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INTRODUCTION

Acoustic radiation produced by wave motion in the
ocean is one of the main sources of underwater noise [1,
2]. Physical mechanisms underlying the generation of
sound by wind waves on the sea surface have long been
known [3, 4]. However, the problem of estimating the
spectrum of acoustic noise produced by these waves is
far from being solved. This is primarily because of the
lack of information on the properties of the wind waves
themselves.

The sound is produced by counterpropagating
waves of the same frequency. As a rule, interaction is
considered between the wind-generated waves and the
waves traveling in opposition to the wind [5]. It has
been shown [6] that the interaction between these
waves results in the energy transfer to the waves that
travel in opposition to the wind. As follows from the
analysis of weakly turbulent spatial spectra, this effect,
though less pronounced, can be caused by the nonreso-
nant interaction [7]. The presence of spectral compo-
nents of the wave field that travel in opposition to the
wind was revealed experimentally by Doppler radar
observations of the sea surface [8]. An analysis of the
physical mechanisms that produce counterpropagating
waves in the gravity-capillary range is given in [5].

In addition to the wave components that propagate
in the wind direction, acoustic radiation can be pro-
duced by the components that propagate at an angle to
the principal wind direction. Since, at frequencies sev-
eral times higher than the dominant wave frequency, the
angular distribution is no longer directional [9], the
contribution of these components can be substantial.

This paper presents a model that relates frequency–
angular characteristics of wind waves to the spectrum
of acoustic radiation generated by them. Based on
empirical angular energy distribution functions of
waves on the sea surface in the gravity-wave range, the
acoustic radiation is analyzed at frequencies on the
order of the frequency of the dominant component of
the wave field.

DEPENDENCE OF THE ACOUSTIC PRESSURE 
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The expression that relates the mean-square value of
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 = const. In the intermediate frequency range, between the dominant
frequency and the high frequencies, the predominant contribution to the sound radiation is made by the waves
that travel in the direction close to orthogonal with respect to the wind.
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Let us change to the polar coordinate system in
Eq. (1), from components 
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 and 
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 of the wave vector
to its absolute value 
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 and direction 
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Let us represent the spectrum of wave numbers and
directions in the form
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The procedure of changing the variables in the wind
wave spectra relies on the normalization condition and
dispersion relation. According to the normalization
condition, the integral of any wave spectrum with
respect to all the variables is equal to the variance of the
surface roughness height.

Dispersion relation (2) is valid for a wide range of
waves. For gravity waves, it can be simplified by drop-
ping the second term. Using the dispersion relation in
the form
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we obtain the expression that relates the wave number
spectrum to the frequency spectrum for gravity waves
in a deep sea:
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terms of the angular energy distribution function 
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of waves. Taking into account that 
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, we
obtain

For the waves that satisfy condition (4), expression (1)
can be rewritten as

Therefore, the frequency spectrum of the squared acous-
tic pressure is related to the spectrum of wind waves as

 

(5)

 

The integral on the right-hand side of Eq. (5)
describes the dependence of the sound intensity gener-
ated by gravity waves on their spatial energy distribu-
tion. Since this integral has not been analyzed earlier,
let us consider it in more detail.
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FREQUENCY–ANGULAR CHARACTERISTICS 
OF GRAVITY WAVES ON THE SEA SURFACE

Two models of the angular distribution function are
used most frequently [10, 11]:

θ1(α) = N1cos2s , (6)

θ2(α) = N2sech2[β(α – α0)], (7)

where

Ni = 1/ (ω, α)dα

are the normalizing coefficients, i = 1, 2; α0 is the prin-
cipal wind direction; and s and β are the dimensionless
parameters.

The narrowest angular distribution is observed at the
frequency of the peak of the wave spectrum Sξ(ω). Let
us denote this frequency as ω0. At present, there is no
general opinion regarding the parametrization of the
angular distribution. According to [11], it can be
described in terms of the dimensionless frequency Ω =
ω/ω0 alone, and the parameter β in Eq. (7) can be
approximated by the expression

β = (8)

Approximation (8) was constructed with the use of exper-
imental data only for Ω ≤ 1.6. For higher frequencies,
experimental data were absent, and the parameter β was
assumed to be constant. In [12], this assumption was veri-
fied using stereoscopic photographs of the rough sea sur-
face. It was found that, in the region Ω > 1.6, the behavior
of the parameter β can be described by the expression

β = .

Somewhat different results were obtained in the
JONSWAP experiment [10]. The widening rate of the
angular distribution, which is determined by the param-
eter s in model (6), was found to depend on the age of
the wave. At frequencies above the frequency of the
spectral peak, this parameter is

s = 9.77Ω–2.33 – 1.45(ζ – 1.17),

where ζ = U10/C0 is the inverse of the wave’s dimen-
sionless age, U10 is the wind speed at a height of 10 m,
and C0 is the phase velocity of dominant waves.

Consider three scenarios. The first and second sce-
narios assume that the angular distribution is
described by model (6) at a fully developed (ζ = 1.3)
and developing (ζ = 3) surface roughness, respec-
tively. The third scenario refers to model (7). The
angular distribution functions obtained for these sce-
narios are shown in Fig. 1.
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At the frequency of the spectral peak, Ω = 1, all the
three functions θ(α) are narrow. The slowest variation
of the width of the angular distribution with frequency
is observed for the fully developed surface roughness,
while the fastest variation occurs for the developing
roughness. In the latter case, at Ω = 3, the angular dis-
tribution is almost isotropic. Figure 2 shows the param-
eter m calculated as a function of azimuth angle α for
angular distributions illustrated in Fig. 1. In the limiting

case of an isotropic roughness, θ = const = (2π)–1 and,
accordingly, m ≡ 1.

The integral

I = (α)θ2(α)dα (9)

varies in a wide range. Its frequency behavior is shown
in Fig. 3. The maximum growth rate of I is observed in
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Fig. 1. Angular energy distribution function of waves θ(α):
model (6) with ζ = 1.3 and 3 (the solid and short-dashed
lines, respectively); model (7) (the long-dashed line).
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Fig. 2. Angular dependence of the coefficient m: model (6)
with ζ = 1.3 and 3 (the solid and short-dashed lines, respec-
tively); model (7) (the long-dashed line).
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the vicinity of Ω = 1. At higher frequencies, as the
roughness approaches the isotropic state, the integral I
should tend to its maximum value of I = (4π)–1. For

model (7), this condition is not satisfied. Model (7) is
part of a more general model of the frequency–angular
spectrum, which is constructed for the wave scales Ω ≤
3.5 [11]; presumably, it is not correct to extend it to
higher values of Ω.

The results presented in Fig. 3 show that the angular
energy distribution of wind waves in the vicinity of the
spectral peak, i.e., on the scales where the major part of
the wind wave energy is concentrated, should be stud-
ied in more detail. Depending on the model chosen for
the function θ(α), the integral I may vary over more
than one order of magnitude. Accordingly, as follows
from Eq. (5), the pressure spectral density will also be
different for different models.

At high frequencies, where the angular distribution
is wider, the choice of the model and its parameters
becomes less critical. In this region, to a first approxi-
mation, one can assume that θ(α) = const.

Now, let us determine the wave directions that make
the greatest contribution to the sound generation. The
contributions of individual components of the wave
field are determined by the integrand in Eq. (9).
Depending on the choice of the model of angular distri-
bution, the values of the function F(α) = m(α)θ2(α) at
the frequency of the dominant waves may differ by
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Fig. 3. Integral I characterizing the effect of the angular
energy distribution of waves versus the dimensionless fre-
quency Ω: model (6) with ζ = 1.3 and 3 (the solid and short-
dashed lines, respectively); model (7) (the long-dashed
line).
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Fig. 4. Function F(α) at Ω = 1 for (a) model (6) and (c) model (7) and at Ω = (b) 2 and (d) 3: model (6) with ζ = 1.3 and 3 (the solid
and short-dashed lines, respectively); model (7) (the long-dashed line).



ACOUSTICAL PHYSICS      Vol. 53      No. 1      2007

THE EFFECT OF ANISOTROPY OF A ROUGH SEA SURFACE 79

almost two orders of magnitude (Fig. 4). At higher fre-
quencies, the difference decreases. In the intermediate
frequency range, between the dominant frequency, at
which the angular distribution is narrow, and the high
frequencies, at which the angular distribution is almost
isotropic, the greatest contribution is made by the
waves that travel in the direction close to that orthogo-
nal to the wind.

Note that the above analysis refers to gravity waves.
A relationship similar to Eq. (5) can also be obtained
for gravity-capillary waves. Using the expression for
the pressure spectrum reported in [4] and representing
the frequency–angular spectrum of the wind waves in
form (3), we obtain

CONCLUSIONS
The model proposed by L.M. Brekhovskikh [4] for

the acoustic radiation generated by wind waves has
undergone a further development. Formulas that
directly relate the spectrum of acoustic radiation to the
angular energy distribution function of wind waves are
constructed.

Based on empirical wave energy distributions, it is
shown that, in the region of the waves that carry the
major portion of energy, the acoustic radiation intensity
strongly depends on the choice of the model of the
angular distribution function θ(α) and on its parame-
ters. At high frequencies, four to five times higher than
the frequency of the dominant waves, one can assume
that, to a first approximation, θ(α) = const.

In the frequency range between the dominant fre-
quency, at which the angular distribution is narrow, and
high frequencies, at which the angular distribution is
almost isotropic, the predominant contribution to sound
radiation is made by the waves that travel in the direc-
tion close to that orthogonal to the wind.
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