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Since pioneering works of O. Phillips [1] we know
that the main nonlinear process in the deep sea is four�
wave resonant interaction. Four interacting waves
form a quadruplet with wave vectors k, k1, k2, k3 obey�
ing resonance conditions

(1)

Here ωk = —dispersion relation for deep water
waves (g—gravity acceleration).

Statistical theory of four�wave interactions was
developed by Klauss Hasselmann in 1962–1963 [2].
He showed that spatial spectrum of wave action Nk(t)
obeys the kinetic (Hasselmann) equation

(2)

Subscripts k, r for ∇ are used for gradients in
wavevector k and coordinate r spaces correspondingly.
For Nk(t) and ωk the subscript k means dependence on
wavevector k. In (2) the term Snl is responsible for four�
wave interactions. Terms Sin and Sdiss describe corre�
spondingly input of wave action from wind and its dis�
sipation. Exact analytical expressions for Sin, Sdiss are
not known. Different authors offer different phenom�
enological forms for these terms. In particular, in the
most updated operational models for wind wave fore�
casting the source functions of wave input and dissipa�
tion use quasi�linear dependencies on spectral density
as follows [3]
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The corresponding increment γin (as well as decre�
ment γdiss), generally, depends on a number of argu�
ments, first of all, on wave frequency as a key wave
characteristic and wind speed as a key parameter of
wind�sea interaction. These arguments are introduced
in conventional non�dimensional form following the
Kitaigorodskii approach [4]. These are: ratio of wave

frequency to frequency of spectral peak  (or mean

over spectrum frequency ωm) and ratio of wave phase
speed Cp to a characteristic wind speed Uh (wind speed

at height h or friction velocity u∗ =  with u', w'

being velocities of turbulent pulsations)—the so�

called wave age .

An additional important non�dimensional param�
eter—wave steepness

(5)

defined in terms of total energy

(6)

is used quite often to describe a feedback of wind sea
state on features of wind�sea interaction and wave dis�
sipation. Evidently, dependence on this parameter
implies non�linearity of wave input and dissipation.

The dependencies on the three arguments , , μp

are used as work�pieces for parameterizing wave input
and dissipation in all the modern wave forecasting
models (see for review [3])

(7)
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(8)

In contrast to the phenomenological parameteriza�
tions (7), (8) the nonlinear interaction term Snl can be
derived “from the first principles”. According to [5] it
is written as

(9)

Here subscripts of N, T, ω are used as abbreviations of
arguments ki. In (9) the kernel T(k0, k1, k2, k3) = T0123 =
T1023 = T0132 = T2301 is a homogeneous function of
order 3, invariant with respect to rotation. Collection
of its explicit (and very complicated) expressions can
be found in [6].

On the “rear face” of the energy (or action) spec�

trum time derivative  and advection terms are not

essential [3]. In this equilibrium region equation (2) can
be reduced to the stationary equation

(10)

Since the well�known article by G. J. Komen,
S. Hasselmann and K. Hasselmann [7] many in the
oceanographic community believe that in the station�
ary equation (10) all three terms are of the same order
of magnitude. Some authors think that the wave input
term Sin and dissipation term Sdiss almost compensate
each other, while the Snl term is of the secondary
importance. In our articles [6, 8] we expressed com�
pletely opposite opinion and claimed that in the bal�
ance equation (10) Snl is the leading term, thus, essen�
tial information can be acquired from the conservative
stationary equation

(11)

It was shown [9, 10] that this equation has a rich
family of exact solutions, including KZ (Kolmogorov�
Zakharov) isotropic spectra

(12)

(13)

Here P is the energy flux to high wave numbers, Q is
action flux to low wave numbers. Solutions (12), (13)
successfully describe asymptotics of energy spectra
behind the spectral peak [6]. Moreover, non�station�
ary and spatially non�homogeneous spectra of grow�
ing wind sea can be described quite well by self�similar
solutions of an asymptotic model where Sin and Sdiss
are assumed to be formally small. The conservative
Hasselmann equation gives the lowest�order approxi�
mation of the model and the corresponding self�simi�
lar solutions while the next order approximation pro�
vides explicit relationships for total energy, character�
istic frequency and total net input 〈Sin + Sdiss〉 [6, 8].
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In this article we display resolved arguments in sup�
port of our viewpoint and explain why the analysis
made in article [7] cited above and in later papers was
erroneous.

In fact, Snl is a complicated nonlinear operator
which can be split into two parts

(14)

where

(15)

(16)

Nonlinear forcing Fk (15), evidently, is definitely
positive value while Γk (16) can be negative in some
frequency intervals. Nevertheless, we refer to ΓkNk as
to nonlinear damping, emphasizing that magnitudes
of every constituent Fk and ΓkNk are much higher than
Snl itself. Two constituents of Snl are almost annihilat�
ing each other that means very strong relaxation in (2)
due to four�wave resonant processes. External forcing
terms (Sin, Sdiss) do not affect this relaxation essentially.
We show that inequalities Fk � |Snl| and |ΓkNk| � |Snl|
are valid in a wide range of sea states. Hence, physi�
cally correct way to estimate importance of Snl is a
comparison wave input and dissipation Sin, Sdiss with its
constituents (15), (16) rather than with Snl itself. In
particular, “net increment” γk = γin – γdiss should be
compared to nonlinear damping rate Γk due to four�
wave resonances. Simple theoretical and numerical
estimates show that generally Γk is one order or more
higher than γk. Key arguments are given below while
details can be found in [5].

A “naive” dimensional consideration of nonlinear
damping decrement (16) gives

(17)

However, this estimate works only near spectral
peak, i.e. |k| ≈ |kp| (kp is the wave number of the spectral
maximum).

Let |k| � |kp|. Now for Γk one gets

(18)

The main source of Γ(k) is the interaction of long
and short waves as it is shown below. To estimate inte�
gral (18) more accurately, we assume that the spectrum
of long waves is narrow in angle, i.e. N(|k1|, Θ) =

(|k1|)δ(Θ). Long waves propagate along the axis x and
k1 is the wave vector of short wave with direction Θ. For
the coupling coefficient one has T0101 ≈ T01032|k1|2|k0|cosΘ
and

Snl Fk ΓkNk,–=
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(19)

Even for the most mildly decaying Kolmogorov�
Zakharov (KZ) spectrum, N(k) ~ |k|23/6 and the integral
in (19) diverges in small wavenumbers. For steeper KZ
spectra the divergence is stronger. Let us estimate Γ(k)
for the case of “mature sea”, taking the spectrum in
the form

(20)

Here E is the total energy, H(x) is the Heaviside step
function. By plugging (20) to (19) one gets the equa�
tion

(21)

that includes a huge “enhancing factor” 36π ≈ 113.1 at
formally small steepness parameter μp. In the isotropic
case, we need to perform one more integration over
angle. It yields expression for Γ(k) with smaller
enhancing factor (cf. 21):

(22)

A representative estimate by Plant [11] gives incre�
ment in source function (3)

(23)

where U10 is wind speed at standard height 10 meters
above the sea surface. Two independent parameters—
steepness μp and wind speed U10 determine the answer
on relative balance of wave generation and nonlinear
transfer. For the ratio of the linear input (23) and non�
linear damping one gets from (21)

(24)

Let for estimates in (24) the formally minimal value

 = 1 и  = 2. Even for the most aggressive wave

input by Plant [11] and rather young wind sea the non�
linear damping appears to be stronger than wind input
for rather quiet sea (μp > 0.0365). More accurate com�
parison is given below (see Fig. 3).

For illustration of the above theoretical specula�
tions we use the case of the cited milestone paper by
Komen et al. [7]. For a quarter of a century the major�
ity of the wind�wave community follows the stereo�
types of the paper in his treatment of wind sea balance.
The fully developed (mature) sea is considered as a
result of competition of wind input and wave dissipa�
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tion rather than a relaxation of wind sea to an inherent
state due to effect of four�wave nonlinear resonant
interactions.

For the simulation we used a novel numerical
approach developed by N. N. Ivenskikh based on
WRT�algorithm first proposed by Webb [12] and
implemented by Tracy & Resio [13]. Note, that a
number of numerical approaches for the Hasselmann
equation (including the authentic one by Tracy &
Resio code) hides the physically relevant decomposi�
tion of Snl into nonlinear forcing Fk and nonlinear
damping ΓkNk.

In our Fig. 1 we reproduce literally the case of Fig. 1
in [7] with an analogue of the Pierson�Moskowitz
spectral distribution [14]

(25)

where Phillips’ constant α = 0.0081. Peak frequency

(26)

is determined by characteristic wind speed U10. We
skip definitions of other parameters that can be found
in [7]. Figure 1 shows perfect agreement of our results
with ones of [7]. Magnitudes of all the constituents of
wind�wave balance Snl, Sin, Sdiss appear to be very close
to each other. Note, that Sin was calculated basing on
the well�known parameterization by Snyder et al. [3]
while the dissipation term Sdiss was estimated as a
residual–(Sin + Snl) to provide full balance in (10).
Positiveness of dissipation term Sdiss in Fig. 1d) shows
inconsistency of the chosen setup [7]. Playing with
Phillips’ parameter α and a parameter in Snyder’s for�
mula authors of [7] reach reasonable agreement of Sdiss
with the white�capping model by Hasselmann [15]
(dashed curve in Fig. 1d).

Decomposition of the collision integral Snl into two
parts in accordance with (14) gives an impressive
result: the constituents of Snl appear to be one order
higher in magnitude as Snl almost in the whole domain
of simulation except rather narrow vicinity of spectral
peak (see Fig. 2).

In terms of decrement of nonlinear damping Γk one
has an extremely resolved result: Γk exceeds signifi�
cantly all the conventional increments of wave growth
in a wide range of non�dimensional frequencies.
Figure 3 shows results of the comparison fairly well for
down�wind direction (Θ = 0). Theoretical depen�
dence (21) gives a remarkable reference for estimates
of decrement Γk. Slight divergence of numerical
results and the theoretical dependence is explained
naturally by high�frequency tail (E(ω) ∼ ω–5) in the
spectral distribution [7] used in our simulations.

We presented analytical and numerical arguments
that support the fact of leading role of nonlinear trans�
fer in balance of wind�driven seas. Our argumentation
is based on a milestone case of fully developed sea
introduced by Komen et al. (1984). Even in this
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extreme case when competition of wind input and
wave dissipation is, evidently, responsible for appear�
ance of a stationary state the constituents of Snl exceed
dramatically Sin and Sdiss. One can suppose and then to
show numerically that the leadership of nonlinear
transfer will be more definite at earlier stages of wave
development when waves are lower but essentially
steeper.

Our hypothesis on dominant role of wave quartets
composed by pairs of long and short waves in relax�
ation of wave spectra found its impressive confirma�

tion: results of numerical simulation in Fig. 3 follow
remarkably well the asymptotic dependence (21).

Our key result on dominating effect of nonlinear
transfer on wave spectra evolution should not be inter�
preted as a call to ignore effects of wind input and wave
dissipation. As we have formulated earlier in [8] the
leadership of Snl “does not mean that we disregard
wind input and dissipation, we just put them into their
proper place.” The strong nonlinear forcing and
damping that compose the conservative term Snl deter�
mine strong relaxation and a universality of spectral
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Fig. 1. Reproduction of Fig. 1 by Komen et al. [7]. Depen�
dencies on non�dimensional frequencies for (a)—energy
E( f ); (b)—wave input term Sin integrated over direction;
(c)—collision integral Snl integrated over direction; (d)—
dissipation term Sdiss derived from condition of full bal�
ance (10) (dashed line) and from white�capping parame�
terization [15]. All values are nondimensionalized in terms
of u* and g.
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Fig. 2. Decomposition of the collision integral Snl in Fig. 1c
(solid line) for the case by Komen et al. [7] into nonlinear
forcing (dashed) and damping (dotted) terms (see
(13)–(15)).
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shaping due to “inherent” wave dynamics while Sin,
Sdiss are responsible for growth of total energy.

ACKNOWLEDGMENTS

The research was conducted under Russian Foun�
dation for Basic Research 09�05�13605�ofi�ts, 11�05�
01114�a, Russian Academy Programs “Mathematical
methods of nonlinear dynamics” and “Theory of wind
sea monitoring and forecasting”, US Army Corps of
Engineers grant W912HZ�10�P�1076, grant of the Gov�
ernment of the Russian Federation 11.G34.31.0035. This
support is gratefully acknowledged.

REFERENCES

1. O. Phillips, J. Fluid Mech. 4, 426 (1958).

2. K. Hasselmann, J. Fluid Mech. 12, 481 (1962).

3. L. Cavaleri, J.�H. G. M. Alves, F. Ardhuin, A. Babanin,
M. Banner, K. Belibassakis, M. Benoit, M. Donelan,
J. Groeneweg, T. H. C. Herbers, et al., Progr. Ocean.
75, (2007).

4. S. A. Kitaigorodskii, Bull. Acad. Sci. USSR, Geophys.
Ser., Engl. Transl. N1, 105 (1962).

5. V. E. Zakharov, Phys. Scr. 142, 014052 (2010).
6. S. I. Badulin, A. N. Pushkarev, D. Resio, and

V. E. Zakharov, Nonl. Proc. Geophys. 12, 891 (2005).
7. G. J. Komen, S. Hasselmann, and K. Hasselmann,

J. Phys. Oceanogr. 14, 1271 (1984).
8. S. I. Badulin, A. V. Babanin, D. Resio, and V. Zakharov,

J. Fluid Mech. 591, 339 (2007).
9. V. E. Zakharov and N. N. Filonenko, Soviet Phys.

Dokl. 170, 1292 (1966).
10. V. E. Zakharov and M. M. Zaslavsky, Izv. Atmos.

Ocean. Phys. 18, 970–980 (1982).
11. W. J. Plant, J. Geophys. Res. 87, 1961 (1982).
12. D. J. Webb, Deep Sea Res. 25, 279 (1978).
13. B. Tracy and D. Resio, WES Rep. 11, US Army, Engi�

neer Waterways Experiment Station, Vicksburg, MS
(1982).

14. W. J. Pierson and L. A. Moskowitz, J. Geophys. Res.
69, 5181 (1964).

15. K. Hasselmann, Boundary�Layer Meteorol. 6, 107
(1974).


