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ABSTRACT

Two models of advection-diffusion in the oscillatory, sheared-velocity field of an internal wave are dis-
cussed. Our goal is to develop intuition about the role of such currents in horizontal ocean mixing through
the mechanism of shear dispersion. The analysis suggests simple parameterizations of this process, i.c., those
in Egs. (7), (36) and (42). The enhanced horizontal diffusion due to the interaction of the vertical diffusion
and vertical shear of the wave field can be described by an “effective horizontal diffusivity” which is equal
to the actual horizontal diffusivity plus a term equal to the mean-square vertical shear of horizontal dis-
placement times the vertical diffusivity, provided the vertical length scale of the horizontal velocity field is
not too small. In the limit of small vertical length scale the expression reduces to Taylor’s (1953) result in
which the effective horizontal diffusivity is inversely proportional to the actual vertical diffusivity.

The solutions also incidentally illuminate a variety of other advection-diffusion problems, such as unsteady
shear dispersion in a pipe and enhanced diffusion through wavenumber cascade induced by steady shearing
and straining velocity fields.

These solutions also serve as models of horizontal stirring by mesoscale eddies. Simple estimates of
mesoscale shears and strains, together with estimates of the horizontal diffusivity due to shear dispersion
by the internal wave field, suggest that horizontal mesoscale stirring begins to dominate internal-wave-shear
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dispersion at horizontal scales larger than 100 m.

1. Introduction

The aim of this paper is to examine some simple
advection-diffusion models with the goal of devel-
oping intuition about the role of sheared oscillatory
currents in horizontally mixing tracers in the ocean
interior. The velocity fields considered are so simple
that the advection-diffusion equation can be solved
exactly; we hope that our principal conclusions apply
to the more complicated velocity fields associated
with internal waves and inertial oscillations.

It may be that the horizontal mixing of tracers
produced by the combined action of internal-wave
vertical shear and vertical mixing is significant in
both deep-ocean and shelf regions and may provide
an effective mechanism for horizontally dispersing
tracer anomalies on length scales which are so small
that the vigorous mesoscale stirring is unimportant.
Another goal of this presentation is to estimate the
length scale at which this mesoscale stirring begins
to dominate internal-wave-shear dispersion. The so-
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lutions of the advection-diffusion models discussed
here suggest simple parameterizations of these pro-
cesses.

Besides the real-space phenomenon of shear dis-
persion our solutions also illustrate an important re-
lated process in Fourier space, viz., the cascade to
higher wavenumbers and the consequent enhanced
dissipation produced by the shearing (and straining)
of tracers by a large-scale velocity field. This process
is important even on basin scales; it is the mechanism
by which peak concentrations are reduced. The ul-
timate problem is to predict the statistics of tracers
in oceans with turbulence, waves and mean circu-
lation all included. In addition to the.goal of under-
standing the interaction of turbulence and mean flow
in shaping tracer distributions, one wants to know
the sampling variability to be expected with turbu-
lence of known intensity.

The theory of shear-flow dispersion began with
Taylor’s (1953) realization that the sheared velocity
profile in a pipe or channel would interact with cross-
channel diffusion to produce an augmented along-
channel dispersion. In this way a vertical sheet of
dye is deformed by the shear and mixed vertically,
producing a spreading plug of dye, almost uniformly
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distributed across the channel, which moves down-
stream at the cross-channel averaged velocity. The
length of the plug increases as the square root of
time so that the interaction of the vertical diffusion
and vertical shear can be parameterized as an “ef-

fective horizontal diffusivity”’. Remarkably, this dif-

fusivity is inversely proportional to the actual mo-
lecular diffusivity and is several orders of magnitude
larger. Since Taylor’s work the subsequent devel-
opments have relied heavily on the simplifying ap-
proximations he introduced to obtain an analytic so-
lution. These approximations amount to assuming
that the tracer is almost uniformly distributed across
the channel; thus Taylor’s theory applies only after
the initial distribution of tracer has had sufficient
time to spread across the channel.

The moment method of Aris (1956) and Saffman
(1962) is not subject to the same limitations as Tay-
lor’s approximate theory and in principle it can pro-
vide precise information about the time evolution of
certain integral moments (such as center of mass and
moment of inertia) of tracer distributions. However,
in previous geophysical applications, the limitations
of Taylor’s simpler theory have not been particularly
restrictive because attention has been confined to
. shallow systems such as estuaries and streams (e.g.,
Fischer et al., 1979). An exception is Csanady’s
(1966) study of shear dispersion in an Ekman layer;
because the region is semi-infinite, Taylor’s theory
does not apply and the moment method is used.

In this article we shall discuss some models of
shear dispersion in an infinite region. These models
may qualitatively describe processes in the ocean in-
terior where the shearing (and straining) of internal
waves and mesoscale currents can amplify smaller
scale diffusive processes. The first model we discuss
is so simple that the advection-diffusion equation can
be solved exactly. This observation was first made
by Townsend (1951) and was first exploited in the
context of shear dispersion by Okubo (1967); our
analysis builds on their discussion.

This tractability arises from two idealizations:

1) The region is infinite so it is not necessary to
satisfy no-flux boundary conditions.

2) The horizontal velocity field is a linear function
of the vertical coordinate.

In discussing horizontal shear dispersion by internal
waves the second idealization is potentially mislead-
ing: it is observed that the horizontal velocity fields
of inertial oscillations have a jagged vertical struc-
ture with many sign reversals. Accordingly it is nec-
essary to supplement the exact solution with an
approximate analysis of shear dispersion by a hori-
zontal velocity field with an oscillatory vertical struc-
ture. It is found that the exact solution, based on the
above idealizations, is misleading if the vertical dif-
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fusivity is sufficiently large or the vertical length scale
of the horizontal velocity sufficiently small. With rea-
sonable values of the vertical diffusivity in the ocean
we can then estimate the vertical wavenumber above
which internal waves do not cause significant shear
dispersion.

In Section 2 we introduce the first model of ad-
vection-diffusion in an oscillatory shear flow. In this
model the horizontal velocity depends linearly on the
vertical coordinate. This problem is solved exactly
using an advected coordinate system. The form of
the solution motivates the introduction of an “effec-
tive horizontal diffusivity” which is equal to the ac-
tual horizontal diffusivity plus a term which arises
from the interaction of the vertical shear and vertical
diffusivity. This result is dlso derived heuristically
using a simple geometric argument.

In Section 3 we discuss shear dispersion in an os-
cillatory horizontal velocity field with a sinusoidal
vertical structure. If the vertical length scale of the
velocity field is sufficiently large one recovers the
same effective horizontal diffusivity as in Section 2.
In the other limit, when the vertical length scale of
the velocity field is small, one recovers Taylor’s
expression for the effective horizontal diffusivity of
a steady shear flow.

In Section 4 we discuss shear dispersion by the
internal-wave field and give some numerical esti-
mates of the effective horizontal diffusivity based on
an empirical vertical-shear spectrum. Our estimates
indicate that the horizontal diffusivity is ~1000
times the vertical diffusivity. - .

In Section 5 we discuss advection-diffusion prob-
lems in which the velocity field is steady but has some
simple spatial structure, such as a pure shear or
strain. These models may be relevant to the meso-
scale-eddy field rather than the rapidly changing in-
ternal-wave field. In any case it is important to re-
alize that in an unbounded medium (ie., in
configurations where no-flux boundary conditions are
not imposed) steady and oscillatory velocity fields
may produce qualitatively different dispersion.

Finally in Section 6 the relative strengths of shear
dispersion by internal waves and mesoscale eddies
are compared. We conclude that the mesoscale stir-
ring becomes important at surprisingly small hori-
zontal length scales (~100 m).

2. A model equation and its solution

The model advection-diffusion equation we will
solve in this section is

8! + uax = ’70xx + KaZZ 9 (1)
(2

At first this initial condition might seem strange since

0(x, z, 0) = coskx cosmz.
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6 is negative. However, this is a Fourier component
from which more general initial conditions can be
built. Moreover, we can of course add a constant to
it so @ is positive everywhere. The velocity field is

= az Coswt,;

more general fields are considered in Sections 3 and
5.In (1) and (2) x and z are horizontal and vertical
coordinates,  and « are horizontal and vertical dif-
fusivities and 6 is the tracer concentration. Previous
work on this model equation in a bounded region
using Taylor’s method is summarized by Fischer
(1976) and Fischer et al. (1979). Bowden (1965)
first considered alternating currents in the context
of tidal mixing in a shallow channel; time dependence
of the shearing current is obviously a desirable fea-
ture in a model of shear dispersion by an internal
wave. The steady limit, w — 0, is an important special
case and is qualitatively different from the unsteady
case.

This model equation has also been discussed by
Chatwin (1975) and Okubo (1967), who in principle
solved it exactly. Okubo, however, limited his treat-
ment to a discussion of the first few moments of the
tracer distribution. Kullenberg (1972) extended
Okubo’s analysis and provided observational confir-
mation of the basic effect. We will also present an
exact solution using a different method which has
the advantages of exposing the structure of the so-
lution more clearly and being physically motivated.

a. The case m = 0

For simplicity we shall first solve (1) and (2) with
m = 0 so that 6 is initially independent of z; the case
m # 0 is more complicated algebraically and is
treated at the end of this section. First note that the
solution of (1) and (2)if =k =01is

0 = coskx,

(3)
(4)

The variable X is an advected coordinate; it is the
initial position of the particle which is at x at time
t. The solution (3) is simply a statement that when
there is no diffusion each particle retains its initial
value of 6.

Now suppose 7 and « are nonzero. The exact so-

lution can be found by looking for a solution of the
form

where
X = x — (afw)z sinwt.

0 = A(1) coskx, (5)

where 4(0) = 1. When (5) is substituted into (1)
one finds
d
d—l;! = —[nk* + kk*(a/w)? sin’wt]A.
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The solution of this simple differential equation is

g = exp{—nkzt - YakkHa/w)?

X [t - szwt]} coskx. (6)

A is plotted as a function of time in Fig. 1. When
(a/w) is sufficiently small A(zr) is essentially a de-
caying exponential with small “bumps” due to the
sin2wt in (6).

The solution (6) shows that the interaction be-
tween the shear flow with the vertical diffusion pro-
duces an “effective” horizontal diffusivity

ne = 1+ (ajo) 7

(the limit w — O is singular and is discussed in the
Section 5).> Eq. (7) is one of the most important
results in this study; it is implicit in the expression
for the increase of the second moment given by
Okubo (1967) and has been noted and applied by
Garrett and Loder (1981).

b. A different initial condition

In order to illustrate the role of the effective hor-
izontal diffusivity more clearly we use Fourier anal-
ysis to solve (1) with a more interesting initial con-
dition

™
0(x, z, 0) = — exp(—x?/4a?)
2a

= f exp(—a’k?) coskxdk. (8)
0

Since (6) is the solution of (1) with coskx as an initial
condition, from (8) the solution with a Gaussian in-
itial condition is

0(x, z, t) = f exp(—a*k?) exp[—n.k*t
0

+ Yak(a/ w)?k*(sin2wt /2w)] coskXdk

Vr

Y exp(—%2/4a%),

where X is defined in (4), %, in (7) and

& = a® + nt — Vax(a w)(sin2wt [ 2w). 9)

*Dr. R. Smith (1982a) has observed that if the velocity field
in (1) is altered by replacing w? by wt + ¢ then 5. —  in (7) is
increased by the phase dependent factor (1 + 2 sin’p). With ¢
# 0, however, the particles do not oscillate symmetrically about
their initial positions and the increase in the diffusivity can be
thought of as vertical diffusion due to the mean z-structure of the
tracer distribution. This process is physically distinct from shear
dispersion and in any case is absent from the more realistic problem
discussed in Section 3.
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FiG. 1. The amplitude 4 in (5) as a function of the nondimensional time
= at. For simplicity n = 0 so that the decay is due solely to the interaction of the

shear with the vertical diffusivity.

Eq. (9) shows clearly how the width-squared of the
Gaussian distribution of tracer increases linearly
with time in a manner consistent with the interpre-
tation of 7, as an effective horizontal diffusivity. Note
that even if the actual horizontal diffusivity 7 is iden-
tically zero the combination of a shear current and
vertical diffusion produces horizontal spreading.

¢. A geometric derivation of (7)

There is a simple physical argument which also
gives result (7) and so provides some useful insight

FI1G. 2. (a) The initial configuration of a fluid element. The 6-
isopleths are vertical. (b) At some later time the square is distorted
by the shear flow into a trapezoid. The 6-isopleths make an angle
B8 with the horizontal.

into the process of shear dispersion in an oscillatory
flow.

Consider a fluid element that initially has a square
cross section in the x-z plane (see Fig. 2). The shear
flow subsequently deforms it into a trapezoid. We
shall calculate the vertical flux of  through the face

"bounded by AB.

First 'observe that -

[vertical flux through AB] = —« %g

(10)

a0
fa— — t
K o cotf,

where 8 is the angle the tilted §-isopleths make with
the horizontal. :

Second the line segment AB is extended so that
there is a greater area for the vertical flux of 6:

[length of AB] = [initial length of AB] csc8. (11)
Third,
[projection of vertical §-gradient onto the
normal to AB] = cos8. (12)

il

To calculate the integrated vertical flux through
AB we multiply (10), (11) and (12) together to ob-
tain .

. a6
[integrated flux through AB] = —« o cot?8.  (13)
Finally, noting that

a
cotf = — z sinwt
w
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and time-averaging (13) over a period, a(0)=1 and bH(0) =0, (16)

[average integrated flux through AB] where X is defined in (4). When (15) is substituted
2 into (1), the resulting evolution equations for @ and
1 (a) 00 b are
=——{—Jx—.
2\w/ 9x da
= = &2 &
Adding this to the flux due to the actual horizontal gz, ~ [(m? + kZ.7) + nk?)a + 2umkz.b, - (17)
diffusivity, —nd0/dx, shows that the combination in
(7) appears naturally as an effective horizontal dif- db = —[k(m? + K*%.2) + nk*]b + 2«mkz.a. (18)

fusivity. dt
d. The case m 50 The above are s1mzl:ﬁed to
We now turn to the solution of (1) and (2) when _ d_a = 2kmkx,b, (19)
m # 0. The algebra here is a bit involved but the t
principal conclusion is easily summarized: the hori- db _ . 20
zontal dispersion of the tracer field is consistent with ar 2kmkX.a, (20).
the intex"pret.at.ion of Me in (7) as an effective hori- by introducing
zontal diffusivity provided ,
kmkajw? < 1. 4= exp[f {k(m* + K*%2) + nkz}dt’:la, (21)
0
Since this condition can be rewritten as .
m (oM o _ b= exp[f {k(m* + K*%.2) + nk*}dt ’]b. (22)
) o Sl
a/\k
. . Now observe that (19) and (20) have a first integral
and low diffusivity and high frequencies are the most s R
interesting cases, Eq. (14) is not a very restrictive d* - b* = constant,
condition on the aspect ratio of the initial condition. = 1 from (16), (21) and (22),
e. Details of the solution with m = 0 which can be used to put (19) in the form
. . da
It is easy to see that the solution of (1) and (2) + = 2kmk%.dt.
has the form Va2 —1

0 = a(t) coskX cosmz + b(t) sinkx sinmz, (15) Integrating the above and using (21) and (22) we
have finally

a = exp[—(n.k*t + km?t) + Yaxk*(a?/w?) sin2wt] cosh[2kmk(a/w?)(coswt — 1)], (23)
b = exp[ As Above ] sinh[ As Above 1, (24)

where 7, is defined in (7). Note how (23) and (24)
reduce to (6) when m = 0. If (14) is satisfied then tion (14), 5. in (7) is an effective horizontal diffu-
a(t) in (23) is essentially a decaying exponential with ~ sivity for initial conditions with m = 0.

an e-folding scale’ of (n.k* + xm?)™' while b(¢) is

small for all time. Thus, subject to the mild restric- f. Elliptically-polarized horizontal-velocity fields

To complete this section we discuss the solution

of
0, + ub, + v0, = n(8,, + 6,,) + «b.. (25)
6(x, y, z, 0) = coskx cosl(y - g z sin¢) , (26)
(u, v) = [az coswt, Bz cos(wt + ¢)]. 27)

Elliptically polarized velocity fields like (27) are
characteristic of internal waves. Note in the initial initial positions. This device removes the mean ver-
condition (26) that the y-structure is contrived so tical structure which gives rise to the phase-depen-
that the particles oscillate symmetrically about their dent effects referred to in the earlier footnote. As in



520

the previous example we define advected coordinates
X =x— (a/w)z sinwt
§=y— (B/w)z sin(wt + ¢)] ’
and look for the solution of the form
6 = A(t) coskx cosly.

The algebra is straightforward and almost identical
to that of the previous example. One finds that the
horizontal spread of the tracer is characterized by
a diffusivity tensor

'- It A A
Xz

X.y. 0
2 S
| X9, 7. 0 #

B 1{a) 1{apB
n+ ==« S\ cos¢x
_ 2 \w 2\w
= 1 aﬁ . 1 6 2 ’ (28)
_5 (;‘2) cosgx 7n+ E (;) K
where overbar is an average over a period. Thus if

6 denotes the period-averaged tracer distribution,
then

Ne =

8, = V-(n.V0),

where V = (3/9x, d/dy).

We expect inertial oscillations to make the dom-
inant contribution to 7, in (7) and (28) because they
combine the highest vertical shears a with the lowest
frequencies w. Since inertial oscillations are circu-
larly polarized, ¢ = w/2 in (27), #. is a diagonal
tensor and 8 obeys a simple isotropic diffusion equa-
tion.

3. Shear dispersion in a flow with sinusoidal vertical
structure '

As mentioned at the end of the last section, Eq.
(7) suggests that inertial oscillations will be the most
important part of the internal-wave band as far as
shear dispersion is concerned, because they combine
the smallest frequencies with the largest vertical
shears.

The strongest objection to inserting numerical es-
" timates of o and w directly into (7) is the jagged
vertical structure of inertial oscillations. Observa-
tions show that there is vertical structure down to
scales of a meter or less.

To address this objection we will use the moment
method to solve (1) with

U = Uy COSMZ COswt. (29)

Before becoming involved in the algebra we will state
our principal conclusion; the effective horizontal dif-
fusivity due to the interaction of the velocity field in

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 12

(29) and vertical diffusivity is

()
e =n+—-1— ’
Te =T 4(w 1 + k2

_ l m2u02 l K
R )[1 ) G

where «, is a nondimensional vertical diffusivity and
m, is a nondimensional wavenumber

(30a)

or

Ky = km*/w,

(31a)
my = wx . (31b)

When «, < 1, Eq. (7) is recovered if we interpret
o as the mean-square vertical shear, %2m?u,’. On the
other hand if x4, > 1 we find 5, — 7 is inversely
proportional to «, a result strongly reminiscent of
Taylor’s (1953) steady-pipe-flow theory. The result
(30) will be discussed more thoroughly at the end
of this section. Smith (1982b) has also noted the

.importance of the nondimensional number «, in the

context of oscillatory shear dispersion in bounded
regions such as tidal estuaries.
a. Analysis of (1} and (29) using the moment method
We will suppose that the initial condition is
o(x’ z, 0) = 00(x);

where 6y(x) decreases to zero as |x] — co; z-depen-
dent initial conditions are easily treated. Indeed it
is worth remarking that since the problem we are
solving is linear the vertically integrated evolution
of the initial condition above is the same as the ver-
tically integrated evolution of problems whose initial
conditions satisfy

Oo(x) = f 0(x, z, 0)dz.
We will use the notation
(a) = f adx.

It follows from (1) that

(8 = #(0).. (322)
(x0), = k{x8),. + u{8), (32b)
(x*0), = k(x*0),, + 2u(xf) + 2n(0), (32c)

and so on for the higher moments. Because the ve-
locity field is independent of x the moment hierarchy
is closed and can be solved sequentially.

The solution of (32a) is

BXz,t) = f_ ) 8o(x)dx = constant,
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and substituting this into (32b) gives
(x0, — k(x0),, = u{f) cosmz coswt.
The solution of the above is

(x6>/<8)

= (4o/w)(1 + x4%)™" cosmz[ky coswt + sinwt]

+ (an exponentially decaying transient), (33)

where «, is defined in (31).

Note that because of the diffusivity the velocity
of the center of mass of the tracer distribution is out
of phase with the velocity field in (29). This phase
lag is vitally important when we come to consider
the evolution of the second moment, {x?§). Substi-
tuting (33) into (32c) yields

(x%0), — k(x?0),, = 2{0)(u*/w)(1 + xs?)!
X cos’mz coswt[ky coswt + sinwt] + 27(6>. (34)

Eq. (34) can easily be solved exactly by decomposing
the forcing term on the right-hand side into its fun-
damental z and ¢ Fourier components and using lin-
ear superposition. However, if one’s sole interest is
‘in how rapidly the dominant horizontal length scale
of the distribution is expanding, it suffices to consider
the zero-frequency components of the right-hand
side. Thus

(x*0)/{8) = [Va(uo?/w)ra(1 + k42" + 29]t

+ [harmonic contributions]. (35)

Eq. (35) shows that the effective horizontal diffusiv-

ity is
(o)
=g+ :
e =1 4(w 1+ k2

b. Various limiting cases of (36)

(36)

For orientation it is instructive to consider (36) in
three different regimes

2
ke €1 momp+ ('_"ﬂ) X, (37a)
2w
=1 mmnd l/s(uo)(ﬁ‘—’) . ()
(6]
Up 2
kx> 10 g, >q+ (é;) kL (37¢)

Eq. (37a) is the result obtained in Section 2 if
o? is identified as the mean-square shear, Yam?uy2.
In this limit the 6 value of a particle is approximately
constant over a period and horizontal dispersion is
due to the mechanism discussed physically in Sec-
tion 2.

We picked k4 = 1 in (37b) because x4 (1 + x42)7!
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achieves a global maximum here. In this case the
effective horizontal diffusivity is proportional to the
product of a particle excursion distance, uow™' and
a particle velocity u,. Thus simple mixing-length the-
ories may give misleading results since their quali-
tative and quantitative validity requires that the dif-
fusivity be neither too great nor too small.

Eq. (37¢) is essentially Taylor’s expression for the
dispersion coefficient in steady pipe flow (note 7,
— 7 is inversely proportional to «). The physical ex-
planation of this surprising result is well known: in
this limit the vertical diffusivity is so strong that a
particle loses its value of @ almost as soon as it is
horizontally displaced. The enhanced horizontal dis-
persion is due, however, to the small excursion that
is possible before # changes. The smaller the vertical
diffusivity, the greater this excursion and the larger
the horizontal dispersion. The pipe-flow analogy is
discussed further below.

c. Some remarks on shear dispersion in pipes

The reduction of (36) to Taylor’s pipe-flow for-
mula when k, > 1 is not a coincidence. If 4 is in-
dependent of z initially then the velocity field (29)
is such that 0,(x, z, t) = 0 at z = 0 and = /m. Thus
the problem discussed in this section can also be in-
terpreted as shear dispersion in pipe. The walls of
the pipe are at z = 0 and =/m where (29) auto-
matically ensures that the no-flux boundary condi-
tions are satisfied.

This interpretation is additional motivation for
considering shear dispersion in the velocity field (29).
Previous studies of unsteady shear flows (Fischer et
al., 1979) in pipes have used the velocity field of
Section 2. Since the no-flux boundary conditions are
not automatically satisfied the algebra is much more
complicated and the final expression for », must be
evaluated numerically. By contrast (36) is transpar-
ent and the limits x, — 0 or oo are easily extracted.
This last point is important since there is some con-
fusion in the literature about the limit x, — O.
Fischer et al. (1979) simply state that the dispersion
coefficient is zero in this limit. The actual answer is
given by (7) or equivalently (37a) and explained
physically in Section 2. To apply the physical ar-
gument in situations where either the velocity field
or the initial tracer distribution has nontrivial ver-
tical structure one assumes that as fluid particles are
swept backward and forward their § value is essen-
tially unchanged over a period. This assumption be-
comes invalid when «, = O(1) and not surprisingly
the effective diffusivity is no longer given by (7).

d. Shear dispersion in a random velocity field

Using the moment method it is straightforward to
extend the previous results to the case where u(z, )
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FI1G. 3. A schematic illustration of the empirical shear spectrum
(adapted from Gargett et al., 1981). Only wavenumbers < m,
contribute significantly to shear dispersion. The low (m°) and in-
termediate (m™') ranges are universal to within a factor of 2 when
scaled by the local buoyancy frequency (numerical values shown
here are for N = 2.3 cph).

is a stationary random function of z, i.e.,
: [+o] O §
u(z, t) = f dm f dwVs[u(m, w)etm=—«"
— 0

(38)

The ensemble-average mean-square current (which
can be taken as a space or time average if the waves
have random phase) is

+ (complex conjugate)].

u= f dmf do'au(m, w)u*(m, w),
© 0

= J:o dm J:o dwE(m, ), (39)

where the overbar is an ensemble average. The so-
lutions of (32a, b) are {f) = constant and

(x8 = (6) f_ Z dm fo " doth(mt? + o)

X [(mPk + iw)u(m, w)e™ Y + (c.c.)]. (40)

To obtain the evolution equation for (x4, substitute
(40) and (38) into (32c) and ensemble average. The
key ingredient is

W8 = (6) fo " dm fo " dom
X (m* + W) E(m, o) (41)

and the final expression for g, is

n: = (x*0)/21(6),

=11+f dmf dwm’®x
o Jo

X (m** + w?) 'E(m, w).

(42a)

(42b)
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Assuming horizontal isotropy this may be written as

ne=n+f dmf dwx
(4] (V]

X (m** + w?)""48(m, w), (42¢)

where S(m, w) is the spectrum of vertical shear of
both u and v.

4. Estimates of 7, from vertical-shear spectra

In this section we present some straightforward
estimates of 7, as given by (7), (36) and (42). Our
calculation is based on the empirical vertical-wave-
number spectrum of horizontal shear given by Gar-
gett et al. (1981).

a. Description of the shear spectrum

We assume that the shear spectrum is separable
(as in most representations of the internal-wave field)
with

S(w, m) = Sl(m)(%)(w2 - A",

for f<w<N,

as in the GM models (e.g., Munk, 1981). For N/f
> 1, as we assume, [ Nf 'S(m, w)dw = S,(m). For
S,(m) we adopt the empirical spectrum of Gargett
et al. (see Fig. 3), i.e.,

A, my>m>0
Sy(m) = { (43)

A(mo/m), my > m>m,
leaving S,(m) unspecified in the dissipation range m
> m,. ‘

b. The transition wavenumber m, = (f/x)'”?

Besides m, and m,, another important landmark
in spectral space is the wavenumber at which the
transition between the two limits (37a) and (37¢)
occurs. This wavenumber is

my = (f/x)'/* =3 rad m™,

and f=10"%rads™,

if x=10"m™

corresponding to
Ax =27 /my =2m.

Because the shear spectrum S;(m) monotonically
decreases if m < m,, and because of the term m* in
the denominator of (42), we expect that only wave-
numbers <m, will contribute to horizontal shear
dispersion. This expectation is confirmed by the'cal-
culation in the next subsection.
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¢. Calculation of n, from (42) and (43)
Substitution of (43) into (42c) gives

N © '
Ne =1+« f dw f dm(w? + m*?)™!
i 0

X (fr~ "W w? ~ )V 20718 (m).

In principle there is no difficulty in doing the integral
above exactly using S,(m) from (43). However it is
much simpler to observe that if

m > my = (f/x)'/?

then the integrand is very small. Thus we obtain an
adequate estimate of 5, by using the approximation

(0 + m*) ! = w2

and the result
f N
_f (w2 _ fZ)—l/Zw—3dw ~ %f—l’
™ Jf
to reduce the expression to
m,
e =1+ Y%xf? |  dmS\(m),
V]

=9+ Y%Axf2mo[1 + In(my/mo)].  (45)

Note that the effective horizontal diffusivity depends
only on the quasi-universal parameters 4 and m,.
Taking N

A~2X10"*scpm)!, f~ 107*s!

my =~ 0.1 cpm, K ~ 107> m? s"}
gives
. — 1~ 0.013m?s™' =~ 1300«.

Apart from the logarithmic correction in (45), 7.
— n is directly proportional to «x. This shows that
horizontal shear dispersion by the internal-wave field
is dominated by the Okubo mechanism discussed in
Section 2, rather than Taylor’s mechanism which
would lead to an inverse dependence on «. The one
point to note is that o? in (7) is not the total mean-
square shear, but rather the mean-square shear in
vertical length scales larger than A,.

d. Some remarks on 1. in the deep ocean.

The preceding calculation was based on vertical
shears observed in the mid-thermocline (recall N
=4 X 1073 s~! = 40f). Deeper in the ocean the mean-
square shear scales like N2, and the vertical wave-
number like NV, in the sense that

S(m, w; N) = (N?/No*)S(w, m(No/N); No).

However, Gargett et al. (1981) claim there is still
a kink at m, = 0.1 cpm and the Richardson number
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based on the total shear at wavenumbers <m, is con-
stant and close to 1. This suggests that in the deep

ocean
N 2
Ne — M= ? K,

as claimed by Garrett and Munk (1972) with the
same physical process in mind but without the sup-
porting calculations.

e. Significance of steady shear dispersion.

There are other processes of course which produce
enhanced horizontal spreading. One that is easily
accessible using the arguments developed in this ar-
ticle is steady vertical shear due to mesoscale cur-
rents or finestructure in the temperature-salinity
fields. It is straightforward to repeat the calculation
of Section 2 with a velocity field of the form

= az + o'z coswt.

If o' > & one finds that the width of a Gaussian stripe
initially increases as ¢'/? because of the oscillatory
component but at

L~ @1 (inertial shear)(inertial period)
mean shear 27 ’

aw

the persistent mean shear begins to dominate and
produces a t¥/? expansion as in Section 5. If we as-
sume that the mean shear is due to mesoscale eddies
and take @ ~ 107*s'and o/ ~ 5 X 1073 57!, we
find t ~ 6 days. If significant quasi-steady horizontal-
velocity exists at the scale of a few meters due to
finestructure production, the relevant a might be
considerably larger than the above estimate, and the
steady-shear-dispersion results correspondingly more
important.

5. Steady velocity fields: a comparison of shear with
strain

In this section we shall discuss diffusion in steady
velocity fields. This limit (w — 0) is probably more
appropriate as a model of horizontal dispetsion by
the mesoscale eddies. Indeed, a strong motivation for
considering the steady limit is to determine the hor-
izontal length scale below which the mesoscale eddies
effectively act as steady shears and strains. We also
use the results of this section in the conclusion to
estimate the horizontal length scale at which the iso-
tropic diffusion due to internal-wave-shear dispersion
is as strong as mesoscale shear and strain distortion.

The solution of (1) when w = 0 can be found by
simply taking the limit w — 0 in (6). Note how the
first term in the Taylor series expansion of sin2wt

cancels and we are left with
6 = coskxX exp(—nk’t — Yska?k2t?), (46)

(47)

X =x— azt.
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F1G. 4. The growth and eventual decay of the average squared § gradients in a

steady shear flow for different values of the nondimensional diffusivity x, = k*ka™".

As t — oo the above solution decays much more
rapidly than (6), because the steady velocity field,
unlike the oscillating field, persistently increases the
@ gradients and enhances the diffusion. This point is
illustrated more graphically when we consider the
evolution of the “Gaussian stripe” initial condition
(8). The solution is

0(x, z, t) = 5"; exp(—%?/442), .

where £ is given by (47) and

a* = a® + gt + ket (48)
The above result is for a “stripe” initial condition,
which is the same as the vertical average of a “spot™.
However, Smith (1982a) has noted that at any given
level for a “spot” release the width of the tracer has
variance @® + 9t + (1/12)ka?s>. As stressed by Okubo
(1967) it is impossible to define an effective hori-
zontal diffusivity in this steady-shear-flow problem
since it is clear from (48) that the patch expands
much more rapidly than can be explained by an or-
dinary constant Fickian diffusivity. Saffman (1962),
using the moment method, found a similar £*/2
growth in the width of a cloud released at ground
level into a semi-infinite atmosphere in which the
velocity increases linearly with z.

Coincidentally the #*/? expansion of the length
scale in (48) is identical to that predicted by Rich-
ardson’s “neighbour separation” theory of relative
diffusion in a turbulent flow. In this turbulence prob-
lem the faster-than-z'/2 spreading occurs because a
larger range of eddy sizés can act on the patch as

its scale increases. This mechanism is very different
from that in (48) where the #*/2 behavior is produced
by vertical diffusion from faster flowing regions into
slowly flowing levels. The point is that one should
not be too hasty in attributing #*/2 patch growth to
relative diffusion, for a steady shear flow is capable
of producing the same behavior.

a. Wavenumber cascade and enhanced diffusion in
a steady shear

To quantify the notion that the shear flow ampli-
fies the @ gradients until the enhanced diffusion
rapidly destroys them it is informative to compute
the x-average average of V4 -V¢:

1 L
V6-V8) = lim — ve.v
4 » = lim L, 0dx

L—c

W1 + (at)?] exp(—29k*t — Y%ka?k?t?).  (49)

The right-hand side of (49) is plotted as a function
of the nondimensional time 7 = (at) in Fig. 4. The
initial growth and eventual decay of the # gradients
is as expected. This figure is a vivid example of the
distinction made between mixing and stirring by
Eckart (1948). The initial growth in thé mean-square
gradients is due to stirring while the rapid decay is
due to molecular mixing enhanced .by advection.
What is not so obvious physically is what determines
the time 74 = at, at which the averaged squared
gradient is a maximum. From (49) it easily follows
that

7o — (ne + ka7 (1 + 7%%) = 0, (50)
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where
7% = nk*/a and k4 = kk*/a

are nondimensional diffusivities (not to be confused
with the «, defined in Section 3). If 7, = O(xy) and
kg < 1, the relevant solution of the quartic is

Te = kg3 — %K*(l + Z—*) + O(«¥?).
*

Reverting to dimensional units the above is

1/3
aty = (%) + smaller terms. (51)

The Y%-power in (51) can be explained physically
by forming the equation for the time rate of change
of {(V8-V86). From (1) one has

(%VO-V0Y, + a(6,8,) = —1

(V8.-V0,> — x(V8,-V8,), (52)
where the angle brackets denote a spatial average.
The first term in (52) increases initially because the
shear creates some 6, and so the second term grows.
Eventually, however, the third and fourth terms dom-
inate and the first term decreases. The maximum
value of (V8-V8) is then achieved when the second
and fourth terms have equal magnitudes. The time
at which this occurs can be estimated using the fol-
lowing relations which apply at ¢ — co:
3 a

—~k —~V~ kat.
ox 0z ke

1t follows that
(0,8, ~ ak*at),
k(V0,-V8,> ~ (at)'ck®,

when the right-hand sides of the above are equated,
(51) is recovered. Note that if one naively estimated
t, as the time at which the shear time scale o’
equaled the diffusion time scale based on the de-
creasing length scale of the tracer distribution,
[k(kat)’]™!, the answer, at, = (a/xkk?)'/?, would be
wrong; see (51).

It is interesting to calculate ¢, from (51) for num-
bers typical of the mesoscale eddy field. As a typical
shear, suppose the velocity changes by 10 cm s™! in
100 km; then

a~ 107657,

For «, suppose that the mesoscale eddies “feel” an
effective horizontal diffusivity due to shear disper-
sion by internal waves. The calculation in Section 4
gives

k=1,~ 001l m?>s7};
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hence for a 100 km wide patch of tracer
_ 2z
10°m

or I, ~ 5% months,

k implies at, ~ 13.5

while for a 5 km patch
2w

k= i0m

implies at, ~ 4

or ty ~ 1% months.

Thus, the temporal variability of the mesoscale
eddies is significant for tracer anomalies with hori-
zontal length scales of 100 km since it takes a steady
shear field ~6 months to amplify the gradients to
the point where diffusivity arrests the wavenumber
cascade. On the other hand, tracer anomalies with
length scales <5 km are so small that their mean-
square gradients peak and decay before the meso-
scale field changes significantly.

These estimates are based on the effects of a steady
shear “orthogonal” to the tracer; they will have to
be revised in the light of a steady strain model dis-
cussed in the next subsection and also in situations
where the tracer has become uniform along stream-
lines (as in a well mixed eddy).

b. Wavenumber cascade and enhanced diffusion in
a steady strain

This completes our discussion of diffusion in a
steady shear. To conclude this section we will con-
trast this solution with one previously discussed by
Townsend (1951), Batchelor (1959) and Phillips
(1977) for diffusion in a steady strain. There are
important qualitative differences between the two.
Consider the pure straining field

(u,w) = (Bx,—Bz) and B8>0.
The passive tracer 6 satisfies

6, + Bx0, — Bz6, = 7V, (53)

where for simplicity we have assumed an isotropic
diffusivity. To solve (53) we begin by setting 7 = 0.
The solution of the resulting advection equation
which satisfies the initial condition (2) is

0(x, z, t) = cos(ke x) cos(me’z). (54)

Note how the strain increases the z wavenumber ex-
ponentially with time; the shear only produced a
growth linear in time. In such a strain field the par-
ticle paths, (x, z) = (x0e™®, z,¢®), imply a one-par-
ticle diffusivity

1d

3 g L= x) +(z— 20)’] ~ Bzo’e*,
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if Bt > 1. The two-particle diffusivity, which is

1d

2 dt —[(x; — xY + (2, — z)? 1

corresponding to particles 1 and 2, is also propor-
tional to e?* if Bt > 1. Similar exponential particle
separation is found in the inertial range of two-di-
mensional turbulence. Thus, exponentially growing
two-particle separations are not necessarily due to
turbulent eddies of many sizes.

To solve (55) with 5 # 0 we look for a solution of
the form

0(x, z, t) = A(t) cos(ke Px) cos(me®z). (55)
When (55) is substituted into (53) and the resulting

equation for A is solved there results

8(x, z, t) = exp{% [K(e™ — 1) — mP(e* — 1)]}

2
X cos(ke #x) cos(me’’z) — exp{—(’—g%)ez"‘}

X cos(ke ®x) cos(me®z) as (56)

Comparing (56) with (46) it is clear that straining
ficlds are much more effective than shearing fields
at producing transfers to high wavenumbers and en-
hancmg diffusion. One method of quantifying this
is to calculate (V6. V0) from (56); for simplicity we
suppose m = k, in which case

(V- V8) = Y2k cosh(2pt)

2
o (2

t— 0.

) sinhzﬁt] . (57

This exhibits the same qualitative behavior as (49),
an initial increase to a maximum followed by a rapid
decrease to zero. The time at which the gradients are
largest when 7k?/8 < 1 is

2Bty = In[8/9k’] + (smaller terms),  (58)

which should be compared to (51). In contrast to the
shear problem ¢, in (58) is equal to the time at which
the time scale 37' of the strain equals the diffusion
time based on the length scale of the tracer,
[kk?e**]7. If o~ and B8~' are comparable time scales
we see that (V@-V0) peaks at a smaller time in a
straining field. To emphasize this point we will again
estimate ¢, using values of 8 and 75 typical of the
mesoscale eddies. Taking 8 ~ 107¢s™!, » = 0.01 m?
s7! and k = 27/10° m, one has from (58)

~ 4 X 10° s ~ 2 months,
while for k = 27/5 X 10° m
te =~ 2 X 10°s ~ 3 weeks.
Thus at length scales of 100 km the difference in 7,
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between a shearing and straining field is significant,
although in both cases ¢, is so long that temporal
variability is probably important. The reduction in
t, at length scales of 5 km is less marked although
still present. Our earlier conclusion that anomalies
on these small length scales cascade through wave-
number space and then suffer accelerated diffusive
decay in a “frozen” mesoscale field is reinforced. One
should note, however, that this calculation may over-

. estimate the efficacy of “strain” dispersion since its

hyper-exponential time behavior relies in part on the
large velocities as |x| and |z| — oo. It would be in-
formative to investigate a model containing both
shear and strain (e.g., ¥ oc sinx sinz) numerically. -

6. Conclusion

In this article we have been primarily concerned
with parameterizing the horizontal mixing due to the
interaction of vertical mixing with the vertical shear
of inertial oscillations [see (42)]. The simple exact
solutions and geometric argument of Section 2 are
intended to make this weighted integral of the ver-
tical-shear spectrum comprehensible in physical
terms. The most optimistic interpretation of our re-
sults is that the effective horizontal diffusivity so cal-
culated is that which is “felt” by the turbulent me-
soscale eddy field. This naive notion was used in
Section 4 to argue that the temporal variability of
the mesoscale becomes important for tracer anom-
alies with length scales =5 km. Below this scale
tracer anomalies cascade through wavenumber space
and suffer enhanced diffusion in a “frozen” meso-
scale field.

To conclude we will estimate the horizontal length
scale at which the horizontal stirring due to turbulent
geostrophic eddies balances horizontal diffusion due
to inertial oscillations. To see what is meant by this
imagine releasing a very small blob of passive tracer.
Initially the blob expands due to the shear dispersion
mechanism,

da
dt

where a? is the mean square width of the patch.
When the patch reaches a certain transition scale,
however, the mean-square width increases exponen-
tially due to the turbulent mesoscale
@ _ -
2 ke

- 21’2 ’ (59)

(60)

where u is related to the rms strain rate of the me-
soscale. [For a review of the arguments leading to
(60), see Kraichnan and Montgomery (1980).] Float
data (based on separations >30 km) analyzed by
Price (1981) suggest p is somewhere between 2
X 1077 s7! and 107% 57! in the western Sargasso Sea.
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If we assume the vertical diffusivity is 107> m? s™!

then the calculation in Section 4 based on the em-
pirical vertical shear spectrum gives 5, = 1072 m?s™".
The transition scale between (59) and (60) is esti-
mated by equating the right-hand sides. One finds
(a?)'/? is between 100 and 500 m. Thus mesoscale
stirring begins to dominate at surprisingly small
length scales. This small transition scale does not
imply that inertial shear dispersion is unimportant
since we hypothesize that it is the endpoint of the
cascade of tracer variance through wavenumber
space. The physical-space equivalent of this cascade
is a well-known tendency of two-dimensional velocity
fields to “tease” passive scalar fields (and vorticity)
out into filaments. This process is arrested by 7,
which prevents the straining velocity from compress-
ing the width of the filaments below the transition
scale (u/7.)'/* ~ (9./1)"/* ~ 100~500 m.
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