore by straight, 
evenly spaced fringes in the interferograms. Using an iterative 
procedure, we identified and then removed from one of the 
images the phase ramp best corresponding to the observed 
fringes. Finally, for each region we calculated the correlation 
ptotal (= pspa t za l )  between the images using the pixels within 
the area of interest. The resulting correlations, plotted in Fig. 7, 
show the near linear dependence on baseline expressed in (17). 
A critical baseline value of B, = 3200 m, obtained by fitting 
a linear function to these data, is in very rough agreement with 
the value of 4500 m calculated using (17). 

Note from Fig. 7 that our observed values of correlation 
fall below the theoretical expectation, which leads to a low 
estimate of the critical baseline. What this implies is that there 
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Fig. 7. Theoretical and empirically determined spatial baseline decorrelation 
functions. Ideal impulse-response analysis indicates a critical baseline, that 
is the baseline for which correlation equals zero, of 4500 m, while data fits 
to a value of 3200 m. The discrepancy is due to unmodeled decorrelation 
sources in the radar system. We thus use the empirically derived model for 
later analysis in order to compensate for these unkown error sources. 

are additional unmodeled sources of decorrelation in our data. 
These sources can be, for example, interpolation noise in the 
processor or analysis routines, or that the impulse response 
we assumed is narrower than the true impulse response. 
Therefore, in the remainder of this paper we will model the 
baseline decorrelation by the empirically-derived function with 
a critical baseline of 3200 m rather than the theoretically 
ideal model. This approach allows us to isolate the temporal 
phenomena from any unknown processor-induced effects. 

3) Temporal Decorrelation: We next considered an area 
in central Oregon characterized by diverse topography and 
containing both heavily forested areas and partially vegetated 
and bare lava flows. In contrast with Death Valley, we would 
expect more physical changes in the surface itself over the 18 
days spanned by the seven SEASAT orbits. Another difference 
involved the topography and therefore the size of the areas 
over which we could consider decorrelation. The technique 
of removing fringes by applying a phase ramp to one of 
the images works only when the surface topography can 
be approximated by a plane. Many regions of Death Valley 
are indeed quite flat and are therefore well-suited to this 
approach. For data collected over the Oregon site, however, 
the selected areas must be large enough to produce statistically 
reliable results, but small enough so that the terrain can 
be approximated as flat. An alternative but less practical 
approach could involve utilizing arbitrarily large areas over 
which the fringes are removed using detailed knowledge of the 
true topography. Even if sufficiently detailed digital elevation 
maps were available, the increase in computational complexity 
would probably not justify the improvement in the results. We 
found it difficult to obtain good correlations using areas larger 
than about 20 x 20 pixels (a pixel corresponds to about 17 
m) and used areas measuring 10 pixels on a side for most of 
this work. 

Using a procedure identical to that described in the previous 
section, we processed data for six SEASAT passes (central 
Oregon was not imaged during orbit 1355) and formed 15 
interferograms. We then selected both forested and unvege- 
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Fig. 8. Temporal decorrelation as a function of time for three surfaces. The 
floor of Death Valley exhibits no significant decorrelation over our 18-day 
observation period. The lightly vegetated and unvegetated lavas in Oregon 
show some temporal effects, and the heavily forested regions show the most 
temporal decorrelation. Even after 18 days, however, the correlation associated 
with the forested areas is still 0.5, enough for reasonably reliable topographic 
maps to be generated. 

tated lava areas for analysis. After determining and removing 
from each interferogram the appropriate phase ramp for each 
small area, we calculated ptotal and removed the contributions 
due to Pthermal and pspataal. The value which remained was 
ptemporal,  which we interpret as an indication of the degree 
to which the area had changed in the time between the two 
images. A value of ptemporal = 1 indicates no change, while 
surface changes alter the exact complex backscatter axid cause 
decorrelation, reducing ptempoTal. By plotting PtempoTal as a 
function of time difference between images, an indication of 
the presence and degree of surface change results. 

We present our temporal decorrelation results in Fig. 8. 
To verify that we had succesfully eliminated system errors 
which could give erroneous results suggesting gradual surface 
change where none existed, we first examined an area in 
Death Valley. Given the absence of precipitation and other 
factors which could change the nature of the surface on a 
time scale of several weeks, we expected to find no significant 
temporal decorrelation. As the plot of Fig. 8 shows, the 
surface of Death Valley remains fully correlated over our 18 
days of observations, indicating minimal residual influence 
of system errors and demonstrating that the surface does 
remain unchanged. We next implemented a similar analysis 
on data acquired over forests and lava flows at the Oregon 
site. The forest decorrelates in what appears to be a linear 
fashion, reaching ptemporal = 0.5 for a time difference 
of 18 days. This is plausible given the volume scattering 
occuring for vegetated targets (see [13], or [14], for example, 
radar scattering models incorporating volume scattering from 
canopies), in which wavelength-order changes in the positions 
of branches significantly alter the speckle and therefore the 
correlation. 

The temporal decorrelation results for the lava data, also 
shown in Fig. 8, are more difficult to explain. The lava appears 
to decorrelate at approximately the same rate as the forest, 
but with a higher initial value. Although the results plotted 
in Fig. 8 represent only one forested area and one lava area, 
correlations calculated in other areas produce similar results - 

Fig. 9. Photograph of lava areas from which correlation values were mea- 
sured. Note that the surface is rather devoid of vegetation, thus we do 
not understand the physical mechanism for the observed. albeit minor, 
decorrelation with time. 

signals from both the forest and the lava appear to decorrelate 
at about the same rate, but with the lava echoes consistently 
exhibiting higher correlation than the forest. 

We first suspected that the decorrelation of the lava might 
be due to a system error. However, the same SEASAT orbits 
were used to acquire data over both Death Valley and Oregon 
(overflight times for the two sites are separated by only 3 
min), and the intereferograms of Death Valley show no sign 
of temporal decorrelation. Many other possible error sources, 
such as those involving estimation of the baseline or SNR, are 
unrelated to the time difference between pairs of images and 
would not produce the results of Fig. 8. We also considered 
the possibility that the lava surface was vegetated and that we 
were in fact seeing changes in this vegatation rather than in the 
lava itself. The lava flows in question are approximately 5000 
years old, and in certain areas pockets of soil have collected, 
permitting growth of brush and some trees. A visit to the 
area, however, showed that much of the lava has remained 
completely bare, as shown in the photograph of Fig. 9. Weather 
is also unlikely to provide an explanation. Throughout the 
entire period spanning these orbits (late September to early 
October 1978) the weather was dry with temperatures reaching 
25-30 OC during the day and dropping to 10-15' at night. In 
addition, the data were acquired at approximately the same 
local time for each pass (about 10:30 AM) rendering dew and 
thermal expansion unlikely sources of decorrelation. We are 
left with the possibilities that 1) there is some progressive 
error source unique to the Oregon images which we have not 
eliminated, or 2) that there is true change occurring in the 
lava. It is true that the Oregon lava is blockier than the smooth 
floor of Death Valley, but why that would effect the observed 
decorrelation is unclear. 

4) Topographic Map: In Fig. 10 we present a conventional 
radar image and also the interferometrically-produced topo- 
graphic map of the study area in Oregon derived from a single 
pair of SEASAT passes (orbits 1226 and 1269). This pair was 
chosen to maximize spatial baseline (484 m) and minimize 
temporal baseline (3 days). In the figure, the brightness of each 
point is related to the magnitude of radar backscatter while the 
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color denotes the altitude. The color contour interval is 6 m, 
while the color wheel contains 16 entries and thus the colors 
repeat every 96 m of altitude. The image consists of 1024 by 
1024 points each with ground spatial dimensions 17 by 17 m, 
thus the image is slightly greater than 17 km on a side. 

We note that relatively noise-free topography is available 
everywhere in the image, even over the most heavily forested 
area. These data were averaged to 16 looks. Given the 484- 
m baseline we estimate pspatzal from (17) at approximately 
0.85, and since the time separation was 3 days, from Fig. 8 
we would expect approximately to observe ptemporal of 0.97 
and 0.8 over the lightly vegetated lavas and heavily forested 
areas, respectively. Thermal contributions are negligible for 
this scene. The total correlations ptotal for the two types of 
targets are then 0.82 and 0.68. Examination of Fig. 5 yields 
phase standard deviations of 7 and 12O, respectively, for the 
lightly vegetated and heavily forested areas. Finally, using (25) 
we estimate the statistical variation contribution to the error in 
height to be 1.5 m over the lightly vegetated lava regions and 
2.6 m over the forest. Of course, the actual accuracy is several 
times worse than this as the error budget is dominated by 
systematic errors such as uncertainty in baseline knowledge. 
Our main conclusion here is that if the temporal baseline is 
constrained at a ,  few days or less, the additional height error 
due to temporal changes on the surface are not significant 
contributors to the overall error. 

Of course additional optimization may be applied to the 
data of Fig. 10. For example, if additional height acuity is 
needed, we could average spatially to obtain more “looks,” if 
maximum spatial resolution is not required. 

IV. SUMMARY 

Correlation in pass-to-pass, interferometric radar can be 
degraded by thermal noise, lack of parallelism between the 
radar flight tracks, spatial baseline noise, and surficial change. 
The effects of decorrelation due to thermal noise can be 
easily evaluated and removed, while those due slight angular 
changes between flight tracks are negligible for data acquired 
using near-repeat orbits. Spatial baseline and rotation-induced 
decorrelation can be derived using the Fourier transform of 
the impulse response intensity, and increase linearly with 
baseline or rotation in an ideal system. Empirical results 
obtained using images of Death Valley confirm that, as the 
baseline increases, the overall correlation decreases due to 
spatial baseline noise. As the effects of these three sources 
of decorrelation can be quantified, their contributions to the 
observed overall correlation can removed, yielding a measure 
of the temporal decorrelation due to change in the target itself. 
We have shown that areas of Cottonball Basin in Death ValIey 
remained unchanged over the 3-week period for which we 
have data, while a heavily forested area in Oregon exhibited 
significant temporal decorrelation. Lava surfaces in central 
Oregon also appeared to decorrelate, although the reasons for 
this are uncertain. We generated a topographic map from the 
images of central Oregon and achieve statistical contributions 
to height accuracy of 1.5 m over unvegetated areas and 2.6 
m over forest. Our results demonstrate that generation of 
height maps of heavily vegetated areas using pass-to-pass 

(b) 

Fig. 10. Radar image (a) and interferometrically derived topographic map 
(b) of Oregon forested area. Height contour levels are 6 micolor, or 96 m for 
one complete color cycle. The topography is clearly visible even in the most 
heavily forested regions. The layed over cones in the radar image are seen to 
be rectified in the topographic map, demonstrating that with three-dimensional 
data cartographically correct maps may be generated. The irregular border at 
the bottom of the topographic map is a result of the nonlinear stretch applied 
to rectify the image. 

interferometry is practical provided that the time between 
passes is at most several weeks. 
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