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a b s t r a c t

The present paper reports on a study of the interaction of a current-free monochromatic surface wave field

with a wave-free uniform current field in a three-dimensional flow frame. The wave and the current fields

describing the characteristics of the combined flow in terms of mass, momentum and energy transport

conservation. These equations are found efficient to describe the sought-for combined wave–current

field. The parameters describing the wave–current field after the interaction are the surface disturbance

amplitude and length, mean water depth, mean current-like parameter and direction of the combined

flow, which would be calculated from a set of equations that satisfy conservation of mean mass,

momentum and energy flux and a dispersion relation on the free surface before and after the interaction.

The results are shown in terms of relative changes in wave heights and lengths, current-like parameters

and final directions obtained for the combined wave–current field with respect to current-free wave and

wave-free current pre-interaction parameters.

Crown Copyright & 2010 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Interaction of waves and currents is an important topic among
researchers and scientists interested in ocean related problems.
The reason is that both the wave and current and consequently
their interaction play predominant roles in most of the nearshore
and offshore dynamic processes. This includes, for example,
stability of structures present in such flow fields, sediment trans-
port and its resulting beach topographic change in the nearshore,
characteristics of the navigation channel and reliability of the
natural or artificial structures in the offshore zone.

By considering the continuity of momentum flux in a normally
incident wave train Longuet-Higgins and Stewart (1960, 1961);
Whitham (1962) derived theoretical expressions for the changes in
sea level and other linear and nonlinear characteristics of 2D wave
trains. Kemp and Simons (1982, 1983) described the wave–current
interactions for following and reverse current in their successive
two papers. In their measurements, they were mostly concentrated
very close to the bottom of the wave flume. Zaman and Togashi
(1996) described their experimental results for interaction of
monochromatic wave with favorable and adverse currents over a
parabolic bottom structure. Zaman et al. (2008) compared their
theoretical and experimental results for interacted wave–current
10 Published by Elsevier Ltd. All r
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field over a parabolic bottom structure. Zaman and Baddour (2005)
discussed the properties of the wave–current field where the
surface current was uniform and acting over a layer of fluid that
extended from the free surface to a specified finite depth. Hedges
and Lee (1991) showed that an equivalent uniform current under
the conditions of approximate constant current vorticity could
replace a depth varying current.

In Baddour and Song (1990a, 1990b) a vertically 2D combined
wave–current field is postulated to exist as the result of the
interaction of collinear, apriori known plane current-free wave
and wave-free current fields. When a wave encounters a uniform
current, they interact hence generating what is referred to as a
wave–current field. Neglecting dissipation, it is assumed that after
the interaction, a stable, uniform and irrotational combined wave–
current field evolves. This field is expressed in terms of a wave-like
surface-disturbance and a current-like component. Conservation of
mass, momentum and energy flux before and after the interaction
are used to estimate the parameters of the resulting combined
wave–current field in 2D and collinear with the pre-interacting
fields. In the present paper we present the results of extending
Baddour and Song’s (1990a, 1990b) work. The condition of
collinearity of the current-free wave, wave-free current and
combined wave–current fields is relaxed to formulate in 3D the
basic equations that describe the direction and characteristic
parameters of the 3D wave–current field. These parameters are
computed on satisfying conservation of mean mass, momentum
and energy flux and a dispersion relation on the free surface of the
flow in 3D.
ights reserved.
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2. Properties of the wave–current field

We assume that a current-free monochromatic plane surface
wave of wavelength Lo (¼2pko: ko is the wave number), height Ho

(¼2ao: ao is the wave amplitude), celerity Co and period T

propagates over a water body of depth do in the direction given

by N
!w

and that independently there exists a horizontal uniform
wave-free current Uo over the same water depth do in the direction

N
!c

. When these two plane fields meet, see Fig. 1, a plane wave–

current combined field develops in the direction N
!

, with a new set
of unknown parameters namely, wavelength L (¼2pk: k is the
wave number), height H (¼2a: a is the wave amplitude), current
parameter U and depth d. These unknown parameters together

with direction N
!

are required to be computed from a system of
conservation equations described in the next section. We first

formulate the potential of a wave–current field in a direction N
!

.
Fig. 1 shows the plan view of the computational domain with O

the origin of the 3D inertial frame. The x- and y-axes subtend the
horizontal plane, and z the vertical axis is perpendicular at O to both

x and y, and points towards the reader. The unit vectors N
!c

and N
!w

denote the directions of the wave-free current and current-free

wave before interaction and N
!

denotes the direction of the

combined wave–current after interaction. The unit vector S
!

is

normal to N
!

. yw and yc are the given current-free wave direction

and wave-free current direction prior to interaction and y is the
final direction of the combined wave–current field after interaction
with the x-horizontal axis

Assuming inviscid and incompressible fluid flows we posit that
the result of the interaction between a current-free wave with a
wave-free current exists and is here called a wave–current flow
field in the N

!
direction. A velocity potential describes this field,

given by the following expression to second order in the surface
undulation amplitude:

Fðx,y,z,tÞ ¼ U
!

x
!
þ

a1

ksinhkd
s�U
!

k
!

� �
coshkðdþzÞsinð k

!
x
!
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þ
1
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� �
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where U ¼ U
!
ðUx,UyÞ

��� ���is the current parameter and k¼ k
!
ðkx,kyÞ

��� ��� is

the wave number whose related vector is normal to the surface
undulation front in the wave–current field and lies in the horizontal
Fig. 1. Wave-free current, current-free wave and wave–current fields relative

directions.
x–y plane,s is the angular frequency, a the amplitude of the surface
disturbance in the wave–current field, C the celerity, d the mean

water depth, t the time, x
!
ðx,yÞthe horizontal position vector of a

point in the field and z is the vertical axis measured vertically
upward from the still water level. The first and second order surface
elevation amplitudes are given by a1 and a2, respectively. See for
example Dean and Dalrymple (1992) for the first order 2D collinear
case, and Baddour and Song (1990b) for the second and higher
order collinear case.

The relation of the wave number and the angular frequency of
the combined wave–current field is given by the following Doppler
relation:

s�U
!

k
!
¼ sr ð2Þ

where the relative angular frequency in the above equation is
described by the following equation:

sr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gktanhkd

p
ð3Þ

The dispersion relation for the combined wave–current field is
hence

s�U
!

k
!

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gktanhkd

p
ð4Þ

The periodic free surface elevationZ is to first order in amplitude
a expressed as

Z¼ acosð k
!

x
!
�stÞþOða2Þ ð5Þ

The particle velocity components in the x, y and z direction in the
combined wave–current field (Eqs. (6)–(8)), current-free wave field
(Eqs. (9)–(11)) and wave-free current field (Eqs. (12)–(14)) are
explicitly as
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Fig. 2. Axes orientation in 3D for particle trajectory computation.
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where superscripts w, c and wc in the above equations, stand for the
quantities in the pre-interaction current-free wave field, wave-free
current field and in the post-interaction wave–current field,
respectively.

The corresponding acceleration components in the x, y and z

directions in the combined wave–current field (Eqs. (15)–(17)),
current-free wave field (Eqs. (18)–(20)) and wave-free current field
(Eqs. (21)–(23)) are explicitly expressed as
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The pressure distribution in the wave–current field to second
order is obtained from the dynamic free surface boundary condi-
tion as:

P¼�rgz�
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2.1. Particle trajectory

Fig. 2 shows the orientation of the coordinate system
for the wave–current combined field where the z-axis is perpen-
dicular at the intersection of the x- and y-axes. In the figure, the
plane x0 �z0 represents the plane normal to the wave–current
field front.

The particle trajectory in the combined wave–current flow is
given by the following elliptical expression at any arbitrary point xo,
yo and zo. The trajectory in x0 �z0 coordinates is then

ðxu�UtÞ2

ðakxsr=sksinhkdÞcoshkðdþzÞ

 �2

þ
z’2

ðasr=ssinhkdÞsinhkðdþzÞ

 �2

¼ 1

ð25Þ

where for any value of y0, it is assumed that a water particle
moves from its old position ðxuo,yuo,zuoÞto a newer position
ðxuoþxu,yuo,zuoþzuÞ.

Figs. 3a to 5b show the particle trajectory at the surface ðzu=dÞ ¼ 0
and at the mid-water depth ðzu=dÞ ¼ 0:5 for wave only, wave and
current in the same direction and wave with opposing current. In
these computations we have used a wave with period T is 4 s, wave
height H is 0.1 m and water depth do is 10 m. Fig. 3a and b represent
the water particle path for wave along xoyozo�xuzu vertical plane
with Uo/Co¼0, Fig. 4a and b describe the path of the water particle in
the same plane with Uo/Co¼0.005 and Fig. 5a and b show the
particle trajectory when Uo/Co¼�0.005.
3. Definition of mass, momentum and energy flux equations

We can obtain the mass flux of the combined wave–current field
along the xu�zu vertical plane through the following relation up to
second order in amplitude a:
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Fig. 3. (a) Particle trajectory at z’/d¼0 [do¼10 m, T¼4 s, and Uo/Co¼0] and (b) particle trajectory at z0/d¼�0.5 [do¼10 m, T¼4 s, and Uo/Co¼0].
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The corresponding momentum flux of the combined wave–
current field along the same x0 �z0 plane is given as follows:
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In a similar fashion the net energy flux of the combined
wave–current field in the x-direction of the x0 �z0 plane is
expressed as
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Similarly, energy of the wave–current field in the y-direction of
the x0 �z0 plane is:
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Fig. 5. (a) Particle trajectory at z0/d¼0 [do¼10 m, T¼4 s, and Uo/Co¼�0.005] and (b) particle trajectory at z0/d¼�0.5 [do¼10 m, T¼4 s, and Uo/Co¼�0.005].
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The net energy of the wave-current field in the direction of flow
in the x0 �z0 plane is thus found as
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!��� ���2þ gk

sinh2kd
a2

� �
þ
rga2

4
1þ

2kd

sinh2kd

� �

� Crþ
U
!

k
!

k

2
4

3
5 k
!

k
þ
rga2

4sr
2 U
!
ðU
!

k
!
Þþ k
!

U
!��� ���2� �

þOðk3a3Þ

ð33Þ
where k

!
=k¼ N
!

and U
!
=U ¼ N

!
.

3.1. Conservation equations

Taking the time averages of the flux parameters of the current-free
wave field, wave-free current field and wave–current field we pose the
following two sets of conservation equations for mass, momentum and

energy flux in the N
!

and S
!

directions (see Fig. 1), respectively:

In the N
!

direction

Qw N
!w

N
!
þQc N
!c

N
!
¼ Qwc N

!
N
!

ð34Þ
Mw N
!w

N
!
þMc N
!c

N
!
¼Mwc N

!
N
!

ð35Þ

Ew N
!w

N
!
þEc N
!c

N
!
¼ Ewc N

!
N
!

ð36Þ

In the S
!

direction

Qw N
!w

S
!
þQc N
!c

S
!
¼ 0 ð37Þ

Mw N
!w

S
!
þMc N
!c

S
!
¼ 0 ð38Þ

Ew N
!w

S
!
þEc N
!c

S
!
¼ 0 ð39Þ

The directional vectors are defined by the following expression:

N
!w

¼ cosyw i
!
þsinyw j

!
ð40Þ

N
!c

¼ cosyc i
!
þsinyc j

!
ð41Þ

N
!
¼ cosy i

!
þsiny j

!
ð42Þ

S
!
¼�siny i

!
þcosy j

!
ð43Þ
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and subscripts w, c and wc in the above equations, stand for the
quantities in the pre-interaction current-free wave field, wave-free
current field and in the post-interaction wave–current field,

respectively. N
!w

and N
!c

are the given wave and current directions;

N
!

is the final direction of the combined wave–current field and S
!

is the direction normal to N
!

. yw and yc are the given current-free
wave direction and wave-free current direction prior to interaction

and y is the final direction of the combined wave–current field after
interaction with the x-horizontal axis.

The vector relationships mentioned in the Eqs. (40)–(43) are
invoked and properly used in the derivation of the conservation of
mass, momentum and energy equations needed in Eqs. (34)–(39).

In the resulted wave–current combined field we have five
unknown parameters that need to be computed. These parameters
are the wave amplitude (a), wavelength (L), current ( U

!
), water

depth (d) and wave–current field direction (y).

The direction (y) of the combined wave–current field could be
obtained from any of the Eqs. (37)–(39). When the direction is
known then Eqs. (34)–(36) and the dispersion relation in its
normalized form given in Eq. (47) are simultaneously solved for

the other four parameters a, L, U
!

and d.

3.2. Variables declaration

The known and unknown parameters used in this formulation
are normalized and defined in the following way:

Normalized known parameters

A¼
a2

o

d2
o

; B¼
Uo

Co
; D¼

Lo

do
ð43Þ

Normalized unknown parameters:

W ¼
d

do
; X ¼

U

Co
; Y2 ¼

L

Lo
; Z ¼

a2

d2
o

; yðnot normalizedÞ ð44Þ
3.3. Dispersion relation

The dispersion relation (2) can be modified and normalized in
the following manner:

C=Co ¼
U
!

k
!

Cok
þCr=Co ð45Þ

Y2 ¼
U
!

k
!

Cok
þY tanh 2p d

do

do

Lo

Lo

L

� �
coth

2p
Lo

do

� �� �1=2

ð46Þ

The normalized dispersion relation for the combined wave–
current field can be rewritten in the following form:

Y2�X�Y tanhð2pW=DY2Þcothð2p=DÞ
� 	1=2

¼ 0 ð47Þ
3.4. Conservation of mass

The mean rate of transfer of mass across a vertical plane due to
the current-free wave field, wave-free current field and combined
wave–current field can be written from Eq. (27) in the following
forms:

Q
!w

¼Qw N
!w

¼
ra2

o

2
CocothðkodoÞko N

!w

ð48Þ

Q
!c

¼Qc N
!c

¼ rdoUo N
!c

ð49Þ
Q
!wc

¼Qwc N
!
¼ rdU N

!
þ
ra2

2
cothðkdÞ C�

U
!

k
!

k

0
@

1
Ak N
!

ð50Þ

Inserting Eqs. (48)–(50) into Eq. (34) the following would be
obtained to express the conservation of mass:

ra2
o

2
CocothðkodoÞko N

!w

N
!
þrdoUo N

!c

N
!
¼ rdU N

!
N
!
þ
ra2

2
cothðkdÞ

� C�
U
!

k
!

k

0
@

1
Ak N
!

N
!

ð51Þ

)
ra2

o

2
CocothðkodoÞkoðcosyw cosyþsinyw sinyÞ

þrdoUoðcosyc cosyþsinycsinyÞ

¼ rdUþ
ra2

2
cothðkdÞ C�

U
!

k
!

k

0
@

1
Ak ð52Þ

)
ra2

o

2
CokocothðkodoÞcosðyw

�yÞþrdoUocosðyc
�yÞ

¼ rdUþ
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2

cothðkdÞ C�
U
!

U k
!

k

0
@

1
Ak ð53Þ

r
2
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o

d2
o

Lokocoth 2pdo

Lo

� �
cosðyw

�yÞþr Lo

do

Uo

Co
cosðyc

�yÞ

¼ r Lo

do

d

do

U

Co
þ
r
2

a2

d2
o

Lo

Co
cothðkdÞ C�

U
!

k
!

k

0
@

1
A2p

L
ð54Þ

After normalization the final form of the conservation of mass
equation in the N

!
direction takes the following shape:

pAcothð2p=DÞcosðyw
�yÞþDBcosðyc

�yÞ�DWX

�p Z

Y
cothð2pW=DY2Þcothð2p=DÞ
� 	1=2

¼ 0 ð55Þ

From Eq. (37) the conservation of mass equation in the S
!

direction could be obtained the following form:

ra2
o

2
Co cothðkodoÞko N

!
w S
!
þrdoUo N

!
c S
!
¼ 0

) pAcothð2p=DÞsinðyw
�yÞþDBsinðyc

�yÞ ¼ 0 ð56Þ

3.5. Conservation of momentum

The mean rate of transfer of momentum due to the current-free
wave field, wave-free current field and combined wave–current
field can be written using Eq. (29) in the following way:

Mw N
!w

¼
1

2
rga2

o

1

2
þ

2kodo

sinhð2kodoÞ

� �
þ

1

2
rgd2

o

� �
N
!w

ð57Þ

Mc N
!c

¼ rdo U
!

o

��� ���2 N
!c

ð58Þ

Mwc N
!
¼

1

2
rga2 1

2
þ

2kd

sinhð2kdÞ
þ

2 U
!

k
!

sr

0
@

1
Aþ 1

2
rgd2 1þ

2 U
!��� ���2
gd

0
B@

1
CA

2
64

3
75N
!

ð59Þ
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Substituting Eqs. (57)–(59) into Eq. (35) the conservation of the
momentum equation would be achieved as

1

2
rga2

o

1

2
þ

2kodo

sinhð2kodoÞ

� �
þ

1

2
rgd2

o

� �
N
!w

N
!
þrdo U

!
oj

2

N
!c

N
!

����

¼
1

2
rga2 1

2
þ

2kd

sinhð2kdÞ
þ

2 U
!

U k
!

sr

0
@

1
Aþ 1

2
rgd2 1þ

2 U
!��� ���2
gd

0
B@

1
CA

2
64

3
75N
!

N
!

ð60Þ

) 1þA
1

2
þ

2p=D

sinhð2p=DÞcoshð2p=DÞ

� �
þ

D

p
B2tanhð2p=DÞ

¼W2þZ
1

2
þ

2pW=DY2

sinhð2pW=DY2Þcoshð2pW=DY2Þ

� �

þ2ZY
Xx

Y2
cosyþ

Xy

Y2
siny

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanhð2p=DÞcothð2pW=DY2Þ
� 	q

þ
DW

p
X2tanhð2p=DÞ ð61Þ

The normalized conservation of momentum equation in the N
!

direction is obtained as follows:

1þA
1

2
þ

2p=D

sinhð2p=DÞcoshð2p=DÞ

� �� �
cosðyw

�yÞþ
D

p B2tanhð2p=DÞcosðyc
�yÞ

�W2�Z
1

2
þ

2pW=DY2

sinhð2pW=DY2Þcoshð2pW=DY2Þ

� �

�2
XZ

Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanhð2p=DÞcothð2pW=DY2Þ
� 	q

�
DW

p X2tanhð2p=DÞ ¼ 0 ð62Þ
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A 1þ
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� �
ko N
!w

N
!
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þ
r
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o
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o

Uo N
!c

N
!
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U N
!

N
!

Co
þ
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4p
DWtanhð2p=DÞ

U
!��� ���2
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o

þ2p2 Z

D2Y2

1

tanhð2p=DÞsinhð2pW=DY2Þcoshð2pW=DY2Þ

2
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3
75U N
!

N
!
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þ
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4
Z 1þ
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2þ
U
!

k
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2
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!
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!

k

þ
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� 	1

2 1
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o ko

2ðU
!

k
!
ÞU N
!

N
!
þ U
!��� ���2k N

!
N
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U
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3
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C2
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2ðU
!

k
!
ÞUþ U

!��� ���2k
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¼ 0 ð69Þ
From Eq. (38) the normalized conservation of momentum

equation in the S
!

direction could be obtained in the following
form:

1þA
1

2
þ

2p=D

sinhð2p=DÞcoshð2p=DÞ

� �� �
N
!w

S
!

þ
D

p B2tanhð2p=DÞN
!c

S
!
¼ 0 ð63Þ
) 1þA
1

2
þ

2p=D

sinhð2p=DÞcoshð2p=DÞ

� �� �
sinðyw

�yÞ

þ
D

p
B2tanhð2p=DÞsinðyc

�yÞ ¼ 0 ð64Þ

3.6. Conservation of energy

The mean rate of transfer of energy due to the current-free wave
field, wave-free current field and combined wave–current field can
be written using Eq. (33):

Ew N
!w

¼
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o

4
Cro 1þ
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� �
k
!

o
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N
!w

ð65Þ
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Introducing Eqs. (65)–(67) into Eq. (36) the conservation of the
energy equation would be obtained as:
The normalized conservation of energy equation in the N
!

direction is obtained in the following way:

A 1þ
2p=D

sinhð2p=DÞcosð2p=DÞ

� �
cosðyw�yÞ

þ
D

p
tanhð2p=DÞB3cosðyc�yÞ�2ZX

�
DW

p tanhð2p=DÞ
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� X2þ2p2 Z

D2Y2

1

tanhð2p=DÞsinhð2pW=DY2Þcoshð2pW=DY2Þ

� �
X

�Z 1þ
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�3
X2Z
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� 	1

2 ¼ 0 ð70Þ

Finally, from Eq. (39) the normalized conservation of energy
equation in the S

!
direction could be obtained in the following

form:
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��� ���2
C2

o

Uo N
!

c S
!

Co
¼ 0

) A 1þ
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� �
sinðyw�yÞ

þ
DB3

p tanhð2p=DÞsinðyc�yÞ ¼ 0 ð71Þ

4. Case study

As an application of the above model it is assumed that a
current-free wave field encounters a wave-free current field,
interact with each other and hence generating what is referred
to as a combined wave–current field. The parameters describing
the above wave–current field after the interaction are the surface
disturbance amplitude and length, mean water depth, mean
current-like parameter and direction of the combined flow field,
which would be calculated from a set of equations that satisfy
conservation of mean mass, momentum and energy flux and a
dispersion relation on the free surface before and after the
interaction as described in the earlier sections.

4.1. Computational procedure

Eqs. (55), (62) and (70) along with Eq. (48) and Eqs. (56), (64) and
(71) are the required two sets of equations for the evaluation of the
properties of the combined wave–current field that evolves when a
current-free wave and a wave-free current interact in a 3D flow field.

The direction (y) of the combined wave–current field could be
obtained by iterative solution of any of the there equations
mentioned in Eqs. (37)–(39). But in our derivation we have added
Eqs. (37)–(39) together for the expression and computation of the
combined wave–current field direction (y). Once the direction of
the combined flow is estimated then the system of the nonlinear
Eqs. (48), (55), (62) and (70) can be solved iteratively for the
essential variables W, X, Y and Z. When the variables are known
then the computations of the unknown combined wave–current
field parameters, a, k, d and U are done using the relationships
described in Eq. (45).

In this study a Newton iterative method has been utilized. For a
given wave with parameters ao, ko, do and current velocity Uo, the
computation of the parameters a, k, d and U of the combined wave–
current field are obtained from the above equations with a suitable
initial guess of the unknowns.

4.2. Computational environment

Maple-V (1991)Maple-12.01 (1991–2008) is a symbolic pro-
gramming language using Windows environment. It is used for
implementing Newton’s algorithm for the numerical solution of the
conservation equations together with the dispersion relation.
Maple is a system for mathematical computations that can handle
symbolic, numeric and graphical procedures in a simplified way.
Maple is easily adaptable for those who have experience in other
programming computer languages. An important property of
Maple is that all the algebraic routine operations in the system
are implemented using high-level user language. The basic system,
or kernel, is sufficiently compact and efficient to be practical for use
in a shared environment or on a personal computer. One of the
advantages of Maple is that the user can see an equation in its
expanded mathematical format on the monitor while it is taking
part in the computations.
4.3. Implementation of the model and results

As an application of the established numerical model, it is
assumed that a monochromatic surface wave with wave number
ko¼1.2565539, wave steepness Ho/Lo¼0.05 and relative water
depth do/Lo¼1.0 interacts with normalized current Uo/Co varying
over the range of –0.16 to 0.615. In this application we have also
assumed that the wave enters the computational domain at an
angle of yw

¼101 and while the current is at an angle of yc
¼151with

the positive direction of the x-axis. In the computation wave and
current are in same direction (may be with different angles) unless
the current Uo represents a negative quantity.

Figs. 6–9, respectively, shows the variation of the surface
disturbance heights, lengths, current-like parameters and variation
of the direction of the combined wave–current field for the above
given conditions.

From Figs. 6 and 7, it is observed that wave with a following
current will reduce the resulted wave height and elongate its length
and, exactly the opposite incidents take place when current is in the
opposite direction of wave. It is also found that the monochromatic
wave that we have used in our computation, becomes O(10�3 m)
(w.r.t. incident wave) when normalized current parameter reaches
the value Uo/Co¼0.615 for the case of a wave with a following
current. This is because when wave and current are in the same
direction the wave height reduces with current and disappears
when the current is strong enough to eliminate the wave amplitude
from the combined wave–current field. For the case when wave and
current are in opposite directions the maximum wave height is
reached at Uo/Co¼�0.16. Maximum wave height is reached due to
wave blocking. At this point wave steepness exceeds the allowable
breaking value and the numerical model is stopped. The reason is
that when the wave propagates against an opposite current the
wave height increases with current and at some point the wave
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propagation cannot be persist (see Zaman and Baddour (2006)).
These limits are shown in Fig. 6 by a vertical dotted line.

Fig. 8 shows that the current-like parameter increases when the
wave moves with a following current and decreases when they are
in opposite directions. In contrast, Fig. 9 shows that the change in
the direction of the combined field is much more significant in the
case of an opposing current. Figs. 6–9, respectively, shows the
disturbance height, length, variation of current-like parameters
and directions in the combined wave–current field for different
current conditions. As expected the surface disturbance height
increases with an opposite current and reduces on a following
current (Fig. 6) and a reverse behavior is observed for the surface
undulation length (Fig. 7). An increase in the current-like para-
meter is observed for the case of a following current due to wave-
induced drift and a reverse behavior is observed for the opposite
case (Fig. 8). The variation of the combined wave–current field
direction commonly depends on the pre-interaction relative direc-
tion of the current-free wave and current fields and magnitude of
the current velocity (Fig. 9).
5. Conclusion

Interaction of a current-free long-crested wave and a wave-free
current in a 3D wave–current field for irrotational flow conditions
has been formulated in terms of conservation of mass, momentum
and energy flux and a dispersion relation. Figs. 3(a)–5(b) show the
characteristic properties of the particle trajectory with- and with-
out current along an arbitrary direction in the x0–z0 plane.

Eqs. (34)–(39) produce the governing conservation equations
when Eqs. (27), (29) and (33)–(39) are used to formulate the
unknown quantities for the cases of wave, current and wave–
current conditions. The obtained equations are used for the
numerical computation of the combined field parameters. Maple
software environment is used for the iterative solution of the
nonlinear system of conservation equations and free surface
dispersion relation. In the computations Eqs. (37)–(39) are used
to find the direction of the combined wave–current field while Eqs.
(34)–(36) together with Eq. (48) are utilized for the computation of
the after interaction wave height H, its length L, mean water depth
d, current-like parameter U, and the variation of the direction of the
combined wave–current field. An example on the application of the
present model has been provided.
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