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ABSTRACT 
This paper compares five Doppler centroid 

estimation methods which are :energy balancing, 
matched-correlation , maximum likelihood, 
correlation Doppler estimator(CDE) and sign 
Doppler estimator (SDE). Their estimation 
performances in raw data domain and image domain 
are studied. The computer simulation results are 
presented. ERS-1 raw data are also used to test the 
performances of every method. 

Introduction 
Synthetic aperture radar (SAR) is a class of high 

resolution radar which obtains fine azimuth resolution 
by coherent processing of backscattered Doppler 
histories. An important parameter in relation to the 
azimuth processing is the Doppler centroid, which is 
used to generate the azimuth matched-filters, together 
with the Doppler frequency rate. In principle, it is 
possible to calculate Doppler centroid from orbit and 
attitude data. However, measurement uncertainties 
will limit the accuracy. This error leads to the 
degradation in signal-to-noise ratio and signal-to- 
azimuth ambiguity ratio. 

This paper studies the Doppler centroid 
estimation methods from the received echo data, 
which is also referred to as “clutterlock”. So far, there 
are about five methods proposed by people. They are: 
( 1)Energy balancing[’], (2)Matched-correlation 
estimation[’], (3) Maximum-likelihood estimationP1, 
(4) Correlation Doppler estimator (CDE)[41, (5)Sign 
Doppler estimator (SDE)[41. The first three methods 
are implemented with azimuth power spectrum. The 
last two ones directly use the complex raw data. 

The every method mentioned above can also be 
carried out in complex image domain15], so the bias 
arised from the strong scatterers passing part of the 
synthetic aperture will be avoided. However, 
estimation in image domain is always an iterating 
procedure. 

R. Bamler[*] has pointed out that all the methods 
are equivalent to the correlation of the signal power 
spectra with a particular weighting function and 
finding the minimum value of the correlation results. 
The different weighting function achieves different 
estimation variance. Special case of a correlation- 
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based estimator is the maximum-likelihood estimator 
that can achieve the Cramer-Rao bound. He has 
compared the first four methods and derived their 
variances in theory. 

This paper reviews all these methods and 
compares their performance when they are 
implemented in image domain. The iterating 
coefficients used for estimation in image domain are 
derived. 

The computer simulation results are presented. 
All the methods also have been tested by the data 
from ERS- 1. 

11. Estimating Doppler centroid 
in data domain 

The principal of the estimation use the fact that 
the high azimuth bandwidth time product of a SAR 
locks Doppler frequency to the position along tracks. 
Thus, the components at any particular Doppler 
frequency originate from the targets in a specific part 
of the radar beam. As a consequence, the azimuth 
power spectrum S(f) should follow the shape of the 
two-way azimuth power pattern G2(f) of the antenna. 
If this pattern is symmetry, the center frequency can 
be found by finding the energy centroid of the 
azimuth power spectrum, as shown by the following 
equation 

where Bd is Doppler band and fdc is the Doppler 
centroid. This idea is often implemented by 
correlating the azimuth power spectrum with some 
odd reference function R(f) and finding the zero 
position of the correlation result D(f) as 

(2) D ( f >  = j S ( P ) .  W P  - f)dP 
D < L  1 = 0 ( 3 ) .  

According to the reference function chosen, three 
methods can be constructed. They are energy 
balancing (EB) with 
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matched-correlation (MC) with 

where W(f) is the nominal antenna two-way power 
pattern as 

and maximum-likelihood (ML) with 

R ( f )  = W” ( 5 )  

W f )  = G ’ ( f >  (6) 

(7). 

Matched-correlation takes account of the antenna 
pattern and maximum-likelihood utilizes the statistic 
characteristic of the azimuth power spectrum which is 
a stochastic process with exponent distribution. So, 
MC and ML both have superior estimation 
performance than that of EB. The estimation variance 
achieved by these three methods is 

where PRF is the pulse repetition frequency and N is 
the spectrum sampling points. It is shown by (8) that 
the ML method arrived Cramer-Rao bound. 

According to the Fourier relationship 
between the power spectrum S(f) and its 
autocorrelation function (ACF) r(T), CDE estimates 
f,, by calculating the autocorrelation coefficient 
r(At) (At =I/PRF) and its argument (arg[.]) in the 
following way: 

1 N - 2  

r (At )  = __ s(i . At)s((i + 1) . A t )  (9) 
N - 1  ,=o 

where s(t) is the complex azimuth echo signal. Its has 
an up limit of estimation variance as 

CDE has an advantage of smaller computation and 
simpler hardware structure when being realized. 

SDE also utilizes the ACF but using a different 
calculating procedure. Based on Van Vleck theorem, 
the ACF of a real stationary Gauss stochastic process 
X(t) can be derived from its sign and variance as 

n r x ( z )  = o2 ~arsin[-~r,(z)] (12) 
2 

where ry(T) is the ACF of a new process Y(t) 
generated by the following operation. 

Because Y(t) only take values of “+1” and “-l”, we 
call it the sign of X(t). This means that the 
computation involved in the estimation will be 
reduced greatly. In fact, r(T) is always complex, so 
it must be divided into four real parts when applying 
Van Vleck theory. This procedure can be shown as 

s( t )  = I ( t )  + j . Q(r) 
P ( 0  = PI (0 + j .  Po ( t> 

(14) 
(15) 

(18) 
L L 

P n 

where rxy(T) (X,Y=I,Q) is the ACF when X=Y or 
cross ACF when X#Y of X(t) and Y(t). So is p x V ( ~ )  
(X,Y=I,Q) but for px(t) and py(t). Reference [4] also 
said SDE is a more robust estimator because of its 
nonlinearity. However, the estimation variance of 
SDE can not be defined in theory. 

estimation 
performance of the five methods. Table 1 presents the 
standard estimation deviations of the simulation and 
in theory. Simulations are made under the following 
conditions : 

+i.S1I1[-P/~(t)l-i.sin[~p,(.rll} 2 -  

At last of this section, we compare 

Homogeneous scene 
0 SNR=20dB 
0 Wavelength h=0.057m 
0 Slant range R,$347km 

Sensor velocity v=7500m/s 
0 PEW=1680Hz 

Antenna width L,=lOm 
0 Antenna two-way pattern: 

in frequency domain 

in space (time) domain 

0 Azimuth spectrum sampling points N=2048 
0 Estimations are made in one range bin 

Then five methods are tested by ERS-1 raw data. 
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Estimations have been obtained based on data blocks 
of 32 range bins by 2048 azimuth samples. These 
estimations have been fitted to a linear function (may 
be divided into two segments ) in range direction. The 
deviation of each estimate from this fimction has been 
taken as the estimation error. The standard deviations 
of the five estimation methods are shown in Table 2. 

Theory 
Simulatior 

EB MC ML CDE SDE 
12.08 10.35 4.5 512.0 I 
13.69 10.37 4.54 8.91 12.10 

Table 2 Standard estimation deviations 
usinn ERS-I raw data (Hz) 

Theory 
Measured 

EB MC ML CDE SDE 
9.52 8.21 3.57 59.52 I 
6.337 5.64 5.8 5.63 7.26 

Then the f d ,  can be derived by the following 
correction to f dc  0 . 

j d '  = fl + Afd' (22) 
AE 

A h c  = 7 
where c is a coefficient related to the two-way 
antenna power pattern and the reference function 

is close to the true fdc , we have 

chosen. If the image scene is homogeneous and f dc  0 

The derivation of (24) is given in the appendix. The 
coefficients for EB,MC and ML are 

(25) 
2[W(O) - W(Bd / -41 

CEB = 

respectively. 
In fact, the correction procedure is always 

iterated using the value fdL  as the new f:. After 

several iterations, the more accurate fdccan be 
achieved. 

CDE and SDE can also be implemented in image 
domain. The estimation result f,with initial value f l  
will related to the true fdc as 

f p  = fd' + c (fl - f d ' )  (28). 
So the true fdc will be 

I - c  
Like the estimation using EB,MC and ML, the 
iteration is also carried out here. However, it is 
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difficult to give a formula to calculate the coefficient 
c here. This coefficient can always be found using 
experimental techniques. 

Now, we compare estimation performance of the 
four methods in image. Table 3 presents the standard 
estimation deviations of the simulation and in theory 
(variance in theory still can be derived as that in data 
domain). Simulation conditions are as same as that of 
data domain with a difference that only half azimuth 
points are used in image domain compared with that 
of data domain. This is because we can only generate 
an image of N/2 points in azimuth from a raw data 
segment of N points if the synthetic aperture is Ni2 
points long. 

Table 3 Comparison of standard deviations in theory 
and of simulations achieved by four estimation 

I I I I ‘  

Simulationl21.99 (18.22 17.331 (19.195 
1 7 1  7 1  

Note: Simulation results are the statistics of ten times. 

The estimation using ERS-1 complex image has 
not been completed. So, the results can not be 
presented here. 

Conclusion 
Five Doppler centroid estimation methods are 

reviewed and compared. The estimation in image 
domain is discussed and the iteration coefficient c is 
given from a generalized view. If the scene is 
homogeneous, estimations in data domain and image 
domain are equivalent. ML is optimal because it 
achieves Cramer-Rao bound. CDE and SDE both 
have a smaller computation burden than the methods 
using azimuth power spectrum. 

Appendix The derivation of e 
Let 

m 4 >  = J Z ( f >  * R ( f  - f,“, - 4Nf (30) 

We have 

so we get the coefficient c as 
’I 
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