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The directional spreading of both the wavenumber and frequency spectra of finite-depth wind generated
waves at the asymptotic depth limit are examined. The analysis uses the Wavelet Directional Method,
removing the need to assume a form for the dispersion relationship. The paper shows that both the
wavenumber and frequency forms are narrowest at the spectral peak and broaden at wavenumbers
(frequencies) both above and below the peak. The directional spreading of the wavenumber spectrum is bi-
modal above the spectral peak. In contrast, the frequency spectrum is uni-modal. This difference is shown to
be the result of energy in the wind direction being displaced from the linear dispersion shell. A full
parametric relationship for the directional spreading of the wavenumber spectrum is developed. The analysis
clearly shows that typical dispersion relationships are questionable at high frequencies and that such effects
can be significant. This result supports greater attention being focussed on the routine recording of
wavenumber spectra, rather than frequency spectra.
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1. Introduction

The asymptotic depth-limited spectrum is the limiting formwhich
results when a constant wind blows over a large body of uniformly
finite-depth water. The resulting spectrum is hence a balance
between atmospheric input, bottom friction, breaking dissipation
and various nonlinear processes (3-wave and 4-wave). In essence,
this spectral form is the finite-depth analogy of the deep-water
asymptote represented by the Pierson–Moskowitz form (Pierson and
Moskowitz, 1964). The finite-depth asymptotic form is of importance
for a number of reasons. As the asymptotic form, it is the limiting
design condition in finite-depth situations and is hence of engineering
significance. As, by definition, all source terms (input, dissipation,
bottom friction and nonlinear interaction) are in balance, this spectral
form provides valuable indirect information on the physics of wind-
wave generation in finite-depth conditions. Finally, as will become
obvious in this paper, nonlinear processes become important in these
situations and hence the spectral form gives insight to the importance
of such processes in intermediate-depth conditions.

There are numerous observations of finite-depth spectra reported
in the literature. The vast majority of these represent shoaling
conditions, where deep-water waves have propagated into areas of
finite depth. Observations of locally-generated waves in finite-depth
conditions are much rarer. The classic data sets from Lake Okeecho-
bee, USA (Thijsse, 1949; U.S. Army Corps of Engineers, 1955;
Bretschneider, 1958) considered the asymptotic limits of integral
parameters such as total energy (wave height) and period. The more
recent studies have largely considered the data sets taken in the mid
1990s at Lake George, Australia (Young and Verhagen, 1996a,b; Young
et al., 1996; Resio et al., 2004). These studies, together with data from
Lake Ijssel, The Netherlands (Bottema, 2007; Bottema and van
Vledder, 2009) have considered the form of the full frequency
spectrum, including some analysis of directional spreading.

This paper is the third in a series which analyses data taken with a
high resolution spatial array in Lake George in 1997 and 1998. Young
and Babanin (2006) (henceforth called Part I) considered the
asymptotic limits for total energy (significant wave height) and
peak frequency, as well as developing a parametric form for the one-
dimensional frequency spectrum. This result was extended in Young
and Babanin (2009) (henceforth called Part II) where they used the
Wavelet Directional Method to study the one-dimensional wave-
number spectrum. This paper extends the analysis of Part II to
consider the full directional spectrum in both wavenumber and
frequency forms.

The arrangement of the paper is as follows. Section 2 provides a
brief overview of observations of the directional wave spectrum, with
particular reference to finite-depth conditions. Section 3 summarises
the present experimental configuration and the data used in the
analysis. This is followed in Section 4 by a description of the Wavelet
Directional Method (MDM) which is used to analyse the present data
set. Initial observations of the directional spreading are made in
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Section 5, which is followed by a detailed analysis in Section 6. The
results are discussed in detail in Section 7 and conclusions are drawn
in Section 8.

2. Observations of the finite-depth directional spectrum

2.1. Directional spreading function

It is common practice to consider the directional frequency
spectrum, E(f, θ) or directional wavenumber spectrum, F(k, θ),
where f is frequency, k=|k ̲| is the modulus of the wavenumber
vector and θ is direction (Longuet-Higgins et al., 1963) in the form:

Eð f ; θÞ = Eð f ÞDð f ; θÞ ð1Þ

Fðk; θÞ = FðkÞDðk; θÞ ð2Þ

where E( f) is the one-dimensional frequency spectrum, F(k) is the
one-dimensional wavenumber spectrum and D is a directional
spreading function, defined such that

∫
2π

0

Dðk; θÞdθ = ∫
2π

0

Dð f ; θÞdθ = 1 ð3Þ

An alternative representation of the spreading function is

Dðk; θÞ = BðkÞKðk; θÞ ð4Þ

where B(k) is a normalization factor and K is defined such that it has a
maximum value of one at each wavenumber. A similar relationship
can be written for the frequency-based spreading function.

For simplicity, the spreading function, K is often represented in a
parametric form. Three formulations are commonly used: K(k)=
cos2s(k)θ/2 (Longuet-Higgins et al., 1963), K(k)=sech2β(k)θ (Donelan
et al., 1985) and A−1ðkÞ = ∫

2π

0
Kðk; θÞdθ (Babanin and Soloviev, 1998).

In each case, the width of the spreading function is represented by a
single parameter at each wavenumber (i.e. s, β or A). Again, similar
relationships can be written for the frequency spectrum.

In deepwater, the classical observations of the directional spreading
were made by Mitsuyasu et al. (1975), Hasselmann et al. (1980) and
Donelan et al. (1985). The Donelan et al. (1985) measurements were
made using a spatial array of wave gauges, whilst the other investiga-
tions used pitch–roll–heave (3-axis) buoys. The analysis of all data sets
assumed spreading functions of the form K described above. The details
of the spectral width varied considerably between these experiments.
All, however, revealed directional spreadingwhichwasnarrowest at the
frequency of the spectral peak and broadened with frequency both
above and below the peak frequency.

Young (1994) investigated the analysis techniques used and
showed that the results were sensitive to the chosen technique,
which probably explained the differences in the results. In addition,
Young (1994) concluded that instruments with a limited number of
sensors (e.g. 3-axis) yielded results with artificially broad spectra. This
is consistent with the observation that the Donelan et al. (1985)
results were narrower than the earlier measurements.

Young et al. (1995) examined spectra obtained from a spatial array of
wave gauges, but analysed the results using a Maximum Likelihood
Method (MLM) (Isobe et al., 1984) which did not prescribe an a priori
directional form. Rather than the uni-modal structure previously
parameterised by cosine-type forms, they found bi-modal spreading
around the mean wind direction. They explained that this structure
resulted from 4-wave nonlinear interactions (Hasselmann, 1962; Banner
and Young, 1994). Numerical calculations with a full solution to the
nonlinear term produced similar bi-modal forms. There was also
evidence that such spreadingwas present in the directional wavenumber
spectra observed by Holthuijsen (1983) using stereo-photography.
Following the initial observations of Young et al. (1995), a number
of observations of bi-modal spreading have been reported. Wang and
Hwang (2001) and Ewans (1998) have reported bi-modal frequency
spectra obtained from MLM analysis of buoy data, whereas Wyatt
(1995) and Hwang et al. (2000) have reported bi-modal wavenumber
spectra obtained from scanning radar measurements.

As explained by Young (1994), some doubt can be raised about such
MLM analyses, where there is evidence that the analysis technique can
sometimes produce spurious side lobes. However, the reports of bi-
modal wavenumber spectrameasured by both stereo-photography and
scanning radar systems seem compelling. The supporting numerical
(theoretical) calculations again support this structure.

The only comprehensive measurements of the directional spread-
ing of locally-generated wind-waves in finite-depth conditions are
those of Young et al. (1996). These results showed a form qualitatively
similar to deep-water observations with the spreading narrowest at
the spectral peak frequency and broadening both above and below the
peak. There did not appear to be a systematic dependence on non-
dimensional water depth, but the spectra were significantly broader
than previous deep-water observations.

2.2. One-dimensional spectrum

Following on from the finite-depth spectral observations of Young
and Verhagen (1996b) and Bottema (2007), Parts I and II considered
the forms of the one-dimensional frequency andwavenumber spectra
at the asymptotic depth-limit, respectively. The frequency spectrum
was similar to deep-water observations (eg. Donelan et al., 1985) with
the addition of a small harmonic at 2fp, where fp is the frequency of
the spectral peak. This form was parameterized as:

Eð f Þ = E1ð f Þ + E2ð f Þ ð5Þ

where

E1ð f Þ = β1g
2ð2πÞ−4f−ð5 + n1Þ

p1
f n1 exp

n1

4
f
fp1

 !−4" #
⋅γexp

1

−ðf−fp1 Þ
2

2σ2
1 f

2
p1

" #

ð6Þ

E2ðf Þ = β2g
2ð2πÞ−4f−ð5 + n2Þ

p2
f n2 exp

n2

4
f
fp2

 !−4" #
ð7Þ

and the parameters in Eqs. (6) and (7) can be represented by:

β1 = 5:89 × 10−3δ0:085 ð8Þ

γ1 = 2:97 × 10−3β−1:34
1 ð9Þ

σ1 = 2:0 × 10−6β−2:09
1 ð10Þ

and n1=−4, n2≈−8.35 and β2≈0.074. The parameter δ in Eq. (8) is
the non-dimensional water depth, δ=gd/U10

2 , where U10 is the wind
speed measured at a reference height of 10 m and d is the water depth.

In contrast, the wavenumber form was far simpler, being repre-
sented by:

FðkÞ = βk−ð3 + nÞ
p kn exp

n
4

k
kp

 !−3" #
ð11Þ

with

β = 6 × 10−3δ−0:2 ð12Þ

and n=−2.8.
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The fact that there is not a one-to-one relationship between the
frequency and wavenumber spectra was shown to be a result of
nonlinear processes in the finite-depth conditions which resulted in
wave energy being bound to the spectral peak and not conforming to a
traditional linear dispersion relationship. The bound harmonic at 2fp
in the frequency spectrum is a clear example of such behaviour.

3. Experimental setup and available data

Wave data were collected in Lake George in south-eastern
Australia. This site has been well documented in the previous studies
of Young and Verhagen (1996a,b) and Young et al. (1996). The
measurements weremade from a platform on the eastern shore of the
lake. This experimental site and the instrumentation and data
recorded for this experiment have been reported in detail in Young
et al. (2005), Part I and Part II. A broad range of environmental
parameters were recorded as part of the full experimental program. Of
particular relevance to this study, coincident measurements of the
water surface elevation, water depth and wind speed at a reference
height of 10 mweremade. Thewater surface elevationmeasurements
were made using a spatial array in the form of a centred pentagon of
radius 15 cm. The details of the instrumentation are described in Part
II. The probes in the array were coincidently sampled at 25 Hz, records
consisting of 20 min duration (i.e. 30,000 samples per probe).

The array data was analysed using theWavelet Directional Method
(WDM) (see Section 4) to obtain wavenumber spectra. The wave
probe records were sub-divided into blocks of 256 points and the
wavelets formed using an analysis with 8 voices. The wavelet analysis
considers the wave field to be made up of a summation of
independent Morlet wavelets, each of different scale [Donelan et al.,
1996]. To improve accuracy, it is common to carry out the analysis at
additional intermediate scales, called voices. The number of voices
was varied between 4 and 12 with little impact on the resulting
spectra. Part I presented a detailed analysis of the confidence limits
associated with the resulting Fourier spectra. Such an analysis is
beyond the scope of this paper, as the statistical variability of WDM
derived spectra is yet to be determined. However, 6 times as much
data is used to derive each spectrum in the WDM analysis compared
to the Fourier analysis of Part I. Therefore, it is reasonable to assume
that the confidence limits will not be larger than those for Part I (i.e.
the upper and lower 95% confidence limits are given by 1.3F(k) and
0.8F(k), respectively, where F(k) is the estimate of the spectral
ordinate).

The full data set is summarised in Table 1 of Part I. The wind speed
range spans 5.6 m/s<U10<19.8 m/s and water depths are in the
range 0.6 m<d<1.15 m and non-dimensional depth, kpd in the range
0.71<kpd<3.5. Noting that deep-water conditions are usually
assumed for kpd>π and shallow water conditions for kpd<π/10, the
present data set spans most of the transitional water depth region.

All other details of the experimental configuration and sampling
can be found in Part I and Part II.

4. The wavelet directional method

The most obvious way to measure the directional wavenumber
spectrum, F(k̲), where k ̲ is the two-dimensional wavenumber vector
is to digitize the two-dimensional spatial domain (x, y). This can be
done by stereo-photography (Holthuijsen, 1983; Banner et al., 1989)
or indirectly through a remote-sensing technique (e.g. Alpers et al.,
1981; Young et al., 1985; Hasselmann et al., 1985; Walsh et al., 1989).
These approaches have either logistical difficulties (stereo-photogra-
phy) or rely on still incomplete knowledge of transfer functions
(remote-sensing).

The standard approaches to the analysis of spatial array data (as in
the present experiment) consist of the Fourier expansion method
(Longuet-Higgins et al., 1963), the Maximum Likelihood Method
(MLM) (Isobe et al., 1984) or the Maximum Entropy Method (MEM)
(Lygre and Krogstad, 1986). Thesemethods all assume a linear Fourier
representation of the water surface. As the spatial array has too few
degrees of freedom to define the two-dimensional surface elevation,
an approximate form is developed which either conforms to a pre-
determined parametric shape or maximizes the likelihood or entropy
of the solution. In contrast, the Wavelet Directional Method (WDM)
(Donelan et al., 1996; Krogstad et al., 2006) makes two assumptions:
that the water surface can be represented by a summation of Morlet
wavelets and that only one such wavelet is within the footprint of the
array at any instant. Both of these assumptions seem reasonable. It is
well known that Fourier expansions can represent complex water
surfaces accurately. As wavelets provide greater flexibility, then we
can be confident that a good approximation to the water surface can
be found. Details of the mathematical form of the Morlet wavelet can
be found in Donelan et al. (1996). In physical space, however, a Morlet
wavelet looks like a wave group or packet of energy. In contrast to a
sinusoidal form (Fourier analysis) it has a finite spatial extent. Thus,
the wavelet analysis can be considered as representing the water
surface by a summation of wave packets, rather than a summation of
stationary sinusoidal forms. The summation runs over wavelets with
different spatial extent and frequency, with no requirement for a
unique dispersion relationship linking these parameters. As a result,
the wavelet approach is very flexible when considering non-
homogeneous data or data where the dispersion relationship between
wavenumber and frequency is unknown.

Typical wavelets used in the analysis will have a spatial extent of
tens of metres. As the footprint of the array is much smaller (an order
of magnitude) than such wavelets, it is reasonable to assume that for
the vast bulk of the time, only one wavelet will be within the array at
any instant. Hence, this criterion is generally satisfied.

With these assumptions, the wavenumber vector can be deter-
mined by considering the phase difference of the wavelet between the
gauges of the array. The phase difference between the gauges i and j is
given by (Donelan et al., 1996; Krogstad et al., 2006; Part II)

ϕijðtÞ = kxðtÞXij + kyðtÞYij ð13Þ

where (Xij, Yij) denotes the spatial separation vector between a pair of
gauges defined by the geometry of the array and (kx, ky) are the
orthogonal components of the wavenumber vector k ̲. Eq. (13) has two
unknowns, kx and ky and hence provided there are more than two
elements in the array it can be solved to uniquely determine the
wavenumber vector. The resulting solution yields a series of n
wavelets, each with an amplitude AA(f, n), direction dd(f, n) and
wavenumber modulus kk(f, n). Thus by summing the squares of the
amplitudes of the wavelets (AA2) it is possible to form: the directional
frequency spectrum, the directional wavenumber spectrum, the
frequency–wavenumber spectrum, Ψ(k, f) (i.e. dispersion relation)
and the dispersion relation as a function of direction, Ψ(k, f, θ). Note
that in this analysis no a priori dispersion relationship is required.
Rather, this is an element of the solution.

A more detailed explanation of the WDM is provided in Part II. The
description above reveals an analysis technique ideally suited to
investigate the directional spreading of nonlinear waves.

5. Observations of the directional spreading function

As outlined in Parts I and II, the data considered in this paper were
recorded over a period of approximately 1 year from September 1997
to October 1998. A total of 55 records were analysed using the WDM.
All of these records could be classified as intermediate water depth
(kpd between 0.7 and 1.99) with approximately half at the asymptotic
limit to growth defined in Part I.

Fig. 1 shows a typical example of the resulting directional spectra.
The case shown is for c061323.oc8, as defined in Part II (Hs=0.336m,



Fig. 1. The directional wavenumber spectrum, F(k, θ)and the directional frequency spectrum, E(f, θ) for case c061323,oc8 (see Part II). Panel (a) shows the one-dimensional
wavenumber spectrum derived from the WDM analysis (solid line with squares) and derived from a conventional Fourier analysis (solid line). The dashed line is a reference k−2.8

slope. Panel (b) shows the one-dimensional frequency spectrum (definitions as in Panel (a)). The dashed line is a reference f−4 slope. Panels (c) and (d) show the spreading
functions K(k, θ) and K(f, θ), respectively. By definition this spreading function has a maximum value of 1.0 at each wavenumber (or frequency). Contours are drawn at 0.70, 0.40,
0.25, and 0.10. The horizontal white line is the mean wind direction.
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fp=0.406Hz, U10=13.3m/s, d=0.97 m). Fig. 1 shows the one-
dimensional wavenumber spectrum, F(k) (Fig. 1a) and the one-
dimensional frequency spectrum, E(f) (Fig. 1b). In each case theWDM
analysis is shown, together with a standard Fourier analysis. In the case
of F(k), the Fourier form has been derived from the corresponding
frequency spectrum, assuming the linear dispersion relationship
[ω2=gktanh(kd), where ω=2πf]. As reported in Parts I and II, the
frequency spectrum has a high frequency face proportional to f−4, with
a small harmonic visible at approximately 2fp. The wavenumber
spectrum has a high wavenumber face proportional to k−2.8. No
harmonic is present and the general form is simpler than the frequency
spectrum [see Eqs. (5) and (11)].

Fig. 1c shows the corresponding directional spreading function, K(k)
and Fig. 1d, the frequency form, K(f). Note that at eachwavenumber (or
frequency), this function has a maximum value of 1. There are striking
differences between the spreading functions. Both forms exhibit the
previously observed structure where they are narrowest at the spectral
peak and broaden both above and below this value. The wavenumber
form is clearly bi-modal above the spectral peak. In contrast, however,
the frequency form is uni-modal at all frequencies. This difference
clearly indicates that a simple transformation between the frequency
and wavenumber spectra is not appropriate.

Visual comparison of Fig. 1, panels c and d also shows that, at the
spectral peak, the frequency form is broader than the wavenumber
form, again signalling that a simple transformation between the
spectra is not appropriate.

The directional spreading functions for this case are examined in
more detail in Fig. 2, K(k) and Fig. 3, K(f). Fig. 2 shows the directional
spreading function, K(k) as a function of direction at values of k/kp
from 0.8 to 8.0. The broadening of the spreading with wavenumber
above the spectral peak is clear, as is the bi-modal structure. It is also
clear that the bi-modal structure is not symmetric. This was a feature
in almost all the observed spreading functions. There was, however,
no consistent trend to the asymmetry. For instance, it was not always
skewed in one direction.

The frequency form, K(f) in Fig. 3 is shown at values of
ffiffiffiffiffiffiffiffiffiffi
f = fp

p
such

that they can be directly compared to the corresponding panel in
Fig. 2. This mapping assumes an approximate dispersion relationship
of the form f2∝k. Therefore, k/kp=4 can be compared to

ffiffiffiffiffiffiffiffiffiffi
f = fp

p
= 4,

as an example. The uni-modal structure is clear, in strong contrast to
the bi-modal spreading of the wavenumber form. The broader
spreading of the frequency form near the energy-containing spectral
peak is also clear.

The trends shown for this case (c061323.oc8) hold for all of the
spectra under analysis. The frequency spectrum is consistently uni-
modal at all frequencies and the wavenumber spectrum uni-modal
near the peak and bi-modal at higher wave numbers. As an example of
this consistent structure, Fig. 4 shows four typical examples of the
directional spreading function K(k) for the wavenumber spectrum.
The four cases are shown at k/kp=6. All clearly show the bi-modal
structure seen in Fig. 2.

6. Data analysis and parametric representation

Noting that the wavenumber directional spreading factor does not
conform to a common parametric form (e.g. cos2 or sech2), the shape
independent measure of spreading proposed by Babanin and Soloviev
(1998)

A−1ðkÞ = ∫
2π

0

Kðk; θÞdθ ð14Þ



Fig. 2. Slices through the directional spreading function, K(k, θ) (solid line) at various values of k/kp (shown on each panel) as a function of direction. The case shown is c061323,oc8
(see Part II). The dotted line is the parametric model defined by Eqs. (17), (18) and (19).
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was applied to the full data set. Fig. 5 shows both A(k) and A(f) as
functions of k/kp and f/fp, respectively. Noting that a large value of A
represents narrow spreading, Fig. 5 confirms that both spectra are
narrowest at the spectral peak and increase in width for wavenum-
bers (frequencies) above and below the peak.

Fig. 5 also confirms that the directional wavenumber spectrum is
narrower at the peak than the directional frequency spectrum. Values
of A(kp)≈2 compare with A(fp)≈1.6. As the directional spreading is
uni-modal at the peak, it is possible to compare these values of Awith
Fig. 3. Slices through the directional spreading function, K(f, θ) at various values of f/fp as a fu
compared to the corresponding panel of Fig. 2. The case shown is c061323,oc8 (see Part II)
previously reported values of cos2s θ/2 distributions. A value of A≈2
corresponds to s≈50 and A≈1.6 corresponds to s≈35. These results
indicate that the present data, or the analysis technique, yield spectra
significantly narrower than previously reported. Mitsuyasu et al.
(1975), Hasselmann et al. (1980) and Young et al. (1996) all report
values of the directional frequency spectrum with sp≈11, where sp
represents the value of s at the spectral peak. The Donelan et al.
(1985) results, when converted to an equivalent s value reveal
sp≈25. These differences are discussed further in Section 7.
nction of direction. The values are shown as
ffiffiffiffiffiffiffiffiffiffi
f = fp

p
, such that each panel can be directly

.



Fig. 4. Four examples of the directional spreading function K(k, θ) from the data set. In
each case, the function is shown for k/kp=6.
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A least-squares fit to the data yields the following parametric
representation of the values of A

AðkÞ =
2:393ðk=kpÞ0:725 fork= kp < 0:934

2:133ðk=kpÞ−0:955 for0:934 < k = kp < 3:6
0:63 fork= kp 3:6

8><
>: ð15Þ

Aðf Þ = 2:088ðf = fpÞ1:7 for f = fp < 0:917
1:634ðf = fpÞ−1:115 for f = fp 0:917

(
ð16Þ

As a first approximation to the bi-modal structure of the
directional wavenumber spectrum, the following parameterisation
was investigated

KðkÞ = cos2sðkÞ
θ−ΔθðkÞ= 2

2

� �
+ cos2sðkÞ

θ + ΔθðkÞ = 2
2

� �
ð17Þ

Eq. (17) has two symmetric lobes, separated byΔθ(k) (i.e. ±Δθ(k)/2).
In order to apply Eq. (17) it is necessary to estimate the two para-
meters, s(k) and Δθ(k), both being functions of k (or k/kp).

All spectra in the full data set were examined and the positions of
the lobe maxima and the magnitude of the “trough” between the
maxima determined. Fig. 6 shows the mean values of Δθ as a function
of k/kp. Also shown is the ratio of the maximum value of K to the value
Fig. 5. The directional width parameter A(k) (left panel) and A(f) (right panel), as defined by
parametric fits to the data. Eq. (15) is shown in the left panel and Eq. (16) in the right pan
of the “trough” between the maxima (e.g. a ratio of 0.5 indicates that
the trough is half the magnitude of the lobe).

The values of Δθ follow an approximately linear relationship, as a
function of k/kp, and can be approximated by the relationship

ΔθðkÞ = 15:3ðk = kpÞ−6:5 ð18Þ

whereΔθ has units of degrees. As is clear in Fig. 2, the separation of the
lobes increases with increasing k/kp. The value of the lobe ratio
decreases with k/kp, consistent with a model of the form represented
by Eq. (17).

The width of the spreading has already been investigated in terms
of the parameter A in Fig. 5 and Eq. (15). In order to determine the
corresponding values of s, Eq. (17) was numerically integrated for a
range of values of s and the resulting values of A recorded. The
resulting relationship between s and k/kp is shown in Fig. 7.

These results were approximated by

sðkÞ =
71:45ðk=kpÞ1:481 fork= kp < 0:934

61:04ðk=kpÞ−0:85 for0:934 < k = kp < 3:7
20:0 fork= kp 3:7

8><
>: ð19Þ

Eqs. (17)–(19) define the parametric approximation to K(k). This
result is compared with the recorded case in Fig. 2. It represents a
reasonable approximation to the directional spreading, noting the
asymmetry in this recorded case. The parametric form appears to
overestimate the depth of the “trough” between the bi-modal lobes.

The relationships (17)–(19) have been developed for spectra
which are at the asymptotic depth limit εd=1.0×10−3δ1.2 where
εd=g2ETot/U10

4 ,δ=gd/U10 andETot is the total energy of thewavefield (i.e.
the significant wave height, Hs = 4

ffiffiffiffiffiffiffiffi
ETot

p
) (see Part I). However, these

relationships seem to also apply to spectrawithin the data setwhich have
not reached this limit. Therefore, it appears that these parameterizations
are a reasonable approximation for transitional depth waters such that
0.71<kpd<3.5. As noted in Part I, wind generated waves (as opposed to
swell) do not occur for values of kpd<0.7.

The results are applicable for the wavenumber range kp<k<10kp.
The high wavenumber k≈10kp represents the limit of the resolving
power of the wave gauge array used and no attempt has beenmade to
parameterize the spectrum in detail below the wavenumber peak.

7. Discussion of results

The results presented above raise a number of interesting
questions, which need to be considered. The first of these is how is
Eq. (14). Results for all cases in the full data set are shown. The solid lines represent the
el.



Fig. 6. The mean values of Δθ for the full data set as a function of k/kp (left panel) and the ratio of the maximum value of K to the value of the “trough” between the maxima (e.g. a
ratio of 0.5 indicates that the trough is half the magnitude of the lobe) (right panel). The solid line in the left panel is the relationship (18).
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it possible for the directional wavenumber spectrum to be bi-modal,
whilst the directional frequency spectrum is uni-modal? Clearly, if
there is a linear dispersion relationship relating wavenumber and
frequency, the shapes of the spreading should be similar. If, however,
some process results in a more complex mapping between wave-
number and frequency, then it is possible for the directional spreading
of the two forms to differ.

Fig. 8 shows the same case considered earlier (c061323.oc8). Slices
through both wavenumber and frequency spectra are shown at angles
of 0°, 20°, 40°, 60°, and 80° respectively. Examination of these spectra
shows that if the slices of the wavenumber spectrum at 0° and 20°
were displaced to higher values of wavenumber (i.e. displaced to the
right), then a form consistent with the frequency spectrum shown in
the figure would result. That is, a more complex mapping between
wavenumber and frequency could account for the differences in
directional spreading between wavenumber and frequency spectra.

The WDM provides a direct means to investigate the relationship
between wavenumber and frequency, through the directional
wavenumber–frequency spectrum, Ψ(k, f, θ). Fig. 9 shows Ψ(k, f, θ)
at 0°, 20°, 40°, and 60°. The values of Ψ shown in Fig. 9 have been
multiplied by k2.5, so as to elevate the tail and normalized such that
the maximum value is 1. Contours have been drawn from 1 to 0.005.
The vertical dashed line shows the value of kp and the horizontal
dashed line the value of fp. The linear dispersion relationship,
Fig. 7. Mean values of the width parameter s for the full data set as a function of k/kp.
The piecewise solid line is the relationship (19).
ω2=gk tanh kd, is shown by the dotted line. The energy at each of
the angles lies close to the dispersion line. At θ=0°, the spectral peak
aligns well with the dispersion relationship. With increasing wave-
number (frequency), the energy increasingly deviates from the linear
dispersion relationship, with the energy being shifted to higher
frequencies. Such a result is consistent with energy in the frequency
spectrum being displaced to higher frequencies (i.e. moved to the
right). A similar result occurs at θ=20°. At θ=40°, 60°, however, the
situation starts to change. There is now little energy near the spectral
peak and the high frequency components are more closely aligned
with the dispersion line.

The impact of energy deviating from the dispersion shell in this
manner is shown diagrammatically in Fig. 10. The solid line in this
figure represents the high frequency face of the frequency spectrum
assuming a linear dispersion relationship with the wavenumber
spectrum. If, however, wavenumbers map to higher frequencies, as
indicated at θ=0°, 20°, then the spectral energy is displaced to the
right, effectively elevating the spectral levels.

As shown in Fig. 9, this process does not occur at larger angles,
hence the elevation of the spectral tail of the frequency spectrum is a
maximum in the wind direction and decreases with increasing angles
to the wind. Such a model is consistent with the observed differences
between the wavenumber and frequency spectra. The wavenumber
spreading is bi-modal with the maximum energy occurring at an
angle to the mean wind direction. In the frequency spectrum,
however, the wind direction energy is displaced to higher frequencies,
elevating the energy in the wind direction and resulting in the
observed uni-modal spreading.

The recorded data cannot directly determine the mechanism
responsible for this observed relationship between wavenumber and
frequency. However, it is possible to investigate processes which may
be consistent with the observed results. One of the major differences
between wavenumber and frequency spectra is that frequency
spectra are subject to Doppler shifting. At f/fp=3, the waves are
“riding” on energetic waves near the peak of spectrum with
wavelengths 10 times longer than the components under consider-
ation. Banner (1990) has shown that the Doppler shifting caused by
such effects can be considerable and tend to elevate the energy in the
spectral tail. The Banner (1990) result used a two-scale approxima-
tion to the continuous spectrum. Effectively, the Doppler shifting will
cause the spectral tail to “displace” to higher frequencies. This effect
increases with frequency and also with the energy of the dominant
waves. It should be noted, however, that the Banner result was for
higher frequencies than noted here and that little Doppler shifting
was predicted below f/fp=3.



Fig. 8. Slices through the directional wavenumber spectrum (left panel) and directional frequency spectrum (right panel) at various angles to themean direction. Slices are shown at
0, 20, 40, 60 and 80° to the mean.
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As shown in Figs. 1 and 5, the dominant waves near the spectral
peak have a narrow directional spread. These waves might cause
Doppler shifting of waves in this same direction in the spectral tail. At
greater angles to this dominant direction, however, the energy in the
dominant waves decreases quickly (more quickly than in the tail).
Therefore, at greater angle to the mean direction, it could be expected
that the effects of Doppler shifting would decrease. As a result,
Doppler shifting might elevate spectral levels in the dominant wind
direction but have a smaller effect at greater angles to the wind
direction. Therefore, if the wavenumber spectrum is bi-modal,
Doppler shifting could elevate the energy levels in the “trough”
region between the lobes, but have little impact at greater angles. The
result would be a frequency spectrum with reduced bi-modality or
possibly a uni-modal structure, as it appears in the present data. Of
course, for this mechanism to be significant, Doppler influences would
Fig. 9. The wavenumber–frequency–direction spectrum, Ψ(k, f, θ) at angles of 0°, 20°, 40°
normalized such that the maximum value is 1. Contours have been drawn from 1 to 0.005. T
fp. The linear dispersion relationship, ω2=gktanhkd, is shown by the dotted line. The case
need to occur below f/fp=3, which is yet to be demonstrated and is
beyond the scope of this study.

It is also possible that a combination of nonlinear effects and
Doppler shifting simply smears the high frequency tail energy thus
masking any bi-modal signature in the frequency spectrum.

The reason why the frequency spectrum is broader at the peak
than the wavenumber spectrum is less clearly apparent. However, as
can be seen in Fig. 9, at angles greater than 20°, energy remains in the
spectrum at f≤ fp. The same is not the case for wavenumber, where
there is a much sharper cut-off. The reason for this behaviour is most
likely due to nonlinear effects of the finite-depth conditions. It has
already been shown that the harmonic at 2fp is a result of triad-type
interactions (i.e. fp+ fp=2fp). Difference interactions in the spectral
tail will potentially result in some energy appearing at fp. For instance,
the difference interaction 3fp−2fp= fp, will result in energy
, and 60°. The values of Ψ have been multiplied by k2.5, so as to elevate the tail and
he vertical dashed line shows the value of kp and the horizontal dashed line the value of
shown is c061323.oc8 (see Part II).



Fig. 10. Diagram showing the high frequency face of the frequency spectrum, assuming
a linear dispersion relationship (solid line). If the dispersion relationship does not hold
and wavenumbers map to frequencies higher than predicted by the linear dispersion
relationship, the spectrum will be displaced to the right (higher frequencies) (dotted
line). As a result, deviation from the dispersion relationship can elevate the energy level
of the frequency spectrum.

Fig. 11. The directional width parameter A(f) determined from the Maximum
Likelihood Method (MLM) (solid line). Also shown are values calculated using the
Wavelet Directional Method (WDM) (dots). The scale is the same as in Fig. 5 to facilitate
a direct comparison. The case shown is c061323.oc8 (see Part II).

Fig. 12. The directional spreading for the frequency spectrumat f=fp for case c061323.oc8
derived from the WDM (solid line with dots). For comparative purposes, the analytical
functions reported in previous studies are also shown.
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appearing near the spectral peak. These types of interactions will
smear the energy in the frequency spectrum in both frequency and
direction space, potentially resulting in broader spreading at the
spectral peak. Whether such a mechanism can account for the
magnitude of the differences observed cannot be determined from the
data. However, Fig. 9 clearly shows much greater smearing of energy
in the frequency spectrum.

Whether one considers the frequency spectrum or the wavenum-
ber spectrum, the present results indicate much narrower spreading
near the peak than has previously been recorded. The present analysis
indicates that, for the wave number spectrum, at the spectral peak,
Ap≈2corresponding to sp≈50 and for the frequency spectrum,
Ap≈1.6 corresponding to sp≈35. All previous measurements
[Mitsuyasu et al. (1975), Hasselmann et al. (1980) , Donelan et al.
(1985), Young et al. (1996), Babanin and Soloviev, 1998] report values
of the directional frequency spectrum with sp≈10–25 (or Ap≈0.95–
1.3), where sp represents the value of s at the spectral peak. These
previous results cover both deep and intermediate-depth water. In
fact, the results of Young et al. (1996) are from Lake George, as for the
present data set. Therefore, the differences cannot be explained by
finite-depth influences. The other major difference is the analysis
technique. The previous results used a variety of Fourier and MLM
methods, whereas the present results use the WDM.

In order to investigate the influence of the analysis technique, the
present data was re-analysed using the Maximum Likelihood Method
(MLM). Fig. 11 shows values of the parameter A(f) evaluated using the
MLM. The maximum value, Ap≈0.9 is consistent with previous
analyses. Also shown in Fig. 11 is the result for the present WDM
analysis (for the frequency spectrum). As expected, the values of A are
significantly larger than the MLM analysis with Ap≈1.5, signifying
narrower spreading.

It therefore appears that the WDM produces narrower directional
spreading than the Fourier techniques. As indicated above, the WDM
relies on fewer assumptions in its analysis than the Fourier techniques
and therefore one might assume that the results of this analysis may
be more reliable. Fortunately, independent comparative studies are
available to resolve this issue. Waseda et al. (2008) produced known
directional spectra in a directional wave basin and then analysed the
wave field using a number of different techniques. They concluded
that the WDM was the only method which was able to reproduce the
known directional spectrum accurately. Their analysis included
techniques such as the MLM.

Thedifferences between the values ofA in Fig. 11 are very significant.
In order to investigate what such a difference really means in terms of
the directional spreading, Fig. 12 shows the directional spreading
function K(f= fp, θ), derived from the WDM for the same case
considered above (i.e. same as shown in Fig. 3, top right panel). For
comparative purposes, the spreading functions for Mitsuyasu et al.
(1975), Hasselmann et al. (1980) and Donelan et al. (1985) are also
shown. As indicated above, the WDM produces results which are
narrower than these previous analyses, although the present results are
comparable to the high resolution results of Donelan et al. (1985). The
differences are, however, not as striking as one might infer from Fig. 11.

Hence, it is reasonable to assume that previous measurements of
the directional frequency spectrumwere excessively broad as a result
of the analysis technique used. This is consistent with the analytical
results of Young (1994), which showed that the MLM produced
excessively broad results.

Although not shown here, the MLM also produced bi-modal
frequency spectra at frequencies above 2fp. This is also inconsistent
with the WDM analysis and again it is reasonable to assume that the
MLM analysis is questionable. Young (1994) pointed out that the
MLM has a tendency to create artificial side lobes. The MLM relies on
the assumption that the linear dispersion relationship holds. This
relationship is used to interpret the cross-spectra between the various
gauges. As the present analysis shows, this assumption is questionable
at higher frequencies.
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As seen in Figs. 2 and 4, the directional spreading is often
asymmetric. There was no consistent trend in this asymmetry. For
instance, the spectra were not always skewed in one direction.
Therefore, it is unlikely that the asymmetry is caused by bathymetry
of fetch geometry. It is more likely that such asymmetry is a natural
feature of the spectral balance of such high frequency waves (note
that at 2fp thewaves are typically of frequency 2 Hz). As demonstrated
by Young and van Vledder (1993), the high frequency tail of the
spectrum is dynamic. The processes of atmospheric input, dissipation
and 4-wave nonlinear interaction are in balance in the mean, but
imbalances occur on shorter time scales. These imbalances are
smoothed by the 4-wave nonlinear interactions, which continually
force the spectrum back to the mean state. Therefore, it is likely that
the asymmetry observed in the present data (and also present in data
analysed using Fouriermethods) is a result of these short-term energy
imbalances in the spectral tail.

8. Conclusions

The results of this paper have provided a description of the
directional spreading of both the wavenumber and frequency spectra
of the asymptotic depth-limited wind-wave spectrum. There are
significant differences in the spreading of these two forms. The
wavenumber spectrum is bi-modal, consistent with previous mea-
surements. In contrast, the frequency spectrum is uni-modal. This
apparent conflict is explained by energy in the wind direction at high
frequencies being displaced from the linear dispersion shell. This
results in an elevation of the spectral tail of the frequency spectrum in
the wind direction and hence masks any bi-modality. Although the
data cannot define the physical processes responsible for the
deviation from the dispersion relationship, it is probable that a
combination of Doppler shifting by the dominant waves in the
spectrum and nonlinear processes play a role. This is an important
finding as it supports previous suggestions that it is the wavenumber
spectrum which represents the universal form (e.g. Banner, 1990;
Bouws et al., 1985, 1987).

The analysis cannot determine the physical processes responsible
for the bi-modal structure of the wavenumber spectrum. However, it
is highly likely that 4-wave nonlinear interactions are responsible, as
suggested by Banner and Young (1994).

The analysis in this paper clearly shows the power of the Wavelet
Directional Method for the analysis of ocean wave time series. The
present application is to spatial array data, however, the approach can
also be applied to directional wave buoy data. Therefore, it would be
possible to routinely obtain wavenumber spectra from such instru-
ments. As the wavenumber spectrum is inherently more robust, as it
is not subject to the influences of Doppler shifting, the more extensive
use of such wavenumber spectra should be considered in ocean
engineering applications.

Combined with Parts I and II, the present paper provides a full
description of the depth-limiting form of the wind-wave spectrum.
These three papers provide detailed relationships for the asymptotic
limits to growth of non-dimensional energy and peak frequency as a
function of non-dimensional water depth. In addition, parametric
relationships for the one-dimensional frequency and wavenumber
spectra are also obtained. Finally, a full parametric description of the
directional spreading functions for the wavenumber spectrum is
presented. These relationships fully define this important asymptotic
limit to grow and allow its routine application in design processes.
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