Anomalous diffusion of tracer in convection rolls
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The dispersion of a passive tracer in a two-dimensional, spatially periodic stationary flow, such
as convection rolls, is studied in the large Peclet number limit. In the case where injection, at
time ¢ = 0, is localized in one roll, two regimes exist. First, there is an anomalous diffusion
regime in which the number of invaded rolls grows like ¢ /3, This regime is due to the presence
of separatrices between rolls that induce trapping of tracer within each roll. At a later time,
when t3» T, (the diffusion time within a roll), the usual diffusion regime is recovered, yet with
an effective diffusive coefficient . that is greater than the molecular diffusivity « by a factor

proportional to the square root of the Peclet number.

1. INTRODUCTION

This paper considers the dispersion of a passive scalar
(*“tracer”) in a periodic array of convection cells. The com-
plete evolution of the concentration € is determined by the
advection—diffusion equation

3,0 + J(@,0) = V30, (1)

where @ is the streamfunction from which the incompress-
ible, two-dimensional steady velocity field

() = (—0,9,0,.9) (2)

is obtained. The molecular diffusivity « is assumed to be very
small or, more precisely, the Peclet number

P =@umax /K (3)

is large. The boundary conditions on the velocity field are
“no slip,” i.e., u=0on y =0and L, in Fig. 1. By conven-
tion, the streamfunction is zero on the separatrices and on
the walls.

Our goal here is a simplified or averaged description of
the evolution of an initially compact distribution of tracer.
The basic variable is the averaged concentration

g. (1) =A -‘fedAn, 4)

where the integral above is over the area occupied by the nth
celland 4 = L, L, is the area of a cell. Our notation is intro-
duced in Fig. 1. Unlike recent work on the same'? or similar
problems,® we discuss the dispersion on intermediate time
scales,

A/ Prmax €1 LA/, &)

before the tracer has reached the center of recently invaded
cells. Even though the time is much less than the intracellu-
lar diffusion time A4 /«, a substantial lateral spread of the
tracer can occur and, in fact, the number of cells invaded
increasesas? '/>.* Attimes much larger than 4 /x, this anom-
alous diffusion is replaced by the familiar Fickian result, so
that the number of invaded cells increases at ¢ /2. In this long
time limit, our formalism reduces to a conventional diffusion
equation and is identical to that of earlier investigators.'?
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On intermediate time scales, such as in (5), the disper-
sion is complicated by the nonuniform distribution of tracer
within a cell. Thus transfer between cells is proportional to
peripheral concentration differences, but these are obviously
not related to the average concentration defined in Eq. (4).
It turns out that

_ﬁeq 1

_$6qdl 6
" $qdl (6a)
q—(u2 v2)1,29 (6b)

where the line integrals above are around the perimeter of
the nth cell, are a useful measure of the peripheral concentra-
tion. In fact, intercellular transports are proportional to dif-
ferences in f, and conservation of tracer is just

d)
j: =5(farr =2 +fo 1), N

where s—! is a time scale found below. A second relation
between f, and g, is obtained by considering the spread of
tracer within a single cell. This leads to

g.(0)= f K(t — 1), (n)dr, (8)
0

and together, (7) and (8) constitute the averaged descrip-
tion of tracer dispersion. Exact expressions for the kernel X
in (8) are not easily found, but on intermediate time scales it
has the form

K(7) 7723, )}

while at times much greater than 4 /x,

—v=1, X=0 X=Ly
JE D R N f_____._E-—'fh_-____\ r—
i o
”“ © = Pmax ; F¥¢'Clq‘n\ax xaVa(ys)
| '
It !
______ 2N 1Y I | NS,
—Y:0 b — e}

1 2
9= 5 €2 Py Lolx)

FIG. 1. Definition sketch showing the local behavior of the streamfunction
at the edge of a cell. Here, ¢, and c, are dimensionless constants and §, and

v, are dimensionless functions with dimensionless arguments.
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K(t)<ce *, (10)

where i~ ! is a time of order 4 /. The anomalous dispersion
referred to earlier results from the slow decay in (9), and the
Fickian regime is reached when the structure of the kernel
changes to that in (10).

In Sec. I we derive (8) and discuss the physical inter-
pretation of the kernel X(7). In Sec. III we obtain (7), and
then in Sec. IV we discuss the solution of the system (7) and
(8), emphasizing the anomalous diffusion regime.

Il. THE INTRACELLULAR DIFFUSION PROBLEM

In this section we consider the details of how tracer con-
taminates an initially unpolluted cell. We suppose, for the
moment, that the distribution of tracer on the edge of the cell
is known as a function of time and arclength. Our goal is the
relation (8) that connects the total amount of tracer within
the cell to a history convolution of a velocity-weighted peri-
pheral average. Thus we examine a particular cell and solve
(1), assuming that P, in (3) is very large. The initial condi-
tion is

B(X’ )’,0) = 0, (11)

and we suppose that the boundary distribution of 8 is a
known function of arclength / and time ¢, denoted by y:
0(34,t) = y (1), (12)
where dA is the boundary of a cell.
This problem can be solved using the technique in
Rhines and Young,® and in Fowler.® A brief summary is
given in Appendix A. The essential result there is that when

P,3 1, the tracer distribution in the interior is uniform on
streamlines, i.e.,

$ 6(dl/q)
$(dl/q)

where the line integrals are around streamlines. Using aver-
aging techniques, (1) is reduced to

O(x, y,t) =0(@,t) = (13)

T(9)3,0=x3,[C(9)d,0], (14)
where
T(g) =§§ da (15)
q
is the transit time around a streamline and
Clp) =§qdl (16)

is the absolute value of the circulation around a streamline.

Clearly the formulation above fails near the boundary of
the cell where (12) shows that there are generally substan-
tial variations in tracer concentration imposed along a
streamline. Instead, there is a boundary layer at the edge of
the cell in which the externally imposed distribution in (12)
is transformed into an “effective boundary condition” for
(14). Fortunately, a detailed analysis of the boundary layer
can be avoided and instead one can show that (see Appendix
A)

8(0,1) = $xqdl

17
¢ qdl amn
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is the effective boundary condition for ( 14). It is notable that
in the interior of the cell, the appropriate streamline average
isatime average [see (13) ], while at the boundary of the cell
the velocity-weighted average above is appropriate. The
physical explanation is that large velocities mean that
streamlines are close together and boundary values of 8 in
these regions can diffuse across a greater range of stream-
lines. Thus boundary values juxtaposed with large velocities
are most effectively transferred into the interior of the cell.
There is one final transformation that is useful, this be-
ing the use of the area inside a streamline a(@) as an inde-
pendent variable. As explained in Rhines and Young,’

da dl

—=0p—==T, (18)
dp q

so that in terms of @, (14) becomes
3,6=4,D4,6, (19a)
D(a)=«kC(a)T(a), (19b)

with an initial condition in (11) and a boundary condition at
a=A:

Feary — Sxgdl

G(A,1) $qdl = f(1).

Before solving the diffusion equation in (19), we must
calculate D(a). Even for simple model streamfunctions this
is tedious. However, if, as in Fig. 1, the boundaries at y =0
and L, are noslip, then a local analysis shows that D(a) has
the form

D(a)=A(l —a/4)7}, (21a)

D(a)=Ta, if agA. (21b)

Explicit expressions for A in (21a) are given in Appendix B.
The important point is that D(a) is singular at the outer
streamline, because 7(a) in (19b) becomes infinite as @ ap-
proaches zero, or equivalently, a approaches A. This is a
result of the no-slip boundary condition on the wallsaty = 0
and L,.

Now, because (19) and (20) are linear, the total
amount of tracer in the cell

4
Ang 0dA zJ f(a,t)da
)

must be related to the boundary condition on (20) by an
expression of the form

(20)

if a=A,

g(t) = f K(t— Dfindr, (22)
0

and in the early stages of the process, when most of the tracer
is still in regions where (21a) is accurate, we can find X (7).
Begin by introducing the Laplace transform

E’Ef e~ P9dt, (23)
0
and using

z=(4—a)/A (24)

as an independent variable. With (21a), the diffusion equa-
tion (19a) becomes
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pd=29,2""4,8, (25)
where

A=A/A «x/L? (26)
is an inverse time scale. The solution of (25) is

0 =Fp)A;[(p/A)"?2]/4 (0), (27)

where A4 | is the derivative of the Airy function. We can im-
mediately calculate

g=A™! J‘ da 8,
(1]

=(C Q) /3T @) /p)*f(p), (28b)

and now, because the Laplace transform of ¢% is
(1 4 a)p— ="', the convolution theorem gives

g= (3”31" (%)) -! i 1/3f (t—7) "3 f(r)dr,
0

which is the desired relation between the amount of tracer
within a cell and the boundary averaged concentration. In-
troduction of the Riemann~Liouville fractional integral

(28a)

(29)

I"fEl"(u)—'f (t— 1) Y(nydr (30)

0

puts (29) in a slightly more compact form,
g=(r(%)/r\(§)31/3u 1/311/3]; (31)

and emphasizes the connection of the present problem with
that in Ref. 7.

L. INTERCELLULAR TRANSFERS

The flux of tracer between two adjacent cells, say # and
n+1,1is

Ly
F= —KJ 6, dy. (32)
(¢]

This can be calculated explicitly using boundary layer theo-
ry. Perhaps the simplest illustration of this calculation is
obtained by supposing that in Fig. 2 the concentration along
the section A4 ', entering the boundary layer, is uniform and
equal to f,_ ,(¢). This is actually the case if L, is long
enough to ensure that the tracer profile leaving DD ” is well
mixed by the time it reaches 44°’. Because of the much
greater tracer content of the cell interior, this well-mixed
concentration will equal the concentration at the outer edge
of the interior. Likewise, in cell 7, the profile at 44 ” is uni-
form and equal to £, (¢). Precise estimates of how large L,
must be to ensure this simple, discontinuous entry profile for
the boundary layer are contained in Appendix C. In that
same Appendix we discuss the complementary case where
L, is so short that the profile at DD " is transported without
significant change to A4 . Using scale analysis, we conclude
that the transition between these two complementary limits
takes place when L, /L, = O(P;”).

Within the boundary layer the dominant balance in the
advection—diffusion equation is (A4), and the solution of
this is
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i

FIG. 2. A definition of the notation used to calculate the flux of tracer
between cell # and cell n + 1. There are boundary layers along the separa-
trices AB and CD.

O=3(fos1 + 1)+ 3 fo o —f)erf(), (33a)
n=g@ /\4ks, (33b)

where s = Ois the section 4 “AA4 ' at the mouth of the bound-
ary layer, and we have supposed that ¢ > Oincell n + 1 and
@ <0 1in cell n. Using (33) and the definition of s in (A3),
the flux in (32) is

F= — \/¢maxKLy/Lx(f;1+l —f;l)y (343)
¢ 1

y=_[ 2| v, d, (34b)
T Jo

where the dimensionless variables ¢, and v, are defined in
Fig. 1. In Shraiman? this flux is evaluated in the complemen-
tary limit where L, is so short that no mixing occurs as
tracer passes along the horizontal portion of the boundary.
The result is identical to (34a) except that

1 1
y=1.521 , —;J; v, dy, .

To summarize, the flux between cells is proportional to peri-
pheral concentration differences, £, , , — f,. It follows that
conservation of tracer is given by (7), with

§= 7/\/ meax/L iLy .

Finally, if the changes in f, between adjacent cells are
small, then (7) becomes

(35)

(36)

atg=chr ai./; (37)
where x = nL, is now a slow spatial scale and
Kqg=sL2,
= K¢maxLx/Ly (38)

is an effective diffusivity. Equation (37), together with

g(x,t) = f K(t — r)fix,7)dT, (39)
o

is the final, averaged description of the evolution of the trac-
er.

IV. ANOMALOUS DIFFUSION

In this section, we solve explicitly the two coupled equa-
tions [(6) and (8)] for the two unknown functions fand g.
We show that when the kernel has the form in (30), these
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equations indeed lead to an anomalous diffusion regime in
which space and time are related by x=~t% with
a= (1 — v)/2. In particular, the Green’s function for these
equations is computed and shown to depend on the similar-
ity variable 5 « |x|/¢ . With no-slip boundary conditions we
have shown in (29) that v = |, and so a = }. Consequently
the number of convection cells invaded by tracer grows as
¢ /3, Tt has also been argued that at later times (30) is invalid.
Physically, this occurs when tracer has enough time to in-
vade the whole roll and the kernel in (30) has to be replaced
by an exponentially decaying function of time. The case of a
modified kernel,

K(r) =TWw) ‘7" texp( —ur)

(with v = 1) that behaves like # ~%/? for short time and like
e~ “*for long time, is also studied. It is found that the anoma-
lous diffusion regime is replaced by normal diffusive behav-
ior at later times. The crossover regime is studied in some
detail.

Although the problem of interest in this paper corre-
sponds to v =}, other situations with different exponents
can be encountered, and so it is of interest to retain v as a
parameter. In particular, it is shown in Ref. 7 that similar
equations describe situations where dispersion in the x direc-
tion is interrupted by pauses or stops of random duration.
Thekernel in (39) is related to the probability distribution of
pause duration. In the present problem, the pauses are pro-
duced by tracer molecules wandering in the interior of con-
vection cells. It is not until their random walk across interior
streamlines returns them to the edge of the cell that they can
hop into an adjacent cell and so disperse macroscopically.

In the following, we work with rescaled versions of (31)
and (37), formed by introducing the dimensionless time and
space variables, respectively,

T=At [F3(§)/3F3(§)],
X=X(/1 /Keﬁ)l/Z[F3(§)/3r3(%)]1/2.
With this notation, Egs. (37) and (31) read

dr8=0xx f, (40a)
g=rI", (40b)
where
I'f= 1 rT(T—T)"‘ f(rydr (41)
T I(v) Jo '

We are interested in determining the Green’s function
for this problem and so we specify the initial condition
g(X,0) = 6(X). In physical terms, this corresponds to a roll
filled with tracer at 7" = 0, all the others being uncontami-
nated. Although the case of interest here is v =}, we will
solve the problem with an arbitrary v (subject to the restric-
tion 0 < v < 1). In the more realistic case, with the exponen-
tial damping in the kernel, (41) has to be replaced by

1
e

where p is a number of order 1. In our units, the damping
becomes effective when 7=1, that is, when tracer has

T
g= f (T— 1) 2Pe~#T=Dfrydr, . (42)
(4]
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enough time to completely invade a roll.
We start with the case 4 = 0. In order to solve Egs. (40)
we use the Laplace transform,

+ o
g(p) =f e ?Tg(TdT. (43)
0

The Laplace transform of I*f is simply the product of the
Laplace transform of f by p~*. After simple manipula-
tions, Eqgs. (41) and (42) become

gp)=p~7 (44)
Oxx f—p' ~F= —8(X). (45)
The solution of these equations can be readily obtained:

}-= (%)p(v-— 172 exp( —p~ (v—.l)/lé-),

g= (é)p— (v+1)/2 exp( _p—(v— l)/2§)’

(46)
(47)

where £ denotes the absolute value of X. In order to evaluate
the original functions, one has to perform the inverse La-
place transform of these two functions. The result is

+
f(é—,T) =4L dpp(vel)/zepT— §p"’ (483)
IT J - «
1 te a
fED = [ dppe- e, (48b)
4irJ_ o

where @ = (1 — v)/2. It is sometimes possible to express
these integrals in simpler terms. In fact, when v =} and
a = }, one can show that (48b) reduces to

g=109/T'"?4,1£/(3D)"?],

where 4, (z) is the Airy function. This Green’s function is
plotted as the solid curve in Fig. 3. However, for the general
case, it is more fruitful to use asymptotic methods such as the
saddle point method.® It is convenient to introduce first the
change of variables:

p — (éo/T)l/(l -a)u.
One then obtains

—+ oo
AETD) =—-—¥ (i)f du u %49,
4ir —w

T (48a’")

1 § e a— 1 w(u— u®
g(§,T)=—‘(—-) [a/(l—a)]f du u® et )
4iz \T e

(48b")
with o= (£/T°)"" ~ 2 In this form, it is obvious that the
functions fand g depend on the similarity variable w, with an
algebraic prefactor. The integrand that defines for g is of the
form A(u)exp(wg(u)), where g(u) = u — u®. At large val-
ues of w, the argument of the exponential has wild variations

in u. Therefore it is appropriate to use the saddle point meth-
od in this limit. The saddle point is defined by the condition

gu)=0 or u, =g, (49)

The saddle point is thus real and positive. The value of g at u,

18
qs=(1_a—l)us' (50)

In order to completely evaluate the integral, it is also neces-

Young, Pumir, and Pomeau 465

Downloaded 29 Jul 2002 to 132.239.127.60. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



tsg

FIG. 3. The rescaled Green’s function # '/%(g(#)). The solid curve is the ex-
act expression, (3*/3/2)4,(3%/*), and the dashed curve is the asymptotic
expansion in (53).

sary to compute the second derivative of ¢ at the saddle
point. The result is

(51)

Using standard results (8), one obtains the asymptotic
expression

g~ [T_a/z 17_(1 +,V)]1’(l—2a)/2(a—l)
Xexp[(l _a—l)”l/(l—a)]’

g’ = (1l —a)/u,.

(52a)

n=af /T*= (ou,)' ~ % (52b)

A familiar limit is v— 0 and @ — 4, so that (52a) becomes the
Gaussian

g~ (1/2JynT Yexp( — X ?/4T),
which is actually an exact expression for the Green’s func-
tion. In this case the kernel decays so quickly that there is no
anomalous regime. The complementary limit is v—1 and
a—0, so that

g~ (T ~*/2\2m) (T %/ a) ' 2e— 1 XVT",

It has to be noted that the limit ¢—0 is a little bit more
complicated. In fact, the limit formula obtained above is not
uniformly valid when @ —0. The reason is that at a fixed
value of w, when a decreases, the variations of the term wu“
become negligible compared to the variations of the algebra-
ic prefactor in the integral (48b"). It can be shown that the
saddle point method is correct as long as (af/T°)» 1.
When this is not the case, a better approximation of the inte-
gral is obtained by holding the factor exp( — wu®) fixed and
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equal to exp( — @), and computing the remaining integral
in u. The result is

g~ (T —¢/2)e~ 1XVT"

This result can be guessed in a simpler way. When v = 1, the
operator I*f is the operator of integration and Egs. (40a)
and (40b) can be integrated in a straightforward manner.

In between these two limits is the case v=1, a =],
where (52) reproduces the asymptotic expansion found in
Ref. 7, and the case most relevant to dispersion in convection
rolls, viz., v = a = |, for which

g~ (T Y3/4)J(3/m)yn~V* exp( — 29°'?).

The similarity variable, 7 = |X | /37 '/3, shows that the intu-
itive argument in Guyon et al.* and Pomeau et al.* correctly
anticipates the anomalous power law. The resultin (53) can
also be found from the previous analytic expression using the
standard asymptotic expansion of the Airy function. Figure
3 compares the asymptotic expression in (53) with the exact
result.

We now turn to the problem of the transition between
the short time, anomalous diffusion behavior and the long
time, purely diffusive behavior. The model kernel we choose
to treat this problem, K(7) = ['(v) ~!'7"~ ! exp( — u7), be-
haves like the kernel we just considered at short times, and
decays exponentially for times much larger than gz~ '.

There is one consistency condition that any model ker-
nel must satisfy. This is

(53)

Jw K(r)ydr=1,
0

so that if f(¢) is held constant, then g(z) will eventually
equilibrate at this same constant value. With the model ker-
nel, K(r) =T'(}) " '77*?exp( —pur). This consistency
condition implies 2 = 1. Nonetheless, it is convenient to re-
tain the parameter u in the following calculation. More com-
plicated model kernels might have an exponential decay
with some other e-folding time and the results below apply to
this case as well. Again, we treat the two coupled equations,
(40a) and

T
&) =f K(T = nfndr, (54)
0

using the Laplace transform. It turns out that the Laplace
transform of the modified kernel is particularly simple and
well suited for an analysis of our problem. Explicitly, the
Laplace transform of (54) is

g@) = (p+p) ~fp). (55)

Inserting this into the Laplace transform of (40), one ob-
tains [instead of (45)]

Oxxf —p(p + )~ F= — 8(X).

The solution of this equation, as well as an explicit expres-
sion for the Laplace transform of g, are readily obtained:

Fo.X) =1 p~12(p + p)"? expl — p'2(p + p) ~ %),
(57)

(56)

Young, Pumir, and Pomeau 466

Downloaded 29 Jul 2002 to 132.239.127.60. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Ew.X)=4p " (p+p) " exp(—p"*p + u) ~ %)
(58)

The inverse of the Laplace transform is found by inte-
grating these expressions along a path parallel to the imagi-
nary axis in the p plane:

+ o
f(§,T) =_1.f dpp_'/z(p +‘u)v/2
4irJ_ »

xXexp(pT — &' 2 (p+ 1) =),  (59)
1 + oo
g(&T) =ff dpp~ " (p+p)
dir J - »
Xexp(pT — £p'"*(p + u) ~ 7). (60)

As in the previous case, it is convenient to use the saddle
point method in order to evaluate the behavior of the
functions f and g. Again, we change variables:
p=wu(£/t*)"' == The integrals (59) and (60) become

_L E_)J+w —1/2 /l v/2
f(g’n_m(r | wwm Tt )

xexplou — u"*(u+ 1) "), (59)

a/(l —a + o
g(§,7’)=—1.—(£)/(l )f duu=""?(u+ A)"?

4imr \T
Xexplw(u — u'?(u + A) —*?)], (60")
where @ = (/- as before, and

A=p(&/T*)""" =2 Inthelarge o limit, one can again use
the saddle point method. In this instance, however, two dis-
tinct cases arise. Namely, the saddle point can be either large
or small compared to A. In the former case (u,>»A), which
corresponds to the ““short time regime,” one simply recovers
the previous results, whereas in the other case (u, €A4),
which corresponds to the “long time” limit, one obtains a
normal diffusion regime.

Let us consider first the short time regime (u,>A). In
this limit, one can forget about the A term in the expression
for fand g. The saddle point is therefore given by the equa-
tion already used before, and its value is u, = (@)1 ~=,
The  assumption u,»A  implies, that £/t
»2/(1 — v)u¥ '+ ¥ This is the quantitative way of defin-
ing the “short time limit.”

In the opposite limit, # has to be neglected relative to A
in the equation that defines the saddle point. The saddle
point is thus the solution of

di(u—u”’/{“”z)(u=us)=0, (61)

u
which gives u, = 14 ~". In order to be consistent, one has to
insist that u, €4; thatis, £ /2T < 1.4 ' +*. Now, the value
of the argument in the exponential at the saddle point is
equal to (u )£ %/4T. Last, the second derivative of the ar-
gument of the exponential is 2(73/£?). Again, using stan-
dard results about the saddle point method, one obtains

SET) =\ (w/4nT) exp( — (£ /4u*T)), (62)
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86T = (1/Va4mu'T)

Xexp( — (£%/4u"T)). (63)

Contrary to the “short time” limit, these functions de-
scribe a normal diffusion process, since the size of the invad-
ed region grows like 7"'/2. Indeed, the asymptotic expression
for g is nothing but the Green’s function for the heat equa-
tion, with a diffusion coefficient x*. This simple result can be
understood if one returns to (54) and considers processes
varying on a time scale no faster than unity. In this case, (45)
implies that f and g are proportional, and, therefore, they
obey an ordinary diffusion equation.

From our analysis so far, the results show that the solu-
tion has two distinct behaviors. When & /7> 1+ /2 (small
time limit), one expects anomalous diffusion, with the 7°'/3
power law. On the other hand, when £ /T<u* /2 (large
time limit), one recovers normal diffusion. It turns out that
the importance of these two regimes depends very much on
the time one considers. Indeed, the value of the exponentials
in fand g have the common value exp( — u7) when &/
T=u™* "7 Therefore, when T'<u ™", the anomalous law
is observable at large values of the space variable £, because
the functions f and g still have non-negligible values when
the transition between the two regimes occurs. On the other
hand, the normal diffusion law has little influence, since the
exponential decay is unimportant from £=0 up to
&= Tu®* P2 Inthe other case, where T'> 11—, the anoma-
lous diffusion is not observable, because the solution is com-
pletely damped before the crossover point is reached. In this
case the normal diffusive regime governs the dispersion of
tracer, as long as it takes significant values.

V. CONCLUSION

The phenomenon of anomalous diffusion has recently
received a great deal of attention. The role of trapping, or
very long correlation, has been discussed in detail, in partic-
ular in the context of condensed matter physics (disordered
materials).® In the hydrodynamic case, dispersion in a chan-
nel or tube with branching pipes can be shown an example,
where trapping leads to an anomalous diffusion, as recently
shown by one of us.” For stratified porous media, transverse
diffusion of particles may lead to very correlated particle
motion, and thus to an anomalous diffusion.

The present work offers another example that can be
worked out completely, and where anomalous diffusion is
expected as a transient regime, before normal diffusion takes
over. The ultimate diffusive behavior is already nontrivial,
since it involves an effective diffusion coefficient very much
enhanced, compared to the molecular diffusivity « (by a fac-
tor Pe'/2). This prediction, resulting from the work of Ro-
senbluth et ¢l.' and Shraiman® has been recently checked
experimentally.'® The new prediction here is that the num-
ber of invaded rolls grows as ¢ '3, for time 1< T, the diffu-
sion time. A crossover occurs at a time of order 7. Prelimi-
nary experimental results tend to confirm these
predictions. !
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APPENDIX A: DERIVATION OF EQ. (2.7)

We will begin by rewriting (1), using streamfunction @
and arclength / as coordinates. One finds

0. + g6, — k[ (VoV@)0,, + (2Ve-V))6,,

+ (VIVD O, + (V2¢7)6¢, -+ (VZI)G,] =0, (A1)
where ¢ = Vu? + v* = |Vg | is the fluid speed. When the Pe-
clet number is large, (A1) can be simplified to

0, + 46, — x(¢°6,, + $6,) =0, (A2)
where {= V2¢. In fact, in the center of the cell, the second
term in (A2) is larger than the others and its dominance
implies (13), i.e., at leading order the concentration is uni-
form around streamlines. At next order, all terms in (A2)
appear and (14) is obtained as a solvability condition for this
inhomogeneous problem. More details can be found in
Rhines and Young,’ and Fowler.®

In the boundary layer at the edge of the cell, the leading-
order balance is between the second and third term in (A2).
Introduction of the new variable

SEJ qdi, (A3)
simplifies this to
0, =«0,,,. (A4)

Now, at ¢ = 0, #is given by (12) and this is a periodic func-
tion of / or s. Averaging (A4) with respect to s yields

(A5)

or

is constant through the boundary layer. Thus at the outer
edge of the layer, where @ is uniform around streamlines,

o~ S$xadl
$qdl
which is the effective boundary condition for (14) atp =0.

(A6)

APPENDIX B: LOCAL ANALYSIS OF THE CELL
STRUCTURE

In this appendix we calculate the constant A in (21a)
using a local approximation of the streamfunction. We sup-
pose that this function has the form
P = Puax Py (X Vg )y X, =x/L,, y,=y/L,. (Bl)
As indicated in Fig. 1, it is easy to expand ¢ near the bound-
ary. The constants ¢, and ¢, introduced in that figure are
dimensionless. It may be helpful to refer to a specific model
streamfunction
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@ = Py Sin 7X, (1657 (¥, — 1)7), (B2)

for which ¢, =167, ¢,=32, {, =sinmx,, and v,
=y, (y, — D2
The travel time around an outer streamline is dominated
by the horizontal sections near the no-slip boundary. Hence
to leading order, when ¢ €@,

1 — 172 1
T(¢):(?02¢max¢) LXL,VJ; é-*—l/z dx*’ (B3)
and so from (18),
1 172
a(¢)=LxLy(1—f§;’/2dx*( 8¢ ) +)
0 CZ¢)max
(B4)

In contrast to the travel time, the circulation around an
outer streamline is dominated by the vertical portions of the
path, ie., if p<€@,.,,

C= §q dl,
maxL !
=~2¢, (¢J—L—’>fo Vy Ay,

so that in combining (B3)-(B5), the diffusivity in (19a) is
D(@a)=A(l —a/4)7},

8¢ ! 2t
AE(C_;)(I’ ;;I/de,) (L v, dy*)KLf,. (B6)

With the specific model in (B2), the dimensionless con-
stants are easily calculated and one has

A=1.164xL>2.

(BS)

(B7)

APPENDIX C: CALCULATION OF THE INTERCELLULAR
TRANSPORT WHEN L, /L, IS OF ORDER 1

In Sec. III we have argued that the effective diffusion
coefficient in the case of very elongated rolls (L, >L,)
should be given by (34a) and (34b). In this appendix the
range of validity of this calculation is examined, and the
complementary case, where the aspect ratio of the roll is
order 1, is considered.

Let us consider a steady, periodic, two-dimensional flow
pattern between rigid walls. The streamfunction ¢ is period-
icin the x direction with a periodicity L, , and there is no slip
at the walls located at y =0 and y = L. A passive tracer is
introduced in the rolls. The dimensionless parameters in this
problem are the aspect ratio of the rolls, § = L, /L,,and the
Peclet number, P, = ¢, ,, /k, where « is the diffusion coeffi-
cient of the tracer we are considering.

We are concerned here with the large Peclet number
limit. In Sec. III we have distinguished the case where the
aspect ratio /3 is large. The range of validity of the calcula-
tion in Sec. III is examined. We consider a steady solution
where a concentration gradient is imposed in the cell. The
enhancement of diffusivity results from the boundary layers
in between rolls, where transport is enhanced by large (lo-
cal) concentration gradients. The use of (A4) as a starting
point in the calculation leading to the flux expression [ (34a)
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and (34b)] rests on the hypothesis that the gradients are
concentrated in a narrow boundary layer. If the boundary
layer width is §, the flux of tracer between rolls, — xf8, dy,
isoforder «6(L,/8). Inorder to estimate the boundary layer
width, a dominant balance argument can be used for the
advection—diffusion equation: u-V8 = «V?6. Along the sep-
aratrix, the u*V6 term is of the order of magnitude v,6 /L,
=@max 0 /(L,L,). The order of magnitude of the diffusive
term is given by x6,,,, (1/6°,1/L}). Assuming that §<L,,
we find =L, (B/P,)"*. Therefore the calculation present-
ed in Sec. III requires B < P,.

The approximation made in the evolution of the flux in
(33a) and (33b) is that the horizontal length of the rolls is so
large that the tracer is completely mixed during its passage
along the wall, before it reaches the separatrix (see Fig. 2).

. In the other limit, where S~ 1, no mixing occurs and the
concentration profile remains unchanged as one goes along
the horizontal plate. In order to estimate precisely for which
aspect ratio the mixing becomes important, we again use
dominant balance arguments.

In the limit where a boundary layer builds up along the
separatrix, it is a simple matter to evaluate the width of the
layer in which concentration gradients are localized right
after the turn. If one assumes, as is justified in Rosenbluth et
al.! and Shraiman,? that diffusion is not effective during the
turn, concentration simply follows the streamlines around
the corner. Now, the boundary layer width
8=L,(B/P,)" right before the turn becomes, after the
turn, 8, = L,(1/BP,)"/*. This width has to be compared
with the layer where diffusion plays a role. Taking into ac-
count the no-slip condition at the walls, the advection—diffu-
sion equation takes, along the boundaries y = 0,L,, the fol-
lowing simpler form:

¢*x* gy* - ¢*J’* 9“* = (B /P" )ey* Fa?

469 Phys. Fluids A, Vol. 1, No. 3, March 1989

Pu = 5c2yi§¢ (x-t )s

where the notation in Fig. 1 has been used. A dominant bal-
ance in this equation shows that diffusion is important in a
thin layer of width 8, = L, (8/P,)"/*. Therefore this diffu-
sive layer has a negligibly small width compared to the size
of the layer that carries the tracer, when &, €5, that is,
when S <P!”7. When 8> P!, the distance between the
walls is so large that mixing makes the tracer concentration
profile uniform before it reaches the separatrix, as assumed
in Sec. III. In the opposite case, when 8 <P}, the layer
where molecular diffusion is important is much smaller than
the region of fluid that carries tracer.
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