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Abstract

Fetch limited finite depth wind waves are subjected to a bispectral analysis to determine the
extent of triad nonlinear coupling. Very long yet stationary time series are utilized, enabling the
determination of bicoherence values with significantly smaller confidence limits than have been
achieved previously. The bispectral analysis indicates a significant degree of phase coherence
between the spectral peak frequency and higher frequencies. It is concluded that this phase
coherence is as a result of non-resonant or bound triad interactions with the spectral peak
frequency. Previous studies of triad coupling have generally been confined to relatively shallow

Žwater. Values of the relative depth, k d k is the wavenumber of the spectral peak, d is waterp p
.depth for these previous studies have ranged between 0.14 and 1.13. The present data set extends

available data to values of k d between 1.39 and 2.35. The existence of triad coupling at thesep

water depths indicates that models which are to be used to predict waves in the transitional water
depths found on many continental shelves may need to include the effects of such interactions.
Previously, it has been assumed that triad interactions were generally only significant in the
shoaling region. q 1998 Elsevier Science B.V.
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1. Introduction

Ž .The important role of quadruplet four wave interactions in the evolution of deep
Žwater wind wave spectra is well established Hasselmann, 1962; Hasselmann et al.,

.1973; Young and Van Vledder, 1993 . The progressive shift of energy to lower
frequencies with fetch, the characteristic decay of the high frequency spectral tail and
the unimodal spectral shape are all characteristics largely governed by quadruplet

Ž . Ž .nonlinear interactions. In contrast, triad three wave interactions Abreu et al., 1992 in
Ž .deep water are insignificant Phillips, 1960 in comparison to the quadruplet interac-

tions.
In shallow water, however, the importance of triad interactions increases. Energy

spectra of shoaling waves often show the appearance of harmonics of the spectral peak.
Ž .Observations Hasselmann et al., 1963; Elgar and Guza, 1985; Elgar et al., 1990, 1993

show that these harmonics are phase coherent with the spectral peak, indicating they are
the result of triad interactions.

Due to the different nonlinear processes in these two regions, different modeling
approaches have generally been adopted. In deep water, phase averaging or energy-based

Ž .formulations WAMDI group, 1988 have been applied. On the other hand phase
Ž . Žresolving e.g. Boussinesq models have been utilized in shallow water Peregrine, 1967,

.1972, 1983; Freilich and Guza, 1984; Liu et al., 1985; Elgar et al., 1990 even extending
Ž .into the surf zone Schaffer et al., 1993; Eldeberky and Battjes, 1996 .¨

Ž . ŽSpectral models, such as WAM WAMDI group, 1988 and SWAN Booij et al.,
.1996 , have also been applied to the intermediate water depths which occur on many

continental shelves. The relative importance of triad interactions in such situations is,
however, largely unknown. The vast majority of observations, suitable for determining
triad nonlinear interactions have involved shoaling waves on beaches. Observations of
the magnitude of triad interactions in wind generated waves in deeper, but finite depth,

Ž .regions of the shelf are rare Herbers and Guza, 1991 . Hence, the applicability of
models which ignore such processes is yet to be determined.

This paper presents the results of a bispectral analysis of fetch limited, intermediate
depth wind waves. The data used for the analysis were taken from a shallow lake and
hence are free from contamination by background swell. In addition, extremely long
time series obtained under approximately constant wind conditions enable bispectral
estimates with many degrees of freedom to be calculated.

The present data have been collected in deeper water than previous experiments
which have considered bispectral analysis of waves. In addition, as the waves are
propagating over an approximately horizontal bottom rather than a shelving beach, they
will have a significantly broader directional spread than previous data.

The arrangement of the paper is as follows. Section 2 presents an overview of
previous work on finite depth triad interactions and observations of the effects of such
interactions. The experimental site and the conditions under which the present data set
was collected are described in Section 3. The selection of data and the determination of
bispectra are described in Section 4 with a detailed discussion of the observed bispectra
in Section 5. Finally, the conclusions of the study are contained in Section 6.
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2. Triad interactions

Nonlinear triad interactions can occur among waves with frequencies and wavenum-
Žbers which satisfy the relationships Armstrong et al., 1962; Bretherton, 1964; Elgar et

.al., 1993

f " f s f 1Ž .1 2 3

k "k sk 2Ž .1 2 3

where f is the scalar frequency and k is the vector wavenumber, of the ith wavei i

component. The components 1 and 2 each obey the linear dispersion relationship

v 2 sgk tanh kd 3Ž .
< <where d is the water depth, vs2p f and ks k is the wavenumber magnitude.

Ž . Ž .Thus components which satisfy Eq. 1 and Eq. 2 can interact nonlinearly and
Ž . Ž .exchange energy and momentum. Whilst the components 1 and 2 in Eq. 1 and Eq. 2

Ž .satisfy the dispersion relationship Eq. 3 , component 3 may not necessarily satisfy Eq.
Ž . w Ž .x3 . Interactions where component 3 satisfies the dispersion relationship k sk f are3 3

Ž .termed resonant interactions Armstrong et al., 1962 . Resonant interactions result in
components at f whose amplitudes can increase to be of the same order as the primary3

waves at f and f . Note that for gravity surface waves this is only possible in very1 2

shallow water where the waves are nondispersive. Interactions where component 3 does
Ž Ž .. Žnot satisfy the dispersion relationship Eq. 3 are termed non-resonant in intermediate

water depths where waves are weakly dispersive—the so-called bound interaction of
.dispersive waves; Hasselmann, 1962 . Non-resonant interactions result only in bound

harmonics whose amplitudes remain small compared with those of the primary waves.
For spectra with a clearly defined major peak, one special case of the interaction

Ž . Ž . Žconditions Eq. 1 and Eq. 2 which has been observed to be significant for example,
Hasselmann et al., 1963; Masuda and Kuo, 1981; Elgar and Guza, 1985; Doering and

.Bowen, 1987; Freilich et al., 1990; Elgar et al., 1990, 1993, 1995 is that where
f s f s f , the frequency of the spectral peak. Such self interactions result in the1 2 p

generation of an harmonic of the spectral peak at 2 f . This form of interactionp
Ž . Ž .represents a convenient example to examine the implications of Eq. 1 and Eq. 2 on

the form of the triad interaction. In shallow water, waves become non-dispersive and the
Ž . 'dispersion relationship, Eq. 3 becomes vsk gd . In such cases resonant interactions

occur only for co-linear waves. In transitional water depths, where the waves are
dispersive, only non-resonant or ‘bound’ triad interactions can occur.

Ž . Ž . Ž .Armstrong et al. 1962 , Freilich and Guza 1984 and Elgar et al. 1993 have shown
that significant energy transfers can also occur due to near-resonant interactions, in

Ž .which the sum or difference component of the triad nearly satisfies the dispersion
relationship. A measure of the departure from resonance can be obtained by defining
< < < Ž . <k as the difference between the free wave component k f , which satisfies thed 3

Ž . Ž < <.dispersion relationship, and the sum or difference k "k wavenumber magnitudes1 2

< < < < < <k s k "k y k f 4Ž . Ž .d 1 2 3
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< < < Ž . <The wavenumber mis-match can be normalized as ds k r k f . The magnitude of dd 3

determines the intensity of the energy exchange between the interacting waves. Zero
mis-match represents the limiting case of the interaction process, in which the interact-

Ž .ing waves remain intact and in phase resonant interaction during evolution. Thus, the
magnitude of the energy transfer is maximum. When the mis-match is such that d<1
Ž .i.e. in the shoaling region , phase relations between the interacting waves vary slightly
over a wavelength. Consequently the magnitudes and the sign of energy transfers
between the interacting waves vary slowly over a wavelength, allowing significant net
energy transfer over several wavelengths. Whereas resonant interactions are limited to
nondispersive co-linear waves, near resonant interactions can occur between components

Ž .separated by small angles Elgar et al., 1993; Nwogu, 1994 and others .
The magnitude of triad interactions and the consequent energy transfer across the

spectrum depend essentially on two factors. These are the order of magnitude of the
nonlinearity determined by the relative wave amplitude, ard and the shallowness of the
water determined by the relative depth, k d, where a is the wave amplitude, d is thep

water depth and k is the wavenumber of the spectral peak. Increasing nonlinearity andp

decreasing relative depth intensifies the nonlinear rate of energy transfer across the
spectrum.

Measurements to determine the magnitude of triad coupling in the wave field have
Žconcentrated on the determination of bispectra Hasselmann et al., 1963; Lii et al., 1976;

. Ž .Kim and Powers, 1979, see S4 . Hasselmann et al. 1963 considered the bispectra of
waves measured in 11 m water depth. They found clear triad coupling with the spectral
peak. The observed bispectra agreed well with the theoretical bispectra for a Stokes type
expansion. Hence, it was concluded that non-resonant or bound triad interactions were
responsible for the observed coupling.

Various studies have investigated shoaling waves with stations located at a number of
Ž .water depths. Elgar and Guza 1985, 1986 investigated the bispectra of waves as they

propagated from 9 m water depth to 1 m. Bicoherence values increased as the water
depth decreased, indicating an increase in nonlinear coupling. In addition, as the water
depth decreased the waves progressively became more ‘pitched forward’. Freilich et al.
Ž .1990 compared high resolution directional spectra measured at 10 m and 4 m. They
found that linear shoaling theory was incapable of predicting the increase in energy
observed at 2 f , which they attributed to near-resonant triad interactions. Elgar et al.p
Ž .1993 also found significant near-resonant triad coupling for laboratory shoaling waves.

Ž .Herbers et al. 1992 investigated near bottom wave orbital velocity and pressure
measurements in a water depth of 7 m. Assuming that the waves had a relatively narrow
directional spread due to the effects of refraction, they showed that forced waves at 2 fp

Ž .were well modelled by the second order theory of Hasselmann 1962 .
Ž .Abreu et al. 1992 abandoned the usual approach of modeling nonlinear shoaling

waves in terms of the Boussinesq equations. Instead, they adopted the phase averaging
Ž .energy based approach commonly used in deep water WAMDI group, 1988 . A source

term for the energy balance equation was developed for the case of shallow water
nondispersive co-linear triad interactions. The resulting model was compared with the

Ž .data of Freilich et al. 1990 . Model results were consistent with the data, leading Abreu
Ž .et al. 1992 to conclude that the nonlinear coupling observed in these data was due to
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resonant co-linear interactions rather than near-resonant interactions, as concluded by
Ž .Freilich et al. 1990 .
Ž .Elgar et al. 1995 investigated both the bispectra and trispectra of wind sea spectra

as they shoaled from 13 m water depth to 8 m water depth. They found significant triad
coupling between the peak and 2 f . Analysis of the trispectra revealed that apparentp

triad coupling between the peak and 3 f was misleading. The apparently significantp

bispectral levels were the result of tertiary or four wave interactions.
The experiments described above have almost exclusively dealt with the situation of

Ž .shoaling waves on a beach. Beji and Battjes 1993 investigated waves propagating over
a bar in the laboratory. They found strong phase coupling between spectral components
at the peak, f and 2 f .p p

3. Experimental site and conditions

The data discussed here were collected in Lake George near Canberra, Australia.
Ž .Lake George is approximately 20 km long by 10 km wide Fig. 1 . The lake bathymetry

is very regular with a gradual bed slope from west to east and an average water depth of
approximately 2 m. The data presented here were collected as part of a larger study to

Žinvestigate fetch limited growth of finite depth wind waves Young and Verhagen,
.1996a,b; Young et al., 1996 . Data were collected continuously at a rate of 8 Hz from a

Ž .surface piercing Zwarts Pole Zwarts, 1974 at the location shown in Fig. 1. Both
Ž .easterly and westerly winds perpendicular to the long shorelines are common and

careful scanning of the approximately 6 months of continuous data enabled the selection

Fig. 1. Map of the measurement site at Lake George. The contour interval is 0.5 m with a maximum contour
value of 2.0 m. Data were collected at the location shown during easterly and westerly conditions.
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Table 1
Summary of the data collected

Quantity Units

Date dd-mm-yy 25-10-93 29-10-93 6-11-93 4-12-93 7-12-93 15-12-93 8-1-94
U mrs 11.5 8.0 5.0 11.0 6.7 9.5 13.2
s mrs 1.28 0.59 1.17 1.18 0.47 0.92 0.81U

u 8 274.4 278.1 276.1 263.4 100.5 281.1 271.4
s 8 12.3 7.6 6.5 5.8 9.9 6.4 6.8u

T h 7.26 6.39 8.71 6.97 7.96 9.95 10.92
n y 1634 1436 1960 1568 1792 2238 2456
H m 0.42 0.30 0.19 0.38 0.26 0.34 0.44s

f Hz 0.41 0.47 0.53 0.43 0.50 0.46 0.40p

k d y 1.56 1.95 2.35 1.61 2.07 1.77 1.39p

ard y 0.100 0.071 0.047 0.094 0.064 0.085 0.119
2Ž .b f , f y 0.071 0.038 0.014 0.060 0.035 0.049 0.166p p

A y y0.111 y0.105 y0.070 y0.096 y0.099 y0.095 y0.047s

S y 0.198 0.137 0.093 0.181 0.135 0.171 0.336k

Quantities shown include: U —the mean wind speed measured at a reference height of 10 m; s —theU

standard deviation of the wind speed; u —the mean wind direction; s —the standard deviation of the windu

direction; T —the length of the time series; n —the number of degrees of freedom for the time series; H —thes

significant wave height; f —the frequency of the spectral peak; k d —the wavenumber of the spectral peakp p
2Ž .times the water depth; ard —the relative depth, where as H r2; b f , f —the bicoherence for selfs p p

interactions involving the spectral peak; A —the asymmetry; S —the skewness.s k

of long time series with relatively constant wind speed and direction. Careful selection
of the meteorological conditions, together with the absence of tidal water level varia-
tions, means that extremely long yet stationary time series can be obtained. Details of
the data collected are summarized in Table 1.

The time series varied in duration from 6.39 h to 10.92 h. Typical examples of the
variation of wind speed and direction during these extended time series are shown in
Fig. 2. Although the time series were selected so as to have approximately constant wind
speed and direction, whether the time series are truly stationary must be considered. The
10 min average values of both wind speed and direction were analyzed using the Run

Ž .Test for Stationarity Bendat and Piersol, 1971 . The hypothesis that each of the time
series was stationary was found to be accepted at the 10% level of significance.

Wind speeds range from 5.0 mrs to 13.2 mrs. The potential magnitude of finite
depth effects can be determined from the quantity k d. Values range from 1.39 to 2.35.p

Values of k d)p are generally considered to be deep water, whilst k d-0.25p p

represent shallow water. Hence, the present data set is in transitional water depth. Most
previous studies of triad coupling have concerned relatively long shoaling waves and are
represented by values of k d between 0.14 and 1.13. Hence, the present data set extendsp

such investigations into deeper water. In addition, the present data set concerns fetch
limited wind waves on an approximately horizontal bottom, rather than a mixture of
swell and wind sea propagating over a sloping bathymetry. Refraction over such sloping
bathymetry tends to narrow the directional spreading of the spectrum. Hence, the present
data could be expected to have broader spreading than previously reported studies.
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Ž . Ž . Ž .Fig. 2. a Values of wind speed U and direction u as a function of time for the time series recorded on10
Ž . Ž .29-10-93. Values shown represent averages over a period of 10 min. b Values of wind speed U and10

Ž .direction u as a function of time for the time series recorded on 8-1-94. Values shown represent averages
over a period of 10 min.
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4. Data processing

4.1. Bispectral analysis

The bispectrum is formally defined as the Fourier transform of the third-order
Ž .correlation function of the time series Hasselmann et al., 1963 . For a discretely

sampled time series, this becomes

)B f , f sE X f X f X f q f 5Ž . Ž . Ž . Ž . Ž .1 2 1 2 1 2

wx Ž .where E denotes the expected value or mean, X f is the complex Fourier coefficient
and the asterisk represents the complex conjugate.

Ž .The bispectrum can be recast into its normalized magnitude Kim and Powers, 1979

< < 2B f , fŽ .1 2
b f , f s 6Ž . Ž .2 1 2 2 2< < < <E X f X f E X f q fŽ . Ž . Ž .1 2 1 2

2Ž . 2where b f , f is termed the bicoherence. The bicoherence is in the range 0Fb F1,1 2

and is a measure of the phase coherence between spectral components at f , f and1 2

f s f q f . A value of b2 s1 indicates complete coherence whilst b2 s0 indicates no3 1 2

coherence.
For a finite length time series statistical uncertainty will be introduced into the

2 Ž . Ž .estimate of b . Hinich 1982 and Elgar and Sebert 1989 have shown that the
bicoherence follows a noncentral x 2 probability distribution which is a function of the
number of degrees of freedom of the estimate of the Fourier transform and the true value
of the bicoherence. The magnitude of the confidence limits increases as both the number
of degrees of freedom and the true value of b2 decrease. The dependence on the true
value of b2 complicates the estimation of confidence limits for bicoherence. Elgar and

Ž .Sebert 1989 recommend the use of maximum likelihood estimates for the confidence
limits to overcome this difficulty.

The probability distribution for bicoherence demonstrates the difficulty of obtaining
statistically reliable estimates of this quantity when the bicoherence is low. Hence, if

Ž .such estimates are to be attempted, very long many degrees of freedom time series are
required.

The bicoherence determines whether there is phase coherence between spectral
components. The details of the phase coherence can be obtained by examination of the
relative magnitudes of the real and imaginary parts of the bispectrum. One representa-

Ž .tion is in terms of the biphase, b f , f1 2

Im B f , fŽ .1 2
b f , f sarctan 7Ž . Ž .1 2 ½ 5Re B f , fŽ .1 2

Ž .Masuda and Kuo 1981 have shown that a spectral component and its harmonic with
zero biphase is associated with the Stokes wave form with peaked crests and flat
troughs. In contrast, as b approaches ypr2 the waves become increasingly pitched
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Ž .forward a saw-tooth wave has bsypr2 . At low values of bicoherence care must be
exercised as the biphase becomes unstable.

The nature of the phase coupling can also be determined using integrated properties
of the bispectrum such as skewness, S and asymmetry, A .k s

H HRe B f , f d f d f� 4Ž .1 2 1 2
S s 8Ž .k 3r2

2h

H H Im B f , f d f d f� 4Ž .1 2 1 2
A s 9Ž .s 3r2

2h

Ž .where hsh t is the water surface elevation and the overbar indicates the mean with
respect to time. Positive values of skewness and negligible asymmetry correspond to
Stokes type wave forms. Negative values of asymmetry indicate waves which are
pitched forward.

4.2. Sampling considerations

The bicoherence values presented in Section 5 were obtained from time series
sampled at 8 Hz. The time series were sub-divided into blocks of 256 points and the

Ž .Fourier transform of each block determined. The Fourier coefficient product 5 was
formed for each block and the products averaged to determine the bispectrum. The
frequency resolution of the resulting bispectra was D fs0.0313 Hz. The time series
used in this study are very long and hence there are a large number of degrees of
freedom in the estimates of the Fourier coefficients. As shown in Table 1, the number of
degrees of freedom vary between 1436 and 2456. Therefore, the resulting confidence

Ž .limits are relatively small in magnitude see Fig. 6 and weak triad coupling can be
investigated.

5. Observed bispectra

The power spectra of the water surface elevation time series corresponding to the
wind records shown in Fig. 2 appear in Fig. 3. In both cases the spectra are typical of
fetch limited wind seas. They are unimodal with a high frequency face of the
approximate form fyn. In both cases, however, a slight ‘hump’ exists at 2 f . Thisp

feature is clear in these spectra due to the high number of degrees of freedom in the
Žspectral estimates. In spectra obtained from 30 min time series typical of most data

.gathering such features are masked by the statistical variability of the spectral estimate.
The existence of the ‘hump’ at 2 f is suggestive of the presence of triad selfp

interactions involving the spectral peak. This is confirmed in Fig. 4 which shows
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Ž .Fig. 3. a The power spectrum for the time series recorded on 29-10-93. The position of the spectral peak, fp
Ž .and twice the spectral peak, 2 f are shown. b The power spectrum for the time series recorded on 8-1-94.p

The position of the spectral peak, f and twice the spectral peak, 2 f are shown.p p

contour plots of the bicoherence, b2 associated with these two cases. In both cases there
Ž .is a peak at f , f , indicating phase coherence between components with frequency fp p p

and 2 f . In addition, however, significant levels of bicoherence are present along thep
Ž .line f f f , f . Thus it is concluded that, in addition to triad self coupling of the1 p 2

spectral peak, triad interactions between the peak and frequencies as high as 3 f mayp
Ž .also be present Elgar et al., 1995 . The contours shown in Fig. 4 are all above the 90%

confidence limit for zero bicoherence.
Fig. 4a is for a wind speed of 8.0 mrs whilst Fig. 4b is for 13.2 mrs. Consequently,

the relative wave amplitude, ard is considerably larger and the relative depth k dp
Žsmaller in Fig. 4b than in Fig. 4a. The increased influence of the finite water depth and

. Žalso the finite amplitude is clear in both the spectra of Fig. 3 ‘hump’ at 2 f is largerp
. Ž 2 .for smaller k d and the bispectra of Fig. 4 b larger for smaller k d . The phasep p

coherence between components at the spectral peak and those at higher frequency
increases as k d decreases.p

Values of bicoherence as a function of frequency are more clearly shown in Fig. 5
2Ž . Žwhich shows b f s f , f as a function of frequency i.e. a cut through the bicoher-1 p 2

. 2Ž .ence parallel to one axis . A single dominant peak exists at b f , f with valuesp p

Ž . 2Ž .Fig. 4. a Contours of the bicoherence, b f , f for the time series recorded on 29-10-93. The contour1 2

interval is 0.01, with the minimum contour also 0.01. The frequency of the spectral peak is shown by the
Ž . 2Ž .arrows. b Contours of the bicoherence, b f , f for the time series recorded on 8-1-94. For clarity, an1 2

irregular contour interval has been used, with contours drawn at b2 s0.01, 0.02, 0.03, 0.04, 0.05, 0.10 and
0.15. The frequency of the spectral peak is shown by the arrows.
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Ž . 2Ž . Ž .Fig. 5. a Values of b f s f , f i.e. bicoherence values involving interactions with the spectral peak as a1 p 2

function of frequency for the time series taken on 29-10-93. The position of the spectral peak is shown by the
Ž . 2Ž . Žarrow. The error bars represent 95% confidence limits of the estimates of b . b Values of b f s f , f i.e.2 1 p 2

.bicoherence values involving interactions with the spectral peak as a function of frequency for the time series
taken on 8-1-94. The position of the spectral peak is shown by the arrow. The error bars represent 95%
confidence limits of the estimates of b2.

gradually decreasing at higher frequencies. As shown by the 95% confidence levels,
however, these bicoherence values are still statistically significant. No bispectral peak

Ž .appears at f ,2 f as is often observed for shoaling waves. This, however, is perhapsp p
Ž .not surprising as no clear third harmonic 3 f was present in the power spectra.p

2Ž .Values of b f , f for all seven time series are shown as a function of the relativep p

depth k d in Fig. 6. The bicoherence clearly increases as the influence of finite depthp

increases. Even for the smallest value of k ds1.39 these waves are still in transitionalp

water depth and well above the non-dispersive shallow water limit. As these waves are
still dispersive, the source of the phase coupling with the spectral peak appears to be

2Ž . Ž .Fig. 6. Values of b f , f i.e. self interactions involving the spectral peak frequency as a function of thep p

relative depth k d. The error bars represent 95% confidence limits on the estimates of b2.p
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non-resonant or bound triad interactions. Both resonant and near resonant interactions
could not occur for such transitional depth dispersive waves.

It is interesting to compare the present observations with other published data sets.
Ž .Elgar and Guza 1985 reported the evolution of shoaling waves at water depths from

9.0 m to 1.3 m. Values of k d ranged from 0.14 to 0.37, significantly smaller than thep
2Ž .values for the present data set. As the water depth decreased b f , f increased fromp p

approximately 0.02 to 0.09. The spatial difference between the deepest and shallowest
sites was approximately 300 m and the characteristic wavelength was of order 100 m.
Hence, the triad interactions occurred over a distance of only a few wavelengths.

Ž . 2Ž .Similarly, Freilich et al. 1990 observed values of b f , f increasing from 0.04 top p

0.36 as waves propagated shorewards from a depth of 10 m to a depth of 4 m. The
transformation occurred over a distance of less than 5 wavelengths. Again, values of
k d were small, varying between 0.24 and 0.39. Based on bottom pressure records,p

Ž .Elgar et al. 1995 found significant coupling between the spectral peak and 2 f forp
Ž .shoaling waves in deeper water i.e. k ds0.67–1.13 .p

The present data are obtained in even deeper water for which values of k d varyp
2Ž .between 1.39 and 2.35. Despite this, bicoherence levels are quite high, with b f , f sp p

0.16 for the most depth dependent case. In contrast to shoaling data, however, the
nonlinear interactions can occur over a very long distance. The downwind fetch is of
order 1000 wavelengths compared to 5 for the shoaling data. Hence, although the
magnitude of the triad coupling may be relatively weak, the extended distance over
which it acts can result in measurable effects on the spectrum.

Ž . Ž .Herbers et al. 1992 considered shallower k df0.3–0.9 but still intermediatep
Ž .depth dispersive waves and also found phase coupling between the spectral peak and

2 f . In addition, they found good agreement between their data and the second orderp
Ž . Ž .theory of Hasselmann 1962 . To make a comparison with the Hasselmann 1962

theory requires either high resolution directional data or an assumption that the spectrum
Ž .has a narrow directional spread e.g. shoaling waves on a beach . In the present case no

directional data were available. In addition, the waves are fetch limited wind seas
Žpropagating over a horizontal bottom and have broad directional spreading Young et

. Ž .al., 1996 . Therefore, a comparison with the theory of Hasselmann 1962 is not
feasible.

Ž . 2Ž .For a three wave system, Kim and Powers 1979 show that b f , f represents the1 2

fraction of the energy at frequency f q f due to triad coupling of the three modes at1 2

f , f and f q f . For a broad band process a particular mode may simultaneously be1 2 1 2

involved in many interactions and such a simple interpretation of the bicoherence is not
Ž . Ž .possible McComas and Briscoe, 1980 . However, Herbers and Guza 1992 argue that

2Ž .in such cases b f , f can be interpreted as a lower bound on the energy at f q f1 2 1 2

which is nonlinearly coupled to f and f . Hence, it can be concluded that, for the1 2
Ž .present data set, a substantial percentage )10% of the energy at 2 f and above willp

be nonlinearly coupled to the spectral peak.
In the above discussion it has been assumed that the significant values of bicoherence

observed are a result of triad coupling due to the finite water depth. Masuda and Kuo
Ž .1981 have, however, observed significant bispectral values for wind forced deep water

Ž .waves. The wind forcing results in wave forms which are pitched forward asymmetric .
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2Ž . Ž .Fig. 7. Values of b f , f i.e. self interactions involving the spectral peak frequency as a function of thep p

inverse wave age U rC . The error bars represent 95% confidence limits on the estimates of b2.10 p

As the present data are both wind forced and finite depth, the relative contributions of
the wind and the water depth must be considered. One means of assessing the

2Ž .importance of wind forcing to the observed nonlinear coupling is to plot b f , f as ap p
Ž .function of U rC , the inverse wave age see Fig. 7 , where C is the phase speed of10 p p

2Ž .components at the spectral peak. Fig. 7 shows b f , f increasing with U rC ,p p 10 p

suggesting that increased nonlinear coupling is associated with increased wind forcing.
This conclusion should, however, be treated with caution. The fetch and water depth are
relatively constant for the present data set. Hence, decreasing values of k d are alwaysp

associated with increasing values of U rC as shown in Fig. 6 and Fig. 7. These forms10 p

of presentation cannot separate the relative contributions due to finite depth and wind.
An alternative is to investigate the relative magnitudes of the real and imaginary parts

of the bispectrum as represented by the skewness and asymmetry. Fig. 8 shows S andk
ŽA plotted as a function of the depth parameter, k d. As k d decreases or U rCs p p 10 p

.increases , A remains relatively constant at approximately y0.1. There is no tendencys

for the waves to become progressively more pitched forward as the wind forcing
increases. In contrast, S progressively increases as the relative water depth decreases.k

Therefore the waves become progressively more sharp crested as the influence of the
finite depth increases. It can be concluded that, although wind forcing may lead to some
of the observed nonlinear coupling for the present data set, non-resonant finite depth
triad coupling is primarily responsible.

Ž .For S -0.2, Ochi and Wang 1984 found virtually no deviation from the Gaussiank

probability density distribution for the sea surface elevation. Applying this criterion, the
present data would suggest a limit of k df1.5, below which triad interactions becomep

significant. Such a conclusion would, however, be misleading as k d is not the solep

parameter determining the significance of the triad interactions. The wave amplitude, a,
is also an important parameter and, in the present case, the long propagation distance
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Ž . Ž .Fig. 8. Values of—asymmetry, A crosses and skewness, S circles as a function of the relative depth k d.k k p

enables the energy transfer across the spectrum to assume measurable proportions.
Hence, the propagation distance must also be assessed in determining the resultant
influence on the evolution of the spectrum.

6. Conclusions

The results presented in this paper extend the parameter range of observations of triad
interactions. Previous observations have largely been confined to shoaling waves. These
have spanned both non-dispersion and dispersive cases, however, the maximum value of
k d has been limited to 1.13. In addition, since these observations have been confined top

shoaling conditions, the effects of refraction have meant that the directional spreading in
such cases has generally been narrow. In contrast, the present data set consists of fetch
limited, dispersive intermediate depth water waves propagating over a horizontal
bottom. Hence, the spectra will have broader directional spreading than in previous
shoaling observations. The present data have also been collected in deeper water than

Ž .previous observations approximately twice as deep with a maximum value of k dsp

2.35 for the present data set.
One might initially assume that the influence of triad interactions would be negligible

for the present data set. A bispectral analysis of the data, however, clearly shows that a
Ž .significant percentage )10% of energy at frequencies of 2 f and above is phasep

coherent with energy at the spectral peak. From this result, it is concluded that
non-resonant or bound triad interactions can play a role in the evolution of fetch limited
spectra in finite depth water.

The magnitude of the triad interactions for such transitional water depth waves will
almost certainly be significantly smaller than those which occur for shoaling waves
where significant spectral transformation can occur over a distance of a few wave-
lengths.



( )I.R. Young, Y. EldeberkyrCoastal Engineering 33 1998 137–154152

Not surprisingly, the magnitude of the nonlinear coupling increased as the effects of
Ž .depth limitation increased as measured by the parameter k d . The spectra remainedp

unimodal although the spectral tail would have been elevated by the nonlinear flow of
Ž .energy away from the peak. The fact that a clear second harmonic 2 f was not presentp

was possibly due to other processes such as quadruplet interactions which are known to
have a shape stabilizing influence on the spectrum. The quadruplet interactions act to
redistribute energy when a second, high frequency peak develops. The details of how
bound energy at 2 f and above would be influenced by quadruplet interactions is yet top

be investigated in detail. Investigations of the effects of quadruplet interactions have
Ž .largely been confined to free waves Elgar et al., 1995 .

In the discussion above, the concept of energy transfer has been introduced for
non-resonant triad interactions. This is true in the sense that spectral components at the

Ž .second harmonic 2 f have increased in magnitude. The whole concept of linearp

spectral analysis becomes questionable when nonlinear processes are introduced. An-
other way of considering the process is that the originally linear sinusoidal wave form

Ž .has simply changed shape into a nonlinear Stokes form. There is still only one wave
present, however it is no longer sinusoidal in form. Nevertheless, if spectral models such

Ž .as SWAN Booij et al., 1996 are to be used to model such intermediate water depth
processes, the growth of the second harmonic can only be interpreted as an energy
transfer.

However one wishes to interpret the process of non-resonant triad interaction, the
Žconsequences are important. An interesting example is the Beji–Battjes bar Beji and

.Battjes, 1993 . Deep water linear waves were incident on a shoal. As the waves
propagated across the shoal, the magnitude of the second harmonic increased and the
waves were clearly observed to take a nonlinear shape. The waves were still dispersive
and hence non-resonant and near-resonant interactions were responsible for the growth

Ž .of the harmonic. Holthuijsen private communication indicates that once these waves
entered deep water again, the bound components at 2 f were ‘set free’ to propagate atp

their respective linear group velocities. Although the appearance of the second harmonic
over the shoal may be considered as a spurious artefact resulting from the linear spectral
representation of a nonlinear wave, these components became real once they entered
deep water. The conclusion is clear; if the linear spectral representation is to be retained
in intermediate water depth, non-resonant interactions can be interpreted as an energy
transfer to the bound harmonic components.

The significance of this study is that it raises the possibility that triad interactions
may play a role in the evolution of waves in transitional water depth such as is found on
most continental shelves. As such, it may be necessary to include such processes in
wave models used to predict waves in intermediate water depth. To date, it has been
assumed that such processes need only be included in the shoaling region.
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