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Abstract 

Results showing the evolution of the wave spectrum in finite depth, fetch limited conditions are 
presented. The data were obtained from a series of eight wave gauges established in shallow Lake 
George, Australia. The data are well modelled by the previously proposed TMA spectral form and 
clearly show the transition of the spectra from deep water to depth limited conditions. The TMA 
parameter of (Y is found to be a function of the non-dimensional wavenumber, K but the spectral 
peak shape parameters of y and CJ appear uncorrelated with K. The parameter y is shown to be a 
function of both non-dimensional fetch, x and non-dimensional depth, 6. In severely depth limited 
conditions y becomes solely a function of 6, increasing in magnitude as 6 decreases. Hence, 
depth limited spectra could be expected to be very peaked compared to deep water counterparts. 

1. Introduction 

Young and Verhagen (1996) (henceforth referred to as Part 1) described a field 
experiment aimed at determining an understanding of the fetch limited evolution of 
surface gravity waves in water of finite depth. In Part 1, a detailed description of the 
experiment and data processing was presented, along with an investigation of the fetch 
limited development of the total spectral energy and peak frequency. It is the aim of this 
paper to present results detailing the evolution of the one-dimensional, finite depth 
spectrum with fetch. 

Investigations of the evolution of deep water fetch limited spectra are now relatively 
common. In contrast, the case in waters of finite depth is markedly different. Although 
there have been reported studies of the spectra of wind generated waves (as opposed to 
swell), to the authors’ knowledge, there have been no studies of spectral evolution under 
well defined fetch limited conditions in water of finite depth. 
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The data from the present Lake George experiment (see Part 1) provide the first 
opportunity to investigate the detailed form of the finite depth spectrum and its evolution 
with fetch. 

The arrangement of the paper is as follows. Section 2 presents a review of previous 
investigations of fetch limited spectra in deep water with the limited extensions to finite 
depth conditions. Section 3 briefly describes the present experiment and data processing. 
In order to investigate an appropriate functional form for the recorded spectra, a 

preliminary analysis of the decay of the high frequency portion of the spectrum as a 
function of frequency is presented in Section 4, followed by the fitting of a full spectral 
form to the data in Section 5. The evolution of the spectral parameters obtained in 

Section 5 is investigated in Section 6. The consistency of the derived spectral form with 
the integral results of Part 1 is investigated in Section 7. As with previous studies of this 
type, there is significant scatter in the derived spectral parameters and a detailed error 

analysis is presented in Section 8, to determine the sources of this scatter. Finally 
conclusions are presented in Section 9. 

2. Fetch limited spectral evolution 

2.1. Deep water 

Based on the pioneering dimensional analysis investigation of the high frequency 
spectral form by Phillips (1958), Hasselmann et al. (1973) proposed the JONSWAP 
spectral form to approximate fetch limited spectra recorded in the North Sea, 

f7(f)=~g~(2~)-~f~exp q $ 

-4 
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where F(f) is the one-dimensional spectrum and f is frequency. The JONSWAP form 
(1) is defined in terms of the four spectral parameters, f,, IX, y and CT. The JONSWAP 
form was an extension of that originally proposed by Pierson and Moskowitz (1964) for 
fully developed wind sea spectra. The last term in Eq. (l), modifies the Pierson- 
Moskowitz form for fetch limited conditions. Hasselmann et al. (1973) found that the 
peak frequency, fp and the “Phillips’ parameter”, (Y varied as a function of the 
non-dimensional fetch, x = gx/u*, where x is the fetch, u is a measure of the wind 
speed and g is the gravitational acceleration. The shape parameters, y and o, however, 
exhibited no trend as a function of x. As a result Hasselmann et al. (1973) adopted their 
mean values y = 3.3 and a = u, = 0.07 for f<f, and u = u,, = 0.09 for f>f,. 

The validity of the Phillips (1958) high frequency form F(f) af5, upon which the 
JONSWAP form is based, has been questioned by numerous authors (e.g. Toba, 1973; 
Kitaigorodskii et al., 1975; Mitsuyasu et al., 1975; Forristall, 1981; Kahma, 1981; 
Kitaigorodskii, 1983; Battjes et al., 1987; Resio, 1987; Donelan et al., 1985). These 
studies yielded a variety of powers that described the high frequency tail of the spectrum 
with exponents varying from - 3.5 to - 5.0. In a detailed field study of deep water fetch 
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limited spectra, Donelan et al. (198.5) presented data supporting an exponent of - 4.0. 
Based on these data, they proposed the spectral form (modified version of JONSWAP) 

F(f)=c~g~(2a)-~f~f;;'exp - i 

-4 
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Due to the difficulty of determining the fetch, x accurately, Donelan et al. (1985) 
parameterized the spectral parameters of Eq. (2) in terms of the inverse wave age, 
cT,O/Cp, where U,, is the wind speed measured at a reference height of 10 m and Cp is 
the phase speed of components at the spectral peak frequency. They found that cx , y and 
the non-dimensional energy, E = g2E/lJi scaled in terms of U,,/C . The final 
parameter u was determined such that the total spectral energy, E = jF(fPdf obtained 
from the spectral form (Eq. (2)) was equal to the observed relationship between E and 

UK&,. 
Although the results of Donelan et al. (1985) suggest a high frequency form 

proportional to f4 rather than f5, the debate still continues as to the most appropriate 
form. Hasselmann et al. (1973) first speculated that it was the process of nonlinear 
interactions which was responsible for the existence of the ordered high frequency tail. 
This was confirmed by Young and Van Vledder (1993) who clearly demonstrated the 
shape stabilizing influence of nonlinear interactions within the spectrum. In a more 
detailed study Banner and Young (1994) confirmed that the nonlinear terms were 
dominant but also showed that the other processes of atmospheric input and “white-cap” 
dissipation were also significant in determining the detailed form of the high frequency 
spectral tail. Banner (1990) has presented stereo-photographic data which suggests that 
the universal high frequency form exists in the wind direction slice of the wavenumber 
spectrum. Hence, the form of the frequency spectrum will depend on the directional 
spreading as well as the peak enhancement (value of y), as this controls the degree of 
Doppler shifting of the high frequency components in the spectral tail. 

These considerations cast some doubt on the existence of a universal shape of the 
form f” for the high frequency region of the frequency spectrum, even in deep water. 
Nevertheless, the very significant composite data set suggests the exponent is between 
-4and -5. 

2.2. Finite depth water 

In contrast to the wealth of observed deep water fetch limited spectra, the data set in 
finite depth situations is very small. The well known fetch limited finite depth field 
experiments of Lake Okeechobe (U.S. Army Corps of Engineers, 1955; Bretschneider, 
1958) and Lake Marken (Bouws, 1986) reported only on the development of the integral 
spectral properties of total energy and peak spectral frequency (see Part 1). 

The most comprehensive study of finite depth wave spectra is that of Bouws et al. 
(1985, 1987). This study considered the, so called, TMA data set, comprised of 
measurements made at coastal sites during three separate field experiments (TEXEL - 
Dutch North Sea; MARSEN - German Bight; ARSLOE - US east coast). In all 
cases, the spectra could be described as wind sea spectra, in that no significant swell was 
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present. As no clear fetch could be delineated in many of the cases, it is difficult to 
determine whether they were fetch limited. Following Kitaigorodskii (1962) and Kitaig- 
orodskii et al. (1975), they assumed that a universal spectral form existed in the 

wavenumber spectrum given by 

F(k) = qk-3qk,fp,d) (3) 

where F(k) is the wavenumber spectrum, k is the wavenumber and * is a non-dimen- 
sional shape function which approaches one for k * k, where k, is the wavenumber of 
the spectral peak. When converted to a frequency spectrum using linear wave theory, 
Eq. (3) produces a form with a variable high frequency exponent. In deep water it will 

be - 5 and at the shallow water limit - 3. 
Assuming a shape function of the JONSWAP form (Hasselmann et al., 19731, Eq. (3) 

produces a frequency spectrum of the form 

E(f) = ag2(27r-4f5exp q f 

-4 
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Eq. (4) was termed the TMA spectral form by Bouws et al. (1985). Disregarding the 
shape function in Eq. (31, Bouws et al. (1985) determined an approximation to the total 

spectral energy 

E= 
/ 0 

=F( k)dk = ;1;xk-3dk 
P 

Introducing non-dimensional variables, Eq. (6) can be integrated to yield 

(6) 

CY 
E= _-K-* 

4 (7) 

where K = lJ,i k,/g is the non-dimensional peak wavenumber, E = Eg2/U:, is the 
non-dimensional energy and k, is the wave number of the spectral peak. Bouws et al. 
(1985) demonstrated that Eq. (7) was a good approximation to the observed data, 
supporting the applicability of the TMA form, Eq. (4). 

Bouws et al. (1987) examined the evolution of the spectral parameters, (Y, y and cr. 
They found that (Y was an increasing function of K although there was significant scatter 
in their data. They approximated this relationship by a power law. In a similar fashion to 
JONSWAP (Hasselmann et al., 1973) the peak shape parameters y and o exhibited 
significant scatter with no clear trends. 

A further application of the general theory of Kitaigorodskii (1962) was applied by 
Miller and Vincent (1990). Rather than adopting the km3 scaling of Eq. (3), they 
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proposed a form proportional to k-2.5 which transforms to a deep water frequency 
spectrum proportional to f 4. This form was compared with data from the Corps of 
Engineers Field Research Facility on the east coast of the United States. They found that 

this form, when transformed to frequency space (termed the FRF spectrum), modelled 
the data equally well as the TMA form. They also found that the spectral parameters of 
(Y and cr were relatively constant for this spectral formulation. In addition, a correlation 

existed between y and the wave steepness (A = G/L,, where E is the total energy 
and L, is the wave length of components at the spectral peak). It should be noted, 
however, that A has only a relatively small dynamic range for typical condition and 
hence such a correlation should be treated with some caution. 

An alternative approach has been proposed by Thornton (1977) in which the wave 
celerity is the governing parameter at high frequencies. Using similarity arguments a 
general spectral form is derived which is of the form f5 in deep water and f3 in 
shallow water. These asymptotic limits are consistent with Kitaigorodskii (1962). 

3. Data selection and processing 

A full description of the present experimental configuration and instrumentation used 

is contained in Part 1. In summary, however, the experiment consisted of the measure- 
ment of water surface elevation and wind speed and direction at a series of eight stations 
with fetches ranging from 1.3 km to 16 km in a lake of relatively uniform water depth of 
approximately 2 m. In the present paper only data for which the wind direction was 
within 20” of the array alignment has been considered. In this manner slanting fetch 
conditions have been excluded. In addition, only cases for which the wind speed and 
direction are relatively constant have been retained (see Part 1 for details). 

I- 

f (Hz) 
Fig. 1. Zwarts pole transfer function obtained by oscillating the sensing element vertically in still water. 
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The water surface elevation was measured at each of the stations using surface 
piercing Zwarts poles (Zwarts, 1974). Thirty minute time series were recorded for each 
of the poles, leading to time series of 14,400 points. The time series were sub-divided 
into 256 point sections, passed through a Hanning window, and energy spectra deter- 
mined using ensemble averages of the sub-divided time series. The resulting spectra 
have 112 degrees of freedom, a Nyquist frequency of 4 Hz and a frequency resolution of 

0.031 Hz. 
The construction of the Zwarts poles consists of two concentric tubes with holes in 

the outer tube allowing water to enter the sensing annulus. The restriction to flow 

represented by the holes and the physical size of the pole (outer diameter 50 mm) 
obviously degrades instrument performance at high frequencies. During the instrument 
design phase a series of dynamic calibrations were conducted to optimize the number 
and configuration of these holes. Poles were oscillated vertically in still water using a 

pulley and eccentric cam system whilst the position of the pole and the output from the 
pole were coincidently logged. The results of these calibrations for the final hole 
configuration are shown in the transfer function of Fig. 1. Fig. 1 shows that the transfer 
function is relatively flat for frequencies less than approximately 1.2 Hz but rapidly 
decays above this point. 

As there was some doubt as to whether oscillating the poles in still water accurately 
represented the flow experienced by the poles, in situ comparisons were performed 
against twin wire resistance waves gauges. The wave gauges were sampled at the higher 
rate of 20 Hz to also investigate whether aliasing effects were significant at the lower 8 
Hz sampling rate used for the Zwarts poles. A total of 18 intercomparisons were 

1.2’ 

01 
0 1 2 3 4 5 6 7 

f/f, 

Fig. 2. Zwarts pole transfer function obtained from insitu comparisons with a twin wire resistance gauge. 
Results are presented in terms of .f/JP. The dashed line represents the polynomial approximation used during 

the data reduction procedure. 
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conducted at wind speeds ranging from 5 m/s to 14 m/s. Intercomparison of the 

resulting transfer functions showed that the frequency response was poorer than indi- 
cated by the laboratory dynamic calibrations. In addition, the transfer function was not 
simply a function of frequency. Over the wide range of conditions tested, the transfer 
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Fig. 3. An example of the development of the wave spectra with increasing fetch. The stations are labelled S 1 
to S5 (increasing fetch, see Part 1). Spectral evolution at fetches larger than S5 is very small and hence these 

spectra have been omitted for clarity. The case shown is for a northerly wind measured at S6 of U,, = 10.8 

m/s. Panel (a) shows a linear scale whilst panel (b) is a logarithmic scale. 
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functions appeared to depend on the position of the spectral peak, and could be 
expressed in terms of f/f,. We attribute this to the fact that it is the vertical velocity of 
the water surface that limits the instrument performance. The high frequency waves are 
superimposed on the longer waves near the spectral peak. Thus the local water surface 
slope (and the vertical velocity) is influenced by all spectral components, not simply a 
single spectral component as assumed in the laboratory tests. The transfer function, 

averaged over all 18 tests and scaled in terms of f/& is presented in Fig. 2. The transfer 
function was represented by a polynomial approximation as shown in Fig. 2. At 

frequencies above 5fp output from the Zwarts poles appeared flat, indicating an upper 
frequency limit to instrument response. To account for the frequency response of the 
poles, all recorded spectra were corrected using theipolynomial approximation to the 
transfer function and truncated at 5fp. 

Fig. 3 shows a typical example of the measured spectral evolution. The case shown in 
Fig. 3 was for a northerly wind of 10.8 m/s as measured at Station 6. As shown in Part 
1, the wind speed increases down the fetch as an internal boundary layer develops over 
the aerodynamically smooth lake surface. The spectra of Fig. 3 clearly show the 
self-similarity of the spectra previously observed in deep water studies. The increase in 
total energy of the spectra and the migration of the spectral peak to lower frequencies 
are clearly evident in this figure. As observed in deep water, the high frequency portion 
of the spectrum appears reasonably well approximated by a relationship of the form 
F(f) af”. Close examination of the spectra, however, suggests that n may change with 
increasing fetch (see Section 4). 

4. High frequency region 

For frequencies above the spectral peak frequency, fp, the JONSWAP form (Eq. (1)) 
yields the result F(f) af5 and the Donelan et al. (1985) form (Eq. (211, F(f) orf4. 
The TMA form (Eq. (4)), yields a high frequency form which has a variable exponent of 
f, increasing in magnitude with increasing f. To investigate the most appropriate high 
frequency spectral form, an equation of the form F(f) = Pf” was fitted using the 
method of least squares for the spectral region f> 2fp. The fit was applied to all 
(approximately 1,000) spectra in the north/south data set. Rather than the exponent 
being a universal constant, as predicted by either Eq. (1) or Eq. (2), it appeared to vary 
as a function of non-dimensional fetch, x and non-dimensional depth, 6. The values of 
the resulting exponent, n are shown in Fig. 4 as a function of x. The data have been 
partitioned into two ranges: S = 0.1-0.2 and S = 0.5-0.6. The results show that at short 
non-dimensional fetch, n is approximately equal to - 5. As the fetch increases the value 
of the exponents changes and at the longer non-dimensional fetches n approximates - 3. 
At short non-dimensional fetch, the waves are in deep water, the effects of finite depth 
increasing as the non-dimensional fetch increases and the waves develop. Hence, the 
gradual decrease in the magnitude of the exponent appears to be associated with the 
effects of finite depth. This is further supported by the fact that for the same value of x, 
the deeper data (larger S> yield values of n of larger magnitude than the shallower data 
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Fig. 4. Values of the high frequency exponent, n @q. (8)) as a function of non-dimensional fetch, x_ Data for 

two ranges of non-dimensional depth, 6 are shown, 0.1 < 6 < 0.2 (dots) and 0.5 < 6 < 0.6 (crosses). The solid 

lines are visual trend lines showing the decrease in the magnitude of n as finite depth effects become more 

significant. 

(smaller S). As S increases, finite depth effects will only become significant at larger 

values of x. 

5. Finite depth spectral form 

As outlined in Section 4, the data suggest that the high frequency exponent varies 
with water depth. Such a result is consistent with the proposed TMA spectral form 
(Bouws et al., 1987). Other spectral forms based on the general JONSWAP shape can 
also be proposed with a variable high frequency exponent. One generalized form is 

F(f) = ,g2(2p)-4&(5+“‘f”exp ; + 

-4 
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For n = -5 this result reduces to JONSWAP, (I), whereas for n = - 4 it yields the 
form of Donelan et al. (19851, Eq. (2). Both Eq. (8) and the TMA form (Eq. (4)) will be 
investigated as possible representations of the measured spectra. 

A variety of techniques have been proposed for fitting the multi-parameter, non-linear 
forms represented by Eq. (4) or Eq. (8) (Gunther, 1981; Battjes et al., 1987; Donelan et 
al., 1985). All of these methods have involved the use of piecewise techniques where 
each of the spectral parameters are determined separately. An alternative approach is to 
use a multi-parameter, non-linear least squares curve fitting technique (e.g. the Leven- 
berg-Marquardt method, Press et al., 1986) and determine all the parameters simultane- 
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ously. In an ideal situation, where the spectrum conforms perfectly to the proposed 
spectral form, both approaches will yield identical results. In reality, measured spectra 
are prone to sampling variability and the fitting technique must recover the spectral 

parameters in the presence of this sampling “noise” and with spectral data defined on a 

relatively coarse frequency grid. 
In order to investigate the most appropriate technique, a Monte-Carlo simulation of 

the proposed techniques was performed. A mean spectrum of the TMA form (Eq. (4)) 
was defined with spectral parameters typical of those for the present situation. The 
spectrum was defined on the same discrete frequency grid resulting from the Fourier 
analysis used to determine the measured spectra. Each of the ordinates of this analytical 
spectrum was allowed to vary about the mean value whilst following a chi-squared 
probability distribution with 112 degrees of freedom (typical of recorded spectra, see 

Section 3). In addition, the discrete frequency grid was varied by an amount Af 
assuming a uniform distribution (see Young, 1996). A total of 10,000 realizations of the 
spectrum were generated following this approach and the ability of the curve fitting 
techniques to recover the know spectral parameters investigated. 

Fig. 5 shows the results for each of the techniques in the form of distribution 
histograms. It is clear that the multi-parameter fit yields results which are unbiased and 
symmetrically distributed about the mean values. In contrast, the piecewise technique 
(Donelan et al., 1985) yields results which are marginally biased. In the mean it yields 
values of a which are approximately 3% to small and y which are 12% to high. 

Consequently, the multi-parameter technique has been adopted for the remainder of this 
analysis. 

Both spectral forms, Eq. (4) and Eq. (8), were fitted to all spectra in the north/south 
data set. An indication of how well these spectral forms approximate the observed 
spectra can be obtained by determining the following rms error statistics 

(9) 

(10) 

where N specifies the number of spectral bands in the analyzed spectra and P is the 
index number of the frequency band of the spectral peak. The quantity e, is defined as 

F,(fit) - F,(data) 
e; = 

Fi( data) (11) 

where F&fit) indicates the ith spectral ordinate of the analytical spectral form fitted to 
the data and F;;i(data), the corresponding ordinate of the measured spectrum. 

Eq. (9) gives an indication of how well the analytical form approximates the data 
over the full spectrum, whereas Eq. (10) indicates the appropriateness of the fit in the 
high frequency region. When averaged over the full 1,000 spectra in the data set, Eq. (4) 
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Fig. 6. Values of the non-dimensional energy, E as a function of the quantity, (YK~*, The solid line is a least 

squares fit to the data (Eq. (12)) whereas the TMA form (Eq. (7)), which ignores the contribution of spectral 

enhancement, is shown by the dashed line. 

(i.e. TMA) yielded values of E, = (I.24 and E, = 0.19 compared to Eq. (8) with 
E, = 0.37 and E, = 0.36. Eq. (8) has one more free parameter (n) than Eq. (4). Despite 
this, the error statistics indicate it is a poorer approximation to the data than the more 
constrained TMA form (Eq. (4)). This is a clear indication that the high frequency 
spectral region of these finite depth spectra is not well approximated by a form f”, 
where n is a constant. Due to the CD term in Eq. (4), the resulting high frequency 
exponent is frequency dependent, increasing in magnitude with increasing frequency. 
Hence, it can be concluded that the TMA spectral form (Eq. (4)) is a better approxima- 
tion than a form with a constant exponent high frequency region (i.e. JONSWAP, 
Hasselmann et al., 1973; Donelan et al., 1985 or even a general form such as Eq. (8)). 

Further evidence that the observed spectra are well represented by the TMA form is 
provided by Fig. 6 which shows the non-dimensional energy, E as a function of the 
quantity ci K-~, where (Y and K were determined from the multi-parameter fit of Eq. (4) 
to the observed spectra. Based on Kitaigorodskii (1962) scaling, and disregarding the 
contribution of peak enhancement to the total spectral energy, Eq. (7) indicates 

Fig. 5. (a) The distribution of values of the spectral parameters for Eq. (4) obtained from a Monte-Carlo 

simulation with a piecewise fitting technique (i.e. parameters are titted successively). Panel (i) shows o(, (ii) 

&,, (iii) y. The parameter cr is not shown as it was considered constant in this fitting process. b. The 

distribution of values of the spectral parameters for Eq. (4) obtained from a Monte-Carlo simulation with a 
simultaneous multi-parameter fitting technique. Panel (i) shows 01, (ii) &, (iii) y and (iv) D. 
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E a cx K-‘. The data are remarkably well approximated by this relationship (see Fig. 6) a 

regression analysis yielding 

E = 0.14( (YK-2)o.9’ (12) 

The above results provide strong support for a wavenumber spectral form F(k) a km3 

and its transformation to a frequency spectrum with the TMA form as the appropriate 
spectral function in water of finite depth. 

6. Evolution of spectral parameters 

Based on the wavenumber scaling arguments implicit in the TMA spectral form, 
Bouws et al. (1985, 1987) speculated that the spectral parameters should be functions of 
the non-dimensional wavenumber, K. To investigate this dependence with the present 
data set, the spectral parameters of (Y, y and u are presented as functions of K in Figs. 
7-9, respectively. As with previous studies of spectral evolution, there is significant 
scatter in the data. This feature is investigated with a detailed error analysis in Section 8. 

Within the data scatter, a relationship between 01 and K is clear, with (Y an increasing 
function of K (see Fig. 7). A least squares fit to the data yields the power law 

relationship 

CY = 0.009 1 K o’24 (13) 

1 o-3 
10° 10’ 

K = t_$&/g 

Fig. 7. Values of the parameter LY as a function of non-dimensional wavenumber, K. The solid line is a least 

squares fit to the data (Eq. (13)). The TMA result is shown by the dashed line and the JONSWAP form, 

transformed from frequency to wavenumber space, by the dash-dot line. 
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K = u&k,/g 
10’ 

Fig. 8. Values of the peak enhancement parameter, y as a function of non-dimensional wavenumber, K. The 

horizontal line represents the data mean. 

Eq. (13) is shown on Fig. 7, together with the TMA result, aTMA = 0.0078~‘.~~. Both 
Eq. (13) and the TMA form are consistent with the data. In deep water the general TMA 
form reverts to that of JONSWAP. The deep water JONSWAP result scales (Y in terms 
of the non-dimensional frequency, v, a,ONsWAP = 0.033~‘.~‘. Assuming a deep water 

loo . . 
. . . 

.* . . . . . . . 
. . . l *’ . . 

lo-‘- 
loo 

K = Uf,k,/g 
10’ 

Fig. 9. Values of the spectral parameter, (T as a function of non-dimensional wavenumber, K. The horizontal 

line represents the data mean. 
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linear dispersion relationship, this result can be converted to wavenumber space, 
olONsWAP = 0.01 K”‘33. This JONSWAP result is also shown in Fig. 7 and is broadly 
consistent with the finite depth formulations. 

All results are comparable and confirm that the trend towards decreasing values of 01 
with increasing maturity of the waves, already observed in deep water, also holds in 
finite depth situations. 

In contrast to the observable trend in (Y with K , no similar result is apparent for either 
y or u. This result is consistent with both TMA (Bouws et al., 1985, 1987) and 
JONSWAP (Hasselmann et al., 1973). As will be shown in Section 8 there is, however, 
significant sampling variability associated with these parameters. The mean values of the 

data set yield y,,,, = 2.70 and umean = 0.12. 

7. Consistency of results 

The results given in Section 6, together with the TMA form (Eq. (4)), fully define the 

spectrum. Integration of this spectral form yields the total energy, E. This total energy 
can also be determined independently from the results given in Part 1. If E is 
determined using these two approaches, for the range of parameters observed during the 
experiment, in the mean, the results agree. In some regions of the parameter space, 
however, a discrepancy in the values of E determined by the two approaches of up to 
30% exists. This inconsistency between the results is attributed to the rather unsatisfac- 
tory dependence of y on K. Adoption of simply the mean value for y potentially masks 

8 

6 

Fig. 10. Values of the peak enhancement parameter y as a function of non-dimensional fetch, x for various 
values of non-dimensional depth, 6. Values were determined using the growth relationships derived in Part I, 
together with u obtained from IQ. (13) and a constant mean value of w = 0.12 (i.e. data mean). The values of 

6 for each line are shown at the right extreme of the figure. 
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a dependence on other parameters. A similar argument also holds for CT. Variations in o, 
however, have an insignificant influence on the total energy, E and have been neglected, 
simply excepting the mean value as representative. 

To investigate whether there is a systematic dependence of y on other parameters, 
the problem has been inverted. For given values of non-dimensional fetch, x and 
non-dimensional depth, 6, the relationships in Part 1 yield corresponding non-dimen- 

sional energy, E and non-dimensional peak frequency, v. Given 6 and v, the non-dimen- 
sional peak wavenumber, K can be determined with the aid of the linear dispersion 
relationship. With K known, LY can be evaluated from Eq. (13) and the mean value for o 

can be assumed. An iterative approach was then adopted to determine the value of y 
required to produce a spectrum which upon, integration, yields a value of E equal to that 
originally obtained from the Part 1 relationship. 

The resulting values of y are presented as functions of x and 6 in Fig. 10. The 
results in Fig. 10 show a clear trend in y as a function of x and 6. For a given value of 
6, as x increases and the effects of finite depth increase, the value of y increases 
significantly. It can be concluded that the spectra of severely depth limited spectra are 
very peaked. Visually, such peaked spectra should appear quite ordered and monochro- 
matic, a large percentage of the spectral energy being concentrated near a single 
frequency. Indeed, our visual observations confirm this result. During high wind 
conditions (and hence depth limited), the waves were distinctly long crested with a 
clearly discernible dominant period. This differs markedly from conditions observed 
during less severely forced situations, where the resulting wave field was extremely 
confused. This made operations on the lake in small boats extremely difficult. 

10 

8 

6 

0 
10” lo3 10” 

x = @J:, 

Fio a’ I I. Values of the peak enhancement parameter y as a function of non-dimensional fetch, x for various 

values of non-dimensional depth, 6. The values were obtained using the same process as in Fig. IO, except that 

the JONSWAP results were used as a deep water asymptote for the non-dimensional frequency, y, rather than 
the Kahma and Calkoen (1992) form adopted in Part 1. The values of 6 for each line are shown at the right 

extreme of the figure. 
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The results in Fig. 10, indicate that y decreases as 6 increases. At the deep water 
limit, y approaches a value only slightly larger than unity and is relatively constant with 
fetch. This result appears inconsistent with previous deep water results. Although they 

could find no trend in their data, Hasselmann et al. (1973) found a mean value of 3.3 for 
y. Although Donelan et al. (1985) investigated a different spectral form (Eq. (211, they 
found that y decreased with fetch in deep water. The present results occur due to the 
assumed deep water asymptotic form for the growth curves adopted in Part 1. Here the 
growth curve for non-dimensional energy asymptotes to JONSWAP for deep water, 
whereas that for non-dimensional frequency asymptotes to that proposed by Kahma and 
Calkoen (1992). If a JONSWAP asymptotic form had been adopted for non-dimensional 
frequency, a rather different result would have been obtained as shown in Fig. 11. The 
depth limited variation in y is still identical to that in Fig. 10, but the deep water 
behaviour is now quite different. The deep water asymptote now shows y decreasing 

with increasing fetch. Although this result is more consistent with previous deep water 
findings, the relationship of Kahma and Calkoen (1992) was in far better agreement with 
the observed data than that of JONSWAP. For this reason, we leave the transition of y 

from deep to depth limited conditions as an open question. The depth limited behaviour 
of y, however, appears well defined by the data. 

Fig. 12 shows y for depth limited conditions as a function of non-dimensional water 
depth, 6. A clear trend develops with y decreasing as 6 increases. A least squares fit to 

these data yields 

yd, = -5.81og,,6+ 1.1 for0.05 <S< 1 (14) 

where the subscript “dl” is included to signify that this is the depth limited value. 

IO- 

8- 

6- 

z 
1 o-’ 

6 = gdlu:, 

Fig. 12. Depth limited values of the parameter, y as a function of non-dimensional depth, 6 (i.e. the values 

shown in Fig. IO and Fig. 11 at large x). The derived values are shown by the dots, with the least squares fit to 

the data (Eq. ( 14)) represented by the solid curve. 
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In deep water, one consequence of y decreasing with fetch is the observed “over- 
shoot” at frequencies immediately above the spectral peak. Since the present finite 
depth data exhibit the opposite trend for y, no overshoot would be expected. This is 
confirmed by an examination of the spectra in Fig. 3. 

8. Error analysis 

The results shown in Figs. 6-9 exhibit significant scatter in the derived spectral 
parameters. It is prudent to investigate whether this scatter is consistent with the natural 
sampling variability which could be expected or whether it is an indicator of an 
inappropriate spectral form. In order to investigate the influence of sampling variability, 

a Monte-Carlo simulation, as in Section 5, was performed. A TMA spectral form (Eq. 
(2)) was assumed with parameters typical of those observed in the present data 
(o = 0.01, f,, = 0.4 Hz, u = 0.1, y = 2.5 and d = 1.8 m). The spectrum was defined on 
a discrete spectral grid with a resolution Af = 0.031 Hz, as used in the data processing 
(see Section 3). The ordinates of the spectrum were considered to be statistical variables, 
with a mean given by the assumed TMA form, but following a chi-squared probability 
distribution. In addition, the position of the discrete frequency grid was allowed to vary 
by an amount equal to A f, following a uniform distribution. In this manner, the position 
of the spectral peak relative to the discrete values of the frequency axis is considered in 
the analysis. A total of 10,000 realizations of the spectrum were determined, the 
multi-parameter least squares technique being used to determine the spectral parameters 
for each realization. 

For all parameters, values followed approximately normal distributions with distribu- 
tion means almost identical to the mean values of the initial spectral shape (see Fig. 5). 
This indicates that the spectral fitting technique is unbiased. For each of the parameters, 
the 10,000 values were ordered and the 2.5 and 97.5 percentile values determined. The 
resulting span of values defines the 95% confidence limits and are shown in Table 1. 

The difficulty of accurately determining the spectral peak shape parameters of y and 
CT is clear in Table 1, with very large variability in these parameters. It is clear from this 
table that a significant percentage of the scatter observed in the derived spectral 
parameters is as a result of the statistical variability of the spectra. The remaining scatter 
is presumably due to effects such as wind speed and water depth variability as well as 
irregularities of the down wind shore line. Other influences such as atmospheric stability 
may also influence the results. 

Table 1 
Sampling variability of the TMA spectral parameters expressed in terms of the span of values making up the 

95% confidence limits. Value were determined from a Monte Carlo simulation 

Parameter Span of 95% confidence limit 
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9. Conclusions 

The experimental results presented in this paper represent the first detailed investiga- 
tion of the development of finite depth’ wave spectra with fetch. The results clearly 
demonstrate that the high frequency tail of the spectra cannot be represented by a simple 
exponential form as in deep water. The appropriate exponent varies as a function of 
water depth. In deep water this exponent is approximately -5, whereas in extremely 
depth limited situations it approaches, -3 (Kitaigorodskii, 1962; Thornton, 1977). In 

addition, even a spectral form with a variable high frequency exponent is not a good 
approximation to the observed spectra. The high frequency spectral decay gradually 
“steepens” as a function of frequency. This occurs as the high frequency (short period) 
spectral components are essentially in deep water whereas the lower frequency (longer 
period) components near the spectral peak are more influenced by the water depth. 
These results are consistent with the previously proposed TMA (Bouws et al., 1985) 
spectral form, which is found to be a good approximation to the data. 

As proposed by Bouws et al. (1985, 1987) the spectral parameter, (Y is found to be a 
function of the non-dimensional wavenumber, K (Eq. (13)). In contrast, the spectral 
shape parameters, y and IJ are uncorrelated with K. The value of u has little practical 

significance, as it has only a small influence on the total spectral energy and the mean 
value of u,,,, = 0.12 seems appropriate for engineering applications. The peak enhance- 
ment factor, y. however has a moderate influence on the total spectral energy. 
Unfortunately, the data set is insufficient to fully resolve the transition of y from deep to 
depth limited situations (even the previous deep water experiments have produced no 
consistent understanding of the variation in r). In depth limited situations, however, y 
appears to be a function of the non-dimensional water depth, 6 (Eq. (14)). The value of 
y increases as 6 decreases. Hence, severely depth limited spectra could be expected to 
be very peaked. This result is consistent with our visual observations. 

It is interesting that the present data set, which was obtained from a lake with a 
cohesive mud bottom, is consistent with the mobile bed ocean data of the composite 
TMA experiments (Bouws et al., 1985). As in Part 1, we speculate that this insensitivity 
to bed material indicates that bottom friction dissipation is not significant in finite depth 
fetch limited growth. 
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