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Abstract--A Monte-Carlo simulation technique is used to evaluate the suitability of proposed 
techniques for the estimation of the spectral peak frequency. Due to the statistical variability 
of spectral estimates and the discrete frequency resolution of spectra, the calculated values of 
peak frequency are stochastic variables. The probability density functions for such estimates 
are functions of the frequency resolution and the number of degrees of freedom of the spectrum 
from which they are derived as well as the spectral peakedness. The mean values of all 
techniques are biased high, indicating the derived values of peak frequency are an overestimate 
of the true value. The probability density functions do not follow an obvious analytical form. 
Tabular values are, however, presented to enable the determination of confidence limits for 
estimates of the peak frequency. 

1. INTRODUCTION 

Wave spectra determined from the analysis of finite records of water surface elevation 
are subject to statistical uncertainty. This uncertainty occurs since the record has been 
truncated at some finite length. As a result, the derived spectrum is only an estimate 
of the "true" spectral form. The degree of uncertainty depends on the precise details 
of the processing used to determine the spectral estimate and is usually represented 
by the inclusion of confidence limits. Since the spectral estimate is a statistical quantity 
with an associated uncertainty, derived quantities such as significant wave height and 
the peak frequency will also be statistical variables. The determination of confidence 
limits for the significant wave height has been described previously. Knowledge of the 
statistical uncertainty associated with estimates of the peak frequency is, however, 
much poorer. This paper examines a number of methods for the determination of the 
peak frequency and utilizes a Monte-Carlo method for the determination of confidence 
limits associated with these estimates. 

The arrangement of the paper is as follows. In Section 2 the theory governing the 
statistical variability of spectral estimates and quantities derived from spectral estimates 
is presented. This is followed in Section 3 by a review of different procedures proposed 
for the estimate of the peak frequency. The Monte-Carlo technique used to assess 
these various techniques and the confidence limits associated with the estimates are 
presented in Section 4. The conclusions follow in Section 5. 
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2. STATISTICAL VARIABILITY OF SPECTRAL ESTIMATES 

For a stationary (ergodic) Gaussian process x(t) (i.e. the water surface elevation), 
the variance spectrum is (Bendat and Piersol, 1971) 

F(f) = 2 lim 1 E  [IX~f,r)l 2] (1) 
T ~  1 

where E indicates the expectation value; T is the length of the time series and X(f, T) 
is the Fourier transform of the time series x(t). An estimate of F(f) can be obtained 
by simply omitting the limiting and expectation values in (1): 

2 
/~(f) = ~ IX(f,T)I 2 . (2) 

The resulting spectral estimate/¢(f) follows a chi-square probability distribution with 
n = 2 degrees of freedom (Bendat and Piersol, 1971): 

~oQ') _ ×2 (3) 
F(f) 2 "  

The number of degrees of freedom in the spectral estimate /e(D can be increased 
by averaging neighbouring frequency bins (frequency averaging) or by averaging spectra 
obtained from a sub-divided time series (ensemble averaging) (Bendat and Piersol, 
1971). If the resulting spectral estimate has n degrees of freedom, the confidence limits 
for this estimate become 

nP(f) 
< F(f) < - -  (4) 2 - -  2 

X n ; c t / 2  X n ; 1 - - c t / 2  

where × 2  is the e~ percentage point of the chi-square distribution with n degrees of 
freedom. If, for example, the 95% confidence interval is required, then (1 - or) = 0.95. 

Donelan and Pierson (1983) and Young (1985) have shown that the variance as 
calculated from the integral of the spectrum also follows a chi-square distribution but 
with the number of degrees of freedom, v, depending on the spectral shape: 

n Pff,) 
i = 1  

v -  u ( 5 )  

i = 1  

Confidence limits for the significant wave height, Hs, based on the variance obtained 
from integration of P(f), become 

~ j  As-<Hs< ~ As. (6) 

3. METHODS FOR ESTIMATING SPECTRAL PEAK FREQUENCY 

A number of different methods have been proposed for the estimation of the spectral 
peak frequency from spectral estimates defined at discrete values of frequency. A 
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number of these techniques will be described in this section, and a detailed assessment 
of their respective performance is contained in Section 4. The two major problems 
which arise in the accurate determination of fp are: (i) the statistical variability of the 
spectral estimate and (ii) the finite and often coarse frequency resolution of the discrete 
spectrum. 

3.1. Simple maximum 

The most obvious and straightforward method for the determination of fp is to simply 
select the frequency associated with the maximum spectral ordinate, f~ax. 

3.2. "Delft" method 

A method such as f~ '~ is very susceptible to the effects of both sampfing variability 
and finite spectral resolution. Such effects would be reduced by techniques which 
utilized multiple spectral bands in the determination of re. A number of such techniques 
have been proposed• The so-called "Delft" method (IAHR/PIANC, 1986; Mansard 
and Funke, 1988, 1990) involves the determination of the centroid of a spectral band 
about the maximum ordinate 

ffZf F(f)df 
fDm -- ,fl 

f2F(f)df 
Jfl 

(7) 

The frequency thresholds fl  and f2 are chosen as the upper and lower frequencies at 
which the spectral energy is a fraction, m, of the maximum spectral ordinate, F(f~'~). 
Two commonly used thresholds are m = 80 and 60% (Mansard and Funke, 1990), 
giving rise to the estimates fpOSO andfpn6O, respectively. 

3.3. Weighted mean 

Sobey and Young (1986) and Reid (1986) have proposed a method involving a 
weighted mean over the whole spectrum rather than a partitioned region as in fpO,,,. 
The weighting is biased towards the energetic portions of the spectrum 

f pnq -- I:  f Frl(f)df 

fo l (f)df 
(8) 

A variety of values for the weighting exponent, q, have been proposed. Sobey and 
Young (1986) proposed q = 8, giving rise to the estimate f~8, whereas Reid (1986) 
proposed q = 5, yielding f~ts. 

3.4. Peak centroid 

A modification to the "Delft" method has been proposed by Giinther (1981) and 
Bishop and Donelan (1988) (fpec). Rather than defining upper and lower thresholds, 
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they integrate over the three highest spectral bands. A further variation of this method 
would be to fit an interpolation spline to the ordinates of these three values. The 
maximum value of the spline provides an estimate of the peak frequency, fps. 

4. MONTE-CARLO SIMULATION 

4.1. Description of simulation method 
As noted above, the spectral estimate /~(f) is a random variable following a chi- 

squared probability distribution with n degrees of freedom, ×2. This variability leads 
to uncertainty in the determination of fp by any of the above methods. Additional 
uncertainty is introduced, since ordinates of P(f) are available only at discrete values 
of f defined by the spectral resolution, Af. Hence, the estimate of the peak frequency, 
)*p, will be a random variable, the probability distribution of which will be a function 
of both n and Af. A Monte-Carlo simulation method was adopted to account for the 
statistical variability of the spectral estimate introduced by these two factors. 

A mean spectral form following that proposed by Donelan et al. (1985) was adopted: 

F(f) = otg2(2 ' rr)-4fp l f - 4  exp - "'~exp[ 2~2~-p 1. (9) 

Typical spectral parameters of ot = 0.01, cr = 0.07 and ~ = 3.0 were chosen. A total 
of 63 different combinations of normalized frequency resolution, Af/fp, and degrees of 
freedom, n, were investigated. The values utilized were:  Af/fp = 0.01, 0.05, 0.10, 0.15, 
0.20, 0.25, 0.30, 0.35, 0.40 and n = 5, 10, 25, 50, 75, 100, 150. For each of these 63 
combinations of Af/fp and n, 10,000 realizations of P(f) were generated from F(f). For 
each realization, a discrete frequency grid was defined with a resolution, Af/fp. The 
first point in this grid was defined as fo/fp = 0.2 + rAf/fp, where r is a value between 
0 and 1, selected from a uniformly distributed random number generator. At each 
ordinate of this discrete grid, P(f) was determined. Each of these values was evaluated 
independently from a chi-squared random number generator with mean F(f) and n 
degrees of freedom. Hence, the discrete grid could vary in frequency space by Af/fp 
and each ordinate of the spectrum would follow a ×2 distribution. 

For each realization of the spectrum, P(f), fp was determined using the different 
techniques described above. For each method, the 10,000 values of )tp were sorted into 
ascending order and the values exceeded by 2.5% and 97.5% of the estimates were 
determined, thus defining the 95% confidence limits. The mean of the estimates was 
also determined. 

4.2. Probability density functions for estimates 
A total of eight different variations of the methods described in Section 3 were 

investigated. These were: the simple maximum, f ~ ;  the Delft method, fffro, and 
fposo; the weighted mean, fp~4,f~5,fp~8; the weighted centroid, f~c; and the spline 
method, fps. From the Monte-Carlo simulations for each of these metho~ds, the resulting 
probability density functions (pdfs) can be found as functions of Af/fp and n. Examples 
of the pdfs for each of the four general methods discussed in Section 3 are shown in 
Fig. 1. Space limitations preclude showing all eight methods investigated. Also, only 
20 of the total of 63 combinations of Af/fp and n investigated for each method are 
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Fig. l(a). Probability density functions for estimates of the peak frequency for the simple maximum method, 
f~'~ as a function of relative frequency resolution, Af/f~, and degrees of freedom, n. The horizontal axis on 

each panel is normalized frequency, f/fp. 
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Fig. l (b) .  As for Fig. l (a ) ,  but for the "Delft" method,  f~8o. 
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shown. Results f o r f ~  [Fig. l ( a ) l , f ~  s° [Fig. l ( b ) ] , f ~  4 [Fig. 1(c)] andf~ c [Fig. l(d)] 
are shown. 

The dual dependence of the pdfs on Af/f~, and n is clear from these figures. The 
shape of the pdfs vary both as a function of these quantities as well as between methods. 
A number of general trends are, however, clear. For small Af/fp and large n the 
spectral resolution is high and there is little sampling variability in the spectral estimates. 
Hence, all methods provide unbiased estimates of fp with little variability. That is, the 
pdfs are very peaked. They are also symmetric about the true value of fp. As n 
decreases the pdfs become broader (i.e. the variance increases) but they remain 
symmetric about fp. Provided Af/fp remains small the pdfs approximate normal distri- 
butions, despite the fact that the individual spectral estimates from which they were 
calculated follow a X 2 distribution. 

As the relative frequency discretization Af/fj, increases, fp becomes more difficult to 
estimate and hence the pdfs become broader. Whilst n remains small and hence the 
statistical variability of the spectral estimate dominates over the finite spectral resolution 
as an error source, the pdfs remain approximately Gaussian. As both Af/fp and n 
become significant, the shape of the pdfs become dependent on the specific method 
used to determine fp. 

As both Af/fp and n increase, the pdfs for f ~ x  [Fig. l(a)] become progressively 
more "flat-topped" and approximate a uniform distribution. This occurs since the 
spectral resolution progressively dominates over the statistical variability of the spectrum 
as an error source and hence this simple estimation technique reproduces the uniform 
distribution of the discrete frequency grid. 

The pdfs for fpOSO [Fig. l(b)]  behave in a similar manner to f~a~ as both Af/fp and 
n increase. Rather than develop into a simple uniform distribution, they form a uniform 
distribution with an added narrow peak nearfp. The remaining examples, f ~  4 [Fig. 1(c)] 
and fepC [Fig. l(d)],  are even more complex, developing into bi-modal distributions 
similar to those that could be expected from a sinusoidal wave form. The manner in 
which such pdfs occur warrants some comment. It is clear from Fig. 1 that these 
unusual pdfs are caused by the coarse spectral resolution, A.f/fp, rather than the 
statistical variability of the spectrum as they occur when n is large. To investigate this 
feature a series of reahzations of the standard spectrum described earlier were perfor- 
med with no statistical variability of the spectrum (i.e. n -- ~). A value of Af/fp -- 0.4 
was chosen and the origin for the discrete grid allowed to vary over the interval 
Af/fp. Rather than vary randomly, however, it was increased in a regular manner. In 
this manner it is possible to investigate the result as the proximity of a spectral bin to 
fp changes. When the closest spectral bin is significantly less than fp the maximum 
value of the spectrum is significantly underestimated. As the bin moves closer to fp, 
the spectrum becomes "sharper". Hence, the shape of the spectrum and the ability to 
estimate fp is critically dependent on the relative positions Offp and the closest spectral 
bin. 

The consequences of this change in the realized spectral shape on the estimates of 
fp are shown in Fig. 2. The panels of this figure show fpDso, fp~4 and fepc as functions 
of the position of the discrete maximum in the spectrum, f~a~. Firstly, consider fposo: 
when the closest spectral bin is distant from fp, the spectrum is relatively flat and a 
number of ordinates are included in the average of the values above 80% of the 
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Fig. 2. Comparison of the predicted peak frequency against the frequency of the maximum spectral ordinate. 
The individual points shown are for frequency grids with differing origin points. The influence of the 

proximity of a spectral bin to the position of the peak frequency is clear. 

maximum value. Despite the poor description of the spectrum, the averaging process 
produces an estimate of the peak frequency close to unity. As the closest bin approaches 
f p ,  the spectrum becomes more peaked and progressively less ordinates are included 
in the average. In fact, for the very coarse resolution considered here only one ordinate 
contributes and hence the technique becomes equivalent to f~ax. This is dearly seen 
in Fig. l(a). Hence the resulting pdf is approximately uniform, with an enhancement 
at f / f p  ~ 1. The other two methods produce approximately sinusoidal variations of 
their respective estimates of the peak frequency as a function of the position of the 
peak spectral ordinate [Fig. 2(b) and (c)]. Again, this is due to the changing shape 
of the realized spectrum. As a sinusoid has a bimodal pdf (i.e. more points at crest 
and trough compared to zero crossing), the pdfs for these techniques become bimodal 
for both A f / f p  and n large, as observed in Fig. 1. 

It is clear from the results of Fig. 1 that it is unlikely that a single analytical form 
for the pdf for fp could be found. The results do, however, provide a rational method 
for the intercomparison of the various estimation techniques. 
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4.3. Mean values and confidence limits 
Figure 3 shows contour plots of the values of the upper and lower 95% confidence 

limits as well as the mean values as functions of Af/fp and n. As previously reported 
by Donelan and Pierson (1983), all methods overestimate the value of fp. Also, for 
all methods, there is little gain in accuracy by increasing n above approximately 50. 
A detailed quantitative comparison of the various methods will be conducted below; 
there are, however, a number of features of Fig. 3 that warrant comment. Firstly, 
f~a~andfp°8° provide the best estimates of the mean, closely followed by 
fp~awithfffc significantly overestimating the mean. Although the mean value for 
f ~ x  is close to unity, it has quite broad confidence limits. The narrowest band of 
confidence limits and hence the "best" estimate of fp is provided by fp~4. 

A quantitative comparison between the various methods can be made by the definition 
of error statistics for the full two-dimensional space defined by Af/fp and n. One such 
statistic can be defined as 

EE 
e -  i j (10) 

ZZ Aij 
i j 
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Fig. 3(a). Contours of the upper and lower 95% confidence limits and the mean values for estimates of f .  
from the simple maximum method, f ~ .  The plots are shown as functions of the relative frequency resolution, 

Af/fp, and degrees of freedom, n. 
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Fig. 3(b). As for Fig. 3(a), but for the "Delft" method, fffso. 

where V o could be either the value of the upper or lower 95% confidence limit or the 
mean, at a point whose corresponding values of Af/fp and n are defined by the subscripts 
ij. The summations in (10) range over all 63 values used in the Monte-Carlo simulations 
as shown in Fig. 3. The non-uniform grid is accounted for by inclusion of the "area" 
in Af/fp, n space, A o associated with each value. The results for all the methods 
investigated are summarised in Table 1. 

Most techniques provide similar values for the mean error of approximately 1.01. 
The one exception is f~c,  which is biased significantly higher with a value of 1.03. An 
optimal technique should not only provide a relatively unbiased mean but also a small 
band for the confidence limits. The difference between the errors for the upper and 
lower 95% confidence limits is shown in Table 1. The estimate f~c  provides the smallest 
value of this quantity, but recall that it also had the largest error for the mean. Of 
the remaining estimates, f~4 appears to yield the best overall estimate of fp with an 
error difference of 0.157. Not surprisingly, f~=~ produces the largest value for the error 
difference, confirming the qualitative impression from Fig. 1. As the power is increased 
in the weighted mean technique (fMa_fMS) the mean error decreases but the difference 
error for the confidence limits increases. As the power in this formulation increases, 
the method approaches the simple maximum f~'~. The identical features are observed 
as the threshold level is increased in the "Delft" method (i.e. fopr, o_f~so). 



Spectral peak frequency estimates 681 

95% lower limit 

0.4 I~/~ ' ' ' " 

l .9 " ~o.2°3 -7~.~~ . . . . . . .  . . . . . . . . .  

0 ' 1 ] ~  

% 

0.4 

0.3 

~ o . 2  

0.1 

Degrees of freedom, n 

Mean 

0 50 100 150 
D e g r e e s  of freedom, n 

0.4 

;-3 f 
I oj 
0 

95% upper limit 

50 100 150 
Degrees of freedom, n 

Fig. 3(c). As for Fig. 3(a), but for the weighted mean method, f~4. 

In summary, it can be concluded that of the techniques investigated, f~4  provides 
the most reliable estimate of fp. 

4.4. Spectral peakedness 
In the analysis performed above, the spectral peakedness has been held constant at 

"y = 3. As already pointed out by Bishop and Donelan (1988), ~/plays an important 
role in the accuracy with which fj, can be estimated. A peaked spectrum with a large 
value of V will have less error associated with the estimate of fp than a flatter spectrum 
with a small value of ~. To investigate the influence of V in the determination of fe 
two further Monte-Carlo simulations were performed. The fpM4 method was used; 
however, ~/ was changed from the original value of 3 to 1 and 7, respectively. The 
error values are summarised in Table 1. As expected, decreasing ~/increases both the 
mean error and also the confidence limit difference error. There is more error associated 
with estimates of fp for a spectrum with ~/= 1 than for a spectrum with ~/= 3. As ~/ 
increases above 3, the error values continue to decrease, but not significantly. This 
indicates that there is little increase in the error beyond ~/= 3. 

The results of the Monte-Carlo simulations provide a practical and easily implemented 
means for the estimation of confidence limits for fp. The Appendix contains the 
tabulated values for the simulations of f~4 for V = 1, 3 and 7. Intermediate values 
can be obtained with reasonable accuracy by interpolation. 
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Table 1. Values of ¢ for each of the estimation methods 

95% lower 95% upper Difference 
Estimate limit limit upper-lower Mean 

f ~ x  0.8937 1.1367 0.2430 1.0105 
fpn6o 0.9270 1.1071 O. 1802 1.0136 
fpnso 0.9091 1.1182 0.2091 1.0107 
f~4 0.9432 1.1002 0.1570 1.0173 
f ~  0.9335 1.1012 0.1677 1.0136 
fp~s 0.9194 1.1090 0.1896 1.0110 
fec 0.9723 1.1071 0.1348 1.0334 
fps 0.9198 1.0997 0.1798 1.0080 

f~4 ~ = 1 0.9782 1.1685 0.1903 1.0723 
f~4 ~/= 7 0.9338 1.0925 0.1587 1.0100 

5. C O N C L U S I O N S  

The  M o n t e - C a r l o  s imula t ions  p e r f o r m e d  have  shown a n u m b e r  o f  in te res t ing  fea tu res  
of  the  stat is t ical  va r iab i l i ty  of  e s t ima tes  of  the  spec t ra l  p e a k  f requency .  P robab i l i t y  
dens i ty  funct ions  o f  fp and  hence  conf idence  l imits a re  c lear ly  funct ions  o f  bo th  the  
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relative spectral resolution, Af/fp, and the number of degrees of freedom of the spectral 
estimate, n. 

A number of proposed techniques for the estimation of fp have been investigated. 
All methods produce estimates of the peak frequency with means greater than the true 
value. The method which produces the smallest confidence band for fp is the weighted 
mean method of Sobey and Young (1986) and Reid (1986), but with a weighting 
exponent of 4 (i.e. fp~4). 

Not surprisingly the spectral peakedness, as measured by the peak enhancement 
factor ~, also determines the accuracy with which fp can be estimated. The error 
increases as the spectral peakedness decreases. 

Tabular results have been presented in the Appendix which enable the mean bias 
as well as 95% confidence limits to be determined with knowledge of Af/fp, n and ~. 
These tables provide a practical manner in which to assign confidence limits to estimates 
off.. 
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APPENDIX 

Mean values, ~ / =  1 

,I, Af/fp, n ~ 5 10 25 50 75 100 150 

0.40 1.1436 1 . 1 1 1 2  1 . 0 9 0 9  1 . 0 8 1 8  1.0780 1 . 0 7 5 7  1.0742 
0.35 1.1374 1 . 1 0 9 5  1.0867 1 : 0 7 7 1  1 . 0 7 3 4  1 . 0 7 1 4  1.0699 
0.30 1.1320 1 . 1 0 5 3  1 . 0 8 3 6  1 . 0 7 4 3  1 . 0 7 2 1  1 . 0 6 9 6  1.0674 
0.25 1.1214 1.0987 1 . 0 8 0 1  1 . 0 7 1 9  1 . 0 6 9 2  1 . 0 6 7 4  1.0657 
0.20 1.1142 1 . 0 9 4 3  1.0774 1 . 0 7 0 1  1 . 0 6 8 0  1 . 0 6 7 2  1.0652 
0.15 1.1079 1 . 0 8 8 3  1.0740 1 . 0 6 8 4  1 . 0 6 6 2  1 . 0 6 5 6  1.0650 
0,10 1.0951 1 . 0 8 3 1  1 . 0 7 1 8  1 . 0 6 7 1  1 . 0 6 5 9  1 . 0 6 4 7  1.0638 
0.05 1.0843 1.0740 1 . 0 6 7 6  1 . 0 6 5 0  1 . 0 6 4 3  1 . 0 6 3 8  1.0633 
0,01 1.0695 1 . 0 6 5 7  1.0636 1 . 0 6 3 0  1 . 0 6 2 8  1 . 0 6 2 9  1.0630 

Lower 95% confidence limit, "y = 1 

J, Af/fp, n --+ 5 10 25 50 75 100 150 

0.40 0.8510 0.8718 0.9118 0.9314 0.9392 0.9470 0.9570 
0.35 0.8597 0.8885 0.9190 0.9403 0.9523 0.9606 0.9713 
0.30 0.8697 0.8945 0.9290 0.9495 0.9655 0.9724 0.9829 
0.25 0.8773 0.9007 0.9382 0.9632 0.9768 0.9842 0.9950 
0.20 0.8877 0.9179 0.9516 0.9724 0.9864 0.9956 1.0079 
0.15 0.8979 0.9241 0.9590 0.9843 0.9963 1 . 0 0 5 1  1.0149 
0.10 0.9086 0.9383 0.9744 0.9944 1 . 0 0 7 1  1 . 0 1 3 6  1.0218 
0.05 0.9308 0.9608 0.9944 1 . 0 1 1 3  1 . 0 2 0 6  1 . 0 2 6 3  1.0334 
0.01 0.9788 1 . 0 0 2 2  1.0269 1 .0 3 8 1  1.0430 1 . 0 4 5 9  1.0493 

Upper 95% confidence limit, ",/= 1 

J, Af/fp, n --~ 5 10 25 50 75 100 150 

0.40 1.5441 1 . 4 2 0 3  1 . 2 7 5 3  1 . 2 1 4 2  1 . 1 9 1 3  1 . 1 8 3 2  1.1743 
0.35 1.5255 1 . 3 8 5 5  1 . 2 6 6 8  1 . 2 0 5 0  1 . 1 7 8 2  1 . 1 6 4 5  1.1512 
0.30 1.4913 1.3646 1 . 2 5 8 0  1 . 2 0 1 1  1 . 1 7 1 6  1 . 1 5 7 4  1.1381 
0.25 1.4524 1.3369 1 . 2 3 9 0  1 . 1 8 9 1  1 . 1 6 2 5  1 . 1 5 0 4  1.1335 
0.20 1.4173 1 . 3 1 2 2  1 . 2 2 3 1  1 . 1 7 0 9  1 .1 5 1 1  1 . 1 4 0 1  1.1242 
0.15 1.3773 1.2849 1 . 1 9 9 4  1.1590 1 . 1 3 9 2  1.1282 1.1166 
0.10 1.3230 1.2532 1 . 1 7 7 0  1 . 1 4 1 1  1 . 1 2 6 9  1.1166 1.1069 
0.05 1.2605 1.1996 1 . 1 4 4 0  1 . 1 1 8 9  1 . 1 0 8 1  1 . 1 0 1 1  1.0934 
0.01 1.1640 1.1282 1 . 1 0 0 2  1 . 0 8 7 5  1 . 0 8 2 8  1 . 0 7 9 8  1.0767 
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Mean values, ~ /=  3 

~, Af / fp ,  n ~ 5 10 25 50 75 100 150 

0.40 1.0864 1.0600 1 . 0 4 6 9  1 . 0 4 1 3  1 . 0 4 2 0  1 . 0 4 1 2  1.0412 
0.35 1.0754 1.0512 1 . 0 3 4 6  1 . 0 3 1 7  1 . 0 2 9 4  1 . 0 3 0 3  1.0287 
0.30 1.0630 1 . 0 3 9 5  1 . 0 2 6 3  1 . 0 2 1 5  1 . 0 2 0 4  1 . 0 1 9 5  1.0175 
0.25 1.0527 1 . 0 3 0 1  1 . 0 1 7 5  1 . 0 1 4 3  1 . 0 1 3 1  1 . 0 1 1 5  1.0114 
0.20 1.0446 1.0246 1.0129 1 . 0 0 9 7  1 . 0 0 8 3  1.0082 1.0073 
O. 15 1.0359 1.0176 1 . 0 0 9 1  1 . 0 0 6 8  1 . 0 0 5 4  1 . 0 0 5 6  1.0050 
O. 10 1.0250 1.0132 1 . 0 0 7 1  1 . 0 0 5 3  1 . 0 0 4 5  1 . 0 0 4 4  1.0037 
0.05 1.0137 1 . 0 0 8 8  1.0054 1 . 0 0 4 4  1 . 0 0 4 1  1 . 0 0 3 9  1.0037 
0.01 1.0059 1.0046 1.0038 1 . 0 0 3 7  1.0036 1 . 0 0 3 7  1.0036 

Lower 95% confidence limit, ~ /=  3 

• 1, Af/f,,,, n ~ 5 10 25 50 75 100 150 

0.40 0.8524 0.8711 0.8924 0.9054 0.9097 0.9139 0.9168 
0.35 0.8644 0.8816 0.9014 0.9127 0.9159 0.9200 0.9227 
0.30 0.8762 0.8938 0.9116 0.9182 0.9244 0.9257 0.9283 
0.25 0.8889 0.9065 0.9218 0.9289 0.9333 0.9345 0.9372 
0.20 0.9068 0.9237 0.9363 0.9416 0.9445 0.9465 0.9485 
0.15 0.9171 0.9366 0.9502 0.9578 0.9597 0.9624 0.9647 
0.10 0.9300 0.9472 0.9636 0.9720 0.9760 0.9778 0.9803 
0.05 0.9427 0.9579 0.9728 0.9814 0.9845 0 . 9 8 7 1  0.9900 
0.01 0.9681 0.9782 0.9877 0.9923 0.9947 0.9959 0.9971 

Upper 95% confidence limit, ",/= 3 

Af/fp,  n --~ 5 10 25 50 75 100 150 

0.40 1.4913 1 . 3 1 7 5  1 . 2 1 6 4  1 . 1 8 6 2  1 . 1 7 9 2  1 . 1 7 3 7  1.1689 
0.35 1.4353 1 . 2 9 2 3  1 . 1 8 5 9  1 . 1 5 7 3  1 . 1 4 8 4  1 . 1 4 5 1  1.1402 
0.30 1.3895 1.2456 1 . 1 5 5 7  1.1306 1 . 1 2 2 4  1 . 1 1 8 4  1.1137 
0.25 1.3421 1 . 2 0 8 5  1.1282 1 . 1 0 3 1  1.0969 1 . 0 9 3 8  1.0903 
0.20 1.3009 1.1689 1.0988 1.0798 1 . 0 7 4 3  1 . 0 7 1 3  1.0680 
0.15 1.2435 1 . 1 2 8 5  1.0728 1.0556 1 . 0 5 1 9  1 . 0 4 9 1  1.0460 
0.10 1.1790 1.0977 0.0546 1 . 0 3 8 3  1.0328 1.0306 1.0266 
0.05 1.1039 1 . 0 6 5 1  1 . 0 3 9 1  1.0286 1 . 0 2 3 6  1 . 0 2 1 1  1.0174 
0.01 1.0450 1 . 0 3 1 5  1 . 0 2 0 5  1 . 0 1 5 1  1 . 0 1 2 8  1 . 0 1 1 5  1.0099 
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M e a n  values ,  -y = 7 

,1, Af/fp, n --~ 5 10 25 50 75 100 150 

0.40 1.0643 1 . 0 4 7 9  1 . 0 3 7 1  1 . 0 3 4 3  1 . 0 3 5 1  1 . 0 3 2 7  1.0333 
0.35 1.0520 1.0360 1.0246 1 . 0 2 1 9  1 . 0 2 1 6  1 . 0 2 0 6  1.0199 
0.30 1.0376 1 . 0 2 1 6  1.0150 1 , 0 1 3 3  1 . 0 1 1 7  1 . 0 1 1 6  1.0099 
0.25 1.0267 1 . 0 1 3 3  1 . 0 0 6 8  1 . 0 0 7 1  1 . 0 0 6 2  1 . 0 0 4 7  1.0049 
0.20 1.0187 1 . 0 0 7 2  1 . 0 0 3 3  1 , 0 0 2 5  1 . 0 0 2 4  1 . 0 0 2 2  1.0018 
0.15 1.0110 1 . 0 0 2 8  1 . 0 0 1 1  1 . 0 0 1 2  1 . 0 0 0 9  1 . 0 0 0 8  1.0010 
0.I0 1.0054 1 . 0 0 1 7  1 . 0 0 0 4  1 , 0 0 0 6  1 . 0 0 0 7  1 . 0 0 0 4  1.0001 
0.05 1.0016 1 . 0 0 0 9  1 . 0 0 0 7  1 , 0 0 0 3  1 . 0 0 0 5  1 . 0 0 0 3  1.0003 
0.01 1.0006 1 . 0 0 0 5  1 . 0 0 0 4  1 . 0 0 0 3  1 . 0 0 0 3  1 . 0 0 0 3  1.0003 

L o w e r  95% conf idence  l imit,  V = 7 

~, Af/fp, n ~ 5 10 25 50 75 100 150 

0.40 0.8481 0.8705 0.8855 0.8940 0.8978 0 . 8 9 9 1  0.9017 
0.35 0.8611 0.8780 0.8923 0.9005 0.9027 0.9043 0.9064 
0.30 0.8751 0.8887 0.9021 0 . 9 0 6 1  0.9087 0 . 9 1 0 1  0.9113 
0.25 0.8951 0.9028 0.9119 0.9169 0.9187 0 . 9 1 9 1  0.9201 
0.20 0.9124 0.9206 0.9276 0.9303 0.9324 0.9330 0.9339 
0.15 0.9264 0.9361 0.9448 0.9487 0.9500 0.9510 0.9517 
0.10 0.9375 0.9515 0.9630 0.9679 0.9702 0.9716 0.9728 
0.05 0.9499 0.9620 0.9747 0.9809 0.9843 0.9859 0.9884 
0.01 0.9711 0.9790 0.9868 0.9908 0.9926 0.9938 0.9948 

U p p e r  95% conf idence limit,  ~t = 7 

,~ Af/fp, n ---> 5 10 25 50 75 100 150 

0.40 1.4532 1 . 2 8 0 2  1 . 2 0 5 1  1 . 1 8 2 7  1.1770 1 . 1 7 1 7  1.1686 
0.35 1.3995 1 . 2 4 6 9  1 . 1 7 3 4  1 . 1 5 1 4  1 . 1 4 6 3  1 . 1 4 3 2  1.1391 
0.30 1.3294 1.1900 1 . 1 3 6 8  1 . 1 2 3 2  1 . 1 1 9 0  1 . 1 1 7 2  1.1145 
0.25 1.2651 1 . 1 4 6 1  1 . 1 0 7 9  1 . 0 9 8 4  1 . 0 9 5 5  1 . 0 9 4 5  1.0929 
0.20 1.1987 1 . 1 0 4 2  1 . 0 8 1 7  1 . 0 7 5 7  1 . 0 7 4 2  1 . 0 7 2 9  1.0711 
0.15 1.1268 1 . 0 7 0 9  1 . 0 5 7 8  1 . 0 5 3 5  1 . 0 5 2 2  1 . 0 5 0 8  1.0503 
0.10 1.0841 1 . 0 5 2 7  1 . 0 3 8 4  1 . 0 3 3 2  1 . 0 3 0 9  1 . 0 2 9 4  1.0278 
0.05 1.0553 1 . 0 4 0 3  1.0270 1 . 0 1 9 7  1 . 0 1 6 5  1 . 0 1 4 8  1.0122 
0.01 1.0306 1 . 0 2 2 4  1 . 0 1 4 0  1 . 0 1 0 0  1 . 0 0 8 0  1 . 0 0 7 0  1.0058 


