
Lecture 2: Diffusion

1 Introduction

Perhaps you have heard that turbulence is the most difficult problem in fluid mechanics and, according
to some, the greatest unsolved problem in physics. One indication of the difficulty is that it is
impossible to give a satisfactory definition of a “turbulent flow”. But everyone agrees that one property
of turbulence is greatly enhanced transport of passive contaminants. For example, relying only on
molecular agitation, a dissolved sugar molecule takes years to diffuse across a coffee cup, and on that
time-scale the coffee will surely evaporate. With a spoon the coffee drinker can create eddies that
transport dissolved sugar throughout the cup in less than one second. This is an example of eddy

diffusivity.
Fluid mechanics textbooks often often justify eddy diffusivity by appealing to an analogy between

turbulent eddies and molecular diffusion — perhaps this notion originates with G.I. Taylor’s 1905 paper
entitled “Eddy motion in the atmosphere” [4]. In any event, the molecular analogy, supplemented
with some hand-waving, leads to the notion of an eddy diffusivity and for many scientists this is the
end of the turbulence problem.

Our goal in this lecture is to explain very explicitly the assumptions behind Taylor’s “proof by
analogy” and to illustrate the interesting points at which the analogy fails. We will pursue this
program by working with some very simple model flows for which analytic results, such as expressions
for the eddy diffusivity, are available. As you will soon see, these model flows do not greatly resemble
turbulence, but then neither does molecular motion! Our excuse is that soluble examples are always
diverting and educational.

2 The renovating wave model

2.1 A recipe for constructing soluble models

The main problem in analyzing transport is solving the differential equations which describe the
motion of particles in even very simple flows. However there is a class of flows for which this task is
trivial. These are steady and unidirectional flows, such as u = sin y. A particle which starts at (a, b) at
t = 0 finds itself at (a+ τ sin b, b) at t = τ . This is dull, but it becomes more interesting if at intervals
of τ we “renovate” the flow by randomly picking a new direction along which the velocity acts. In
this way we can construct a sequence of iterated random maps and calculate diffusivities, and other
statistical properties, by averaging the exact solution. I learned of this trick from the literature on
dynamo theory. The book Stretch, Twist, Fold: the Fast Dynamo is highly recommended for students
interested in all aspects of stirring and mixing [1].

2.2 The renovating wave (RW) model

As a particular example we now formulate the renovating wave (RW) model. We divide the time axis
into intervals

In ≡ {t : (n− 1)τ < t < nτ} , (1)
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and in each interval we apply a velocity, u = (−ψy, ψx), derived from the streamfunction

ψn(x, y, t) = k−1U cos[k cos θn x+ k sin θn y + ϕn] , (2)

where θn and ϕn are independent random variables uniformly distributed in the interval [−π, π]. Thus
in each In there is a steady, unidirectional velocity with sinusoidal profile (a single wave). There is
sudden and complete loss of all information about the past velocity at t = nτ because at these instants
we “renovate” the velocity by picking new random angles θ and ϕ. (This means that the velocity
correlation function, C(t), is zero if t > τ .)

The renovating wave model can be nondimensionalized by using k−1 as a unit of length and and
1/(Uk) as a unit of time. With this choice, the model contains a single dimensionless parameter,
τ∗ ≡ τkU , which is a measure of the persistence of the motion. Much of the literature on random
advection-diffusion uses model velocity fields which are δ-correlated in time. We can recover this limit
as a special case by taking τ∗ → 0.

Using dimensionless variables, a particle which is at xn = (xn, yn) at tn = nτ∗ moves to xn+1 at
t = (n+ 1)τ∗, where

(xn+1, yn+1) = (xn, yn) + τ∗ sin (cnx+ sny + ϕn) (sn,−cn) . (3)

with sn ≡ sin θn and cn ≡ cos θn. Thus motion in the renovating wave problem is equivalent to an
iterated sequence of random maps.

2.3 The single–particle diffusivity

It is very easy to calculate the diffusivity in the RW model (and much more difficult to interpret the
answer). The average of a function of the two random angles θ and ϕ (suppress the subscript n) is
defined by

〈f〉 =

∮
dϕ

2π

∮
dθ

2π
f(θ, ϕ). (4)

Therefore, using (3),

〈(xn+1 − xn)2〉 =
τ2
∗

4
. (5)

The computation is trivial if the integral over ϕ is evaluated first.
In (5), following our previous discussion based on Einstein’s derivation of the diffusion equation,

we are computing the statistics of dispersion along the x-axis. Because the renovating wave model is
isotropic, dispersion in the y-direction is identical to that in the x-direction.

Because all of the waves are independent and identically distributed it follows that after n reno-
vation cycles

〈(xn − x0)
2〉 = n

τ2
∗

4
. (6)

But t = nτ∗, and 〈(xn − x0)
2〉 = 2Dt, so that using dimensionless variables the diffusivity is

D =
τ∗
8
. (7)

Sometimes D is referred to as the single-particle diffusivity. “Single-particle” emphasizes that D
strictly applies only to the RMS displacement of a particle from its initial position; D contains no
information concerning the deformation of a patch of tracer, nor of any other quantity involving
correlated motion. Thus, using dimensional variables, the diffusivity in (7) is D = U 2τ/8, which is
independent of k. Because D is independent of the scale of the wave, even a spatially uniform, but
random-in-time velocity (the case k = 0), has a single-particle diffusivity.
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t=1τ t=2τ t=3τ

t=4τ t=5τ t=6τ

t=7τ t=8τ t=9τ

t=10τ t=11τ t=12τ

Figure 1: Stretching of a small spot, r � 1 where r is the initial radius of the spot, by a succession of random
sinusoidal flows. The dotted circle is the initial spot.

t=1τ t=2τ t=3τ

Figure 2: Stretching of a blob with r = 1, where r is the initial radius. The dotted circle is the initial patch.
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t=1τ t=2τ t=3τ

t=4τ t=5τ t=6τ

t=7τ t=8τ t=9τ

t=10τ t=11τ t=12τ

Figure 3: Stretching of a big blob r � 1, where r is the initial radius of the blob. The dotted circle representing
the initial patch may not be visible beneath the wiggly boundary of the blob.

2.4 Deformation of variously sized blobs

To emphasize the importance of understanding more than single-particle diffusivities we take a digres-
sion and illustrate how the deformation of an initially circular blob of fluid depends on the blob radius
r. (Recall that we have used k−1 as unit of length; in terms of dimensional variables the relevant
nondimensional parameter is kr.)

If the initial blob is much smaller than the wavelength of the velocity then on the scale of the
blob the velocity profile is a linear function of the coordinates. Because of this simplicity, the first
few iterations deform the circular blob into an ellipse which must have the same area as the initial
circle. We will see in the next lecture that the major axis of the ellipse grows exponentially while the
minor axis shrinks so that the area is fixed. Once the dimensions of the ellipse are comparable to the
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wavenumber of the flow, more complicated deformations occur. Ultimately the blob will be stretched
into a folded filament as in figure 1.

The blob has the same scale as the velocity field if r ∼ 1. Because there is no scale separation

there is no easy description of the action of the flow on the blob, see figure 2.
If r � 1 then we are in the “eddy diffusivity” limit in which the scale of the velocity field is much

smaller than the scale of the tracer. This case is shown in figure 3. The action of the waves perturbs
the edge of the blob, making it look “fuzzy”. In fact, the area is preserved, but the circumference
of the blob grows exponentially. We will be discussing this type of problem for the remainder of the
lecture.

2.5 The Lagrangian correlation function

In (7) we gave the diffusivity of particles moving in an ensemble of renovating waves. How do we
obtain the Lagrangian velocity autocorrelation function and verify Taylor’s formula that

D =

∫
∞

0

C(t) dt ? (8)

Considering this question, we encounter an annoying technical difficulty: our derivation of (8) assumes
that the velocity statistics are stationary. But the renovating wave ensemble, as we defined it back
in (1) and (2), is not a stationary stochastic process. This is because with our original definition all
members of the ensemble renovate at the same instants t = τ , t = 2τ etcetera. In order to obtain
a stationary process we should initiate different realizations at uniformly distributed points during
the renovation cycle. Thus, for realization number j, we pick a random time τ (j) which is uniformly
distributed in the interval [0, τ ] and renovate first at t = τ (j) and then subsequently at t = τ (j) + τ ,
t = τ (j) + 2τ etcetera. With this new and improved formulation of the RW model the Lagrangian
correlation function of u(t) is a “triangular” function:

C(t) =
U2

4

(
1 − t

τ

)
H(τ − t) , (9)

where H is the step function and U is the velocity in (2). The area under this correlation function is
D = U2τ/8.

3 The eddy diffusion equation

3.1 The ensemble averaged Green’s function

Now that we have obtained the RW diffusivity in (7) we turn to the derivation of the eddy diffusion
equation. For each realization we introduce the Green’s function which is

Gt + u·∇G = 0, with G(x,x0, 0) = δ(x − x0). (10)

The solution of the problem above is

G(x,x0, t) = δ(xt − x0) , (11)

where xt is the position at time t (in a particular realization of u) of the particle which started at x0.
The ensemble averaged Green’s function is

g(r, t) = 〈G(x,x0, t)〉 , r ≡ |x − x0| , (12)
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where we have assumed that the random velocity is isotropic, homogeneous and stationary so that g
can depend only on the distance r and the elapsed time t.

Possessing g(r, t), we can then represent the ensemble-averaged solution of the initial value problem

ct + u·∇c = 0, c(x, 0) = c0(x) , (13)

as the convolution

〈c〉(x, t) =

∫
c0(x − x

′)g(|x′|, t) dx′ . (14)

(We are assuming that the initial condition c0 is the same for all realizations.)
At this point, the analogy between (14) and the master equation of lecture 1 is obvious. With

the master equation in mind, we can anticipate that a variant of Einstein’s derivation of the diffusion
equation can be applied to (14). Rather than develop a general derivation we prefer to use the
renovating wave model as a concrete illustration of how one can obtain g, and then pass from the
integral equation in (14) to an approximate diffusion equation.

3.2 The averaged Green’s function of the RW model

There are at least two ways of obtaining g(r) in (12) for the RW model: the hard, straightforward
way (see the appendix) and the easy, devious way. Let us be devious.

We begin by calculating the probability density function (PDF) of displacements in a single pulse
of the RW model. Because the ensemble of velocities is isotropic and homogeneous there is no harm in
supposing that the particle is at the origin and the x-axis is aligned with the direction of the velocity.
That is, put (xn, yn) = (0, 0) and θn = π/2 in (3). Thus, the displacement r produced by a single
pulse is

xn+1 − xn = τ∗ sinϕn, and r = |xn+1 − xn|. (15)

The PDF of the random variable r can be obtained from the PDF of ϕ, that is P (ϕ) = 1/2π, using
the rule for transforming probabilities:

P (r) =
∑

P (ϕ)
∣∣∣dϕ
dr

∣∣∣ , =⇒ P (r) =
2

π

H(τ∗ − r)√
τ2
∗
− r2

. (16)

In (16) H(τ∗ − r) is a Heaviside step function which ensures that there are no displacements greater
than τ∗. (The sum in (16) is because there are four values of ϕ corresponding to a single value of r.)

The averaged Green’s function is now given by

g(r) =
P (r)

2πr
, =⇒ g(r) =

1

π2

H(τ∗ − r)

r
√
τ2
∗
− r2

. (17)

The geometric factor 2πr is included because g(r) is a concentration. That is, P (r)dr the expected
number of particles which fall into the differential annulus between r and r + dr and g(r) is the
expected number of particles per area in this same annulus; see figure 4.

Now that we have the averaged Green’s function of a single pulse we can obtain the evolution the
ensemble averaged concentration, 〈c〉, over many pulses. Because each pulse is independent of the
preceeding pulses we have

〈c〉 (x, (n+ 1) τ∗) =

∫
〈c〉(x − x

′, nτ∗)g(|x′|) dx′ . (18)

The master equation above, with g(r) in (17), is an exact description of the evolution of 〈c〉 under
advection by the RW model.
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Figure 4: Displacements of 40, 000 particles in independent realizations of the the RW model. The left panel
shows the final position of particles which all start at the center of the the circle after one pulse of the wave.
The density of points corresponds to g(r) in (17). The histogram on the right shows the number of particles
at a distance r from the center; this is the function P (r) in (16).

3.3 The diffusion equation

With the master equation (18) in hand, we can use Einstein’s approximations to obtain the diffusion
equation. Using the dimensionless variables of the renovating wave model, we have

〈c〉t ≈
τ∗
8
∇2〈c〉 . (19)

We leave this as a homework exercise and instead we take a different route to (19).
Because the Fourier transform of a convolution is the product of the Fourier transforms, we can

simplify (18) by transforming. The Fourier transform of f(x) is defined here1 as

f̃(k) =

∫
e−ik·xf(x) dx , f(x) =

1

2π

∫
eik·xf̃(k) dk . (20)

Applying the transform to (18) we obtain

〈̃c〉(k, nτ∗) = g̃(k)nc̃0(k) , k ≡ |k| . (21)

With a good table of integrals one can discover that the Fourier transform of the averaged Green’s
function, g(r) in (17), is

g̃(k) = J2
0 (kτ∗/2) , (22)

where J0 is the Bessel function.
The diffusion equation describes the evolution of large spatial scales, which is the same as small

wavenumbers. This means that we simplify (21) by taking kτ∗/2 � 1 and using the approximation
J0(kτ∗/2) ≈ 1 − (k2τ2

∗
/16) to write

〈̃c〉(k, nτ∗) ≈ exp
{
n ln

[
1 − (k2τ2

∗
/8)

]}
c̃0(k) . (23)

1By denoting the wavenumber with k we are recycing notation used in (2).
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But now, since n = t/τ∗ and ln[1 − (k2τ2
∗
/8)] ≈ −k2τ2

∗
/8, we have

〈̃c〉(k, t) = e−Dk2tc̃0(k) (24)

where, as in (19), D = τ∗/8. Equation (24) is the equivalent to the decay of Fourier components given
by (19).

This derivation based on Fourier analysis explicitly recognizes that the diffusion approximation is
valid only for wavenumbers which satisfy kτ∗/2 � 1. This is a precise statement of the scale separation
assumption which underlies Einstein’s approach.

4 Ensemble averages and single realizations

In hydrodynamic dispersion, particles which begin at neighbouring points have similar histories in
any single realization. Marbled endpapers in old books were produced by floating coloured inks on
water, stirring the surface, and then capturing the swirls by carefully lowering a sheet of paper onto
the inky film [3]. This technique, probably originating in Persia in the 1400s, presses hydrodynamic
correlations into the service of art. Fortunately for printers, and distressingly for statisticians, a single
realization does not resemble the blurry diffusion equation.

4.1 Eddy diffusion of a front

Figure 5 shows a single realization of the evolution of a “front” under the RW advection process. The
front is the sharp border which separates white from dark; initially this line coincides with the y-axis.
We suppose that the concentration is c = −1 for x < 0 and c = +1 for x > 0. Successive pulses of the
renovating wave produce an increasingly folded front and the c = −1 fluid invades the region x > 0
in long thin tendrils. The central question is:

How well is the process in figure 5 described by the diffusion equation?

We know that given many realizations of this process, the long-time ensemble average of these
realizations will follow the diffusion equation 〈c〉t = D〈c〉xx, with the initial conditions c(x, 0) = ±1.
The solution of this problem is

〈c〉 = erf η , where η =
x

2
√
Dt

. (25)

Figure 6 shows this smooth erf solution which, of course, looks nothing like figure 5. If the dark fluid
in figure 5 contained radioactive contaminant, and we wanted to estimate the maximum exposure of
at some value of x > 0, then the erf solution in (25) is not useful.

On the other hand, diffusivities are useful if we want to know how many particles are at such-and-
such a distance from their initial location. Thus, figure 7 shows a histogram of the positions of 10,000
particles which all start on the line x = 0 (the initial front). The Gaussian curve in figure 7 is the
corresponding prediction for the PDF of positions which is obtained by solving (19) with the initial
condition 〈c〉 = δ(x):

c(x, t) =
1√

4πDt
exp

[
− x2

4Dt

]
, D =

τ∗
8
. (26)

The histograms converge slowly to this Gaussian prediction. This asymptotic success shows that the
diffusion equations correctly predicts the dispersion of particles when t� τ∗.

An amusing aspect of the simple problem in figure 5 is that we can easily calculate the RMS
fluctuations of c around the ensemble average concentration in (25). Because c = ±1 we have 〈c2〉 = 1.
Therefore, defining the fluctuation as

c′ = c− 〈c〉 , (27)
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t=3τ t=6τ t=9τ t=12τ

t=15τ t=18τ t=21τ t=24τ

Figure 5: Evolution of a front under the advection by the RW model. The front initially coincides with the
y-axis.

we have
〈c′2〉 = 〈c2〉 − 〈c〉2 = 1 − erf2(η) . (28)

The variance 〈c′2〉 is also indicated in figure 6.

4.2 Coarse grained averages and spatial filters

The process in figure 5 is translationally invariant in the y-direction and so using only a single real-
ization we can calculate a spatially averaged concentration

c̄(x, t) ≡ lim
L→∞

1

2L

∫ L

−L

c(x, y, t)dy . (29)

The evolution of c̄ will be asymptotically described by the diffusion equation.
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Figure 6: Evolution of the ensenble-averaged concentration c and its variance during the evolution of the
front underthe RRW model. Note how most of the variance is localised around x = 0.
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Figure 7: At t = 0 the front in figure 5 is tagged by placing 10000 particles along the y-axis. The historgram
above shows the subsequent x-locations of these marker particles as the front is distorted by the RW model
with τ∗ = 1. The Gaussian curve is given by (26).
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In a general case, in which there is no statistical symmetry along a particular direction, one can
take a single realization and define a coarse-grained or low-pass filtered concentration by:

ĉ(x, t) ≡
∫
K(x − x

′)c(x′, t) d2
x
′ ; K(|x|)is a filter. (30)

The hope is that scale separation between the width of the erf and the swirls will ensure that ĉ ≈ 〈c〉.
Thus the kernel of the filter, K in (30), might be a Gaussian with a width which is at once much
smaller than the thickness of the erf transition zone and much greater than an individual swirl in
figure 5.

Scale separation is essential here because the filtering operation defined by the convolution in (30)
is not strictly an “average”. Some of the properties we take for granted when we use averages are

〈c′〉 = 0 , 〈〈c〉〉 = 〈c〉 , 〈〈a〉〈b〉〉 = 〈a〉〈b〉 . (31)

For the ensemble average, as indicated in (31), everything works.
For a filter, such asˆin (30), we can define the fluctuation concentration c′′ in analogy with (27):

c′′ ≡ c− ĉ . (32)

But then ĉ′′ 6= 0 and none of the other desiderata in (31) follow. In other words, spatial filtering
instead of the ensemble averaging introduces a host of extra assumptions which should be carefully
assessed (but almost never are).

4.3 A digression: Brownian bugs

I have hinted darkly at problems associated with spatial filters. These issues are largely ignored by
optimistic scientists. The hope is that scale separation justifies the application of diffusive closures to
the coarse-grained version of a single realization. Perhaps a justification of this optimistic approach
is that the alternative seems so repellent. Nonetheless, it is important to realize that interpreting
coarse-grained distributions as ensemble averages involves a nontrivial assumption. The best way of
exposing this assumption is to exhibit a problem in which spatial filters and ensemble averages are
very different. Accordingly, as a model of biological processes, we consider random walkers which
both die and reproduce. We refer to these biological walkers as Brownian bugs.

The model is formulated by first placing N � 1 Brownian bugs randomly in the unit square;
the boundary conditions are periodic in both directions. Each cycle of the simulation begins with a
random walk step in which bug k, located at xk = (xk, yk), is displaced to a new position

(x′k, y
′

k) = mod [(xk, yk) + (δxk, δyk); 1] . (33)

In (33), δxk and δyk are Gaussian random variables and the “mod” is to enforce the periodic boundary
conditions and keep each bug in the unit square. After this random walk step, the second part of the
cycle is a “coin toss” which results in either death (heads) or division (tails). When a lucky bug divides,
the offspring is placed at the same position as the parent. This cycle of random displacement and
random birth/death is repeated many times in order to simulate many generations of reproduction,
death and dispersion.

The simulation shown in figure 8 was implemented in MATLAB using these rules. The striking
result is that the density of bugs spontaneously develops large-scale clumps and voids. Figure 8 seems
to show an inverse cascade of patch sizes: patches emerge on small scales in panel (b) and then,
after more cycles, panels (c) and (d) show that the patches have expanded in scale. To quantify this
impression, we have computed one-dimensional concentration spectra which show that an increasingly
red spectrum develops.
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(a) Initial condition, N=20,000
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(b) 10 cycles, N=19,692
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Figure 8: (a) The initial condition is N = 20, 000 randomly located bugs in the unit square. Panels (b), (c)
and (d) then show the development of patches after 10, 100 and 1000 cycles of random displacement followed
by random birth/death. As the panel titles indicate, there are random fluctuations in the total size, N , of the
population. The RMS step length of the underlying random walk is 〈δx2

k〉1/2 = 〈δy2
k〉1/2 = 0.005.

A seemingly innocuous ingredient of the brownian-bug model is that deaths can occur anywhere,
but births are always adjacent to a living bug. This asymmetry between birth and death is crucial for
the spontaneous development of the voids and patches evident in figure 8: if one simulates birth by
randomly placing the new bugs in the unit square then no patches form. This subtle point shows that
making the births coincide with living bugs — surely a realistic feature of the model — introduces
pair correlations. From another perspective, one can view the voids in figure 8 as the result of random
extinctions which create voids. The step length of the random walk in figure 8 is such that diffusion
is not strong enough to fill in the voids created by extinction.

The ensemble average of the Brownian bug process is described by

〈c〉t = D∇2〈c〉 + (λ− µ)〈c〉 . (34)
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where λ is the birthrate and µ the deathrate. However if the coin-toss is fair then births and deaths
are equiprobable and consequently λ = µ. In this case the solution of (34) which satisfies the initial
condition is

λ = µ , =⇒ 〈c〉 = 1/N . (35)

The uniform density above is the correct answer for the ensemble average concentration: the location
of the voids and patches in figure 8 are accidently determined by the MATLAB random number generator.
If we ensemble average many such patterns then the patches and voids must disappear because the
process is spatially homogeneous.

On the other hand, the spatial average of a single realization, such as that in figure 8, will still
show concentration patches2. Thus, in this Brownian bug example, ĉ 6= 〈c〉. Indeed, the patches
are surely an important feature of the “real” answer. The correct but useless result in (35) exposes
a failure of ensemble averaging. What do we make of this example? Are biological problems, with
reproduction and death, so fundamentally different from the advection-diffusion of chemical tracers?
I am not prepared to answer that question in these lectures and I leave further development of this
example to the students.

5 Variance budgets

In this section we return to basics and present an alternative view of eddy-diffusivity. The following
arguements emphasize the importance of the concentration variance equation.

5.1 The Reynolds’ decomposition

Our point of departure is the advection-diffusion equation

ct + u·∇c = κ∇2c+ s , (36)

where κ is the molecular diffusivity of c and u is an incompressible (∇·u = 0) velocity field. In (36)
we have included a source term, s(x, t), which forces the system.

The velocity u in (36) is a single realization selected from an ensemble of velocity fields. Then we
can introduce the “Reynolds’ decomposition”:

c = 〈c〉 + c′ , (37)

where 〈 〉 is the ensemble average and c′ is the fluctuation from 〈c〉 which arises in a single realization.
Taking the ensemble average of (36) gives

〈c〉t + 〈u〉·∇〈c〉 + ∇·〈u′c′〉 = κ∇2〈c〉 + s . (38)

(The source s is taken to be deterministic, 〈s〉 = s.)
Subtracting the ensemble average in (38) from (36) gives the fluctuation equation

c′t + 〈u〉·∇c′ + ∇·[u′c′ − 〈u′c′〉] − κ∇2c′ = −u
′ ·∇〈c〉 . (39)

Equation (39) has been organized by taking the source term to the right hand side. Thus we see that
advective distortion of the mean gradient, ∇〈c〉, generates the fluctuation c′.

2If the width of the kernel, K in (30), is larger than the dimension of the patches then filtering will remove the
patches. However, since the patches expand in scale, eventually they will become so large that they survive the blurring
power of the filter.

13



5.2 Consequences of linearity

If c′ = 0 at t = 0 then, because (39) is linear, c′ and ∇〈c〉 will be linearly related. It follows that the
eddy flux 〈u′c′〉 will also be linearly related to the mean gradient ∇〈c〉. These simple observations,
in alliance with the scale separation assumption, can be used to extract a surprising amount of
information [2].

Because of the scale separation, it is plausible that this linear relation between eddy flux and mean
gradient can be developed in a series of the form

〈u′ic′〉 = −D(1)
ij ∗ 〈c〉,j −D(2)

ijk ∗ 〈c〉,jk + · · · (40)

The comma subscripts denote partial derivatives, a,j ≡ ∂a/∂xj . We are also using the Einstein sum
convention, where repeated indices are summed. The ∗ in (40) indicates that the product also involves
convolutions in time, such as

D(1)
ij ∗〈c〉,j =

∫ t

0

D(1)
ij (t′)〈c〉,j(t− t′) dt′ . (41)

If the mean field is varying slowly over an eddy decorrelation time then the convolution above ap-
proximates to

〈u′ic′〉 ≈ −D(1)
ij ∗〈c〉,j ≈ −

∫
∞

0

D(1)
ij (t′) dt′ 〈c〉,j(t) . (42)

In the simplest cases3 ∫
∞

0

D(1)
ij (t′) dt′ = Deδij , (43)

where De is the eddy diffusivity. Using (43) the flux gradient relation is

〈u′c′〉 − κ∇〈c〉 = −D∇〈c〉 , D ≡ De + κ , (44)

and the evolution of the average concentration is determined by

〈c〉t ≈ D∇2〈c〉 + s . (45)

This is a general version of the specific diffusion equation derived in Section 3.3 for the renovating
wave model.

5.3 The G · x-trick

The tensors D(n)(t) are determined by the linear operator on the left-hand side of (39). Thus, these
tensors depend on (i) the statistical properties of u

′; (ii) the mean advection 〈u〉; (iii) the molecular
diffusion κ. The essential point is that these tensors do not depend on 〈c〉. At least for the first term

in the series, D(1)
ij , we can exemplify this by noting that there is a special solution of (36) in which

〈u〉 = s = 0 and concentration has the form

c = G · x + c′ . (46)

In (46) the mean concentration is simply 〈c〉 = G · x and the fluctuation c′ is determined from a
reduced version of (39):

c′t + u
′ ·∇c′ − κ∇2c′ = −G · u′ . (47)

3“Simple” means that the velocity ensemble is isotropic, homogeneous and reflexionally invariant. The last re-
quirement means that the mirror image of a particular realization of u

′ is just as probable as u
′. If the ensemble is

reflexionally invariant then D
(1)
ij is a symmetric tensor. This subtle point will be illustrated later in this lecture series.
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As emphasized above, the advection of the mean gradient appears as a source term for c′ on the right
hand side of (47). Because (47) is linear, and G is constant, the solution c′ will be proportional to
the large-scale gradient G and otherwise independent of G.

This G · x-trick enforces the platonic ideal of scale separation between the eddies and the mean
field. If the concept of an eddy diffusivity is to have any validity, then it must work in the simplified
context of (47). In fact, the G · x-trick is used in doubly-periodic turbulence simulation to calculate
eddy diffusivities. In that context, u′ = (u, v) and c′ are efficiently represented by Fourier series. Then
(47) is solved using a spectral code and the eddy flux is estimated by computing the integral

〈u′c′〉 = A−1

∫∫
u
′c′ dxdy , (48)

over the computational domain. (In (48) A is the total area of the domain so 〈1〉 = 1). Notice that in
(48) the ensemble average is identified with an integral over the domain. Later in these lectures we
will use this same procedure to analytically calculate the eddy diffusivities of some spatially periodic
velocity fields.

5.4 The concentration variance equation

An equation for the concentration variance,

Z ≡ 1

2
〈c′2〉 , (49)

is obtained by multiplying (39) by c′ and ensemble averaging. The result is

Zt + 〈u〉·∇Z + ∇ · 〈1
2
u
′c′

2〉 − κ∇2Z = −κ〈∇c′ ·∇c′〉 − 〈u′c′〉·∇〈c〉 . (50)

The terms on the left-hand side of (50) can be interpreted as fluxes of Z. The two terms on the right
hand side of (50) are respectively dissipation of variance by molecular diffusion, κ, and a source of
variance due to advective distortion of the mean gradient.

5.5 Heuristic closure arguments

In (50) there are three terms which we would like to relate to the mean quantities 〈c〉 and Z. First,

there is −〈u′c′〉·∇〈c〉 = De∇〈c〉·∇〈c〉. The remaining two terms are 〈u′c′
2
/2〉 and κ〈∇c′ ·∇c′〉.

The correlation 〈u′c′
2
/2〉 in (50) is an eddy-flux of c′

2
, just as 〈uc′〉 is an eddy flux of c′. Thus,

by analogy with (44), we can argue that

1

2
〈u′c′

2〉 = −De∇Z . (51)

This heuristic argument is discussed further in appendix B.
The final term in (50) is the dissipation of variance by molecular diffusivity, κ〈∇c′ ·∇c′〉. The

simplest closure assumption we can make about this term is that

κ〈∇c′ ·∇c′〉 ≈ βZ , (52)

where β has the dimensions of time. The closure above relies on dimensional analysis and the linearity
of (36). However, in anticipation of a later discussion of the Batchelor spectrum, we now make some
heuristic arguments in support of (52) which suggest that β is independent of the molecular diffusivity.
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Suppose that the mean field 〈c〉 has a length scale L and that the velocity field u
′ has a length

scale Lu (in the RW example Lu = k−1). The scale separation assumption is that

L� Lu . (53)

The inequality in (53) is exemplified in idealized case of (46) in which L is infinite. If follows that
advective distortion of ∇〈c〉 generates c′ first on the scale Lu. Then, following our arguments in lecture
1, the scale of c′ will be exponentially reduced, like exp(−γt), where γ is roughly proportional to the
RMS strain of u

′. This exponential contraction continues until the cascade is halted by molecular
diffusion at the scale

` ≡
√
κ

γ
. (54)

Using arguments from lecture 1, we can estimate that the time taken for this arrest at ` is

t` ≈ γ−1 ln (Lu/`) . (55)

Then the smallest length scale in the c′-field is ` and, plausibly, the gradient is ∇c′ ∼ c′RMS/` where

c′RMS ≡
√

2Z. We now have a simple estimate κ〈∇c′ ·∇c′〉 ∼ γZ. This rough argument leads to the
closure in (52), with β ∝ γ, and the caveat that t > t`.

We can summarize the arguments above by rewriting the variance equation (50) as

Zt + 〈u〉·∇Z −D∇2Z = De∇〈c〉·∇〈c〉 − βZ , (if t ≥ t`) . (56)

The most dubious approximation is probably (52). To conclude this discussion we will interpret the
variance equation in two specific examples.

5.6 Example 1: the dispersing front

First consider the dispersing front in figure 5. In this example s = κ = 〈u〉 = 0 and we have already
know from (28) that

Z =
1

2

[
1 − erf2 (η)

]
, η =

x

2
√
Dt

. (57)

On the other hand, since κ = 0, it follows that D = De and β = 0. With these simplifications the
variance equation (50) reduces to

Zt −DZxx = D∇〈c〉·∇〈c〉 , (58)

where 〈c〉 is the erf-solution in (25). As a consistency check, one can show that (57) is the solution of
the variance equation in (58).

This example shows that the destruction of variance by molecular diffusivity is not required in
order to prevent an accumulation of variance: the source on the right-hand side of (58) is balanced
by eddy diffusion.

5.7 Example 2: a large-scale source

In this second example the tracer is injected by a source s = cos qx in (36). We also take 〈u〉 = 0 so
that the mean concentration field is obtained by solving

〈c〉t −D∇2〈c〉 = cos qx , =⇒ 〈c〉 =
1

Dq2

[
1 − e−Dq2t

]
cos qx . (59)

(To apply the diffusion equation the scale of the source, q−1, must be much larger than the scale of
the velocity field.) A steady mean concentration pattern is established when Dq2t� 1.
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Figure 9: A simulation of the source problem, with s = cos(x/6), using the RW model to generate u in (36).
There is no molecular diffusivity (κ = 0). The left-hand panel shows the whole domain (the length of the side
is 12π) while the right hand panel shows a smaller subdomain (the length of the side is 2π). The concentration
fields were generated by 10 pulses of the renovating wave using τ∗ = 3 (that is, t = 30).

The concentration variance is determined by solving the variance equation (56)

Zt −D∇2Z =
1

2

De

D2q2

[
1 − e−Dq2t

]2

(1 − cos 2qx) − κ〈∇c′ ·∇c′〉 . (60)

In (60), the solution in (59) has been used to evaluate the source term on the right hand side and we
have left the diffusive sink in its exact form.

It is clear from (60) that the molecular diffusion, κ, plays an important role. If κ = 0 then the
long time solution of (60) has a component which eventually grows linearly with time:

κ = 0 , =⇒ Z ∝ t/2Dq2 . (61)

Thus, without molecular diffusion, there is “runaway variance”. Ultimately, in a single realization,
the mean field in (59) will be buried under enormous fluctuations.

To give an intuitive derivation of (61) we argue that with κ = 0 the concentration on each fluid
element is determined by solving the Lagrangian equation

Dc

Dt
= cos qx(t) , (62)

where x(t) is the randomly changing x-position of the particle. Thus, the concentration on each
particle is undergoing a random walk along the c-axis, which is induced by the random motion of the
particle through the cos qx source function. The decorrelation time of this walk is the time it takes a
particle to diffuse through a distance of order q−1, which is 1/Dq2. Thus, in a time t, there are roughly
N(t) ∼ Dq2t independent steps along the c-axis. But because the source acts coherently for a time
1/Dq2 with a strength of order unity, the step length of this random walk is roughly ∆c ∼ 1/Dq2.
Thus, the mean square displacement of c is:

〈c′2〉 ∼ (∆c)2N(t) ∼ t

Dq2
, (63)
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Figure 10: This figure compares analytic results with a numerical solution of (62), taking q = 1/10, and
using the RW model to generate u. The persistence parameter is τ∗ = 2 and the results are at t = 400 (that
is, 200 renovation cycles). The concentration c(x, 400) is calculated on a 400 × 400 grid using the method in
appendix B. In the top panel there are three curves: the concentration as a function of 0 < x < 20π along the
line y = 0 (the jagged dotted curve); the y-averaged concentration defined in (64); the analytic result in (59)
(the smooth sinusoid). The bottom panel compares the cRMS =

√
2Z obtained by solving (60) analytically

with cRMS estimated using (64).

which is the final result in (61).
It is interesting to compare the analytic results in (59) and (60) with a numerical solution of (62).

Thus we must compute the spatial averages

c̄(x, t) ≡ 1

L

∫ L

0

c(x, y, t) dy, c2RMS(x, t) ≡ 1

L

∫ L

0

[c(x, y, t) − c̄]
2

dy , (64)

using the numerical solution, and compare these with the analytic results for 〈c〉 and Z = c2RMS/2.
The best way to make this comparison is to obtain c(x, y, t) on a regular grid in the (x, y)-plane. As
a bonus, one can then also use contouring routines to make pretty pictures of the concentration field
(see figure 9).
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The concentration field is calculated on a regular grid using the procedure described in Appendix C
(essentially the method of characteristics). Figure 10 shows good agreement between this simulation
and analytic results. Notice that in figure 10 the variance Z peaks where ∇〈c〉 is greatest. This
illustrates that concentration fluctuations are produced by advective distortion of the mean gradient:
where the mean gradient is large there is lots of variance. But Z 6= 0 even where ∇〈c〉 = 0 (for
example, at x = 0 and x = 10π in figure 10). Thus, where the source term on the right hand side of
(60) vanishes, the diffusive term D∇2Z supplies variance.

5.8 Cautionary remarks

In the both examples above there is no molecular diffusion (κ = 0) and consequently there is no
destruction of variance by the term κ〈∇c′·∇c′〉 in (50). As a project for a student, include molecular
diffusion in the RW model (perhaps by pulsing diffusion in alternation with advection) and assess the
efficacy of this process. In particular, can the closure in (52) be justified?
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A Calculation of the RW Green’s function

In this appendix we present an alternative calculation of the RW ensemble averaged Green’s function,
g(r), in (17). The unaveraged Green’s function, G(x,x0, t), is the solution of (10). Because the process
is spatially homogeneous it is harmless to take x0 = 0 so that

G(x, 0, τ∗) = δ [x− τ∗s sinϕ] δ [y + τ∗c sinϕ] , (65)

where (s, c) ≡ (sin θ, cos θ). The ensemble average of (65) is computed by integration over ϕ and θ,
as in (4). It is very pleasant that there are two integrals and two δ-functions. Thus, we first do the
ϕ-integral by noting that δ [x− τ∗s sinϕ] is nonzero at the two values of ϕ where sinϕ = x/τ∗s, and
at those positions:

d

dϕ
[x− τ∗s sinϕ] = ±

√
τ2
∗
s2 − x2 . (66)

Using the standard rule for changing variables in a δ-function, we find that the average of (65) over
ϕ alone is

〈G〉ϕ =
1

π

δ(y + cot θx)√
τ2
∗

sin2 θ − x2

. (67)

The second integral over θ is performed by noting that δ(y+ cot θx) is nonzero at the two values of θ
where cot θ = −y/x, and at those positions

sin2 θ =
x2

x2 + y2
,

d

dθ
[y + x cot θ] = −x

2 + y2

x
. (68)

After changing variables in the δ-function we recover g(r) in (17).
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B Eddy diffusion of variance

Ignoring small molecular diffusion (κ = 0), if c satisfies the advection equation then any function of c
satisfies the same equation. That is to say

Dc

Dt
= 0, =⇒ Df

Dt
= 0 , (69)

where f(c) = c2, or exp(c), etcetera. Taking an ensemble average, and making the same arguments
for f(c) as for c, we have that

〈f〉t = D∇2〈f〉 . (70)

In the particular case f = c2/2, 〈f〉 = 〈c〉2/2 + Z and (70) reduces to

Zt = D∇2Z +D∇〈c〉·∇〈c〉 . (71)

Matching the terms in (71) with those in (50) we conclude that 〈u′c′
2
/2〉 = −D∇Z.

C Numerical simulation of the RW process

Drawing figures 9 and 10 requires that we obtain the solution of (62) on a regular grid in the (x, y)-
plane. This is an opportunity to use the method of characteristics and learn some MATLAB programming
techniques.

Equation (3) shows how the movement of a particle in the RW velocity field is equivalent to a
random map which determines the position at (n + 1)τ∗ in terms of the previous position at nτ∗. If
this particle carries a concentration, c(x, t), which changes because of the cos qx source in (62), then
the concentration changes can also be calculated and expressed as a map in discrete time.

Thus, suppose that the concentration on a particle at time t = nτ∗ is cn. Then the change in
concentration during nτ∗ < t < (n+ 1)τ∗ is obtained by integrating

Dc

Dt
= cos [qxn + qun(t− nτ∗)] , (72)

where the constant x-velocity of the particle is un = sn sin(cnxn + snyn + ϕn), with (sn, cn) ≡
(sin θn, cos θn). The integral of (72) can be written as

cn+1 = cn +
sin(qxn+1) − sin(qxn)

qun

. (73)

With equations (73) and (3) we can advance forward in time and so determine the concentration on
a particle at t = nτ∗.

However we need to determine the concentration at t = nτ∗ at a specified grid point x. The trick
is illustrated in the Matlab program below.

%% Solution of

%%

%% Dc/Dt=cos(qx);

%%

%% cos(q x) is a large-scale source and u is the RW velocity.

%% The RW streamfunction is psi=cos[cos(theta) x+ sin(theta)y + phi]

clc

N=400; %% Use an N*N grid in the plotting window
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q=1/6; %% The wavenumber of the cos q x source

LL=2*pi/q; %% LL is the domain size

npulse=10 %% The number of renovation cycles

tau=3; %% The pulse duration of the wave

%% Lwin is the side of the square plotting window.

%% Set Lwin=LL to see the big picture. To see small scale details,

%% try Lwin = 2*pi. We draw two subplots with different Lwin’s

nloop=0;

for Lwin=[LL 2*pi]

nloop=nloop+1

x=linspace(0,Lwin,N); %% x is the coordinate in the plotting window.

h=x(2); %% The grid spacing in the plotting window

for j=1:N

jj=[((j-1)*N+1):(j*N)];

pos(jj,1)=zeros(N,1)+(j-1)*h;

pos(jj,2)=x’;

end

conc=zeros(N*N,1);

%% The position of the N^2 particles are stored in pos with

%% N^2 rows and 2 columns. Each vertical segment of

%% length N in pos contains particles with the same initial x-position.

%% the column vector conc contains the concentration on the

%% N*N particles in pos. Initially, conc=0 at the N*N

%% grid points. Then we integrate

%% backwards in time to find the concentration change.

for k=1:1:npulse

theta=rand*2*pi;

wavevec=[cos(theta),sin(theta)]’;

phase=rand*2*pi;

vel=sin(pos*wavevec+phase)*[wavevec(2),-wavevec(1)];

conc=conc-sin(q*pos(:,1))./(q*vel(:,1));

pos=pos+tau*vel;

conc=conc +sin(q*pos(:,1))./(q*vel(:,1));

end

%% Emerging from this loop, we have the the new positions

%% and the new concentration

conc=reshape(conc,N,N); %% conc is reshaped into an N*N matrix

hh=subplot(1,2,nloop)

colormap(’gray’)

imagesc(x,x,conc)

axis equal

xlabel(’x’)

ylabel(’y’)
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axis([0 Lwin 0 Lwin])

set(hh,’ydir’,’norm’)

end
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