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Abstract

A nonlinear numerical model has been formulated to study the propagation of a monochromatic surface wave. The model is

formulated through the vertical integration of the continuity equation and the equations of motion. This model is investigated for wave

propagation, velocity distribution, energy propagation and varying Courant, Friedrichs and Lewy’s (CFL) condition. The applicability

of this model for both shallow- and deep-water wave is also examined. The results and analyses are shown in details. The results obtained

from the model are compared with the Stokes third-order wave theory and with the relevant experimental data.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Study of water wave propagation is always of interest to
the coastal engineering practitioners and researchers.
Traditionally the study of water waves may be classified
into three major topics: (a) linear wave theory treats
infinitesimal waves of arbitrary length. A detail description
of the basic theory can be found in Lamb (1945) or Stoker
(1957) or in other literatures. A sinusoidal wave in this
category having considerably low slope can propagate long
distances without changing its shape; (b) long wave theory
assumes that the wavelength is larger than at least twice of
the water depth. This category of wave may inherit
considerable non-linearity and cannot propagate long
distances without changing its shape. The characteristics
of such waves are well described in many references. Ursell
(1953), Peregrine (1967), Horikawa (1988), Cruz and Isobe
(1994), Ohyama et al. (1995), Phillips (1997) are few to
name and; (c) the last topic is a situation where the effects
due to non-linearity and dispersion are significantly
balanced and the wave can propagate quite long distances
without major change in the wave forms.
front matter r 2007 Elsevier Ltd. All rights reserved.
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These three categories of waves later become the basic
tools used by scientists and researchers for the advance-
ment of water waves theories from linear to nonlinear and,
from very shallow- to very deep-water conditions. Again
the wave propagation models can be of: (i) phase resolving
models that are extensively adopted to study the non-linear
shallow-water effects. For detail refer to Madsen and
Sørensen (1993), Nwogu (1993) or others in relation to
Boussinesq type models and for boundary value problem
see Kaihatu and Kirby (1995) and Eldeberky and Madsen
(1998), (ii) phase-averaged models are used in the open sea
to study waves with essentially random phases, for
example, see Battjes (1994), Herbers and Burton (1997)
and Agnon and Sheremet (1997) and, (iii) typical vertically
integrated type model see Beji and Nadaoka (2004), etc.
Researchers are finding more efficient tools to study

different flow characteristics in the ocean. As stated in the
above paragraph, a vast literature in this field is available,
that contains various information about wave generation,
propagation and decay for different given conditions. But
still a lot more information is required to be known to
update our present understanding in this field.
The present paper proposes to develop and illustrate an

efficient numerical model that under some conditions can
study wave fields both in shallow- and in deep-water
regions. This model is formulated through the vertical
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integration of the continuity equation and the equations of
motion with the assumptions that the fluid is inviscid and
incompressible. In the application of the obtained model
both shallow- and deep-water conditions are considered
separately. This model can be used more generally. It could
be a useful tool in the study of the transformation of the
ocean wave energy into electrical energy. In this study we
have tested a range of waves from flat to steep to identify
the limitations of this model.

2. Theory

2.1. Basic equations and coordinate system

For simplicity we consider a vertically two-dimensional
wave field. The following continuity equation and equation
of motions can describe the wave motion for an inviscid
and incompressible fluid domain:

qu

qx
þ

qw

qz
¼ 0, (2.1)

qu

qt
þ

qu2

qx
þ

quw

qz
þ

1

r
qp

qx
¼ 0, (2.2)

qw

qt
þ

quw

qx
þ

qw2

qz
þ

1

r
qp

qz
þ g ¼ 0, (2.3)

where u and w are velocity components in the x and z

direction, g the acceleration due to gravity and r is the
water density. The total pressure p is the summation of ps,
the hydrostatic pressure below the mean water level
(MWL) and pd the dynamic pressure due to wave motion
on the free surface.

Fig. 1 shows the coordinate system. d is the instanta-
neous water depth, h the still water depth (z ¼ 0); d
represents the deviation of the MWL from the still water
level (SWL) if any due to, for instance, wave motion over
any uneven sea bottom.

2.2. Velocity potential, boundary conditions and pressure

2.2.1. Velocity potential

A velocity potential Fw is adopted on the assumption
that this form is capable to express the characteristics of a
wave field upon satisfying suitable boundary conditions.
See Dean and Dalrymple (1992) for example. It is written
in the form

Fw ¼ A cosh kðhþ zÞ cosðkx� stÞ, (2.4)
d SWL

MWL
Wave

h

x

z

δ

Fig. 1. Coordinate system.
where A is a constant related to wave amplitude, h the still
water depth, k the wave number, s the angular frequency,
z the vertical axis and t is the elapsed time.

2.2.2. Dynamic boundary condition and pressure

The surface elevation Z can be obtained from the
following surface boundary condition:

Z ¼ �
1

g

qFw

qt
þ

1

2

qFw

qx

� �2

þ
1

2

qFw

qz

� �2
" #

. (2.5)

Substituting Eq. (2.4) into Eq. (2.5) one can find the surface
elevation as follows:

Z ¼ �
As
g

cosh kðhþ zÞ sinðkx� stÞ �
1

2g
A2k2
½sin2ðkx� stÞ�

�
1

2g
A2k2
½sinh2 kðhþ zÞ�, ð2:6Þ
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�
1
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The dynamic pressure equation can be formulated from
Bernoulli equation in the following manner:

pd ¼ � r
qFw

qt
þ
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" #

, ð2:8Þ
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pd

r
¼ � As cosh kðhþ zÞ sinðkx� stÞ
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½sin2ðkx� stÞ�

�
1

2
A2k2
½sinh2 kðhþ zÞ�. ð2:9Þ

In Eq. (2.7) the wave induced component, A2k2 would be
negligibly small for waves with relatively small amplitudes
and/or large wavelengths. When all the terms associated
with A2k2 are neglected then Eq. (2.7) can be simplified as
follows:

Z ¼ �
As
g

cosh kðhþ ZÞ sinðkx� stÞ. (2.10)

In a similar fashion when A2k2 are neglected and Eq. (2.10)
is invoked then Eq. (2.9) takes the following form (Dean
and Dalrymple, 1992):

pd

r
¼ gZ

cosh kðhþ zÞ

cosh kd
, (2.11)

where g is the gravitational acceleration and d ¼ hþ Z is
the instantaneous water depth shown in Fig. 1.

2.2.3. Dispersion relation

The angular frequency s and the wave number k are inter-
dependent through the dispersion relation. The dispersion
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relation can be obtained from the following kinematic
condition when the expressions for Fw and Z are substituted:

qFw

qz
¼

qZ
qt
þ

qFw

qx

qZ
qx

. (2.12)

Again neglecting the term associated with A2k2 the following
dispersion relation can be obtained:

s2 ¼ gk tanh kd. (2.13)

The unknown wave number k would be computed from this
relation when the wave period T ð¼ 2p=sÞ and the local
water depth d are known.
2.2.4. Kinematic boundary condition

The kinematic boundary conditions that must be
satisfied on the free surface and at the bottom are

qZ
qt
þ uZ

qZ
qx
¼ wZ at z ¼ Z, (2.14)

u�h

qh

qx
¼ �w�h at z ¼ �h, (2.15)

where the subscripts Z and �h express the respective
quantity at the free surface and at the bottom.
2.3. Vertical integration of the basic equations

The governing equations of the present model are
obtained after the vertical integration of Eqs. (2.1) and
(2.2) in the following steps:Z Z

�h

qu

qx
dzþ

Z Z

�h

qw

qz
dz ¼ 0. (2.16)

Applying Leibnize’s integration method and invoking the
kinematic free surface and bottom boundary conditions
(Eqs. (2.14) and (2.15)) the continuity equation, Eq. (2.1)
takes the following form:

)
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where P ¼
R Z
�h

udz is the discharge per unit water depth.
In a similar fashion the momentum equation in the

x-direction may be obtained in the following way from
Eq. (2.2):Z Z
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For convenience the following momentum correction
factor see for example Hager (1983), Yu (1990) and
Beecham et al. (2005) is introduced into the above
momentum equation:

g ¼
dR Z

�h
udz

R Z
�h

udz

Z Z

�h

u2 dz. (2.23)

The magnitude of g depends on the vertical distribution of
the horizontal velocity component u, which may be
expressed by the following relationship:

u ¼ uz¼�h cosh kðhþ zÞ. (2.24)

Substituting Eq. (2.24) in Eq. (2.23) and after the
integration we can obtain the momentum correction factor
as follows:

g ¼
kd

2 tanh kd
1þ

2kd

sinh 2kd

� �
. (2.25)

The dynamic pressure related parameters are summarized
in the following forms from Eq. (2.11) along with
Eq. (2.30):
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Substituting Eqs. (2.25)–(2.28) into Eq. (2.22) we can find
the momentum equation in the following shape:

qP

qt
þ

q
qx

g
P2

d

� �
þ ðZgb1 þ C2

wÞ
qZ
qx
þ Zgb2

qh

qx
¼ 0, (2.29)

where Cw is the local wave celerity and, b1 and b2 are the
relative water depth dependent parameters:

Cw ¼ s=k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

k
tanh kd

r
, (2.30)

b1 ¼ F
e4kd þ 2e2kd sinh 2kd � 1

e4kd þ 4e2kdkd � 1

� �
� 1, (2.31)
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Fig. 2. Computational mesh.
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b2 ¼ F
e4kd þ 2e2kd sinh 2kd � 1

e4kd þ 4e2kdkd � 1

� �
�

1

cosh kd
, (2.32)

F ¼ 1� tanh2 kd.

Finally Eqs. (2.19) and (2.29) are obtained as our
governing equations for the proposed research.

2.4. Derivation of pressure from z-direction momentum

equation

Eq. (2.11) can also be obtained from Eq. (2.3). The
momentum equation in the z-direction (Eq. (2.3)) estab-
lishes a relation between the fluid pressure and the water
surface elevation. Assuming that the vertical acceleration
and advective terms in the above equation are negligible in
comparison with the other terms, then Eq. (2.3) takes the
following form:

1

r
qp

qz
þ g ¼ 0, (2.33)

)
1

r
qp

qz
¼ �g, (2.34)

) p ¼ �rgzþ C0ðx; tÞ, (2.35)

) C0ðx; tÞ ¼ rgZjat z¼Z;p¼0, (2.36)

)
p
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¼ �gzþ gZ, (2.37)

)
p
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� �
z

¼ �gzþ gZ
cosh kðhþ zÞ

cosh kd
, (2.38)

where C0ðx; tÞ is an integration constant. The term
cosh kðhþ zÞ= cosh kd introduced in the dynamic pressure
equation is called a pressure response factor (Sarpkaya and
Issscson, 1981; Dean and Dalrymple, 1992). The above
term is required to evaluate the vertical distribution of the
dynamic pressure. This term has unit value at the surface
ðz ¼ ZÞ but varies along the water depth.

)
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r

� �
z

þ
pd

r

� �
z

¼ �gzþ gZ
cosh kðhþ zÞ

cosh kd
, (2.39)

)
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z

¼ �gz, (2.40)

)
pd
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� �
z

¼ gZ
cosh kðhþ zÞ

cosh kd
. (2.41)

Splitting Eq. (2.39) gives two pressure components of the
system of which Eq. (2.40) represents the static pressure
component and Eq. (2.41) stands for the dynamic pressure.
It may be observed that Eq. (2.41) is identical to Eq. (2.11).
It may be noted from Eq. (2.11) or (2.41) that the
hyperbolic cosine terms in the denominators adapted the
instantaneous water depth instead of the still water depth.
This kind of modification was introduced by Hedges (1976)
to improve the propagation speed of wave having relatively
large wave amplitude by the small amplitude wave theory.
The above pressure equation has insignificant influence on
the deep-water wave but it significantly improves the
pressure distribution for shallow-water region.
To generalize the formulation we introduce a variable d

in the pressure equations to represent the deviation of the
MWL from the SWL if any due to, for instance, wave
motion over any uneven sea bottom. Eqs. (2.40) and (2.41)
could then be rewritten in the following forms:

ps ¼ rgðd� zÞ, (2.42)

pd ¼ rgðZ� dÞ
cosh kðhþ zÞ

cosh kd
. (2.43)

The periodic free surface elevation Z can be expressed to
first order in amplitude a as

Z ¼ a sinðkx� stÞ. (2.44)
2.5. Numerical scheme

Discretization of Eqs. (2.19) and (2.29) are performed
following a semi-implicit finite difference technique de-
scribed by Dronkers (1969). The computational mesh in
the x–t plane is shown in Fig. 2. The discharge P is defined
at the integer grid points and fractional time steps (shown
by solid circles in the mesh) and those of Z are defined at
the fractional grid points and integer time steps (shown by
solid squares in the mesh). After discretization Eqs. (2.19)
and (2.29) take the following forms (for details see Zaman
and Togashi, 1997):

Znþ1
jþ1=2 � Zn

jþ1=2

Dt
þ

P
nþ1=2
jþ1 � P

nþ1=2
j

Dx
¼ 0, (2.45)

Anþ1
j P

nþ3=2
j�1 þ Bnþ1

j P
nþ3=2
j þ Cnþ1

j P
nþ3=2
jþ1 �Dnþ1

j ¼ 0,

(2.46)
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Table 1

Computational conditions

Case Bathymetry Incident wave train h=L0

(%)

H0=L0

(%)

SW_2w Shallow water Two-wave (2L0) 37.5 3.0

SW_iw Shallow water Infinite-wave (1L0) 37.5 3.0

DW_2w Deep water Two-wave (2L0) 75.0 3.0

DW_iw Deep water Infinite-wave ð1L0Þ 75.0 3.0
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where A, B, C and D are numerical constants; Dt and Dx

are the temporal and spatial increments, respectively; n and
j are the time and spatial steps, respectively, and can be
obtained as

Anþ1
j ¼ �

Dt

4Dx

g
d

h inþ1

j�1=2
½Pj þ Pj�1�

nþ1=2, (2.47)

Cnþ1
j ¼

Dt

4Dx

g
d

h inþ1

j�1=2
½Pjþ1 þ Pj�

nþ1=2, (2.48)

Bnþ1
j ¼ 1þ Anþ1

j þ Cnþ1
j , (2.49)

Dnþ1
j ¼ P

nþ1=2
j �

Dt

2Dx
½ðC2

w þ b1gZÞnþ1jþ1=2

þ ðC2
w þ b1gZÞ

nþ1
j�1=2�½Z

nþ1
jþ1=2 � Znþ1

j�1=2�

�
gDt

2Dx
½ðb2ZÞ

nþ1
jþ1=2 þ ðb2ZÞ

nþ1
j�1=2�

� ½hjþ1=2 � hj�1=2�
nþ1. ð2:50Þ

The model obtained here is very direct as the discretized
continuity equation is of explicit nature. The momentum
equation constructs a tridiagonal coefficient matrix at
every time step that can be efficiently solved by double
sweep algorithm. In the application of this model the
number of grid points must be odd for the consistency with
the numerical scheme.

2.6. Boundary conditions and procedure of computation

As the initial condition Zs at nDt time level and Ps at
ðnþ 1

2
ÞDt time level are known on the relevant grid points in

the whole computational domain. Boundary condition is
employed in terms of discharge P on the incident boundary
at the first grid point and on the transmitted boundary at
the last grid point. As the time progresses the system takes
control and computes Zs and Ps at all designated grid
points until it reaches at the given end-time limit. The com-
putational tactics of this model is, Zs at time level ðnþ 1ÞDt

will be evaluated by Eq. (2.45) with the known values of Zs
at time level nDt and, Ps at ðnþ 1

2ÞDt time level and then,
Eq. (2.46) is employed to estimate Ps for ðnþ 3

2
ÞDt time

level, using the calculated Zs at ðnþ 1ÞDt time level. The
coupling of the above equations will continue until a steady
state is reached.

2.7. Stability of the scheme

The stability of any numerical model is very important
issue for its reliability and/or range of application. It is very
difficult to ensure that a particular model is uncondition-
ally stable. It may be stable for the conditions considered
but may not be stable for some other unknown conditions.
To predict the stability of the present model, a standard
method is adopted to observe the growth and propagation
of any infinitesimal disturbance introduced to the solution
at any time of the computation. Details of the formulation
are not given here. An interested reader may refer to
Abbott (1986) for more information. It is also observed
(refer to Fig. 18) that for the stability of the model the
following CFL condition must be satisfied:

Dx=Dt4Cw. (2.51)
3. Case study and discussions

3.1. Incident wave and computational environment

The model is tested for waves in deep- and shallow-water
depth over a domain with flat bottom. Table 1 shows the
incident wave and domain conditions.
Here H0 is the incident wave height, L0 is the wavelength

of corresponding wave period T0. Different wave condi-
tions are utilized in the following sections. Two different
wave sources are used in the numerical implementation of
the model as mentioned in Table 1.

SW_2w represents a shallow-water case where only
Two-wave (2L0) can enter the computational domain
through the incident boundary, they propagate and finally
leave the domain through the RHS radiation boundary.
The excitation of the incident boundary occurs over two
periods (¼ 2T0).

DW_2w stands for a deep-water case where only a Two-
wave (2L0) train are allowed to enter the domain and
propagate.

SW_iw symbolizes a shallow-water wave source that
supplies the domain an amount of Infinite-wave (1L0)
until the users terminate the computation.

DW_iw denotes a deep-water wave source that transmits
an amount of infinite-wave (1L0) train to the domain.

3.2. Wave propagation

The model has been tested for the waves propagating in
both shallow and deep water. The method is, when SW_2w

or DW_2w has already entered the domain through the
incident boundary then the incident wave source is
terminated, i.e. only two-waves (2L0) are allowed to enter
and propagate through the domain. The propagation of
the wave train is studied. The length of the domain is 4:5L0.
The propagation of SW_2w with wave period (T0) over

the normalized space (x=L0) is shown in Fig. 3. Fig. 4
shows the propagation of DW_2w. In the figures, the



ARTICLE IN PRESS

4.54.03.53.02.52.01.51.00.50.0

x / Lo

 η
/ H

o

-1.0
0.0
1.0

-1.0
0.0
1.0

-1.0
0.0
1.0

-1.0
0.0
1.0

-1.0
0.0
1.0

-1.0
0.0
1.0

-1.0
0.0
1.0

-1.0
0.0
1.0 t = 0 

t = To 

t = 2To

t = 3To

t = 4To

t = 5To

t = 6To

t = 7To

Fig. 3. SW_2w: two-wave train source: instantaneous surface elevations with wave periods over space for shallow-water wave (T0 ¼ 0:722 s, h ¼ 0:3m
and H0 ¼ 0:024m).
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instantaneous surface elevation Z is normalized by the
respective incident wave height H0 and the horizontal
distance x is normalized by the incident wavelength L0. In
Figs. 3 and 4 instantaneous surface elevations are plotted
for every wave period. It may be observed that with time
SW_2w and DW_2w enter the domain, propagate with
constant amplitude and finally leave the domain with time
in due course.

Figs. 5 and 6, respectively, show the time series of
instantaneous surface elevations for SW_2w and
DW_2w at specific locations in the domain. Five numer-
ical-wave-gauges (NG) are employed over the domain at
equal intervals (1:125L0). NG-1 is at x ¼ 0:0 (the incident
boundary of the domain), NG-2 is at x ¼ 1:125L0, NG-3 is
at x ¼ 2:25L0 (the mid point of the domain), NG-4 is at
x ¼ 3:375L0 and NG-5 is at x ¼ 4:5L0 (the transmitted
boundary). In the figures the elapsed time t is normalized
by the incident wave period T0. It may be seen in Fig. 5
that SW_2w propagates smoothly over the domain with
time. Similar phenomenon is observed for DW_2w case
also shown in Fig. 6.
Figs. 7 and 8 show the propagation of SW_iw and

DW_iw, that is, when infinite-wave train sources are in use.
In this case also wave profiles are plotted for every wave
period. These figures show the smooth propagation of the
waves in the domain.
Figs. 9 and 10 disclose the time series of the instanta-

neous surface elevations for SW_iw and DW_iw, respec-
tively, at five different locations from NG-1 to NG-5.
Both figures show that with time the waves propagate
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Fig. 5. SW_2w: two-wave train source: time series of instantaneous surface elevations at NG-1 to NG-5 for shallow-water wave ðT0 ¼ 0:722 s, h ¼ 0:3m
and H0 ¼ 0:024m).
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Fig. 6. DW_2w: two-wave train source: time series of instantaneous surface elevations at NG-1 to NG-5 for deep-water wave (T0 ¼ 0:506 s, h ¼ 0:3m and

H0 ¼ 0:012m).
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throughout the domain with the same amplitude as the
incident boundary.

3.3. Velocity distribution

Figs. 11 and 12 show the vertical velocity distribution for
waves of SW_iw and DW_iw under their crest and trough.
The described model is obtained by vertical integration of
the governing equations. So we can only obtain a vertically
uniform velocity profile from this model. To compute the
velocity profiles shown in Figs. 11 and 12 we have assumed
a distribution formula that contains the velocity at the free
surface multiplied by the pressure response factor as
mentioned earlier. In the figures the particle velocities are
normalized by the respective incident wave celerity C0 and
the vertical distance z is normalized by the respective water
depth h. It may be observed that for the shallow-water case
the wave particle velocity is finite up to the bottom but for
the deep-water case the particle velocity becomes negligible
before it reaches to the bottom. The negative sign in z=h

indicates the quantity in the downward direction from the
SWL.
3.4. Average energy computation for finite depth case

The potential energy due to the presence of a mono-
chromatic progressive wave train can be computed for a
section Dx by subtracting the potential energy in the
absence of wave train from the potential energy in the
presence of wave train (see for example, Rahman, 1995) as
follows (see Fig. 13):

DPE ¼ drgDx
d

2
� hrgDx

h

2
. (3.1)
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Fig. 7. SW_iw: infinite-wave train source: instantaneous surface elevation in space and time for shallow-water wave (T0 ¼ 0:722 s, h ¼ 0:3m and

H0 ¼ 0:024m).

-1.0
0.0
1.0

4.54.03.53.02.52.01.51.00.50.0

x / Lo

-1.0
0.0
1.0

-1.0
0.0
1.0

-1.0
0.0
1.0

-1.0
0.0
1.0

-1.0
0.0
1.0

t = 0 

t = 2To

t = To

t = 3To

t = 4To

t = 5To

η/
 H

o

Fig. 8. DW_iw: infinite wave train source: instantaneous surface elevation in space and time for deep-water wave (T0 ¼ 0:506 s, h ¼ 0:3m and

H0 ¼ 0:012m).
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Fig. 9. SW_iw: infinite-wave train source: time series of instantaneous surface elevation at NG-1 to NG-5 for shallow-water wave (T0 ¼ 0:722 s, h ¼ 0:3m
and H0 ¼ 0:024m).
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Fig. 10. DW_iw: infinite-wave train source: time series of instantaneous surface elevations at NG-1 to NG-5 for deep-water wave (T0 ¼ 0:506 s, h ¼ 0:3m
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crest and wave trough for shallow-water wave (T0 ¼ 0:722 s, h ¼ 0:3m
and H0 ¼ 0:024m).
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The average potential energy per unit surface area is then
obtained as

PE ¼
rg

2L0T

Z tþT

t

Z xþL0

x

ðd2
� h2
Þdxdt. (3.2)
The kinematic energy of a small element of water with
length Dx, height Dz and unit width and, having velocity u

and w in the horizontal and vertical direction, respectively
is

DKE ¼
r
2
ðu2 þ w2ÞDxDz. (3.3)

Thus the average kinetic energy per unit surface area can
be obtained as

KE ¼
r

2L0T

Z tþT

t

Z xþL0

x

Z Z¼0

�h

ðu2 þ w2Þdxdzdt. (3.4)

To compute the total average energy density (from now
on this will be called total energy), we have discretized the
domain as shown in Fig. 13. For a spatial grid point the
present model computes both kinematic and potential
energies at every vertical grid point (shown by O in the
figure) over it. Then a summation is made to find out the
total energy at that particular spatial location. This method
is repeated for all spatial grid points to find the total energy
in the whole domain. For a surface wave, the theoretical
expression for the total energy per unit area over any water
depth has been described by many authors (for example,
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model and computed by the energy equation for deep-water wave
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Lamb, 1945; Sarpkaya and Issscson, 1981; Tucker, 1991).
So the average energy density that is produced by a single
surface wave can be described by the following Energy

equation:

E ¼ 1
2
rga2. (3.5)

Ei in the figures is the instant energy computed by the
energy equation or by the present model at any time. On
the other hand, E2w and Eiw, respectively, are the energies
computed by the energy equation when two-waves (2w)
have just entered the domain and maintain their presence
in the domain and, when the domain has a infinite number
of waves i.e. when the domain has a continuous waves
supply.

Figs. 14 and 15 show simple comparisons between the
normalized energy distribution over the domain for
SW_2w and DW_2w. The solid line shows the energies
computed by the present model and the dotted line shows
the energies obtained by the energy equation (3.5) for
different wave periods. This figure describes that as the
wave entering the domain the energy level increases and
slowly decreases as the wave train leaves the domain
through the transmitted boundary. The highest energy
obtained when t=T0 is in between 2 and 4.5 that is, when
both waves are inside the domain. When both waves are
just out of the domain the energy level sharply reduces to a
value of order 10�2 instead of being zero for both SW_2w

and DW_2w cases and the energies become zero at or
before t=T0 ¼ 10. This may be due to some negligible
oscillation that remains in the domain for some time after
all the waves disappear. The infinitesimal energies on the
right hand sides in Figs. 14 and 15 are the energies due to
the presence of these negligible oscillations in the range of
10Xt=T0X6:5. Figs. 14 and 15 indicate that the energies
predicted by the model are significantly close to that
evaluated by Eq. (3.5) for the respective case. It may be
observed that for SW_2w case shown in Fig. 14, when the
both waves are in the domain, the model under-predicts the
energy to a value of order 10�2 and for DW_2w case
shown in Fig. 15, the model over-predicts the energies to a
value of order 10�3.
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Fig. 14. SW_2w: two-wave train source: comparison of energy between

model and computed by the energy equation for shallow-water wave

(T0 ¼ 0:722 s, h ¼ 0:3m and H0 ¼ 0:024m).
Figs. 16 and 17 show the normalized energy distribution
in the domain for SW_iw and DW_iw. Comparisons of
energies between model and that computed by the energy
equation (3.5) are shown in these figures. It may be
observed that the growth of the energy in the domain is
similar as described in Figs. 14 and 15, respectively. Due to
the infinite-wave source the energy profile becomes
constant when the growth of the energy in the domain is
completed, that is, when the domain is fully occupied by
the waves. Comparing Figs. 16 and 17 it may be perceived
that for the case SW_iw shown in Fig. 16, the model under-
shoots the results insignificantly to a value of order 10�2

and for case DW_iw shown in Fig. 17, the model returns
quasi-identical results (to a value of order 10�4) as
computed by Eq. (3.5).
Fig. 18 demonstrates the distribution of the normalized

energies for varying Dx=Dt condition. It may be observed
that the model is stable and the results predicted by this
model is reliable if Eq. (2.51) remains satisfied.

3.5. Computational error

Proper discretization of the computational domain is one
of the important factors in reducing numerical errors. It is
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Fig. 17. DW_iw: infinite-wave train source: comparison of energy
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Table 2

Computational parameters

Case Water depth

(m)

Wave period

(s)

L0 (m) h=L0 (%) Wave type

R1 0.6 1.159 2.0 30 Shallow

R2 0.6 0.7158 0.8 75 Deep
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Fig. 20. R1: normalised shallow-water ðh=L0 ¼ 30%Þ surface elevations,

model wave steepnesses: H0=L0 ¼ 1%, 3% and 5% and Stokes third-

order wave steepness: H0=L0 ¼ 3%.
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usual for many traditional numerical model applications
that the finer the mesh the better the prediction. A SW_2w

case is considered here to compute the error level in the
surface elevation Z. The computational parameters are as
before. When the mesh is coarse, that is, the number of
computational grid on one wavelength is undersized (less
than 40 per wavelength) then some disturbances in the
SWL are observed after the wave just left the domain. The
is due to unknown numerical errors. The computed errors
(mean disturbance amplitude/incident wave amplitude) are
found to be in the order of 10�6. On the other hand, when
the mesh is fine enough, that is, computational grids are at
least 40 in number per wavelength then the numerical error
in the surface elevation Z over the whole domain is
dramatically reduced. Fig. 19 shows that a finer mesh is
important to reduce numerical error and to predict better
results by this model.

4. Comparisons of the model with Stokes third-order wave

theory

A simple comparison is made between the surface
elevations obtained from the Stokes third-order wave
theory and from the present model for both shallow- and
deep-water wave cases. The computational parameters are
shown in Table 2.
In the comparisons of the shallow-water wave, a wave of

period 1:159 s propagates over a water depth of 0:6m with
a relative water depth of h=L0 ¼ 30% is utilized and shown
by R1 in Table 2. Fig. 20 shows a plot of the normalized
surface elevations for the wave steepness H0=L0 ¼ 1%, 3%
and 5% obtained from the present model and normalized
surface elevations for Stokes third-order wave theory for
H0=L0 ¼ 3%. Fig. 21 shows a similar plot where the model
wave steepness are H0=L0 ¼ 6%, 8% and 10% and Stokes
third-order wave steepness is H0=L0 ¼ 8%.
On the other hand, for deep-water case shown by R2 in

Table 2, a wave of period 0:7158 s is assumed to propagate
over a water depth of 0:6m with a relative water depth of
h=L0 ¼ 75%. Fig. 22 shows the model’s surface elevation
for the steepness H0=L0 ¼ 1%, 3% and 5% and Stokes
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Fig. 21. R1: normalised shallow-water ðh=L0 ¼ 30%Þ surface elevations,

model wave steepnesses: H0=L0 ¼ 6%, 8% and 10% and Stokes third-

order wave steepness: H0=L0 ¼ 8%.
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Fig. 22. R2: normalised deep-water ðh=L0 ¼ 75%Þ surface elevations,

model wave steepnesses: H0=L0 ¼ 1%, 3% and 5% and Stokes third-

order wave steepness: H0=L0 ¼ 3%.
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Fig. 23. R2: normalised deep-water ðh=L0 ¼ 75%Þ surface elevations,

model wave steepnesses: H0=L0 ¼ 6%, 8% and 10% and Stokes third-

order wave steepness: H0=L0 ¼ 8%.
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Fig. 24. S1: comparison of the model wave heights with experiment

(T0 ¼ 1:159 s, h ¼ 0:6m, H0 ¼ 0:06m, h=L0 ¼ 0:3, and H0=L0 ¼ 0:03).

Table 3

Computational conditions and parameters

Case Water depth

(m)

Wave period

(s)

H0 (m) h=L0 (%) H0=L0

(%)

S1 0.6 1.159 0.06 30 3.0

S2 1.0 1.460 0.10 30 3.0
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third-order wave profile with steepness H0=L0 ¼ 3%.
Fig. 23 shows a plot of surface elevations for steepness
H0=L0 ¼ 6%, 8% and 10% and Stokes third-order wave
steepness H0=L0 ¼ 8%. In the figures the surface eleva-
tions and the computational times are normalized by the
incident wave height H0 and wave period T0, respectively.

McCowan (1894) and Hamada (1951) have described
that before breaking the maximum shallow-water wave
steepness is 14:2% tanhð2ph=L0Þ. On the other hand,
Michell (1893) has reported that the maximum wave
steepness that can be achieved by a deep-water wave
would be approximately 14:2%. In the computation it is
observed that for the shallow-water wave case, see Figs. 20
and 21, the present model gets slowly unstable when
the wave steepness is larger than 9%. On the other hand,
for the deep-water wave case, results from the model
beyond the limiting value for maximum steepness are
meaningless.
5. Comparisons of the model with experimental results

In order to perceive the validity of the present numerical
model we compare the model results with the relevant
experimental results in the shallow-water region. Figs. 24
and 25 show these comparisons for two different wave
conditions shown in Table 3. In the experiment see Zaman
and Togashi (1996), measurements are made at 15 different
locations in the wave channel simultaneously. Fig. 24
shows the results for case S1 and Fig. 25 shows the results
for case S2. The wave heights at each physical and
numerical probe are computed by rms (root-mean-square)
method using the respective measured and numerically
obtained surface elevation data. The continuous line in
Fig. 24 or in Fig. 25 is not an interpolating curve. It joins
the computed results from the numerical model.
It is observed in the analyses that the average difference

in the wave heights obtained from the model and the
experiment is only 0.9% ½ðModel� ExperimentÞ=Model�
for case S1 and 3.6% ½ðModel� ExperimentÞ=Model� for
case S2.
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6. Conclusions

A nonlinear numerical model is developed to study the
propagation of monochromatic surface wave. The model is
developed by the vertical integration of the continuity
equation and the equations of motion up to the free surface
with proper boundary conditions. The adopted pressure
equation and the dispersion relation use the instantaneous
water depth instead of still water depth that allows the
system to account for the effect of the real time water depth
on the solution. The model is applied to study the waves in
both shallow- and deep-water regions. Some relevant
comparisons are shown between the surface elevations
obtained from the model and those obtained from the
Stokes third-order wave theory for both shallow- and deep-
water wave cases. As an application, the obtained model is
tested to study the propagation of the waves, related energy
proliferation, vertical velocity distribution and related
error prediction. It is found that the prediction of the
results by the proposed model is applicable both for
shallow- and deep-water wave specially for the cases
considered here. The model wave heights for shallow-
water wave are compared with the relevant experimental
data. The CPU time is exceptionally small in implementing
this model on a usual PC.
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