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A revview of the central role of nonlinear 
interactions in wind-wave evolution 

BY I. R. YOUNG1 AND G. PH. VAN VLEDDER2 

'Department of Civil and Maritime Engineering, University College, University of 
New South Wales, Canberra ACT2600, Australia 

2Delft HydrauliCs, P.O. Box 152, 8300 AD Emmeloord, The Netherlands 

Nonlinear wave-wave interactions play a central role in the development of wind- 
generated surface waves. A detailed review of computational techniques which have 
been proposed for their evaluation is provided. Numerical experiments are used to 
determine the manner in which the nonlinear terms control spectral development 
with fetch, the directional spread of the spectrum and the high-frequency spectral 
tail. In addition, the nonlinear terms have a shape-stabilizing role, continually 
smoothing local perturbations in the spectrum and forcing it back to a 'preferred' 
shape. 

1. Introduction 

Following the initial pioneering theoretical work of Hasselmann (1962, 1963 a, b) and 
the subsequent experimental confirmation during JONSWAP (Hasselmann et al. 
1973), the important role played by nonlinear third-order resonant interactions in 
the evolution of wind-wave spectrum has been clearly demonstrated. Numerical 
evaluation of these interactions, however, poses considerable problems, and solution 
techniques are computationally expensive. Hence, considerable effort has been 
devoted to the search for efficient solution algorithms. These computational 
difficulties, coupled with the inherently complex nature of such nonlinear processes, 
hinder a complete understanding for many. This paper is intended to provide both 
an historical review of computational techniques proposed to evaluate nonlinear 
interactions as well as examples of many of the properties of such interactions. As 
will be demonstrated, these properties are central to the development of the wind- 
wave spectrum. An excellent review of the nonlinear theory itself has been presented 
by Phillips (1981). 

As the development in our understanding of nonlinear interactions is inextricably 
linked to the development of wave prediction models, it is prudent also to review 
briefly the development of such models. 

In the absence of currents, the evolution of the wave spectrum can be described 
by the energy transfer equation (Gelci et al. 1957; Hasselmann 1960; Willebrand 
1975), which for deep water is 

aF/at + C - VF =Stot, (1.1) 

where F = F(k; x, t) is the two-dimensional wavenumber spectrum. Equation (1.1) 
describes the evolution of the spectrum, components of which are advected at their 
respective group velocity Cg. The source term 8tot represents all processes which 
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transfer energy to or from spectral components. It may be written in the form 
(Hasselmann 1960) 

Stot Sin + Snl + Sds, (1.2) 

where Sin represents the atmospheric input from the wind, Snl the nonlinear 
interactions between spectral components and Sds dissipation due to white-capping 
and other processes. These source terms represent the physical processes involved, 
and their accurate representation is required to model correctly the evolution of the 
spectrum. 

Early models (Pierson et al. 1966; Gelci & Devillaz 1970; Gelci & Chavy 1978) 
represented Stot as the sum of processes representing atmospheric input and 
dissipation only. Later models (SWAMP 1985) recognized the importance of non- 
linear interactions and included a variety of approximate representations for Snl. 

The organization of this paper is as follows. Section 2 provides the basic equations 
describing the nonlinear interactions in a gravity-wave spectrum. Solution 
techniques, ranging from full to parametric, are discussed in ?3. Properties of the 
nonlinear interactions are investigated in ?4. Here attention is paid to spectral 
evolution, shape stabilization and directional spread. Finally, conclusions are given 
in ?5. 

2. Formulation of the nonlinear source term, Snl 

To first order, ocean waves can be regarded as the superposition of free and 
independent spectral components. At higher order, however, there is an interaction 
between spectral components resulting in a transfer of energy (Phillips 1960). A 
general perturbation theory for the nonlinear resonant interaction of waves in a 
random sea was developed by Hasselmann (1962, 1963a, b). He found that a set of 
four waves, called a tetrad or quadruplet, could exchange energy when the following 
resonance conditions are satisfied: 

kl +k2= k3+ k4> (2.1) 

(O1 + W2 = W3 + W4, (2.2) 

in which woj is the radian frequency and k9 the wavenumber (j = 1,... ,4). The 
frequency and the wavenumber are related by the dispersion relation w)2 = 

gk tanh (kh), where g is the gravitational acceleration and h the water depth. The four 
interacting wave components are described as a quadruplet. 

Hasselmann (1963 a) described the nonlinear interactions between wave quad- 
ruplets in terms of their action density, n, where n(k) = F(k)/W. The rate of change 
in action density at k1 due to all quadruplet interactions involving k1 is 

O1= jG(k1 k2,k3,k4) x 8(k1 +k2-k3-k4) x 
6(l1+w&)2 -w(3 -w(4) 

x [n1n3(n4-n2)+n2n4(n3-n1)] dk1dk2dk3, (2.3) 

where ni = n(k,) is the action density at wavenumber ki and G is a complicated 
coupling coefficient (Herterich & Hasselmann 1980; Van Vledder 1990). (The 
coupling coefficient originally given in Hasselmann (1962) is correct only for deep 
water, a finite depth term having been neglected.) The delta functions in (2.3) ensure 
that contributions to the integral only occur for quadruplets that satisfy the 
resonance conditions (2. 1) and (2.2). The integral expression (2.3) is also known as the 
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Boltzmann integral for wind waves, in analogy to similar expressions used in 
theoretical physics to describe the rate of change of particle density distributions in 
a system of interacting particles. 

The nonlinear energy transfer represented by (2.3) conserves both the total energy 
and momentum of the wave field, merely redistributing it within the spectrum. As 
a consequence of the symmetry of the resonance conditions with respect to the pairs 
of wavenumbers (k1, k2) and (k3, k4), the quadruplet interactions also conserve the 
wave action. The absolute value of the rate of change of the action density is equal 
for all wavenumbers within the quadruplet 

dn1/dt = dn2/dt = -dn3/dt = -dn4/dt. (2.4) 

This result is known as the property of detailed balance (Hasselmann 1966). In a 
more general form, detailed balance states that the absolute value of the change in 
action density, IAnj, is the same for all components in a resonant set of wavenumbers. 

3. Solution techniques 

Numerous techniques have been proposed for the solution of (2.3). The major goals 
of all these techniques have been two fold: to improve computational speed to the 
point where it becomes possible to include Sn1 in routine wave prediction models and 
to provide a better physical understanding of the source term. Enormous progress 
has been made in these endeavours through the use of both approximations to the 
integral and improved numerical techniques. 

The significant computational t,imes required for the solution arise from two 
sources, first, (2.3) being a six-dimensional integral and, secondly, the complexity of 
the coupling coefficient G. Hasselmann (1963b), Sell & Hasselmann (1972), Webb 
(1978) and Masuda (1981) first removed the delta functions by projecting the six- 
dimensional integral onto the three-dimensional resonance subspace defined by (2. 1) 
and (2.2). Although the details of the various projections differ, the goal was the 
same. This process introduces integrable singularities in the solution, which were 
removed either by the use of stretched coordinates or by indenting the solution 
around the singularities. The integral was then solved using direct integration 
techniques. 

A major conceptual difficulty arises in attempting to visualize the interaction 
space due to the multi-dimensionality of the problem. Based on a suggestion by 
M. S. Longuet-Higgins, Hasselmann (1963b) proposed the following graphical rep- 
resentation of the interaction space. For deep-water conditions, where the dispersion 
relation reduces to W2 = gk, (2.1) and (2.2) become 

k, -4 k2 = k3+ k4= k, (3.1) 

Vkl +V k2 = Vk3 + Vk4 = yVk. (3.2) 

Normalizing, such that k = 1 and representing the angle between k1 and k as & yields 

cosa = [I+kl-(y-kl )4]/2k,. (3.3) 

For a fixed value of y, the locus of all values of k1 which satisfy the resonance 
conditions is given by (3.3). The corresponding k2 is given by (3.1). Typical 
interaction curves for a given value of k but different values of y are illustrated in 
figure 1. 
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Figure 1. Interaction space diagram for a given value of k = k, + k2 = k3 + k4. Each curve is for 
a specific value of y (after Phillips 1960; Hasselmann 1963b). 
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Figure 2. Loci of the vectors of k2 ( ) and k4 (--- ) for a given combination of k1 and k3. 

A similar and perhaps more straightforward representation of the interaction 
space was presented by Webb (1978). For k, and k3 fixed, the locus of the possible 
values of k2 and k4 which will close the vector polygon represented by (2.1) and also 
satisfy (2.2), traces out two 'egg-shaped' figures. Figure 2 shows the loci of k2 and 
k4 for the case where k- -0.14 rad m-l and k3 0.20 rad m-1. The k1 vector is in the 
x direction and k3 is 450 clockwise from k1. For this combination of k1 and k3, only 
wavenumber components which lie on these loci will satisfy the resonance conditions 
and contribute to the integral. 

The direct integration techniques mentioned above provided valuable insight into 
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the basic properties of the nonlinear source term, Sn,l but were computationally too 
expensive for use in wave prediction models. As a result, approximations for narrow- 
peak spectra have been proposed by Longuet-Higgins (1976), Fox (1976), Herterich 
& Hasselmann (1980) and Dungey & Hui (1980). Although these approximations 
capture many of the qualitative features of the interactions, such as the 'plus-minus' 
lobe structure, they do not reproduce other features, notably shape stabilization (see 
?4). Hence they are not flexible enough for use in a wave prediction model. 

Hasselmann & Hasselmann (1981, 1985b) proposed a symmetric integration 
technique which significantly increased computational speed. Rather than con- 
sidering the asymmetrical integral (2.3), which represents the change in energy of a 
fixed wavenumber k1 as a result of its interaction with all other combination of k2, 
k3 and k4, they used the property of detailed balance (2.4) to make the interaction 
symmetric. Applying this principle, the changes An, in the action density per unit 
time of each of the components in the interaction are 

(An A + 1 

An2 | = + I? dW, (3.4) 

An4 -1 

where dW= G04P kj k2 k3 k4, 

G = 06(k+?k2-k3-k4) 6(w1?) + (2-w(03-w(04), 

P = n1n3(n4-n2)+n2n4(n3-nl). 

By using this approach, the change in action density at each of the four 
wavenumbers is directly calculated for each interaction. This represents a four-fold 
reduction in computational effort compared with a direct solution of (2.3). In 
addition, Hasselmann & Hasselmann (1981) show that this symmetric form also 
enables effective use of all possible symmetries within the integral and coupling 
coefficient to further reduce computational effort. Further savings are made by 
filtering the interaction space for use in subsequent computations. Hasselmann & 
Hasselmann (1981) showed that only 5-10% of the interacting wavenumber 
quadruplets contribute 95% of the nonlinear transfer. The result is a decrease in 
computational time by a factor of up to 100 (Hasselmann & Hasselmann 1981). One 
disadvantage of this approach is that the nature of the solution technique leads to 
computer code that is not easily vectorizable (Van Vledder & Weber 1988) and hence 
full use cannot be made of modern super computers. In a wave model, however, 
computational efficiency can still be gained by structuring an inner vector loop over 
the computational grid points or over a number of different cases to be run (Komen 
et al. 1984). 

Despite the fact that it could not be vectorized, this symmetric integration 
technique was still computationally efficient enough to enable the development of 
the one-dimensional wave mode EXACT-NL (Hasselmann & Hasselmann 1985a). 
This model solved the energy balance equation (1.1) for the one-dimensional cases of 
either fetch or duration limited growth. A full two-dimensional solution of (1.1) was 
still not feasible despite the computational efficiency of the symmetric integration 
technique. EXACT-NL has proven a useful vehicle for the investigation of a number 
of processes. Komen et al. (1984) have investigated the fully developed wind-sea 
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spectrum, Young et al. (1987) and Van Vledder & Holthuijsen (1992) the response of 
the spectrum to turning winds, and Weber (1988) the energy balance in water of 
finite depth. 

Hasselmann & Hasselmann (1981) indicate that for deep water, the interaction 
space diagram in figure 1 need not be redrawn for different values of k. These 
diagrams simply being related by a scale factor. Hence, it is necessary only to 
calculate one interaction space diagram and its associated set of coupling coefficients, 
all others being defined by the scaling laws. This feature was used in Hasselmann's 
(1963a) original computations. However, to maintain program generality for finite 
depth waves this additional property was not used in EXACT-NL. 

The solution technique proposed by Webb (1978) involved reducing the multi- 
dimensional integral represented by (2.3) to a series of line integrals around the 'egg- 
shaped' loci resulting from the projection used to remove the delta functions. 
Although this operation simplifies the mathematical formulation of the problem, the 
number of possible loci along which line integrals need be performed is enormous. 
Hence, the technique is still computationally expensive. 

Tracy & Resio (1982) and Resio & Perrie (1991) showed, in a similar manner to 
Hasselmann & Hasselmann (1981), that for deep-water conditions, these loci were 
geometrically similar. In addition, the line integrals for different loci could be related 
using a simple scaling relation. To take maximum advantage of the form of the deep 
water dispersion relation and the similarity scaling for the loci, a computational 
wavenumber grid of the form ki = aki-1, where a is a constant was adopted. 

Although their solution technique does not take advantage of all the symmetries 
used by Hasselmann & Hasselmann (1981), the more direct solution technique is 
easily vectorized. The end result is that the computation times required for both 
solutions are comparable. 

To incorporate the effects of nonlinear interactions into two-dimensional wave 
prediction models, various techniques have been proposed to parametrize S.l in 
relatively simple and computationally efficient forms (Barnett 1968; Ewing 1971; 
Hasselmann et al. 1985; Young 1988). Models which have used these para- 
metrizations are referred to as second generation as opposed to first generation 
models that neglected S., completely, artificially enhancing Si, to obtain satisfactory 
growth rates. Although model performance was improved by the addition of these 
parametric forms, the simple representations of S.l had significantly less degrees of 
freedom than the discrete spectral grid and hence were not flexible enough to be 
completely successful. These parametrizations of S., lose most of the essential 
physics of the Boltzmann integral (see ? 4). 

This problem was overcome by Hasselmann et al. (1985) in their discrete 
interaction approximation (DIA) to the Boltzmann integral. Whereas a full solution 
of (2.3) uses a very large set of wavenumber quadruplets with many different 
configurations, the DIA uses a rather small number of quadruplets which all have the 
same configuration. The chosen configuration has k1 = k2 where k3 and k4 are of 
different magnitude and lie at an angle to the first two wavenumbers. The 
corresponding four frequencies are related by 

fli=f2 =f,A 

f3 -f(l +A) = f+ (3.5) 
f4 =f(l -A) =-f, 

where C) = 22f. 
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The four wavenumbers must also satisfy the resonance condition (2.1), (3.5) 
ensuring that (2.2) is satisfied. Empirically, Hasselmann et al. (1985) set A = 0.25. 
The rates of change of the energy densities (6SI, 68+, 68-l) within one such 
wavenumber quadruplet are given by 

6sI68 ' 2 F E+ E- EE+E 1 

68S+ -1 CU4 E2 (3.6) l6SJ l1 A)4-(I1A)41 (i-A2)4 

where g is gravitational acceleration, C is a constant equal to 3 x 107 and E, E+ and 
E- are the energy densities (expressed in polar, frequency-direction space, E(f, 0) = 

kdk/dfF(k)) at the interacting wavenumbers. The wavenumber associated with E 
occurs at a spectral grid point whereas those associated with E+ and E- are generally 
at non-grid points. These energy densities must be determined by interpolation from 
the discrete spectrum. Hence, the parametrization represented by (3.6) has the same 
number of degrees of freedom as the spectrum. The interaction combination 
represented by (3.5) is only one of many which could have been used. No major 
systematic attempts have been made to optimize the choice. 

To compute the nonlinear transfer for a given energy spectrum, all interactions 
between four wavenumbers satisfying the resonance conditions (2.1) and (3.5) are 
considered, and for which the central wavenumber k ( = k, = k2) loops over all 
wavenumbers of the discretized spectrum. This reduces the problem to a two- 
dimensional integral rather than a six-dimensional integral required for a full 
solution. Typically, the number of interactions is reduced by three orders of 
magnitude. 

Despite the fact that the number of interacting wavenumbers considered in the DIA 

is only a small fraction of those used in the full solution, the approximation retains 
the essential physical properties of the Boltzmann integral. Hence, the DIA 

reasonably accurately reproduces the basic properties of the nonlinear interactions. 
These properties of the full Boltzmann integral are discussed in ? 4. Naturally, the 
neglect of so many possible interactions has consequences. One example of this is 
that the DIA typically produces spectra with broader directional spreading than do 
models with a full solution to Snl (Young et al. 1987; Van Vledder 1990). The DIA has, 
however, resulted in the development of the first third generation global wave model, 
WAM (WAMDI 1988). An extension of this model to include shallow water effects 
and wave-current interactions has been presented by Tolman (1991) and also in Cycle 
4 of the WAM model (Giunther et al. 1991). 

4. Properties of the nonlinear transfer 
(a) Spectral evolution 

Because of the complexity of the Boltzmann integral (2.3) an understanding of the 
nature of the integral and the role it plays in the evolution of wind-waves is best 
obtained through numerical experiment. This was achieved to some extent during 
JONSWAP (Hasselmann et al. 1973), where S., was evaluated for idealized fetch 
limited spectra at various fetches ranging from very 'young' seas to almost fully 
developed states. One problem with this approach is that the nonlinear transfer is 
very sensitive to the spectral shape. Hence, imposing a spectral shape which is, at 
best, an approximation to observed spectra may yield misleading results. Small 
differences in the spectral shape can result in quite large differences in the computed 

Phil. Trans. R. Soc. Lond. A (1993) 



512 Io R. Youny and G. Ph. Van Vledder 
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Figure 3a. The one-dimensional spectrum (above) and the source terms for a spectrum at short 
fetch. The wind speed is U10 10 m s-1 The position of the spectral peak is shown with a vertical 
dashed line. 

Figure 3 b. The one-dimensional spectrum (above) and the source terms for a spectrum approaching 
a fully arisen condition (asymptotic state). The wind speed is Ullo tO0 m s-i. The position of the 
spectral peak is shown with a vertical dashed line. 

Snl. This was shown by Komen et al. (1984) where they attempted to determine the 
dissipation term required to balance the other source terms for an assumed 'fully 
developed' Pierson-Moskowitz (Pierson & Moskowitz 1964) spectrum. As the 
Pierson-Moskowitz spectrum is only an approximation to the fully developed form 
and as some directional spread must be assumed, no plausible balancing dissipation 
could be found. Instead, they inverted the problem by using the one-dimensional 
EXACT-NL model (Hasselmann & Hasselmann 1985a). They allowed the two- 
dimension spectrum to develop under the action of the source terms and determined 
the dissipation term required to produce an asymptotic state close to the 
Pierson-Moskowitz form. 

A similar one-dimensional model has been used here. For the case of deep water 
and steady state fetch limited growth (1.1) reduces to 

cg Cos 0 =Stot (4.1) 

where E -= E(f, 0), is the directional frequency spectrum, 0 is the angle between the 
x direction and the spectral component and x is the fetch. The source terms used to 
define $tt are identical to those of Komen et al. (1984) except that the computational 
technique of Tracy & Resio (1982) and Resio & Perrie (1991) was used for Snl. 

The directional frequency spectrum E(f, 0) was defined on a polar grid. A total of 

Phil. Trans. 1. Soc. Lond. A (1993) 



Nonlinear interactions in wind-wave evolution 513 

37 angular bands were defined in the range + 1200 of the wind direction, thus yielding 
a directional resolution of 6.67?. A logarithmic wavenumber spacing consisting of 43 
bands spaced according to the relation ki = 1.13k/c1, with ko = 2 x 10-2 rad m-1. 
Hence, the highest spectral component resolved by the model was 3.39 rad m-1 
(0.92 Hz). Resio & Perrie (1991) have investigated a number of spectral resolutions 
and found choices comparable with the one utilized here to be adequate. 

The solution technique of Tracy & Resio (1982) and Resio & Perrie (1991) for Snl 
was adopted over the better known technique of Hasselmann & Hasselmann (1981) 
as it is slightly more computationally efficient. A number of comparisons with the 
published results of Hasselmann & Hasselmann (1981) were performed to ensure the 
two methods produced comparable results. The results are almost identical, minor 
differences occur however due to the different computational grid formulations used 
by the two techniques. 

In keeping with the suggestions of Resio & Perrie (1991), the loci, around which 
the line integrals were performed were discretized with 50 points. Although the 
values of spectral energy are defined at each of the kl, k3 points, the k2, 4 values, 
which make up the loci, will generally be at non-grid points and the energy at these 
points was evaluated using bi-linear interpolation within the computational grid 
defining the k,, k3 points. It is also possible for the loci defining the k2, k4 points to 
extend beyond the high wavenumber cut-off of the computational grid. To include 
such interactions, the energy at such points was evaluated by extending the 
computational grid with a diagnostic tail (Hasselmann & Hasselmann 1981). 
Sensitivity tests were performed with a number of forms for this tail. Provided the 
explicit computational grid was extended to relatively high wavenumbers, as adopted 
above, the diagnostic tail extension only biased the last two or three computational 
points in the explicit grid. A form for this tail with E(f ) oc f-4 was finally adopted. The 
constant of proportionality was set independently for each directional band so that 
the first energy bin of the diagnostic extension tail was equal to the last point in 
the explicit computational grid for that direction. Similarly, since the directional 
bands within the model are defined only in the region 0 = + 120', some assumption 
must be made about the energy outside this range. Again a number of alternatives 
were investigated. Since there is little energy for directions greater than 1200 to the 
wind, the final choice has little effect on the spectral evolution. For simplicity, it was 
assumed the E(f, 0)19 > 1 120= E(f, 0 = 1200). 

The initial condition selected for all runs consisted of a mean JONSWAP 
spectrum (spectral parameters: y = 3.3, a = 0.01, o>a = 0.07 and >b, = 0.09) with a 
cos2 0 directional spread. The peak frequency, fp, was set at 0.3 Hz. Again, a number 
of sensitivity runs were performed with alternative initial spectral forms. As reported 
by Komen et al. (1984), model results are very insensitive to the assumed initial 
spectral form, the spectrum very quickly being shaped to a form consistent with the 
source terms. The only influence of the initial conditions is that it sets the initial total 
energy for the run. 

Figure 3 shows the one-dimensional spectrum and the various source terms at two 
different fetches. A relatively 'young' sea at a short fetch is shown in figure 3a, 
whereas a mature spectrum approaching fully developed conditions appears in figure 
3b. 

The spectrum in figure 3 a is typical of wind-seas at short fetches. There is a 
characteristic rapid rise to the spectral peak followed by a more gradual decline at 
higher frequencies. Both observations (Donelan et al. 1985; Banner 1990) and 
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theoretical arguments (Zakharov & Filonenko 1967) indicate this high frequency fall- 
off is approximately described by an fr form. The nonlinear source term 8nl shows 
a marked plus-minus signature with a narrow positive lobe at frequencies less than 
the spectral peak and a broad negative lobe at frequencies greater than the spectral 
peak. The distribution becomes positive again at frequencies higher than those 
shown in the figure. Previous presentations Of Snl have generally been for prescribed 
JONSWAP spectral forms, with the high frequency region proportional to f5. For 
such spectral shapes the negative lobe is relatively narrow. The Snl terms for the f 4 
spectra which naturally evolve from the model have a broad and almost constant 
magnitude negative lobe. The calculations of Resio & Perrie (1991) for f4 spectra 
show the same structure. This clearly demonstrates the sensitivity of Snl to spectral 
shape. 

The atmospheric input Sin and the dissipation 8ds both peak at frequencies 
corresponding to the spectral peak frequency and slowly decay in magnitude with 
frequency. It is the sum of the source terms as represented by Stot which determines 
the evolution of the spectrum. At high frequencies, all source terms balance such that 

Stot 0. As Stot 0, the magnitude of the spectral ordinates at these frequencies 
remains largely constant as a function of fetch, thus accounting for the commonly 
observed 'saturation' region, which is largely invariant as a function of fetch. With 
the source terms used in the present model, this region is characterized by a spectrum 
of a form approximately represented by f4. It should be noted, however, that the 
exact details of this region can be altered depending on the form adopted for Sin and 
sds, The nonlinear source term, SnP acts to always balance the sum of these terms. 
A number of different forms for Sin and Sds have been investigated. The amount of 
energy in the spectral tail is quite sensitive to the actual choice. The spectral decay 
exponent, however, is less sensitive. With plausible formulations for Sin and Sds' a 
spectrum of a form approximately equal to f4 is a robust feature of the model. 

At frequencies slightly above the spectral peak there is a marked negative lobe 
followed by a small positive lobe. This accounts for the undershoot/overshoot 
phenomenon reported by Barnett & Sutherland (1968). The large positive lobe at 
frequencies less than the spectral peak accounts for the increase of energy in the 
spectrum and the gradual migration of the spectral peak to lower frequencies with 
fetch. 

As the spectrum grows, the peak frequency moves to lower frequencies and the 
spectrum broadens. Eventually it approaches an asymptotic state where growth 
almost stops (figure 3b). The peak in the atmospheric input term is now less well 
defined and occurs at a frequency higher than the spectral peak. This occurs since the 
energy transfer to waves with a phase speed approaching the wind speed is small. The 
dissipation remains similar to the case in figure 3 a with a marked peak at the spectral 
peak frequency. The nonlinear term, however, changes shape dramatically, with its 
magnitude now much reduced. This is a result of the frequency dependence of the 
coupling coefficient, G, as well as the broader spectral shape. The broadening in the 
spectral shape changes the relative energy in each of the components in the number 
density product term [n1 n3(n4- n2) + n2 n4(n3- nj)] in (2.3) and hence the overall form 
of Snl The positive lobe now moves to a frequency equal to the spectral peak 
frequency and almost balances the other source terms. The net result is that a source 
term balance is achieved across all frequencies and growth almost completely halts. 

Although all the source terms contribute to the source term balance, it is Snl that 
plays the critical role. Current representations for both Sin and 8ds have few degrees 
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of freedom and hence can only change shape marginally with spectral evolution. 
Because of its inherent flexibility, however, snl can change its shape dramatically as 
the spectrum develops. Thus a very different source term balance at different stages 
of spectral development is achieved. 

An obvious aid to the understanding of the nature of Sn1 would be an appreciation 
of which interacting quadruplets provide a significant contribution to the integral 
(2.3). A complete understanding is not possible due to the huge number of 
interactions. Some insight can, however, be gained by investigating the magnitude 
of the various terms in the integral for specific interaction combinations (Hasselmann 
1963b). For wavenumber quadruplets which satisfy the resonance conditions, (2.3) 
can be considered as the product of two terms, the coupling coefficient G and the 
number density product term [n1 n3(n4- n2) + n2 n4(n3- nj)]. To determine the relative 
contribution of these two terms, a prescribed spectral shape must be adopted. For 
the present application a mean JONSWAP spectrum with a peak frequency of 

fp = 0.3 Hz and a cos2 0 directional distribution has been selected. 
Figure 4 shows the loci of values of k2 and k4 for selected values of k1 and k3 

(following Webb 1978). The loci are divided using reference marks numbered 1 to 10. 
Each diagram is for a specific pair of wavenumbers k1 and k3. For such a 
combination, a vector drawn to, for example, reference point 8 on the k2 locus would 
be one possible value of k2 in a quadruplet. The corresponding value of k4 would be 
represented by a vector drawn to reference point 8 on the k4 locus. In addition, the 
value of the coupling coefficient, number density product term and the total product 
of these two terms is shown as a function of distance, s (in wavenumber space), 
measured along the loci. The reference marks used on the loci are also reproduced on 
these figures. Thus, the values of each of the terms at, for example, reference point 
8 would correspond to the quadruplet mentioned above. In its present form, figure 
4 shows the transfer of energy to or from the wavenumber component kl. By using 
the property of detailed balance (equation (2.4)) it is possible to determine the 
transfers at each of the other wavenumber components in the interaction. Figure 4a 
shows the case for k1 = 0.3622 rad m-1, corresponding to the spectral peak wave 
number and k3 = 0.4 rad m-1. Both wavenumbers are in the mean direction of the 
spectrum. As could have been expected, the loci are symmetrically distributed about 
the mean wave direction. The coupling coefficient peaks for the case of all 
wavenumbers in the same direction (reference point 6). This case, however, 
corresponds to k1 = k4 and k2 = k3 for which the number density product term 
becomes zero. The total product term and hence the contribution to the integral 
peaks for k2 and k4 directed slightly away for the mean spectral direction. Because 
of the cubic nature of the number density product term (i.e. products of the form 
n1 n3(n4- n2), etc.) and the typical narrow peak shape of the spectrum, the resulting 
contribution to the integral is very peaked as a function of wavenumber measured 
around the locus. The coupling coefficient favours quadruplets that are aligned, but 
when multiplied by the number density product term, which is close to zero for such 
interactions, they contribute little to the final integral. Thus, the importance of a 
directional distribution is demonstrated. Indeed, since the nonlinear interaction 
transfers energy between the spectral peak and other directions (as demonstrated by 
figure 4a), they ensure a directional sea develops. The directional distribution is 
hence not simply a result of the component of the wind in a given direction. It is 
coupled through the nonlinear terms to the whole spectrum. This accounts for the 
similarity of measured directional spreads in wind-sea spectra. They are a property 
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Figure 4a-d. For description see opposite. 
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Figure 4a-e. Loci of k2 ( ) and k4 (---) for the given combination of k1 and k3 together with 
(top panel) values of the coupling coefficient, G ( ), the product term (----), and the 
product of these two terms ( ) for various points around the loci. The reference marks (1-10) 
around the loci correspond to the numbers on the curves of the three calculated quantities. 

of the spectrum partly determined by the nonlinear term as are features such as the 

fp4 high-frequency decay. Naturally, S., is not the only term responsible for the 
directional distribution, both Sin and Sds also play a role. In addition, other processes 
such as wind gustiness (both in speed and direction) as well as varying fetch length 
which exists in cases such as slanting fetches also have an influence. It is interesting 
to note that if the spectrum consisted purely of components propagating in the same 
direction, the number density product term and hence S., would always be zero. If, 
however, there is even a small amount of energy at angles to the mean direction it 
will provide the initial seed required for S., to shape a directional distribution. 

The plot of the number density product term in figure 4a appears to be rather 
jagged. This is a direct result of the numerical technique used for its evaluation. To 
evaluate this term it is necessary to know n1, n2, n3 and n4. In the formulation used 
here the computational grid defines k1 and k3 and hence n1 and n3. As k2 and k4 are 
generally at non-grid points, n2 and n4 must be evaluated by interpolation within the 
kl, k3 grid. Tests have shown that, because of the cubic nature of the product term 
it is very sensitive to the accuracy of this interpolation. The result is the jagged 
appearance of the plot. An ongoing debate among researchers in this field is why 
many of the calculations of Snl obtained with EXACT-NL also appear rather ragged. 
This ragged or fine scale structure can be explained in a similar fashion (K. 
Hasselmann, personal communication). In a similar manner to the Snl implemen- 
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tation used in the present model, EXACT-NL represents the interaction space and 
the spectrum on separate grids. The change in energy associated with a quadruplet 
interaction, as calculated on the interaction grid, is assigned to the appropriate 
wavenumber component on the spectral grid using an interpolation scheme. 
Generally, the resolution of the spectral grid is coarser than the interaction grid. If, 
however, it is finer, each spectral bin will only have a small number of interactions 
associated with it and the resulting transfer will be ragged. In this case, the output 
nonlinear transfer rate should be smoothed to a resolution compatible with the 
interaction space resolution used in the integration. 

Figure 4 b, c shows the cases for the same value of k, as above but with k3 gradually 
increasing. Again both wavenumbers are aligned in the mean wave direction. The loci 
become larger as the difference between the two wavenumbers increases. Despite the 
fact that the coupling coefficient increases slightly in magnitude, the larger loci 
ensure more interacting wavenumbers are in regions of the spectrum where there is 
little energy. Hence the product term reduces rapidly as k1 and k3 are moved further 
apart, resulting in a rapid decrease in the contribution to the integral. The transfer 
is consequently largely determined by the typically peaked spectral shape. This 
explains why the narrow peak approximations to the integral are successful in 
reproducing the qualitative features of the energy transfer. The dominance of the 
spectral peak in determining the magnitude of Snl also explains the success of 
parametric representations for the wind-sea spectrum expressed in terms of spectral 
peak parameters. The comprehensive study of Donelan et al. (1985), for instance, 
shows that fp, the spectral peak frequency and Cp, the phase speed at the spectral 
peak are important parameters in determining not only the one-dimensional spectral 
shape but also the directional spread. 

Figure 4d, e shows the result of separating k1 and k3 in direction. The values of 
these wavenumbers are the same as figure 4a but they are directed such that k1 is in 
the mean wave direction and k3 is at 22.5? in figure 4 d and 450 in figure 4e. As the 
directional separation increases, the size of the locus increases rapidly and the 
magnitude of both the coupling coefficient and number density product terms 
decrease. The symmetry of the transfer is now lost and the characteristic 
' plus-minus' shape of the transfer becomes apparent. Again the narrow peak shape 
of the spectrum dominates the transfer. 

The interactions shown in figure 4 represent only a small fraction of those possible 
but they demonstrate that for typical spectral shapes, the significant interactions are 
for wavenumbers concentrated near the spectral peak in both wavenumber and 
direction. Hence, the position of the spectral peak and its magnitude play a 
dominant role in defining Snl and hence in controlling the spectral shape. 

(b) Shape stabilization 

Although the role of Snl in determining the evolution of the spectrum is of great 
significance, it also has an important role in stabilizing the shape of the spectrum. 
This is best illustrated by applying a perturbation to the spectrum and then 
investigating the source term response. The one-dimensional model described by 
(4.1) was allowed to evolve for a period from a prescribed initial condition under the 
action of the wind. A perturbation was then induced by reducing the magnitude of 
all spectral components of the directional spectrum at a given frequency by a value 
of 50 0. The model run was then continued to investigate the response to the 
perturbation. Figure 5 shows the response of the spectrum and the source terms to 
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Figure 5. The evolution of a spectrum following a perturbation of the spectral level. The spectrum 
together with the source term balance are shown at four times following the perturbation. The 
figures are at times of (a) 0, (b) 180, (c) 300 and (d) 900 s after the introduction of the perturbation, 
respectively. 
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Figure 6. The nonlinear source term S., directly before ( -) and directly after (- ) the 
perturbation of the spectrum. Energy flows from frequencies both above and below the 
perturbation frequency to smooth the Derturbation. 

the perturbation. The major response to the perturbation is caused by S,,1. A large 
positive input is directed to the frequency where the spectral energy was reduced. 
This acts to fill the 'hole' created in the spectruum. As can be seen by the series of 
diagrams in figure 5 a-d the result is that the perturbation is gradually smoothed out. 
As total energy must be conserved by the nonlinear terms, the positive energy fed 
into the perturbed region must be balanced by a decrease in the transfer in other 
regions. Figure 6 provides a comparison of Snl immediately before and after the 
introduction of the perturbation. The energy transferred to the region where the 
perturbation has occu-rred comes from components of the spectrum immediately 
neighbouring the perturbed region. Hence, the stabilization can be viewed as a flow 
of energy from neighbouring wavenumbers to the perturbed region. 

This type of behaviour by the nonlinear terms ensures that the spectrum always 
remains stable. Any perturbations which develop are smoothed to ensure the 
spectrum always reverts to a unimodal form with an approximately f-4 high 
frequency decay. It is probable that such processes are always occurring in nature. 
Any slight imbalances in the spectrum caused by locally enhanced dissipation or 
gustiness in the wind are compensated by the nonlinear interactions. 

This feature has advantageous side effects in the field of numerical modelling. 
Models such as the one being used here become insensitive to the initial conditions. 
The nonlinear terms simply shape the initially chosen spectrum to the desired form 
irrespective of its initial shape. This also explains why models that either neglect S, 
completely (first generation models) or represent it in a parametric form with only 
a few degrees of freedom (second generation models) can only maintain stability in 
the high frequency region of the spectrum by applying a frequency dependent limit 
to growth. Since they either ignore S., or represented it very simply, the shape 
stabilizing effects can not be included. 

As a]ready reported by Young et al. (1987) and Van Vledder & Holthuijsen (1992) 
this effect also governs the response of the spectrum after a sudden wind shift. In 
such a case a new wind-sea peak could be expected to develop in the new wind 
direction. This would result in a bi-modal spectral shape which the nonlinear terms 
would act to erode. The end result is that the spectrum smoothly rotates to align with 
the new wind direction. If, however, the wind shift is very large, the nonlinear 
coupling between the new and old seas will be small, as illustrated in figure 4. A new 
wind-sea develops in the new wind direction, whereas the old spectrum becomes 
swvell. 
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Figure 7. Isoline plots of the spectrum (left), Sm, (middle) and S,Ot (right) for a directional spread 
of the form (a) cos2 0 and (b) cos10 0. Spectral contours are drawn at 0.01, 0.1, 0.25, 0.5, 0.75 and 
0.9 times the spectral maximum. Contours of S,n are drawn at -0.9, -0.5, -0.2, -0.1, 0.1, 0.2, 
0.5 and 0.9 times the maximum positive value of S,l and contours of S,O, at -0.05, -0.01, 0.1, 0.2, 
0.5 and 0.9 times the maximum positive value of Sto,. Negative regions of SMl and STO are shaded. 

A similar feature has also been observed by the authors in the global WAM model. 
For artificial test cases where a uniform westerly wind is applied in the Southern 
Ocean, waves initially generated by the westerly wind could be expected to be 
gradually deflected towards the north as they propagate along their respective great 
circle paths. This, however, results in a skewed directional distribution to the 
spectrum. As the nonlinear terms favour a symmetric distribution, they force these 
components back to the south. Once the wind stops or decreases in magnitude, the 
spectral components disperse due to their differing group velocities, become swell like 
(single frequency or monochromatic) and hence the product term in (2.3) ensures the 
nonlinear terms are no longer important. The spectral components are then free to 
propagate along their great circle paths as swell. For practical cases, however, where 
spatial and temporal variability of the wind field exists, such effects are likely to be 
masked. 

(c) Directional spread 
The nonlinear terms also play a dominant role in determining the directional 

spread of the spectrum. Figure 7 shows polar isoline plots of the spectrum, Sn1 and 

Stot for two mean JONSWAP spectra with directional spreads of the form cos2 0 
(figure 7a) and cos'0 0 (figure 7b) respectively. Negative regions of Snl and Stot are 
highlighted by shading. The directionally narrow positive nonlinear transfer at 
frequencies less than the spectral peak is apparent in both cases. At frequencies 
above the spectral peak, the dominant nonlinear transfer is the negative lobe centred 
about the mean direction. As the angle to the mean direction increases, small positive 
lobes develop. These tend to broaden the directional spread at frequencies above the 
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spectral peak. The magnitude of these positive side lobes is greater for the narrower 
directional spread. Hence, at frequencies above the spectral peak, the nonlinear 
terms are acting to gradually broaden narrow spectra to a shape favoured by Snl. The 
nonlinear terms do not act in isolation; atmospheric input and dissipation are also 
active. The action of all three is shown in Stot* At frequencies above the spectral peak, 
Stot is positive indicating both spectral shapes are continuing to grow and broaden. 
Near the spectral peak frequency, negative side lobes develop for the cos2 0 

distribution, thus tending to narrow the spectrum in this region. In this case the 
narrowing is not caused directly by S., but by Sds It is, however, indirectly 
controlled by Sfl. Once a stable directional spread is reached S., will act to balance 
the sum of Sds and Sin. In effect, the nonlinear terms allow the dissipation to shape 
the spectrum in this case. The atmospheric input and dissipation are quasi-local in 
frequency space, depending only on integral properties of the spectrum and the local 
frequency. Hence, they cannot actively control the spectral shape. The nonlinear 
terms however couple all frequencies and control the spectral shape either directly, 
as in the case of the positive side lobes at high frequencies, or indirectly, as for the 
negative side lobes at low frequencies. They continually force the spectrum to a 
shape with a broader directional spread at high frequencies and a relatively narrow 
spread around the peak. This is consistent with observed directional data (Mitsuyasu 
et al. 1975; Hasselmann et al. 1980; Holthuijsen 1983; Donelan et al. 1985). 

The exact form of the directional spreading will depend on the functional form of 
both Sin and Sds' for which there is still uncertainty. Although alternate forms for 
these source terms will have a quantitative influence on the spreading, the general 
processes described above remain valid. 

5. Conclusions 

The complex role played by nonlinear interactions in determining the evolution of 
wind-waves has been reviewed. As a result of significant advances in the numerical 
techniques used to solve the Boltzmann integral, it is now possible to perform 
numerical experiments to more fully appreciate the many properties of these 
interactions. Although atmospheric input and dissipation can alter the growth rate 
of the spectrum, they alone are not flexible enough to account for the many observed 
features of wind-wave evolution. Nonlinear interactions account for the gradual 
migration of the spectral peak to lower frequencies with an increase in fetch. In 
addition, the commonly observedf-4 high frequency decay of the spectrum is a direct 
result of nonlinear interactions. Indeed, these interactions continually force the 
spectrum back to this shape when the spectrum is artificially perturbed from it. As 
a result, a self stabilizing effect is always present within the spectrum, thus 
accounting for the self-similar nature of wind-waves. The directional distribution of 
the wave spectrum and its functional dependence on frequency is also a result of 
nonlinear interactions. Although all the source terms are of similar magnitude, it is 
the nonlinear terms which play the critical central role in the development of the 
spectrum. 

Hence it is clear that for routine wave prediction models it is necessary to utilize 
a representation of Snl which retains this flexibility. Formulations such as the 
discrete interaction approximation, although considerable simplifications, retain 
the inherent physical properties of the nonlinear interaction, thus accounting for 
their apparent success. 
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The computer code used to calculate the nonlinear source terms shown in figures 3, 5, 6 and 7 was 
provided by Donald Resio of the Florida Institute of Technology. His valuable contribution in 
making this code available is much appreciated. Specific computer code was written to evaluate 
figure 4 as the loci scaling makes these terms difficult to extract from the full Resio model. Much 
of the work described has developed as a result of a series of remarkable studies by Klaus 
Hasselmann. His valuable comments on the paper are gratefully acknowledged. 
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